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Abstract. Lookup-table based side-channel countermeasure is the prime
choice for masked S-box software implementations at very low orders. To
mask an n-bit to m-bit S-box at first- and second- orders, one requires a
temporary table in RAM of size m ·2n bits. Recently, Vadnala (CT-RSA
2017) suggested masked table compression schemes at first- and second-
orders to reduce the table size by (approximately) a factor of 2l, where
l is a parameter. Though greater compression results in a greater exe-
cution time, these proposals would still be attractive for highly resource
constrained devices.

In this work, we contradict the second-order security claim of the second-
order table compression scheme by Vadnala. We do this by exhibiting
several pairs of intermediate variables that jointly depend on the bits of
the secret. Motivated by the fact that randomness is also a costly resource
for highly resource constrained devices, we then propose a variant of
the first-order table compression scheme of Vadnala that has the new
randomness complexity of about l instead of 2l for the original proposal.
We achieve this without inducing any noticeable difference in the overall
execution time or memory requirement of the original scheme. Finally,
we show that the randomness complexity of l is optimal in an algebraic
sense.
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1 Introduction

Side-channel attacks on cryptographic implementations exploit physical charac-
teristics of an execution such as timing, power consumption or electromagnetic
emission pattern, to name but a few [Koc96, KJJ99]. Block cipher implemen-
tations have been a major target for these attacks. Over the years, a number
of countermeasures against these attacks have been developed too. Of these,
(boolean) masking is one of the very first and still a popular technique to protect
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block cipher implementations [CJRR99, ISW03]. The basic idea behind masking
is to split every sensitive variable into one or more shares and process them in
such a way that intermediate variables do not reveal information about these
sensitive variables. An implementation is said to be secure against t-th order
attacks in the probing leakage model if any subset of t intermediate variables
(including the input and output shares) jointly is statistically independent of
the secret variables [ISW03]. Hence at least t + 1 shares are needed for each of
the secret inputs to achieve t-th order security. As the number of shares increase
so does the complexity of the side-channel attacks [CJRR99, PR13, DDF14].
Moreover, since the processing of affine functions is straightforward, the main
challenge in masking block ciphers is the masking of the non-linear operations,
in particular, the S-box functions.

Recent years have witnessed an increased focus on the design and improve-
ment of higher-order (boolean/arithmetic) masking schemes for S-boxes. For in-
stance, see [CGPZ16, GR16, PV16, CRZ17, GR17, GRVV17, JS17] and the ref-
erences within. These masking schemes can roughly be categorised into polyno-
mial/ arithmetic-circuit based masking schemes (including the bit-sliced masking
technique) on one hand, and look-up table-based masking schemes on the other.
As the above works have shown, at higher orders, polynomial-based schemes
have been more efficient than table-based schemes in terms of time, memory
and randomness complexity. In spite of the above advancement of polynomial-
based masking schemes, at very low orders, such as first- and second-orders,
table-based masking schemes are the most effective due to low overheads. Un-
surprisingly, vast majority of the commercial implementations opt just for first-
or second-order masked implementations due to efficiency concerns.

Original Look-up Table-based Masking. The original table-based first-
order masking of an (n,m)-S-box S consists of creating a temporary table
T : {0, 1}n → {0, 1}m in RAM [CJRR99]:

T (a) = S(x1 ⊕ a)⊕ y1 ∀ 0 ≤ a ≤ 2n − 1,

where x1 and x2 are the input shares such that the secret x = x1⊕x2 ∈ {0, 1}n,
and y1 and y2 are the output shares such that S(x) = y1 ⊕ y2 ∈ {0, 1}m. Using
T , y2 can simply be computed as y2 = T (x2). The RAM memory requirement
for the table T is m · 2n bits.

Prouff and Rivain [PR07] suggested a first-order S-box masking scheme that
mainly requires only two m-bit registers, hence doing away with the need to
store the table T . Though this method only requires (essentially) a constant
amount of memory, the overhead induced is a factor of about 30 - 35, while it
is just 2 - 3 for the original method [Vad17]. Moreover, in the original method,
the table T can be computed “offline” hence significantly reducing the “online”
computation time. But in the method of [PR07], the whole table is computed
(on the fly) during the online phase and hence the relatively large overhead.

The second-order S-box masking schemes of Schramm and Paar [SP06], and
Rivain, Dottax and Prouff [RDP08] also require a temporary table of size m · 2n
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bits, while the scheme of Coron [Cor14] requires 3 · m · 2n bits [CRZ17]. The
authors of [RDP08] also suggest a second-order scheme that requires only two
m-bit registers and 2n bits of RAM memory.

Masked Table Compression. In order to reduce the RAM memory require-
ment for highly resource constrained devices, Rao et al. [RRST02] suggested a
table compression scheme for first-order masking that requires only ≈ m · 2n−1
bits for the temporary table. For the case of AES, one now needs only 128 bytes
for the table instead of 256 bytes for the original table-based method. In gen-
eral, one can improve the memory complexity of the method of [RRST02] to
≈ m · 2n/l bits, for a parameter l such that 1 ≤ l ≤ m.

Inspired by the method of [RRST02], Vadnala [Vad17] suggested masked
table compression techniques that achieve better compression for both the first-
and second-order S-box masking. It is shown that the memory requirement for
the first-order case can be reduced to ≈ m · 2n−l + (n − l) · 2l bits, where l
is a parameter, called compression level, such that 1 ≤ l ≤ n. For the second-
order case, it is shown to be ≈ m · 2n−l + (n − l + 1) · 2l bits. The author also
investigated the (online-)time and (RAM) memory trade-off in between the two
extremes mentioned above for the original method. Reasonably efficient first-
and second-order masked implementations of AES-128 were obtained using only
about 40 bytes of RAM memory [Vad17]. The proposed schemes were argued to
be secure in the probing leakage model [ISW03].

Let us very briefly illustrate the technique of [Vad17] for the first-order case.
The main idea is to “pack” 2l table entries of the original randomised table into
a single entry of table T1:

T1(a(1)) =

(
⊕

0≤i≤2l−1
S((a(1) ⊕ ri) || i)

)
⊕ y1, ∀ 0 ≤ a(1) ≤ 2n−l − 1,

where ri ∈ {0, 1}n−l are uniform random and independently sampled. One needs
to carefully access this table to produce another table (that need not be stored)
which is then securely accessed with the shares of the remaining l-bits of the
secret x (cf. Section 2.1). Note that for the given compression level l, one needs
to make 2l calls to a random number generator to generate the ris.

1.1 Our Contribution

We contradict the second-order security claim of the second-order masked ta-
ble compression scheme(s) of [Vad17]. We exhibit a second-order attack on the
scheme(s) by demonstrating the existence of several pairs of intermediate vari-
ables that jointly depend on the secret (cf. Lemma 1). Our attack is, in spirit,
similar to the third-order attack suggested by Coron, Prouff and Rivain [CPR07]
on the higher-order masking scheme of Schramm and Paar [SP06].

Motivated by the fact that the generation of quality randomness is possibly a
costly operation on highly resource constrained devices, we then revisit the first-
order scheme(s) of [Vad17] and propose a variant (first-order) scheme(s) that
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requires only about l calls to a random number generator instead of 2l required
for the original scheme(s) (cf. Section 2.2). Our main idea is to generate the
2l values ri using only l + 1 random values γ0, . . . , γl ∈ {0, 1}n−l. We do this
by setting ri to a subset (xor) sum of the γjs. Other than this difference, the
rest of our method is the same as in [Vad17]. This implies that apart from the
difference in the time to compute the ris at the very beginning, there is hardly
any noticeable difference in the time and memory complexity of our method
and that of [Vad17]. We too prove the first-order security of our scheme in the
probing leakage model (cf. Theorem 1). It may be noted that it is straightforward
to securely compose first-order secure schemes in a bigger construction.

Finally, we show that the randomness complexity of l that we achieved is
(nearly) optimal in an algebraic sense (cf. Section 2.3). Specifically, our compu-
tation model assumes that the only arithmetic operations allowed are xors, i.e.,
F2-linear operations. This is a reasonable assumption since nearly all the known
table-based masking schemes satisfy this assumption [CJRR99, RRST02, SP06,
PR07, RDP08, Cor14, CRZ17, Vad17].

Organisation of the Paper. To gradually introduce the techniques of masked
table compression, we first describe our contributions for the first-order case in
Section 2 before presenting our attack on the second-order scheme in Section 3.

2 Improved First-order Table Compression Scheme

2.1 Original First-order Scheme

Before we present our improved first-order masked table compression scheme,
let us first briefly recollect the original first-order proposal from [Vad17, Section
2]. The notation we use here is somewhat different from that in [Vad17, Section

2], and we summarise the changes in Remark 1. Throughout the paper, by b
$←

{0, 1}k we denote a uniform random and independent sampling of a k-bit string.
Consider an (n,m)-S-box S : {0, 1}n → {0, 1}m, where n ≥ m. The task is

to securely evaluate S(x), given the input shares x1
$← {0, 1}n and x2 such that

x = x1 ⊕ x2 ∈ {0, 1}n, ensuring that no intermediate variable is statistically

dependent on the “secret” x. The outputs are two shares y1
$← {0, 1}m and y2

such that S(x) = y1 ⊕ y2 ∈ {0, 1}m.
Let 1 ≤ l ≤ n be the compression level. Define the functions Si : {0, 1}n−l →

{0, 1}m (0 ≤ i ≤ 2l − 1) as

Si(a
(1)) := S(a(1)||i), ∀ 0 ≤ a(1) ≤ 2n−l − 1, (1)

where i is represented using l bits. The main idea in [Vad17] is to “pack” 2l

table entries of the original randomised table into a single entry of table T1.
More precisely, let

T1(a(1)) =

(
⊕

0≤i≤2l−1
Si(a

(1) ⊕ ri)

)
⊕ y1, ∀ 0 ≤ a(1) ≤ 2n−l − 1, (2)
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where
ri

$← {0, 1}n−l, ∀ 0 ≤ i ≤ 2l − 1, (3)

are uniform random and independently sampled.
Let

x =: x(1) ||x(2), where x(1) ∈ {0, 1}n−l, x(2) ∈ {0, 1}l. (4)

Similarly, let

x1 =: x1
(1) ||x1(2), where x1

(1) ∈ {0, 1}n−l, x1
(2) ∈ {0, 1}l, (5)

and

x2 =: x2
(1) ||x2(2), where x2

(1) ∈ {0, 1}n−l, x2
(2) ∈ {0, 1}l. (6)

In [Vad17, Section 2] it is mentioned that x1
(1) = ⊕ ri (0 ≤ i ≤ 2l − 1). But

this is not a necessity and we assume that x1 is independently chosen. The next
step is to compute a table U : {0, 1}l → {0, 1}m comprising of all the values
Si(x

(1)) ⊕ y1, where 0 ≤ i ≤ 2l − 1, by securely accessing the tables T1 and Si
as follows:

Si(x
(1))⊕y1 = T1((x1

(1)⊕ri)⊕x2(1)) ⊕ ⊕
0≤j≤2l−1, j 6=i

Sj(((x1
(1)⊕ri)⊕x2(1))⊕rj).

For security considerations, the expression inside the parentheses above and
elsewhere must be evaluated with higher precedence. To compute the second
output share y2 = S(x) ⊕ y1, the table U needs to be accessed at x(2). But
if one directly accesses the table U as mentioned, then it would leak l-bits of
the secret x. Therefore, instead of creating the table U , a randomised table T2
corresponding to U shifted by x1

(2) is created as follows:

T2(a(2)) = T1((x1
(1) ⊕ r(a(2)⊕x1

(2)))⊕ x2(1)) ⊕

⊕
0≤j≤2l−1, j 6=(a(2)⊕x1

(2))

Sj(((x1
(1) ⊕ r(a(2)⊕x1

(2)))⊕ x2(1))⊕ rj), (7)

where 0 ≤ a(2) ≤ 2l − 1. Finally, compute

y2 = T2(x(2)).

The above scheme is proven to be first-order secure in the probing leakage
model [ISW03]. Namely, every intermediate variable (including the input and
output shares) is shown to be independent of the secret x. Note that the table
T1 can be computed offline. As the value of the compression level l increases,
then so does the online computation time. The table T1 has 2n−l m-bit entries,
while the table T2 has 2l m-bit entries. Hence the combined size of the two
tables is

(
2n−l + 2l

)
·m bits compared to the 2n ·m bits needed for the original
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randomised table-based (first-order) masking scheme. But in the above scheme
we now need to also store the 2l random values ri each n− l bits long.

It is suggested in [Vad17] how to do away with the need to store the table T2.
This is based on a first-order S-box masking scheme from [PR07] that mainly
uses only two registers (instead of a table) to compute the output shares y1 and
y2. The only (implicit) requirement to apply the method of [PR07] in different
contexts is that random access must be possible for the table that is being
masked. Since the entries of the table T2 can be computed in any arbitrary
order, one can straightforwardly apply the technique of [PR07] in the current
context. Hence the RAM memory complexity of the first-order table compression
scheme from [Vad17] is approximately 2n−l ·m+ 2l · (n− l) bits.

Remark 1. The variables x1, x1
(1), x1

(2), x2, x2
(1), x2

(2), y1, and a(1), in this
section correspond to, respectively, r, r(1), r(2), x1, x1

(1), x1
(2), s, and u, in

[Vad17, Section 2]. The final step that computes y2 is also slightly different
compared to [Vad17].

2.2 Our Method

Our main idea to reduce the randomness complexity of the first-order scheme

from [Vad17] is as follows. Instead of choosing 2l random values ri
$← {0, 1}n−l

(cf. (3)), we compute the required ri using only l + 1 random values

γj
$← {0, 1}n−l ∀ 0 ≤ j ≤ l

by xoring different subsets of this smaller set of random values. By

bitsl(i) ∈ Fl2 ∀ 1 ≤ i ≤ 2l − 1

we mean an l-bit vector consisting of the bits in the binary representation of
i. Let bitsl(i)[0] denote the least significant bit and, consequently, bitsl(i)[l − 1]
denotes the most significant bit of i (which could possibly be 0). Define

r0 := γl,

ri :=

l−1∑
j=0

bitsl(i)[j] · γj , ∀ 1 ≤ i ≤ 2l − 1.
(8)

Hence each of r1, . . ., r2l−1 is computed as the xor of the subset of γjs defined
by the binary representation of their indices. When i = 0, the subset xor of γjs
is zero. Hence r0 is set to a fresh random value. This procedure is summarised
in Algorithm 1.

Once the values ri are generated and stored, then the rest of the procedure
is the same as in the original scheme recollected in Section 2.1 (but also see
Remark 2). Hence the proof of correctness for our improved method follows
automatically. For completeness, we summarise the complete (improved) first-
order masked table compression scheme in Algorithm 4.
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Algorithm 1 Computing {r0, . . . , r2l−1} according to (8).

Input: γ0, . . . , γl ∈ {0, 1}n−l.
Output: r0, . . . , r2l−1 ∈ {0, 1}n−l.
1: r0 ← γl
2: for i← 1 to 2l − 1 do
3: ri ← 0
4: for j ← 0 to l − 1 do
5: if bitsl(i)[j] 6= 0 then
6: ri ← ri ⊕ γj
7: end if
8: end for
9: end for

10: return r0, . . . , r2l−1

Algorithm 2 Computing table T1 for first-order masked table compression (cf.
(2)).

Input: (n,m)-S-box table S, an output share y1 ∈ {0, 1}m, {r0, . . . , r2l−1} from Al-
gorithm 1.

Output: Table T1.
1: define Si(a

(1)) := S(a(1)||i) (cf. (1))
2: for a(1) ← 0 to 2n−l − 1 do
3: z ← y1
4: for i← 0 to 2l − 1 do
5: z ← z ⊕ Si(a

(1) ⊕ ri)
6: end for
7: T1(a(1))← z
8: end for
9: return T1

Remark 2. In Algorithm 3, the variable z is initialised to T1(ind1) and then

xored with⊕Sj(ind2). But in [Vad17, Section 2], the variable z is initialised to
0 and the above xor was computed at the end. The latter approach could lead to
a first-order security flaw for our method due to the “random” values ri being
related in our method.

Remark 3. The execution time for our method (Algorithm 4) and that of [Vad17]
is the same except for the time required to generate the values ri. In the latter
method it requires 2l calls to the random number generator, while for our method
it needs only l + 1 calls plus the computation of l · 2l−1 xors.

Remark 4. The RAM memory complexity is the same for both our method and
for [Vad17] since the extra variables γj in our method can be discarded right after
computing and storing the values ri. The RAM memory complexity for both the
methods is approximately 2n−l ·m+ 2l · (n− l) bits (in spite of computing the
table T2 on the fly).
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Algorithm 3 Computing table T2 for first-order masked table compression (cf.
(7)).

Input: (n,m)-S-box table S, two input shares x1 and x2 such that x1 ⊕ x2 = x ∈
{0, 1}n, an output share y1 ∈ {0, 1}m, {r0, . . . , r2l−1} from Algorithm 1, table T1

from Algorithm 2.
Output: Table T2.
1: define Si(a

(1)) := S(a(1)||i) (cf. (1)), x1 =: x1
(1) ||x1(2) (cf. (5)), x2 =: x2

(1) ||x2(2)
(cf. (6))

2: for a(2) ← 0 to 2l − 1 do
3: k ← a(2) ⊕ x1(2)
4: ind1 ← (x1

(1) ⊕ rk)⊕ x2(1)
5: z ← T1[ind1]
6: for j ← 0 to 2l − 1 do
7: if j 6= k then
8: ind2 ← ind1 ⊕ rj
9: z ← z ⊕ Sj(ind2)

10: end if
11: end for
12: T2(a(2))← z
13: end for
14: return T2

Remark 5. The randomness complexity of our method in terms of the number
of calls to a random number generator is l + 3 instead of 2l + 2 for [Vad17]. In
terms of the number of random bits generated, it is (l + 1) · (n− l) + n+m for
ours instead of 2l · (n− l) + n+m for [Vad17].

The above complexity estimates are exclusively for the masked computation of
a single S-box and hence does not include the processing of the full cipher.
We refer to [Vad17, Section 4] for a concrete performance evaluation of masked
AES-128 on a 32-bit ARM Cortex-M3 based micro-controller. We expect that
on such relatively big architectures the execution times for our method and that
of [Vad17] will not differ significantly.

Theorem 1. Algorithm 4 is first-order secure in the probing leakage model.

Security Proof. To this end, we just need to show that every intermediate
variable is independent of the secret input x. It is obvious that all the interme-
diate values appearing until (including) Step 7 of Algorithm 4 are independent
of x since they can be computed offline. These intermediate variables can simply
be simulated by picking suitable random values. Out of the intermediate vari-
ables occurring in the remaining Steps 8, 9 and 10 of Algorithm 4, the variables
x2

(2) = x(2) ⊕ x1(2), y1, and y2 = T2(x2
(2)) = S(x) ⊕ y1 in Steps 9 and 10 are

clearly independent of x. This leaves us to deal with only the variables (including
the inputs and outputs) occurring in the computation of table T2 in Algorithm
3.
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Algorithm 4 Improved first-order masked table compression

Input: (n,m)-S-box table S, two input shares x1 and x2 such that x1 ⊕ x2 = x ∈
{0, 1}n.

Output: Two output shares y1 and y2 such that y1 ⊕ y2 = S(x) ∈ {0, 1}m.
1: define x2 =: x2

(1) ||x2(2) (cf. (6))
2: y1 ← {0, 1}m
3: for j ← 0 to l do

4: γj
$← {0, 1}n−l

5: end for
6: Compute r0, . . . , r2l−1 ← Algorithm 1 (γ0, . . . , γl)
7: Compute table T1 ← Algorithm 2 (S, y1, {r0, . . . , r2l−1})
{ All the above steps may be computed offline.}

8: Compute table T2 ← Algorithm 3 (S, x1, x2, y1, {r0, . . . , r2l−1}, T1)

9: y2 ← T2(x2
(2))

10: return y1, y2

The (probability distribution of the) variable k = a(2) ⊕ x1
(2) is uniform

random and independent of x due to x1. Since each ri ∈ {0, 1}n−l (0 ≤ i ≤ 2l−1)
is uniform random and independent of x and x1 (because ris are xors of uniform
random and independent γjs), the variables x1

(1) ⊕ rk and ind1 = x(1) ⊕ rk
are uniform random and independent of x. Because each entry of the table T1
is masked with y1, hence they too are uniform random and independent of x.
This implies that the initial value of z = T1(ind1) is also uniform random and
independent of x.

Consider the values assumed by the variable ind2 = x(1)⊕rk⊕rj . Since j 6= k
and if j, k 6= 0, it is easy to see that rk ⊕ rj = rk⊕j . Since all the ris are uniform
random and independent of x, so is ind2. If j = 0, then ind2 = x(1) ⊕ rk ⊕ γl,
and if k = 0, then ind2 = x(1) ⊕ γl ⊕ rj , and the above conclusion follows
easily. This also means that Sj(ind2) occurring in Step 9 of Algorithm 3 is also
independent of x. Finally, we need to show that all the values of z from Step
9 (including the Step 12) are independent of x. As reasoned above, the initial
value of z = T1(ind1) is masked with y1. Since each of the values Sj(ind2) is
also independent of y1, this implies that all the values assumed by z are always
uniform random and independent of x. This completes the security proof. ut

2.3 Lower Bound on Randomness Complexity

We next show that the randomness complexity of our method from Section 2.2
has (nearly) optimal randomness complexity in an algebraic sense. Precisely, we
prove that one needs to make at least l calls to a random number generator
to compute the values r0, . . . , r2l−1 ∈ {0, 1}n−l used to compute table T2 (cf.
Remark 5). Needless to say, this lower bound is also applicable to the original
scheme from [Vad17, Section 2]. To prove our lower bound, we assume that the
only arithmetic operations performed are xors, i.e., only F2 -linear operations,
which indeed is a typical scenario for table-based masking schemes.
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Theorem 2. Algorithm 4 needs at least l·(n−l) uniform randomly generated bits
to be first-order secure in the probing leakage model if only F2-linear operations
are performed.

Proof. Let us assume that fewer than l calls are made to the random number
generator to compute the ris. Then we will exhibit an intermediate value that de-
pends on the secret x. Let the generated random values be ν1, . . . , νt ∈ {0, 1}n−l,
where t ≤ l − 1. In the assumed computation model, all the computed values
r0, . . . , r2l−1 will be of the form

ri = ci ⊕
1≤j≤t

bj · νj , where bj ∈ F2 , ci ∈ {0, 1}n−l,

for 0 ≤ i ≤ 2l−1. This implies that there exist some rp and rq (p 6= q) such that

rp ⊕ rq = cp ⊕ cq

is a constant. The variable ind2 = x(1) ⊕ cp ⊕ cq in Step 8 of Algorithm 3 when
a(2) = p and j = q. Hence this value is correlated with the n− l most significant
bits of x. This proves our claim. ut

3 Attack on the Second-Order Masked Table
Compression Method of [Vad17]

3.1 Original Second-Order Scheme

Before we present our attack on the second-order masked table compression
scheme from [Vad17, Section 3], let us first recollect the original scheme. To be
consistent with the notation in Section 2, we will use a slightly different notation
here than that in [Vad17, Section 3], and we summarise the changes in Remark
6.

The second-order table compression scheme from [Vad17] is based on the
second-order S-box masking scheme from [RDP08, Section 3.1]. Consider again
an (n,m)-S-box S : {0, 1}n → {0, 1}m, where n ≥ m. On input three shares

x1
$← {0, 1}n, x2

$← {0, 1}n and x3 such that x = x1 ⊕ x2 ⊕ x3 ∈ {0, 1}n, the

task is to compute the three output shares y1
$← {0, 1}m, y2

$← {0, 1}m and y3
such that S(x) = y1 ⊕ y2 ⊕ y3 ∈ {0, 1}m. In order for the scheme to be second-
order secure in the probing model, the requirement is that the joint probability
distribution of any pair of intermediate variables (including the input and the
output shares) is statistically independent of the secret x. At a high level the
main technique behind the second-order table compression scheme is similar to
that of the first-order compression scheme presented in Section 2. First, create
a table T1 that “packs” 2l randomised S-box values:

T1(b(1)) :=

((
⊕

0≤i≤2l−1
Si(x3

(1) ⊕ a(1) ⊕ ri)

)
⊕ y1

)
⊕ y2, (9)
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where

b(1) = a(1) ⊕ ((x1
(1) ⊕ v(1))⊕ x2(1)), (10)

for all 0 ≤ a(1) ≤ 2n−l− 1, Si(a
(1)) := S(a(1)||i) as in (1), v(1)

$← {0, 1}n−l, and

ri
$← {0, 1}n−l as in (3).

Let us recollect the notations x =: x(1) ||x(2), x1 =: x1
(1) ||x1(2), x2 =:

x2
(1) ||x2(2) from (4) to (6). Similarly, let x3 =: x3

(1) ||x3(2). The next step is
to compute a table U : {0, 1}l → {0, 1}m consisting of the values Si(x

(1)) ⊕ y1,
where 0 ≤ i ≤ 2l − 1, by carefully accessing the tables T1 and Si. We have

Si(x
(1)) ⊕ y1 ⊕ y2 = T1(v(1) ⊕ ri) ⊕ ⊕

0≤j≤2l−1, j 6=i
Sj(x

(1) ⊕ ri ⊕ rj).

Now the final output share y3 = S(x)⊕y1⊕y2 can be computed by accessing the
table U at x(2). Of course, this cannot be done as x(2) must never be computed
explicitly. Instead of computing the table U , a second-order masked table T2 is
created that is accessed with the shares of x(2).

Let

T2(b(2)) := T1(v(1) ⊕ r(x3
(2)⊕a(2))) ⊕

⊕
0≤j≤2l−1, j 6=a(2)

S(x3
(2)⊕j)(x

(1) ⊕ r(x3
(2)⊕a(2)) ⊕ r(x3

(2)⊕j)), (11)

for all 0 ≤ a(2) ≤ 2l − 1, where

b(2) := a(2) ⊕ ((x1
(2) ⊕ v(2))⊕ x2(2)), (12)

and v(2)
$← {0, 1}l. Once the table T2 is computed, the output share y3 can

simply be computed as

y3 = T2(v(2)).

We will not recollect here the exact details of how the tables T1 and T2 are
computed since it is not necessary to present our attack. We refer to [Vad17,
Algorithm 8] for these details. As observed in [Vad17], it is not necessary to
store the table T2. Instead, it can be computed “on the fly” by making use of
the technique from [RDP08, Algorithm 3].

Remark 6. The variables x(1), x(2), x1
(1), x1

(2), x2
(1), x2

(2), x3, x3
(1), x3

(2), y1,
y2, v(1), and v(2), in this section correspond to, respectively, y, b, y1, b1, y2, b2,
x′, y′, b′, s1, s2, y3, and b3, in [Vad17, Section 3]. The pairs of variables (a(1),
b(1)) and (a(2), b(2)) in our description both correspond, in different contexts, to
(a, a′) in [Vad17, Section 3].
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3.2 Our Attack

We now present a second-order security flaw in the second-order masked table
compression scheme from [Vad17, Section 3]. Our attack is, in spirit, similar
to the third-order attack suggested in [CPR07] on the higher-order masking
scheme of [SP06]. More precisely, we prove the following lemma that establishes
the existence of many pairs of intermediate variables that jointly depend on the
bits of the secret x.

Lemma 1. Let β1, β2 ∈ {0, 1}l. Then

T2(β1)⊕ T2(β2) = S(β1⊕x(2)⊕v(2))(x
(1))⊕ S(β2⊕x(2)⊕v(2))(x

(1)).

Proof. From (11), we have

T2(β1) = T1(v(1) ⊕ r(x3
(2)⊕α1

(2))) ⊕

⊕
0≤j≤2l−1, j 6=α1

(2)

S(x3
(2)⊕j)(x

(1) ⊕ r(x3
(2)⊕α1

(2)) ⊕ r(x3
(2)⊕j)), (13)

where, from (12),

α1
(2) := β1 ⊕ ((x1

(2) ⊕ v(2))⊕ x2(2)). (14)

From (9), (10) and (14), we have

T1(v(1) ⊕ r(x3
(2)⊕α1

(2))) = y1 ⊕ y2⊕

⊕
0≤j≤2l−1

Sj(x
(1) ⊕ rβ1⊕x(2)⊕v(2) ⊕ rj).

From (14) and by a change of index, we obtain

T1(v(1) ⊕ r(x3
(2)⊕α1

(2))) = y1 ⊕ y2 ⊕ S(β1⊕x(2)⊕v(2))(x
(1))⊕

⊕
0≤j≤2l−1, j 6=α1

(2)

S(x3
(2)⊕j)(x

(1) ⊕ r(x3
(2)⊕α1

(2)) ⊕ r(x3
(2)⊕j)).

On substituting the above equation in (13), we get

T2(β1) = S(β1⊕x(2)⊕v(2))(x
(1))⊕ y1 ⊕ y2.

Similarly, we obtain

T2(β2) = S(β2⊕x(2)⊕v(2))(x
(1))⊕ y1 ⊕ y2.

Finally,

T2(β1)⊕ T2(β2) = S(β1⊕x(2)⊕v(2))(x
(1))⊕ S(β2⊕x(2)⊕v(2))(x

(1)).

This proves the claim. ut
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The above result suggests that every pair of values in the table T2 jointly
depends on n− l bits of the secret x. In particular, if the compression level l = 1,
this means that each pair of values will jointly “leak” all but one bit of the secret.

Remark 7. Our attack only exploits the values in the table T2 and not the means
by which it is computed. Hence our attack is also applicable to the variant scheme
in [Vad17, Section 3] where T2 is not stored but only computed on the fly.

Remark 8. For our attack the compression level can be any value l such that
1 ≤ l ≤ n − 1. Note that our attack is not applicable when l = 0, which
corresponds to the scheme from [RDP08, Section 3.1], and when l = n. Our
attack also does not work for those functions S that depend only on the least
significant l bits of its input as this part of the input is randomised. But such
functions are of little interest for use as cryptographic S-boxes.

Remark 9. In side-channel experiments one hardly gets the values of interme-
diate variables without any error. Instead, a noisy function of the bits is ob-
served, for e.g., noisy Hamming weight values. We refer to the techniques in
[PRB09, SVO+10] to extract the bits of the secret from the noisy experimental
data.
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CPR07. Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side channel
cryptanalysis of a higher order masking scheme. In Pascal Paillier and In-
grid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems
- CHES 2007, 9th International Workshop, Vienna, Austria, September 10-
13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer Science,
pages 28–44. Springer, 2007.
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