
Several Masked Implementations of the
Boyar-Peralta AES S-Box

Ashrujit Ghoshal1[0000−0003−2436−0230] and Thomas De
Cnudde2[0000−0002−2711−8645]

1 Indian Institute of Technology Kharagpur, India
ashrujitg@iitkgp.ac.in

2 KU Leuven, ESAT-COSIC and imec, Belgium
thomas.decnudde@esat.kuleuven.be

Abstract. Threshold implementation is a masking technique that pro-
vides provable security for implementations of cryptographic algorithms
against power analysis attacks. In recent publications, several different
threshold implementations of AES have been designed. However in most
of the threshold implementations of AES, the Canright S-Box has been
used. The Boyar-Peralta S-Box is an alternative implementation of the
AES S-Box with a minimal circuit depth and is comparable in size to the
frequently used Canright AES S-Box. In this paper, we present several
versions of first-order threshold implementations of the Boyar-Peralta
AES S-Box with different number of shares and several trade-offs in area,
randomness and speed. To the best of our knowledge these are the first
threshold implementations of the Boyar-Peralta S-Box. Our implemen-
tations compare favourably with some of the existing threshold imple-
mentations of Canright S-Box along the design trade-offs, e.g. while one
of our S-Boxes is 49% larger in area than the smallest known threshold
implementation of the Canright AES S-Box, it uses 63% less random-
ness and requires only 50% of the clock cycles. We provide results of a
practical security evaluation based on real power traces to confirm the
first-order attack resistance of our implementations.

Keywords: AES, Boyar-Peralta S-box, Countermeasure, DPA, Mask-
ing, SCA, Threshold Implementations.

1 Introduction

In a black box model, embedded devices have been shown to be secure using
modern ciphers. However, when naively implemented, side-channel information
like power consumption, electromagnetic radiations or timing of the device’s
computations can leak secret information unintentionally. Attacks based on var-
ious side channels were presented in [16, 23, 24] and their mitigation has been
the subject of a great deal of research ever since.

Masking is an efficient way to strengthen cryptographic implementations
against such physical side-channel attacks [10,18]. Masking detaches leaked side-
channel information from secret dependent intermediate values by carrying out

2 Ashrujit Ghoshal, Thomas De Cnudde

computations on randomized values. It offers provable security [29] and can be
implemented on the algorithmic level, making it a flexible Side-Channel Analysis
(SCA) countermeasure. The underlying principle of masking relies on splitting
each variable into a set of random values using secret sharing techniques and us-
ing a certain multi-party computation protocol on the resulting random values
for secure computations. Once the secret values are masked, they are in no way
combined until the end of the algorithm, i.e. the sensitive values are not leaked
at any point during the execution of the cryptographic algorithm. Only at the
end of the computation, when the cipher’s outputs are valid, the output masks
are combined to reconstruct the unmasked output.

The security of masking schemes is inherently tied to an adversary model.
An attacker who observes the dth-order statistical moment of e.g. a power trace
or combines observations from d points in time nonlinearly in that power trace is
said to be an attacker mounting a dth-order attack. To prevent a dth-order attack,
a masking scheme of order (d+1) is required. Fortunately, the number of readings
needed for a higher-order attack to become successful grows exponentially with
the noise standard deviation and therefore it is reasonable to guarantee practical
security up to a certain order.

Implementing masking in hardware in a secure manner is not trivial. It is
a delicate job since all the assumptions made on the leakage behavior of the
underlying platform do not always hold in practice. For example, glitches are
a known predominant threat [25] to the security of masked implementations
in CMOS technologies. Some masking schemes like Threshold Implementations
(TI) work under assumptions which are more achievable in a practical scenarios.
In addition to these relaxed assumptions on the underlying leakage, TI offers
provable security and allows to construct secure circuits which are realistic in
size, all without requiring much intervention from a designer or many design it-
erations. For this reason, TI has been applied to many well-known cryptographic
algorithms like KECCAK, AES and PRESENT [3,14,26,28].

The Canright S-Box [9] and Boyar-Peralta S-Box [8] are two of the smallest
implementations of the AES S-Box. As a starting point for threshold implemen-
tations and Side-Channel Analysis (SCA) secure designs, the Canright S-box
has been used predominantly [5, 20, 26], whereas the Boyar-Peralta S-box has
received little to no attention. The S-box introduced by Boyar and Peralta [8]
is based on a novel logic minimization technique, which can be applied to any
arbitrary combinational logic problems and even circuits that have been opti-
mized by standard methodologies. The authors described their techniques as a
two-step process: a reduction of nonlinear gates and a reduction of linear gates.
Using their method they came up with an S-Box for AES which has the smallest
combinational circuit depth known till date.

The aim of this paper is to develop secure masked implementations of the
Boyar-Peralta AES S-Box using TI. The Boyar-Peralta S-Box is one of the small-
est circuits implementing the AES S-box in unmasked form. We explore whether
it is also one of the smallest masked S-Box of AES. For this purpose we explore

Several Masked Implementations of the Boyar-Peralta AES S-Box 3

several different masking styles of the Boyar-Peralta S-Box, focusing on various
trade-offs between area, randomness and the number of clock cycles.

Contributions. We present the first threshold implementations of the Boyar-
Peralta AES S-Box. More precisely, we show TIs of the Boyar-Peralta AES S-Box
with 3 and 4 shares, both with various trade-offs related to the circuit area, the
consumed randomness and the required clock cycles. We consider two approaches
to mask the S-Box. The first approach involves masking the AND gates alone us-
ing uniform sharing of the individual AND gates. The second approach is based
on sharing a larger algebraic function, the GF(24) inverter as a whole.

Our smallest implementation is 2.75% larger in area than the smallest Can-
right S-Box presented in [6] but reduces randomness required by 37.5% and
takes the same number of clock cycles. This implementation of ours which is the
smallest in area takes as many clock cycles as the fastest known Threshold Im-
plementation of the Canright S-Box. The Canright S-Box in [15] is the smallest
known TI of the AES S-Box so far. Our smallest implementation is 47% larger
in area but reduces randomness by 63% and increases speed by 50%. One of our
implementations uses no randomness at all while all known threshold implemen-
tations of the Canright S-Box need randomness. We show the results of leakage
detection tests of our implementations on a low noise FPGA platform to back
up the theoretical security.

Organization. In Section 2, we provide the notation and the theory behind the
threshold implementations masking scheme and the Boyar-Peralta AES S-Box.
In Section 3, we develop the various secure implementations of the Boyar-Peralta
S-Box by successively reducing either the number of shares, or the required ran-
domness when the number of shares is kept constant. We present the results
of the side-channel analysis in Section 4. In Section 5, we discuss the imple-
mentation cost of our resulting designs and compare them with costs of related
previously published threshold implementations. We conclude the paper and
propose directions for future work in Section 6.

2 Preliminaries

2.1 Notation

We use lowercase regular and bold letters to describe elements of GF(2n) and
their sharing respectively. Any sensitive variable x ∈ GF(2n) is split into s shares
(x1,, xs) = x, where xi ∈ GF(2n), in the initialization phase of the crypto-
graphic algorithm. A possible manner of performing this initialization, which we
employ, is as follows: the shares x1, x2,, xs−1 are selected randomly from an
uniform distribution and xs is calculated such that x =

⊕
i∈{1,2,....,s} xi. We refer

to the jth bit of x as xj unless x ∈ GF(2). We use the same notation to share a
function f into s shares f = (f1,, fs). The number of input and output shares
of f are denoted by sin and sout respectively. We refer to field multiplication as
×, to addition as ⊕ and denote negation of all bits in a value x using x.

4 Ashrujit Ghoshal, Thomas De Cnudde

2.2 The Boyar-Peralta Implementation of the AES S-Box

The Boyar-Peralta S-Box, is a circuit of depth 16 introduced by Boyar and
Peralta [8]. It uses a total of 128 2-input gates to construct the S-Box: 94 gates
are linear operations (XOR and XNOR gates) and 34 gates are nonlinear (AND
gates or 1-bit multiplications).

The circuit is divided into 3 layers:

1. the top linear layer
2. the middle nonlinear layer
3. the bottom linear layer

The equations involved are listed below. The 8 input bits are given by u0, u1,
u2, u3, u4, u5, u6 and u7 with u0 being the most significant bit and u7 being
the least significant bit. Similarly, the 8 output bits are given by s0, s1, s2, s3,
s4, s5, s6 and s7, with s0 being the most significant bit and s7 being the least
significant bit.

The set of equations for the top linear layer are:

t1 = u0 ⊕ u3

t2 = u0 ⊕ u5

t3 = u0 ⊕ u6

t4 = u3 ⊕ u5

t5 = u4 ⊕ u6

t6 = t1 ⊕ t5
t7 = u1 ⊕ u2

t8 = u7 ⊕ t6
t9 = u7 ⊕ t7

t10 = t6 ⊕ t7
t11 = u1 ⊕ u5

t12 = u2 ⊕ u5

t13 = t3 ⊕ t4
t14 = t6 ⊕ t11
t15 = t5 ⊕ t11
t16 = t5 ⊕ t12
t17 = t9 ⊕ t16
t18 = u3 ⊕ u7

t19 = t7 ⊕ t18
t20 = t1 ⊕ t19
t21 = u6 ⊕ u7

t22 = t7 ⊕ t21
t23 = t2 ⊕ t22
t24 = t2 ⊕ t10
t25 = t20 ⊕ t17
t26 = t3 ⊕ t16
t27 = t1 ⊕ t12

The set of equations for the middle nonlinear layer are given by:

m1 = t13 × t6
m2 = t23 × t8
m3 = t14 ⊕ m1

m4 = t19 × u7

m5 = m4 ⊕ m1

m6 = t3 × t16
m7 = t22 × t9
m8 = t26 ⊕ m6

m9 = t20 × t17
m10 = m9 ⊕ m6

m11 = t1 × t15
m12 = t4 × t27
m13 = m12 ⊕ m11

m14 = t2 × t10
m15 = m14 ⊕ m11

m16 = m3 ⊕ m2

m17 = m5 ⊕ t24
m18 = m8 ⊕ m7

m19 = m10 ⊕ m15

m20 = m16 ⊕ m13

m21 = m17 ⊕ m15

m22 = m18 ⊕ m13

m23 = m19 ⊕ t25
m24 = m22 ⊕ m23

m25 = m22 × m20

m26 = m21 ⊕ m25

m27 = m20 ⊕ m21

m28 = m23 ⊕ m25

m29 = m28 × m27

m30 = m26 × m24

m31 = m20 × m23

m32 = m27 × m31

m33 = m27 ⊕ m25

m34 = m21 × m22

m35 = m24 × m34

m36 = m24 ⊕ m25

m37 = m21 ⊕ m29

m38 = m32 ⊕ m33

m39 = m23 ⊕ m30

m40 = m35 ⊕ m36

m41 = m38 ⊕ m40

m42 = m37 ⊕ m39

m43 = m37 ⊕ m38

m44 = m39 ⊕ m40

m45 = m42 ⊕ m41

m46 = m44 × t6
m47 = m40 × t8
m48 = m39 × u7

Several Masked Implementations of the Boyar-Peralta AES S-Box 5

m49 = m43 × t16
m50 = m38 × t9
m51 = m37 × t17
m52 = m42 × t15
m53 = m45 × t27

m54 = m41 × t10
m55 = m44 × t13
m56 = m40 × t23
m57 = m39 × t19
m58 = m43 × t3

m59 = m38 × t22
m60 = m37 × t20
m61 = m42 × t1
m62 = m45 × t4
m63 = m41 × t2

The set of equations for the bottom linear layer consist of:

l0 = m61 ⊕ m62

l1 = m50 ⊕ m56

l2 = m46 ⊕ m48

l3 = m47 ⊕ m55

l4 = m54 ⊕ m58

l5 = m49 ⊕ m61

l6 = m62 ⊕ l5
l7 = m46 ⊕ l3
l8 = m51 ⊕ m59

l9 = m52 ⊕ m53

l10 = m53 ⊕ l4
l11 = m60 ⊕ l2
l12 = m48 ⊕ m51

l13 = m50 ⊕ l0
l14 = m52 ⊕ m61

l15 = m55 ⊕ l1
l16 = m56 ⊕ l0
l17 = m57 ⊕ l1
l18 = m58 ⊕ l8
l19 = m63 ⊕ l4
l20 = l0 ⊕ l1
l21 = l1 ⊕ l7
l22 = l3 ⊕ l12
l23 = l18 ⊕ l2
l24 = l15 ⊕ l9
l25 = l6 ⊕ l10

l26 = l7 ⊕ l9
l27 = l8 ⊕ l10
l28 = l11 ⊕ l14
l29 = l11 ⊕ l17
s0 = l6 ⊕ l24
s1 = l16 ⊕ l26
s2 = l19 ⊕ l28
s3 = l6 ⊕ l21
s4 = l20 ⊕ l22
s5 = l25 ⊕ l29
s6 = l13 ⊕ l27
s7 = l6 ⊕ l23

Masked software implementations using bitslicing of the Boyar Peralta AES
S-Box were studied in [19, 22]. A modified version of the Boyar Peralta S-Box
has been masked using the ISW AND gate [21] in [19].

2.3 Threshold Implementations

The threshold implementations (TI) masking technique was proposed by Nikova
et al. [27] as a countermeasure against Differential Power Analysis (DPA) attacks.
It is secure even in non-ideal circuits where glitches have shown to result in
leakage in more conventional masking schemes [25]. The original proposal, which
only dealt with first-order DPA security, was later extended to protect against
higher-order DPA attacks as well [4, 30].

TI is based on multi-party computation and secret sharing, and must satisfy
the following properties in order to achieve the mentioned security:

1. Uniformity. Uniformity requires all intermediate shares to be uniformly
distributed. It ensures state-independence from the mean of the leakages,
which is a requirement to thwart first-order DPA. As mentioned in [2] it
suffices to check uniformity at the inputs and the outputs of each of the
functions. Uniformity can be either achieved through correction terms by
using more input shares, or by adding randomness after the non-uniform
computation.

2. Non-completeness. To achieve dth-order non-completeness, any combina-
tion of d or less component functions fi of f must be independent of at least

6 Ashrujit Ghoshal, Thomas De Cnudde

one input share xi. For protection against first-order DPA, 1st-order non-
completeness is required, i.e. every function must be independent of at least
one input share. Non-completeness ensures that the side-channel security of
the final circuit is not affected by glitches.

3. Correctness. This property simply states that applying the sub-functions
to a valid shared input must always yield a valid sharing of the correct
output.

In addition to TI’s algorithmic properties, the physical leakage of each share or
sub-function should be independent of all other shares or sub-functions, i.e. no
coupling is present between the shares or sub-functions. Violating this assump-
tion has shown to induce leakage in masked implementations [13].

3 Several SCA Secure Implementations of the
Boyar-Peralta AES S-Box

In this section we present several different threshold implementations of the
Boyar-Peralta AES S-Box. Applying TI to linear functions is straightforward
due to the linearity of the XOR and XNOR operations. Masking the nonlinear
functions on the other hand is known to pose more of a challenge. As mentioned
in the previous section the only nonlinear functions in the Boyar-Peralta AES S-
Box are the AND gates. In order to apply TI to these AND gates we need to make
sure the resulting sharings are non-complete and correct, and that their outputs
are uniform. In our first approach, we therefore consider the uniform sharing
of an AND gate and formulate several 1st-order non-complete TI sharings for
this S-box. We additionally investigate a second approach: instead of masking
each AND gate individually, we combine several AND gates to form an inversion
in GF(24). In both cases, to avoid first-order leakages from glitches and early
propagation of signals, each masked nonlinear function must be followed by a
set of registers.

The middle layer is the nonlinear layer in the Boyar-Peralta AES S-Box. The
top and the bottom layer are composed of linear functions only. When we mask
each gate individually, the outputs of every AND gate in the middle layer must
be registered before the next operation starts. Hence, we divide the middle layer
into stages such that at each stage, the outputs produced by the AND gates are
put into registers before proceeding for the operation in the next stage.

On inspection of the set of equations, we divide the circuit into 4 stages where
each stage ends with a set of AND operations. Note that there may be other
ways to divide the nonlinear layer into stages. The top linear layer was combined
with the first stage of the nonlinear layer and the outputs of the AND gates from
the 4th and final stage of the middle nonlinear layer are fed into the bottom layer
directly, which causes no problem since this layer is linear. Therefore, we divide
our circuit into 4 stages with a set of registers after the first three stages. A
total of 4 clock cycles are required to complete the computation of the S-Box.
The entire circuit of the nonlinear middle layer is shown in Figure 1. The set of
equations after division into stages are given below.

Several Masked Implementations of the Boyar-Peralta AES S-Box 7

Fig. 1: Division of the nonlinear layer into stages.

Stage 1.

t1 = u0 ⊕ u3

t2 = u0 ⊕ u5

t3 = u0 ⊕ u6

t4 = u3 ⊕ u5

t5 = u4 ⊕ u6

t6 = t1 ⊕ t5
t7 = u1 ⊕ u2

t8 = u7 ⊕ t6
t9 = u7 ⊕ t7
t10 = t6 ⊕ t7
t11 = u1 ⊕ u5

t12 = u2 ⊕ u5

t13 = t3 ⊕ t4
t14 = t6 ⊕ t11
t15 = t5 ⊕ t11
t16 = t5 ⊕ t12
t17 = t9 ⊕ t16
t18 = u3 ⊕ u7

t19 = t7 ⊕ t18
t20 = t1 ⊕ t19
t21 = u6 ⊕ u7

t22 = t7 ⊕ t21
t23 = t2 ⊕ t22
t24 = t2 ⊕ t10

t25 = t20 ⊕ t17
t26 = t3 ⊕ t16
t27 = t1 ⊕ t12
m1 = t13 × t6
m2 = t23 × t8
m4 = t19 × u7

m6 = t3 × t16
m7 = t22 × t9
m9 = t20 × t17
m11 = t1 × t15
m12 = t4 × t27
m14 = t2 × t10

Stage 2.

m3 = t14 ⊕ m1

m5 = m4 ⊕ m1

m8 = t26 ⊕ m6

m10 = m9 ⊕ m6

m13 = m12 ⊕ m11

m15 = m14 ⊕ m11

m16 = m3 ⊕ m2

m17 = m5 ⊕ t24
m18 = m8 ⊕ m7

m19 = m10 ⊕ m15

m20 = m16 ⊕ m13

m21 = m17 ⊕ m15

m22 = m18 ⊕ m13

m23 = m19 ⊕ t25

m24 = m22 ⊕ m23

m25 = m22 × m20

m27 = m20 ⊕ m21

m31 = m20 × m23

m34 = m21 × m22

8 Ashrujit Ghoshal, Thomas De Cnudde

Stage 3.

m26 = m21 ⊕ m25

m28 = m23 ⊕ m25

m29 = m28 × m27

m30 = m26 × m24

m32 = m27 × m31

m33 = m27 ⊕ m25

m35 = m24 × m34

m36 = m24 ⊕ m25

Stage 4.

m37 = m21 ⊕ m29

m38 = m32 ⊕ m33

m39 = m23 ⊕ m30

m40 = m35 ⊕ m36

m41 = m38 ⊕ m40

m42 = m37 ⊕ m39

m43 = m37 ⊕ m38

m44 = m39 ⊕ m40

m45 = m42 ⊕ m41

m46 = m44 × t6
m47 = m40 × t8
m48 = m39 × u7

m49 = m43 × t16
m50 = m38 × t9
m51 = m37 × t17
m52 = m42 × t15
m53 = m45 × t27
m54 = m41 × t10
m55 = m44 × t13
m56 = m40 × t23
m57 = m39 × t19
m58 = m43 × t3

m59 = m38 × t22
m60 = m37 × t20
m61 = m42 × t1
m62 = m45 × t4
m63 = m41 × t2
l0 = m61 ⊕ m62

l1 = m50 ⊕ m56

l2 = m46 ⊕ m48

l3 = m47 ⊕ m55

l4 = m54 ⊕ m58

l5 = m49 ⊕ m61

l6 = m62 ⊕ l5
l7 = m46 ⊕ l3
l8 = m51 ⊕ m59

l9 = m52 ⊕ m53

l10 = m53 ⊕ l4
l11 = m60 ⊕ l2
l12 = m48 ⊕ m51

l13 = m50 ⊕ l0
l14 = m52 ⊕ m61

l15 = m55 ⊕ l1
l16 = m56 ⊕ l0

l17 = m57 ⊕ l1
l18 = m58 ⊕ l8
l19 = m63 ⊕ l4
l20 = l0 ⊕ l1
l21 = l1 ⊕ l7
l22 = l3 ⊕ l12
l23 = l18 ⊕ l2
l24 = l15 ⊕ l9
l25 = l6 ⊕ l10
l26 = l7 ⊕ l9
l27 = l8 ⊕ l10
l28 = l11 ⊕ l14
l29 = l11 ⊕ l17
s0 = l6 ⊕ l24
s1 = l16 ⊕ l26
s2 = l19 ⊕ l28
s3 = l6 ⊕ l21
s4 = l20 ⊕ l22
s5 = l25 ⊕ l29
s6 = l13 ⊕ l27
s7 = l6 ⊕ l23

For the second approach, where we mask the circuit using the inversion in
GF(24) instead of masking each individual AND gate. m20m21m22m23 are in-
puts to the GF(24) inverter and m36m32m39m28 being the output where m20

and m36 are the most significant bits of the input and output respectively.
m20,m21,m22,m23 become available in Stage 2. The part of the circuit in Stage
2 to obtain m20,m21,m22,m23 is linear. Hence we can put the inverter right
after m20,m21,m22,m23 become available without using a register. The outputs
of the inverter m36,m32,m39,m28 were the outputs of Stage 3. Therefore, we
combine Stage 2 and 3 to isolate the inverter. The modified set of equations are
given below:

Stage 1.

Several Masked Implementations of the Boyar-Peralta AES S-Box 9

t1=u0 ⊕ u3

t2=u0 ⊕ u5

t3=u0 ⊕ u6

t4=u3 ⊕ u5

t13=t3 ⊕ t4
t5=u4 ⊕ t13
t6=t5 ⊕ u5

t7=u1 ⊕ u2

t8=u7 ⊕ t6
t9=u7 ⊕ t7
t10=t6 ⊕ t7
t14=t5 ⊕ u1

t15=t14 ⊕ t1

t16=t7 ⊕ t15
t17=t9 ⊕ t16
t19=t9 ⊕ u3

t20=t1 ⊕ t19
t22=t9 ⊕ u6

t23=t2 ⊕ t22
t24=t2 ⊕ t10
t25=t20 ⊕ t17
t26=t3 ⊕ t16
t27=t10 ⊕ t15
m1=t13 × t6
m2=t23 × t8
m3=m2 ⊕ m1

m4=t19 × u7

m5=m4 ⊕ m1

m6=t3 × t16
m7=t22 × t9
m8=m7 ⊕ m6

m9=t20 × t17
m10=m9 ⊕ m6

m11=t1 × t15
m12=t4 × t27
m13=m12 ⊕ m11

m14=t2 × t10

Stage 2.

m15=m14 ⊕ m11

m16=m3 ⊕ m13

m17=m5 ⊕ m15

m18=m8 ⊕ m13

m19=m10 ⊕ m15

m20=m16 ⊕ t14

m21=m17 ⊕ t24
m22=m18 ⊕ t26
m23=m19 ⊕ t25

m20m21m22m23 are inputs to the GF(24) inverter and m36m32m39m28 being
the output where m20 and m36 are the most significant bits of the input and
output respectively.

Stage 3.

m40=m39 ⊕ m36

m41=m28 ⊕ m32

m42=m28 ⊕ m39

m43=m32 ⊕ m36

m44=m40 ⊕ m41

z0=m43 × t6
z1=m36 × t8
z2=m32 × u7

z3=m42 × t16
z4=m39 × t9
z5=m28 × t17
z6=m41 × t15
z7=m44 × t27
z8=m40 × t10
z9=m43 × t13
z10=m36 × t23
z11=m32 × t19

z12=m42 × t3
z13=m39 × t22
z14=m28 × t20
z15=m41 × t1
z16=m44 × t4
z17=m40 × t2
l1=z15 ⊕ z16
l2=z10 ⊕ l1
l3=z9 ⊕ l2
l4=z0 ⊕ z2
l5=z1 ⊕ z0
l6=z3 ⊕ z4
l7=z12 ⊕ l4
l8=z7 ⊕ l6
l9=z8 ⊕ l7
l10=l8 ⊕ l9
l11=l6 ⊕ l5

l12=z3 ⊕ z5
l13=z13 ⊕ l1
l14=l4 ⊕ l12
s3=l3 ⊕ l11
l16=z6 ⊕ l8
l17=z14 ⊕ l10
l18=l13 ⊕ l14
s7=z12 ⊕ l18
l20=z15 ⊕ l16
l21=l2 ⊕ z11
s0=l3 ⊕ l16
s6=l10 ⊕ l18
s4=l14 ⊕ s3
s1=s3 ⊕ l16
l26=l17 ⊕ l20
s2=l26 ⊕ z17
s5=l21 ⊕ l17

The circuit of the middle nonlinear layer using an inverter is shown in figure 2.

10 Ashrujit Ghoshal, Thomas De Cnudde

Fig. 2: Division of the nonlinear layer into stages when centered around the
inversion in GF(24).

Using these two different approaches for division into stages of the circuit,
we design the following secure implementations of the Boyar-Peralta S-Box:

1. Threshold implementation with 4 shares and no randomness in Section 3.1

2. Threshold implementation with 3 shares and 68 bits randomness in Section
3.2

3. Threshold implementation with 3 shares and 34 bits of randomness in Section
3.3

4. Threshold Implementation using 3 shares and using sharing with sin = 5
and sout = 5 for a GF(24) inverter in Section 3.4

5. Threshold Implementation using 3 shares and using sharing with sin = 4
and sout = 4 for a GF(24) inverter in Section 3.5

3.1 Threshold implementation with 4 shares and no randomness

As previously mentioned, the sharing for the linear operations is trivial. For the
nonlinear AND gate we first use the following uniform 4-to-4 sharing. This is a
novel modification of a 4-to-3 uniform sharing of the AND gate used in [5].

Several Masked Implementations of the Boyar-Peralta AES S-Box 11

a = x× y

x = (x1, x2, x3, x4)

y = (y1, y2, y3, y4)

a = (a1, a2, a3, a4)

a1 = (x2 ⊕ x3 ⊕ x4)× (y2 ⊕ y3)⊕ y4 ⊕ y3

a2 = ((x1 ⊕ x3)× (y1 ⊕ y4))⊕ (x1 × y3)⊕ x4

a3 = (x2 ⊕ x4)× (y1 ⊕ y4)⊕ x4 ⊕ y4

a4 = (x1 × y2)⊕ y3

The complete computation of the S-Box will take 4 clock cycles and will not
consume any randomness.

3.2 Threshold implementation with 3 shares and 68 bits randomness

Having designed a threshold implementation for the Boyar-Peralta AES S-Box
which uses no randomness, we now aim to reduce the size of our circuit. This
can be achieved by reducing the number of shares.

There is however no 3-to-3 uniform sharing for a 2-input AND gate. To keep
the uniformity of sharing property intact, we introduce some randomness to
remask the shares as shown in [26]. We use the following 3-to-3 sharing of the 2
input AND gate. r1, r2 are the 2 bits of randomness.

a = x× y

x = (x1, x2, x3)

y = (y1, y2, y3)

a = (a1, a2, a3)

a1 = (x2 × y2)⊕ (x2 × y3)⊕ (x3 × y2)⊕ r1 ⊕ r2

a2 = (x3 × y3)⊕ (x1 × y3)⊕ (x3 × y1)⊕ r2

a3 = (x1 × y1)⊕ (x1 × y2)⊕ (x2 × y1)⊕ r1

One masked AND gate consumes 2-bits of randomness. The whole S-Box circuit
requires 2 × 34 = 68 bits of randomness in total. The complete computation of
the S-Box will take 4 clock cycles.

3.3 Threshold implementation with 3 shares and 34 bits randomness

We now reduce the amount of randomness required in our circuit by using the
technique of virtual sharing as used in [7]. This sharing uses 1 bit of randomness

12 Ashrujit Ghoshal, Thomas De Cnudde

per 2-input AND gate. The following is the resulting 3-to-3 sharing of the 2-input
AND gate using 1 bit of randomness. r denotes a bit of randomness.

a = x× y

x = (x1, x2, x3)

y = (y1, y2, y3)

a = (a1, a2, a3)

a1 = (x2 × y2)⊕ (x2 × y3)⊕ (x3 × y2)⊕ r

a2 = (x3 × y3)⊕ (x1 × y3)⊕ (x3 × y1)⊕ (x1 × r)⊕ (y1 × r)

a3 = (x1 × y1)⊕ (x1 × y2)⊕ (x2 × y1)⊕ (x1 × r)⊕ (y1 × r)⊕ r

This S-Box circuit requires 34 bits of randomness. The complete computation of
the S-Box will again take 4 clock cycles.

3.4 Threshold Implementation using 3 shares and using sharing
with sin = 5 and sout = 5 for a GF(24) inverter

As stated earlier, we can isolate an inverter in GF(24) within the Boyar-Peralta
S-Box. As shown in [5] we can use a 5-to-5 uniform sharing for this GF(24)
inverter. We use 3 shares for the linear and nonlinear gates that fall outside the
inverter. In order to increase the number of shares from 3 to 5 at the input of
the inverter we use 4 extra bits of randomness. To reduce the number of shares
at the output from 5 to 3 we use 2 bits of randomness to combine the output
shares just after the register. As mentioned in [2] uniformity is necessary only
for the input of nonlinear functions. The part of the circuit before the inverter
in Stage 2 is linear. In order increase in the number of shares before input to
the inverter, the shares are remasked using randomness. Therefore before input
to the nonlinear part of Stage 2, the inverter, the shares are uniform due to
remasking. Hence inputs to stage 2 i.e. outputs of Stage 1 need not be uniform.
Also all the outputs of the AND operations in stage 3 are inputs linear functions,
hence they need not be uniform. This version has 27 2-input AND gates. All of
them are in stages 1 and 3. Since the outputs of Stages 1 and 3 need not be
uniform, none of the AND gates need to be uniform. So, we may use any non-
complete and correct 3 sharing without using randomness for these AND gates.
The total amount of randomness required is 4× 4× 4 + 2× 4 = 24 bits.

3.5 Threshold Implementation using 3 shares and using sharing
with sin = 4 and sout = 4 for a GF(24) inverter

Similar to the previous implementation, we again use the threshold implementa-
tion of the GF(24) inverter. There is 4-to-4 sharing of the GF(24) inverter which
is not uniform. We observe that for decreasing the output shares from 4 to 3,
we add randomness to the outputs, which essentially remasks the outputs and
provides uniformity.

Several Masked Implementations of the Boyar-Peralta AES S-Box 13

The circuit differs from the previous one only in the aspects that the shares
are increased from 3 to 4 and decreased from 4 to 3, and that the sharing for
the inverter itself is different. It takes the same number of clock cycles as the
previous one, i.e. 3, but requires 3 bits of randomness for increasing the number
of shares from 3 to 4 and then 2 bits of randomness for reducing the shares back
from 4 to 3. The argument to not use a uniform sharing of AND gates used in the
previous implementation is applicable here too. Hence a total of 3×4+2×4 = 20
bits of randomness is required.

4 Side-Channel Analysis Evaluation

First, we describe the circuit that we used for the sequential evaluation of the
S-Boxes. All the S-Boxes have separate input ports for the input shares and the
randomness, and separate output ports for the output shares. Each S-Box has
an enable signal and a reset signal as input. The execution of the S-Box begins
when the enable signal is set to high. The values at the ports having the input
shares and randomness for the corresponding S-Box, at the time enable goes
high, are the ones used as the input to the S-Box. The reset signal is used to
reset the S-Box to a known state. Each S-Box has an output done signal which
goes high after the execution of the S-Box is complete and the outputs at the
corresponding ports of output shares are the results of the execution of the S-
Box.

There is an outer wrapper encapsulating the 5 S-Boxes. The wrapper has

Fig. 3: Structure of circuit for sequential evaluation of the S-Boxes

a control module. The control module of the wrapper has an enable as input
signal and a complete signal as an output signal. The enable signal is needed
to start the sequence of S-Boxes. The start signal of the first S-Box is set to
high on the positive edge of clock following the enable signal going high. When

14 Ashrujit Ghoshal, Thomas De Cnudde

the done signal of the S-Box goes high, the control waits for a few clock cycles
before setting the start signal of the next S-Box high. After the done signal of
the the last S-Box goes high, the complete signal of the wrapper is set to high.
The wrapper has a reset signal as an input which is sent as the reset signal of
the S-Boxes when set to high resets all S-Boxes to known states. Figure 3 shows
the structure of the wrapper.

The design was implemented on a SASEBO-G measurement board using
Xilinx ISE 10.1 in order to analyze their leakage characteristics.

The SASEGO-G board has two Xilinx Virtex-II Pro FPGA devices. Our
design, was implemented on the crypto FPGA(xc2vp7). In order to prevent
optimizations over module boundaries, the “Keep Hierarchy” constraint was
kept on while generating the programming file. The control FPGA (xc2vp30)
is responsible for the I/O with the measurement PC and generation of random
bits. The PRNG which the control FPGA uses to generate the input sharings
and random masks for the S-boxes is an AES-128 in OFB mode.

We evaluate the security of our first order secure implementations of the
Boyar Peralta AES S-Boxes. We use leakage detection tests [1, 11, 12, 17, 24] to
test for any power leakage of our masked implementations. The fix class of the
leakage detection is chosen as the zero plaintext in all our evaluations.

We follow the standard practice when testing a masked design i.e. first turn
off the PRNG to switch off the masking countermeasure. The design is expected
to show leakage in this setting, and this serves to confirm that the experimental
setup is sound (we can detect leakage). We then proceed by turning on the
PRNG. If we do not detect leakage in this setting, the masking countermeasure
is deemed to be effective. Figures 4, 5, 6, 7, 8 show the result of the first order
leakage detection tests on the S-Boxes.

(a) 5K Traces, Masks Off (b) 10M Traces, Masks On

Fig. 4: First Order leakage detection test for the S-Box with 4 shares.

5 Implementation Cost

Here we give a comparison of the area, the required randomness and the number
of clock cycles for our implementations. The results of area have been obtained
using Synopsys 2013.12 and NanGate 45nm Open Cell Library.

In Table 1, we observe a trade-off between randomness, area and clock cycles.
As we reduce the area, the randomness per S-box lookup increases or the number

Several Masked Implementations of the Boyar-Peralta AES S-Box 15

(a) 5K Traces, Masks Off (b) 10M Traces, Masks On

Fig. 5: First Order leakage detection test for the S-Box with 3 shares, 68 bits of
randomness

(a) 5K Traces, Masks Off (b) 10M Traces, Masks On

Fig. 6: First Order leakage detection test for the S-Box with 3 shares,34 bits of
randomness

(a) 5K Traces, Masks Off (b) 10M Traces, Masks On

Fig. 7: First Order leakage detection test for the S-Box with 3 shares and using
sharing with sin = 5 and sout = 5 for a GF(24) inverter

(a) 5K Traces, Masks Off (b) 10M Traces, Masks On

Fig. 8: First Order leakage detection test for the S-Box with 3 shares and using
sharing with sin = 4 and sout = 4 for a GF(24) inverter

16 Ashrujit Ghoshal, Thomas De Cnudde

Table 1: Area, Randomness and Clock Cycles required per S-box Implementa-
tion.

Area Randomness Clock Cycles
[GEs] [bits]

Unprotected 269 0 1

sin = 4, sout = 4 4609 0 4

sin = 3, sout = 3, 68 random bits,
individual AND gates masked

3630 68 4

sin = 3, sout = 3, 34 random bits,
individual AND gates masked

3798 34 4

sin = 3, sout = 3, inverter masked
with sin = 5, sout = 5

3344 24 3

sin = 3, sout = 3, inverter masked
with sin = 4, sout = 4

2913 20 3

of clock cycles required increase. In our implementation with smallest area, where
we share a large algebraic function, the GF(24) inverter as a whole, both the
number of clock cycles and the area are reduced.

In Table 2 we compare our implementation with smallest area to some masked
implementations based on Canright S-Box.

Table 2: Area, Randomness and Clock Cycles required per S-box for related
Implementations.

Area Randomness Clock Cycles
[GEs] [bits]

sin = 3, sout = 3, inverter masked
with sin = 4, sout = 4,Boyar Per-
alta

2914 20 3

sin = 3, sout = 3,Canright S-Box
in [5]

3708 44 3

sin = 3, sout = 3,Canright S-Box
in [26]

4244 48 4

sin = 3, sout = 3,Canright S-Box
in [6]

2835 32 3

sin = 2, sout = 2,Canright S-Box
in [15]

1977 54 6

We can summarize the comparison of our implementations with related im-
plementations as follows:

– We achieve an implementation that consumes no randomness.

Several Masked Implementations of the Boyar-Peralta AES S-Box 17

– Two of our implementations, which use the sharing for inversion in GF(24),
take 3 clock cycles, which is faster than implementations in [15,26]

– Our implementation that uses the 4-sharing of an inverter needs the same
number of clock cycles as the smallest one in [6], while consuming less ran-
domness for an increase in area of only 2.75%.

– The S-Box in [15] is the smallest known TI of the AES S-Box. Our imple-
mentation is 47% larger in comparison but we obtain a 63% reduction in
randomness of and 50% reduction in number of clock cycles required.

6 Conclusion

In this paper, we present the first threshold implementations of the Boyar-Peralta
AES S-Box. Since this AES S-Box is of minimum known depth, the critical path
might be smaller which would allow clocking the core at higher frequencies mak-
ing it highly important for secure high-speed and high-throughput applications.
We go through an iterated design process, starting from a straightforward ap-
proach where we mask each gate individually to arrive at a more efficient imple-
mentation by masking the larger algebraic structure of the inversion in GF(24).

Our smallest implementation is 49% larger in area compared to the smallest
known threshold implementation of the Canright AES S-box but reduces the
randomness by 63% and number of clock cycles by 50%. Moreover, we achieve
a secure implementation of the AES S-Box that requires no randomness at all.
The set of secure implementations we present gives the hardware designer more
options for tailoring their implementations according to their specifications.

A future direction of research can investigate the result of starting from a
masked Canright AES S-Box and using the optimizations mentioned in [8] to
arrive at a small and secure implementation of the Boyar-Peralta S-Box. Masking
the Boyar Peralta S-Box with d+1 shares as shown in [30] is a possible direction
for future work. Another future work would be designing circuits for this S-Box
with higher-order security levels, as a determined adversary can still break the
first-order masking scheme with a second order attack.

Acknowledgements

We would like to thank Prof. Vincent Rijmen for his valuable comments and
feedback on the paper and the anonymous reviewers for providing constructive
and valuable comments. This work was supported in part by NIST with the
research grant 60NANB15D34, in part by the Research Council KU Leuven,
OT/13/071 and by the Flemish Government through FWO project Cryptogra-
phy secured against side-channel attacks by tailored implementations enabled
by future technologies (G0842.13). Ashrujit Ghoshal was a Visiting Scholar at
ESAT-COSIC, KU Leuven hosted by Prof. Vincent Rijmen. Thomas De Cnudde
is funded by a research grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen).

18 Ashrujit Ghoshal, Thomas De Cnudde

References

1. Becker, G., Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G.,
Kouzminov, T., Leiserson, A., Marson, M., Rohatgi, P., et al.: Test vector leakage
assessment (tvla) methodology in practice. In: International Cryptographic Module
Conference. vol. 1001, p. 13 (2013)

2. Bilgin, B.: Threshold implementations: as countermeasure against higher-order dif-
ferential power analysis (2015)

3. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Efficient
and first-order dpa resistant implementations of keccak. In: International Confer-
ence on Smart Card Research and Advanced Applications. pp. 187–199. Springer
(2013)

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 326–343. Springer (2014)

5. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more efficient aes
threshold implementation. In: International Conference on Cryptology in Africa.
pp. 267–284. Springer (2014)

6. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold
implementations illustrated on aes. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 34(7), 1188–1200 (2015)

7. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementa-
tions of all 3× 3 and 4× 4 s-boxes. In: International Workshop on Cryptographic
Hardware and Embedded Systems. pp. 76–91. Springer (2012)

8. Boyar, J., Peralta, R.: A small depth-16 circuit for the aes s-box. In: IFIP Inter-
national Information Security Conference. pp. 287–298. Springer (2012)

9. Canright, D.: A Very Compact S-Box for AES, pp. 441–455. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2005)

10. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Advances in CryptologyCRYPTO99. pp. 791–791.
Springer (1999)

11. Coron, J.S., Naccache, D., Kocher, P.: Statistics and secret leakage. ACM Trans-
actions on Embedded Computing Systems (TECS) 3(3), 492–508 (2004)

12. Coron, J., Kocher, P., Naccache, D.: Statistics and secret leackage, to appear in
proceedings of financial cryptography (2000)

13. De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.: Does
coupling affect the security of masked implementations? In: International Work-
shop on Constructive Side-Channel Analysis and Secure Design. pp. 1–18. Springer
(2017)

14. De Cnudde, T., Bilgin, B., Reparaz, O., Nikov, V., Nikova, S.: Higher-order thresh-
old implementation of the aes s-box. In: International Conference on Smart Card
Research and Advanced Applications. pp. 259–272. Springer (2015)

15. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
aes with d+ 1 shares in hardware. In: International Conference on Cryptographic
Hardware and Embedded Systems. pp. 194–212. Springer (2016)

16. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Cryptographic Hardware and Embedded SystemsCHES 2001. pp. 251–261.
Springer (2001)

17. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for
side-channel resistance validation. In: NIST Non-invasive attack testing workshop
(2011)

Several Masked Implementations of the Boyar-Peralta AES S-Box 19

18. Goubin, L., Patarin, J.: Des and differential power analysis the duplication method.
In: Cryptographic Hardware and Embedded Systems. pp. 728–728. Springer (1999)

19. Goudarzi, D., Rivain, M.: How Fast Can Higher-Order Masking Be in Software?,
pp. 567–597. Springer International Publishing, Cham (2017)

20. Gross, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact masked
hardware implementations with arbitrary protection order. IACR Cryptology
ePrint Archive 2016, 486 (2016)

21. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Annual International Cryptology Conference. pp. 463–481. Springer
(2003)

22. Journault, A., Standaert, F.X.: Very High Order Masking: Efficient Implemen-
tation and Security Evaluation, pp. 623–643. Springer International Publishing,
Cham (2017)

23. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in cryptol-
ogyCRYPTO99. pp. 789–789. Springer (1999)

24. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: Annual International Cryptology Conference. pp. 104–113.
Springer (1996)

25. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked aes hard-
ware implementations. In: International Workshop on Cryptographic Hardware
and Embedded Systems. pp. 157–171. Springer (2005)

26. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of aes. In: Eurocrypt. vol. 6632, pp.
69–88. Springer (2011)

27. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: International Conference on Information and Com-
munications Security. pp. 529–545. Springer (2006)

28. Poschmann, A., Moradi, A., Khoo, K., Lim, C.w., Wang, H., Ling, S.: Side-channel
resistant crypto for less than. Power 21, 5

29. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 142–159. Springer (2013)

30. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Annual Cryptology Conference. pp. 764–783. Springer (2015)

