
1

Direct Anonymous Attestation from Lattices
Rachid El Bansarkhani and Ali El Kaafarani

TU Darmstadt, Germany
University of Oxford, UK

Abstract—Direct Anonymous Attestation (DAA) is a complex
cryptographic protocol that has been widely deployed in practice,
with more than 500 million machines in the market that are
already equipped with its hardware, the so-called Trusted Module
Platform (TPM). While formalizing the right security model for
such a complex protocol has triggered a dense line of research,
all the proposed DAA schemes so far are based on number-
theoretic problems that are known to be vulnerable to quantum
computer attacks. In this paper, we propose the first lattice-based
DAA scheme that is secure w.r.t. the most up-to-date security
model proposed by Camenisch et al. More precisely, our lattice-
based DAA scheme is secure in the Universally Composable (UC)
security model. Furthermore, we give (amongst others) the first
lattice-based DAA scheme providing user controlled linkability
that is realized by means of a new lattice-based MAC/TAG
construction which could be of independent interest.

Keywords: Lattice-Based Cryptography, Direct Anonymous At-
testation, Universally Composable security model.

I. INTRODUCTION

Direct Anonymous Attestation (DAA) was first introduced
in [8] by Brickell, Camenisch and Chen1. It is a protocol that
allows a certain machine to prove that it has the right system
configuration, while communicating with other machines but
without revealing any further details about itself. In fact, it
is a small chip embedded in a host machine, which can
anonymously attest to the system’s configurations of the host
to remote verifiers. For instance, it can prove that the host
machine is built of certified hardware and is indeed running
the correct software. The small chip is called the Trusted
Platform Module (TPM) and was standardized by the Trusted
Computing Group (TCG) in 2004 as TPM 1.2 [1], and in 2014
as TPM2.0 [2] respectively. The attestation can be considered
a special type of anonymous digital signatures that reveals
no information about the identity of the signer, which in this
case is the TPM itself. The user of the host system can at
discretion choose whether or not she wants her transactions
directed at the same verifier to be linkable. This property is
often called the user-controlled linkability. The “attestations”,
that are directed at the same verifier, may involve the same
basename of this verifier and therefore make the transactions
attached to those attestations linkable, i.e. the verifier would
then know that he is communicating with the same anonymous
host. However, attestations with different basenames or empty
ones are guaranteed to be non-linkable. Although DAA is a
complex cryptographic protocol, it has been widely deployed
in practice, where more than 500 millions2 of computers

1This paper was published in ACM-CCS 2004, and won the Test-of-Time
award in 2014.

2http://www.trustedcomputinggroup.org/authentication/

in the market are already equipped with TPM chips. It can
therefore be considered as one of the most deployed complex
cryptographic protocols. This encouraged a strong research
interest in improving the security and efficiency of the protocol
and this shows in the huge body of work related to DAA [11],
[9], [10], [15], [18], [5], [13], [12].

The journey of formalizing the security model of such a
complex scheme was not smooth; the first scheme proposed
in [8] came along with a simulation-based security definition.
The ideal functionality was restricted to a single procedure, i.e.
no separation between the signature generation and the verifi-
cation. Additionally, linkability was not explicitly defined. The
linkability issue was addressed in [16], whereas an attempt
at fixing the problem of the functionality in the security
model was made later on in [17], in which they managed to
separate between the signature generation and the verification,
but unfortunately the way they got separated caused problems
in both of them. The line of simulation-based work stopped
here, to resume later on by the work of Camenisch el. work
in [13], which will be explained thoroughly in this paper as
this is the most up-to-date security model and that is why
we adopted it in our work. However, the gap between the
simulation-based work was filled with property-based security
models. It started with Brickell, Chen, and Li in [10], in which
they defined two security games, namely, the anonymity and
user-controlled traceability. Unfortunately, the games as they
were defined didn’t capture all the possible threat scenarios,
even after adding the non-frameability game in [15].

All the shortcomings in the existing game-based DAA
schemes were discussed and analyzed by Bernard et al. in [5].
Additionally, they propose a new game-based security model
that works in two phases; in the first phase, they deal with
the host and TPM as a single entity (platform), i.e. they are
always in the same corruption state. They call this scheme
pre-DAA. This is not a problem when it comes to proving the
anonymity and the non-frameability, as both the host and TPM
are assumed to be honest, whereas the issuer is assumed to be
corrupt. However, things get more complicated when it comes
to unforgeability. The main challenge in the DAA design is
to put more workload on the side of the more powerful part
of the platform, which is the host in this case. However, this
should not affect the security of the DAA protocol in case
the host is corrupt. We want the unforgeability property to
hold even when the TPM is honest and the host is corrupt.
In the second phase of the DAA construction in [5], they
(informally) show how to achieve a full-DAA from a pre-
DAA, but due to the lack of a formal security model for the
full DAA, Camenisch el al. in [13] point out that the proof of
the pre-DAA unforgeability cannot be lifted to the full-DAA

http://www.trustedcomputinggroup.org/authentication/

case under the same assumption. This problem was addressed
in [13] but in the Universal Composable (UC) model this time.
The advantages of the UC framework over the stand-alone
one (i.e. game-based one) are clear. First, no need to define
oracles as the adversary gets full control over corrupt parties.
But more importantly, the universal composition theorem of
the UC model [14] states that if a given scheme is secure in
the UC model, then it can be composed in an arbitrary way
without affecting its security.

Lattice-based cryptography gained much attention as a
result of seminal works presented in [3], [27], [29], [25],
[7], which introduced the major computational problems
(Ring-)SIS and (Ring-)LWE serving as the fundamental as-
sumptions for almost all lattice-based cryptographic primitives.
These problems are characterized by efficient instantiations
and worst-case to average-case relationships preventing from
major faults in the protocol design. For instance, they were
exploited to build sophisticated schemes such as anonymous
digital signatures in [20], [22], [23], [28], [24], which are of
interest for a great variety of applications.

A. Contributions and Technical Overview

We propose the first direct anonymous attestation scheme
from lattice assumptions and prove its security in the UC
model w.r.t. the most up-to-date security model defined in
[13]. Therefore, not only were we able to answer in the
affirmative the question of whether or not it is possible to
build a DAA protocol based on post-quantum assumptions,
but also managed to prove it secure following the most
practically-interesting security model for DAAs. In the
following paragraphs we briefly highlight the main technical
contributions of our work.

1) Lattice-Based MAC Scheme.: We introduce a new
lattice-based MAC scheme from (Ring-)LWE that is unforge-
able under chosen message attacks in the random oracle
model. For a message m and randomness µ, the MAC is
generated as

MAC((msg, µ), s) = H(msg, µ) · s + e

for a shared secret s and error vector e. Due to its deterministic
behavior, i.e. it always outputs almost the same element for
the same (msg, µ), it can serve as a tag in other lattice-based
constructions.

2) CMA-Secure Digital Signature Scheme.: Given our
MAC scheme, we show that we can build a digital signature
scheme using a zero-knowledge proof system. Briefly speak-
ing, the encryption of the shared secret will serve as the public
key, i.e.

pk = (a,b = a · s + e) .

Now, we can link the secret of any output of MAC(·, s)
with pk via a zero-knowledge proof system which together
yield publicly verifiable signatures. To this end, we consider
the (Stern-like) statistical non-interactive zero-knowledge
argument of knowledge (sZKAoK) due to [24], which allows
to prove the possession of small secrets in (Ring-)LWE and
(Ring-)SIS instances.

3) DAA Construction.: Finally, we transform this signature
scheme into a DAA scheme providing anonymity to all
signers, if pk is a (Ring-)SIS instance with many secrets
z = (z1, . . . , zm) satisfying u = Aid · z mod q, and user
controlled linkability via the MAC scheme with secret z1.
In fact, when instantiating our construction with Boyen’s
signature scheme [6], the signature size is only logarithmic
in the number of signers N , i.e. the signature and public key
occupy only logN · Õ(n) bits (ring variant) or logN · Õ(n2)
bits (matrix variant) of memory, which is comparable to the
most efficient lattice-based group signature schemes. Our
construction can be seen as a group signature scheme without
tracing capabilities, but with an additional tag that is added
to the SPK. The tag plays a crucial role in our DAA scheme
as the verifier can request from a certain signer to sign with
respect to a basename bsn such that all his/her so produced
signatures directed at this verifier will then be anonymously
linkable (i.e. they stem from the same anonymous signer),
that is because tag = MAC(bsn, s) is almost deterministic,
i.e. ‖tag −H(bsn) · s‖ ≤ β.

This feature equips the verifier with a powerful partial
signature-revocation mechanism, i.e. the verifier can revoke
signatures that prove linkable to a bad signature (e.g. in case of
misuse/abuse). However, this is only a partial mechanism as it
doesn’t cover the non-linkable signatures. More specifically, if
the signer does not want to link his signatures to each other, he
can simply set the basename to⊥ so that his signatures become
completely anonymous, and therefore the signature-revocation
mechanism doesn’t work as such. On the other hand, the tags
come along with a full secret key-revocation mechanism, i.e.
once the secret key of a certain TPM is extracted and made
public, it is possible via the tag to find and revoke all signatures
that are generated by use of this secret key.

More importantly, one of the main challenges in the DAA
design is to allow the TPM and host located on a platform to
jointly generate a signature that is anonymous, but in such a
way that each one only knows its secret share. This separation
should also be reflected in the security model (i.e. allow them
to be in different corruption states), and as we mentioned
earlier, this separation problem was completely solved only
recently in [13]. In our scheme, we tackle this challenge
this way; we let the TPM generate a small secret vector
z1 and a proof of knowledge that ũ = Aid · z1 mod q and
‖z1‖ ≤ β, where Aid = [Â | Â0 +

∑`
i=1 idi · Âi] is a matrix

associated to the identity id ∈ {0, 1}` of the TPM. The host
will send this proof to the issuer who registers both ũ and the
corresponding TPM, and responds with a small secret share z2

such that u = Aid · (z1 + z2) mod q. Using a zero-knowledge
proof system, we build a signature scheme with distributed
secrets. That is, the TPM and host generate a signature
without revealing their secret shares by generating the proofs
π1, π2 separately, where π1 proves ũ = Aid · z1 mod q for
a small z1 and π2 proves u − ũ = Aid · z2 mod q for a
small z2. Taking π1 and π2 together, proves that z1 + z2

is a valid credential satisfying u = Aid · (z1 + z2) mod q
and ‖z1 + z2‖ ≤ 2β. This shows that proofs for distributed
secrets can be combined in order to sign. However, at this

2

stage the signatures are still not anonymous since u − ũ
and ũ are unique for each platform. Thus, we re-randomize
the signature, i.e. the TPM generates a small random vector
t for each signature such that Aid · t mod q is uniform
random. This vector is then shared among the TPM and
host (via a secure channel). They can now generate proofs
π1, π2 with a new and uniform random u′, where π1 proves
u′ = Aid · (z1 + t) mod q for a small z1 + t and analogously
π2 proves u− u′ = Aid · (z2 − t) mod q for a small z2 − t.

4) Security.: We prove security of our construction in the
UC model using the most recent framework of Camenisch
et al. [13] for DAA, where we require online extractability
which is assured, for instance, by Unruh’s transformation [30]
in order to obtain a non-interactive proof system. However,
in a stand-alone fashion we can use rewinding, (e.g. by use
of Fiat-Shamir) leading to a more efficient scheme.

5) Organization.: We present the preliminaries in Section
2 and the building blocks in Section 3. We then present the
security model in Section 4. Finally, we present our DAA
construction together with the security proofs in Section 5.

II. PRELIMINARIES

We will use the polynomial rings R = Z[X]/ 〈f(X)〉 and
Rq = R/qR such that f(X) is a monic and irreducible
polynomial over R and q denotes the modulus. Throughout
this paper we will mainly consider the case q = 2k, k > N.
For the Ring-LWE problem we mainly focus on cyclotomic
polynomials f(X) = Xn + 1 for n being a power of 2. We
denote ring elements by boldface lower case letters e.g. p,
whereas for vectors of ring elements we use p̂. By [k] we
denote the set of integers {1, . . . , k} and [k]0 if it also contains
0. Throughout this work we can either use ‖·‖2 or ‖·‖∞ .

A. Lattices

A k-dimensional lattice Λ is a discrete additive subgroup
of Rm containing all integer linear combinations of k linearly
independent vectors b1, . . . ,bk with k ≤ m and m ≥ 0.
More formally, we have Λ = { B · x | x ∈ Zk }.

The discrete Gaussian distribution over a non-empty set
Λ denoted by DΛ,s assigns to x ∈ Λ the probability

e−π
‖x‖2

s2 /
∑

v∈Λ e
−π ‖v‖

2

s2 .

Below we give a description of the Ring-LWE distribution and
the related problems.

B. Computational Problems

Def inition 2.1 (Ring-LWE Distribution): Let n, q be integers
and χe be the error distribution over R. By LRLWE

n,αq we denote

the Ring-LWE distribution over Rq ×Rq , which draws a
$←

Rq uniformly at random, samples e
$← χe and returns (a,b) ∈

Rq ×Rq for s ∈ Rq and b = a · s + e.

Def inition 2.2 (Ring-LWE Problem): Let u be uniformly
sampled from Rq .

• The decision problem of Ring-LWE asks to distinguish
between (a,b) ← LRLWE

n,αq and (a,u) for a uniformly

sampled secret s
$← Rq .

• The search problem of Ring-LWE asks to return the secret
vector s ∈ Rq given a Ring-LWE sample (a,b) ←
LRLWE
n,αq for a uniformly sampled secret s

$← Rq (s can
also be sampled from the error distribution).

III. BUILDING BLOCKS

This section is devoted to the main ingredients required to
construct our DAA scheme.

A. Non-Interactive Zero Knowledge Argument

Throughout this work, we need to generate proofs for the
possession of valid credentials and the knowledge of short
secrets. Consider the following language;

L = {public := {b, Â, Â0, . . . , Â`,u,msg, µ}
witness := {id, ẑ = (z0, . . . , z2m)} :

{Âid · ẑ = u ∧ ‖ẑ‖ ≤ β}
∧{nym = H(msg, µ) · z0 + e ∧ ‖e‖ ≤ β}},

where Âid = [Â | Â0+
∑`
i=1 idi·Âi] . Such a language can be

proven in zero-knowledge using the statistical zero-knowledge
argument of knowledge (sZAoK) due to [24] instantiated with
the commitment scheme of Kawachi et al. [21]. The sZAoK
satisfies the standard properties completeness, zero-knowledge
and special soundness. It can finally be made non-interactive
via the Fiat-Shamir heuristic or other non-interactive proof
systems, which are online extractable [19].

B. Boyen’s Digital Signature Scheme

In the following section we give a short description of
Boyen’s signature scheme [6] instantiated in the ring setting
as it represents one of the main ingredients of our DAA
construction. In particular, we consider Rq = R/qR for
R = Z[X]/ 〈Xn + 1〉 and n = 2k. Thus, let m = O(log q)
for a prime q ≡ 1 mod 2n. Denote by 2` the number of
possible messages, which will later on be replaced by the
secret identities.

1) Gen(1n): Generate a set of polynomials Â ∈ Rmq
endowed with a trapdoor T by e.g. [26], [4]. Furthermore,
sample uniform random sets of polynomials Âi ∈ Rmq
for i ∈ [`]0. Finally, select a uniform random syndrome
u ∈ Rq . The secret and public keys are given by sk := T
and pk := (Â, Â0, . . . , Â`,u).

2) Sign(sk, id ∈ {0, 1}`): First, generate the vector of
polynomials Âid = [Â | Â0 +

∑`
i=1 idi · Âi] as-

sociated to id. Subsequently, sample polynomials ẑ =
(z1, . . . , z2m)←↩ DΛ⊥u (Âid),s

satisfying Âid · z ≡ u mod
q by use of the trapdoor T. Finally, output the signature
ẑ = (z1, . . . , z2m).

3) Verify(pk, id ∈ {0, 1}`, z): If Âid · ẑ ≡ u mod q and
‖ẑ‖ ≤ β are satisfied, output 1, else 0.

The scheme is based on the hardness of (Ring-)SIS and is
proven to be secure in the standard model. We refer to [6] for

3

a security proof, which has been improved later on in [26]
by use of a new trapdoor and its ring analogue.

Remark. We note that a signature ẑ = (z1, . . . , z2m) satisfying
u = Âid · ẑ can be turned into a solution z̄ = (â, b̂, id1 ·
b̂, . . . , id` · b̂) of an Ring-ISIS instance Ā · z̄ = u mod q
with ‖z̄‖ ≤ β, where Ā = [Â | Â0 | Â1 | . . . |Â`] and
â = (z1, . . . , zm) and b̂ = (zm+1, . . . , z2m) .

C. A New MAC-based Signature Scheme from Lattices

Much progress has been made to construct efficient lattice-
based signature schemes that have recently even become
practical. In fact, one differentiates between random oracle
variants and constructions that are provably secure in the stan-
dard model. For instance, the lines of works based on either
the Fiat-Shamir transform or the GPV signature scheme are
considered to be the most common representatives. However,
many of those constructions are limited with respect to their
features. Therefore, we present in this section a new lattice-
based signature scheme, that is interesting with respect to its
properties rather than its performance as it requires a non-
interactive statistical zero-knowledge argument of knowledge
(NIZKAoK) system to provide unforgeability of the scheme.
Once there are efficient instantiations of NIZKAoK protocols,
it immediately carries over to the signature scheme. From
a high level view, we can consider our digital signature
scheme to be composed by a lattice-based symmetric encryp-
tion scheme in combination with a new lattice-based MAC
algorithm on the message and a statistical zero-knowledge
argument of knowledge NIZKAoK for the possession of the
secret.

We now propose a new (stateful) MAC scheme retaining
security based on the (Ring-)LWE problem. We start with a
generic description of the algorithms and the related security
model. Subsequently, we will present our construction
followed by a security proof.

Def inition 3.1 (CMA secure MAC): A MAC is a pair of
algorithms M = (MAC,VerifyMAC) with MAC : A1 × A2 →
B and VerifyMAC : A1 × A2 × B → {0, 1} is a CMA-secure
MAC, if:
• Validity For every msg ∈ A1, s ∈ A2

VerifyMAC(msg, s,MAC(msg, s)) = 1 .
• Security For every polynomially bounded adversary the

advantage of the adversary

AdvCMA
M,A (n) = P [ExpCMA

M,A (n) = 1] ≤ ε

in the experiment ExpCMA
M,A (k,N) is negligible.

Experiment: ExpCMA
M,A (n)

• s← KeyGenMAC(1n)
• (msg∗, τ∗,St)← AOMAC(s,·),OVerifyMAC(s,·,·)

• If msg∗ was queried to OMAC, return 0.
• Return 1 if VerifyMAC(s,msg∗, τ∗) = 1, else 0.

In the following sections, we define β = αq · ω(1) for
a distribution χ = DZ,αq such that P

x∼DZ,αq
[|x| > β] is

negligible.

Construction of a stateful MAC scheme. Let H(·) ← Rq
denote a cryptographic hash function modeled as random
oracle. Our MAC scheme is defined by 3 algorithms M =
(KeyGenMAC,MAC,VerifyMAC) .

1) KeyGenMAC(1n) : On input security parameter n, it
generates a secret polynomial s ←↩ χn = DZn,αq . The
key space is K = [−β, β]n ∩ Zn. Output sk := s .

2) MAC(msg, sk) : If the local storage contains a record
(msg, τmsg) output τmsg, otherwise generate b =
H(msg) ∈ Rq and compute τmsg = b · s + e for an error
vector e ←↩ χn. Finally, store the record (msg, τmsg) in
the local storage and output the tag τmsg.

3) VerifyMAC(msg, sk, τ) : On input the secret key, a mes-
sage and a tag, it invokes τ∗ = MAC(msg, sk) and checks
if ‖τ∗ − τ‖ ≤

√
2β, where β denotes the bound related

to χ such that P
x∼χ

[|x| > β] is negligible.

Construction of a probabilistic MAC scheme. Let H(·)←
Rq be as above, then the algorithms are defined as follow.

1) KeyGenMAC∗(1
n) : Invoke s← KeyGenMAC(1n). Output

sk := s .

2) MAC∗(msg, sk) : Sample random `-bit string µ ←↩
{0, 1}` and generate b = H(msg, µ) ∈ Rq . Subsequently
sample an error vector e←↩ χn and compute τ = b·s+e.
Output the tag τ and random string µ.

3) VerifyMAC∗((msg, µ), sk, τ) : Compute τ∗ =
MAC((msg, µ), sk) and check if ‖τ∗ − τ‖ ≤

√
2β,

then output 1, else 0.

Lemma 3.2: Let q be a prime number and t ∈ Z×q a prime
with χn = DZn,αq such that t ≥ 2β for β = αqω(1) and
2tβ < q (identifying R as Zn via the coefficient embedding).
For s, e1, e2 ←↩ χn and any a ∈ Rq let b1 = a · s + e1 and
b2 = (a− t) · s + e2, then

s = t−1 · [b1 − b2 − (b1 − b2 mod t)] .

Proof. A straightforward calculation shows that the equality
[b1 −b2 − (b1 −b2 mod t)] = t · s is satisfied, since t ≥ 2β
�

Theorem 3.3: Let q be a prime number and t ∈ Z×q a prime
such that t ≥ 2β and t2 + t < q, where χn = DZn,αq .
Assuming the hardness of the Ring-LWE problem, then the
MAC scheme M = (KeyGenMAC,MAC,VerifyMAC) is CMA-
secure in the random oracle model.

Proof. Suppose there exists an efficient adversary against the
CMA-security of the MAC scheme, then we can build an
efficient algorithm B solving the search version of Ring-
LWE. Let qH denote the maximum number of hash function,
MAC(·) and VerifyMAC(·) queries of A. Algorithm B is given
qH many Ring-LWE samples {(ai,bi = ai · s + ei)}qHi=0

as the problem instance, where s, ei ←↩ χn and ai ←↩ Rq ,
and he is challenged to output the unknown secret vector s.
Following ExpCMA

M,A (n) the adversary is given access to the

4

oracles OMAC(s, ·) and OVerifyMAC(s, ·, ·). Furthermore, he
is given access to the random oracle H . We can safely assume
that the adversary calls the random oracle before outputting a
valid forgery. Thus, B selects an index i∗ ∈ {1, . . . , qH} for
the critical query. The challenger simulates the environment
as follows.
• Setup The challenger maintains a counter, which is

set to c := 0 at the beginning of the game. He also
maintains a list H1, which is successively filled with
triples (msg,h,b) during the game.

• Queries to RO. On queries msg to the RO the challenger
checks, if H1 contains an entry (msg,h,b) and outputs
h, if it exists, else he adds the entry (msg,ac,bc), outputs
ac and sets c := c + 1 . If the number of entries in the
H1 list is i∗ − 1, B adds the entry (msg,ai∗ − t,bi∗) to
the list and outputs ai∗ − t.

• Queries to the Signing Oracle. On queries to
OMAC(s, ·) on messages msg, B will call the hash oracle
on msg. If the H1 list contains an entry (msg,h,b), then
he outputs b. If it has not been set, he takes a new
instance and adds (msg,ac,bc) to the list, outputs bc
and sets c := c + 1 . However, if the adversary queries
OMAC(s, ·) on the critical message at his i∗-th call, B
aborts.

• Queries to the Verification Oracle. For all non-critical
queries, message msg and tag b the algorithm B will
invoke bj ← OMAC(s,msg) for some j and output 1 if:
‖b− bj‖ ≤

√
2β, else output 0. In case it is the critical

query, it verifies that ‖b− bi∗‖ = ‖t · s + e− e∗‖ ≤
t ‖s‖+ ‖e− e∗‖ ≤ t2 + t, then B computes s following
Lemma 3.2 applied on b and bi∗ and verifies that bi∗ =
ai∗ · s + ei∗ for ‖ei∗‖ ≤ β. If satisfied, B outputs s to
the challenger. Otherwise B aborts.

The challenger perfectly simulates the environment. Eventu-
ally, A outputs a valid forgery (msg∗,b∗) on a message that
has not been queried to OMAC before. Then, A has either
invoked the RO or not. In case the random oracle has not
been invoked on msg∗, B aborts. Otherwise, he must have
queried the RO. But then he must have produced an instance
b∗ = (ai∗ − t) · s + e∗ with s = t−1 · [b∗ − bi∗ − (b∗ −
bi∗ mod t)] and ‖e∗ − ei∗‖ ≤ t following Lemma 3.2, where
bi∗ = ai∗ · s + ei∗ . In this case, B breaks the search version
of Ring-LWE, which contradicts the hardness assumption of
Ring-LWE. �

The proof of Theorem 3.3 particularly also shows, that even
given many samples from the Ring-LWE distribution using
the same secret, the adversary cannot learn anything about the
MAC outputs. Our digital signature scheme takes advantage
of this fact and can thus be built from the following primitives
(Enc,MAC,NIZKAoK). Roughly speaking, the public key is
an encryption of the secret (Ring-LWE instance), the MAC al-
gorithm outputs signatures by use of this secret, and NIZKAoK
is applied to deduce a proof of knowledge of a secret binding
the signature to the public key.
From MAC to a Digital Signature Scheme. We start with
the construction of our digital signature scheme. It consists
of the following algorithms DS = (KeyGen,Sign,Verify) . To

remove the property of stateful signatures, the signer always
samples a new seed µ in the signing step in order to randomize
the output. This relieves the signer from storing already signed
messages such that he can sign the same message several
times. Let H(·) : {0, 1}∗ → Rq be a cryptographic hash
function modeled as random oracle.

1) KeyGen(1n) : On input security parameter n, generate a
public parameter uniformly at random a←↩ Rq , a secret
polynomial s ←↩ χn and an error polynomial r ←↩ χn.
Output the public key pk := a · s + r and secret key
sk := s.

2) Sign(sk,msg) : Sample a seed µ ←↩ {0, 1}l uniformly
at random and generate τ = MAC(msg, sk). Finally,
generate

π = SPK{public := {a, pk,msg, µ, τ}
witness := {s} : LLWE}

where LLWE = {pk = a · s + r ∧ (‖s‖ , ‖r‖ ≤ β)} ∧
{τ = H(msg, µ) · s + e ∧ ‖e‖ ≤ β}

to prove that pk and τ are ciphertexts of the same secret
key. Output the signature

Σ = (msg, µ, τ, π)

on message msg using randomness µ.

3) Verify(pk,Σ) : Parse Σ as (msg, µ, τ, π) and verify the
NIZKAoK π on input pk,msg, µ, and τ . If π is a valid
proof output 1, else 0.

Security. Roughly speaking, based on the Ring-LWE problem
an attacker cannot find the secret out of the public key and
many (different) MACs, which indeed just represent Ring-
LWE samples. Thus, we now state the unforgeability theorem.

Theorem 3.4: If SPK is a statistical non-interactive zero-
knowledge argument of knowledge (sNIZKoA) for the secret
in the digital signature scheme DS. Then, DS is unforgeable
under chosen message attacks (CMA-secure) in the RO model
assuming the hardness of solving the Ring-LWE problem.

Proof (sketch). The signature scheme DS can be forged by
forging the MAC scheme, which we proved in Theorem 3.3 to
be secure under the (Ring-)LWE assumption, or by generating
a valid SPK proof linking the public key to a MAC on a
message (msg, µ) that has not been signed before. However,
in the latter case the adversary must have broken the soundness
property of the SPK, i.e. the simulator can extract the secret
key by rewinding. �

Linkable Indistinguishable Tags. From the above construc-
tions, we observe that a fixed signer always generates an
almost identical τ̄ = H(msg, µ) · s + ē, if he signs the same
message using the same randomness, because ‖τ − τ̄‖ =
‖e− ē‖ ≤

√
2β . This deterministic behavior allows the

deduction of new features for certain applications related to
anonymous attestation protocols. In fact, τ acts as a tag for
a certain message under the same randomness, but does not
reveal anything about the secret key based on the Ring-LWE
assumption. For instance, if τ and τ̄ have been produced

5

Experiment: Expf−INDLIT,A (n) Experiment: ExpLINK
LIT,A(n)

• (sk0, sk1)← KeyGenLIT(1n) • (msg0, τ0, sk0,msg1, τ1, sk1)← A(1n)
• c← f(sk0) • Return 1 only if:

• b $← {0, 1} • TAGLIT(msg0, sk0) = τ0
• (msg∗,St)← ATAGLIT(·,sk0),H(·)(c) for a suitable e0, i.e.
• τ∗ ← TAGLIT(msg∗, skb) ‖e0‖ = ‖H(msg0) · sk0 − τ0‖ ≤ β
• b∗ ← ATAGLIT(·,sk0)(τ∗,St) • TAGLIT(msg1, sk1) = τ1
• If msg∗ was asked of TAGLIT return 0. for a suitable e1, i.e.
• Return 1 if b∗ = b, else 0. ‖e1‖ = ‖H(msg1) · sk1 − τ1‖ ≤ β

• LINKLIT(τ0, τ1) = 1
• Either sk0 6= sk1 or msg0 6= msg1.

by different signers, the difference would be computationally
indistinguishable from a uniform random polynomial.

Linkable indistinguishable tags (LIT) for classical DAA
protocols have been introduced in [5] and are akin to regular
message authentication codes (MAC). Below we give the
related LIT algorithms in accordance to [5], however with a
slight modification to handle randomized algorithms applied
in our setting. More specifically, we are outputting only a
disguised tag involving an error term sampled from a narrow
noise distribution. Thus, the verification algorithm will check
two tags with respect to approximate equality only. The
generic syntax of LITs is given in [5]. Below we instantiate
a LIT with our MAC scheme.

LIT Instantiation. A LIT is defined by a tuple of algorithms
SLIT = (KeyGenLIT, LINKLIT,TAGLIT):
• KeyGenLIT(1n) : Output sk← KeyGenMAC(1n).
• TAGLIT(msg, sk) : Compute τ = MAC(msg, sk) and

output the tag τ .
• LINKLIT(τ0, τ1) : If ‖τ0 − τ1‖ ≤

√
2β output 1,

else 0.

We now define the different security notions to be satisfied.
As opposed to MAC schemes, LIT doesn’t necessarily require
unforgeability. We slightly modified the security model for
linkability as it suffices to check in the verification step of our
construction that two tags are only approximately the same.

Given a one-way function applied to the secret key pk :=
f(sk) acting as the public key, the security of the LIT is
defined relative to pk. The adversary can break a LIT scheme
either via its indistinguishability property or its linkability
property.

Theorem 3.5 (f − IND): Let q be an integer and f(s) =
a · s + e mod q for uniform random polynomial a ∈ Rq and
e←↩ χn. In the RO model, if there exists an efficient adversary
A against the indistinguishability property of the Ring-LWE-
LIT scheme SLIT as defined above, then there exists an efficient
algorithm B solving decision Ring-LWEn,αq such that

Advf−IND
LIT,A (n) ≤ qHAdvR−DLWE

P,B (n),

where qH denotes the maximum number of hash function, tag
and verify queries of A.

Proof. Let {(ai,bi = ai · sk0 + ei)}qH−2
i=0 , (u1,u2) denote

the input problem instance to algorithm B, where (u1,u2) is
either a Ring-LWE instance or a uniform random sample. The
aim of B is to break decision Ring-LWEn,αq , i.e. to determine
if u2 = u1 · sk0 + e or (u1,u2) are uniform random samples

in Rq × Rq . At the beginning B calls A on c = f(sk0) =
a0 · sk0 + e0 . The adversary is given access to TAGLIT(·, sk0)
and the random oracle H(·) ∈ Rq following the security game
in Expf−INDLIT,A (n). Suppose that the adversary makes at most
qH calls to the hash function and tag oracles, then we can
safely assume that msg∗ has been queried at the i∗-th call with
i∗ ∈ {1, . . . , qH} before the first stage ofA ends. Furthermore,
we can assume that he invokes the RO before every call to the
tag or verify oracle.

• Queries to RO. Algorithm B maintains a counter c := 1
and a list H1 consisting of triples (msg,h, r). If H1 has
been queried on a message msg, the challenger checks
for an existing entry (msg,h, ∗) ∈ H1 and outputs h.
If the list contains i∗ − 1 elements, then B adds the
challenge (msg,u1,u2) to the list and responds with u1

to A, otherwise he adds (msg,ac,bc) to the list, returns
ac to A and sets c := c+ 1.

• TAG Queries. In case the adversary requests a tag on a
message msg, we can assume to have triples (msg,h, r)
in the H1-list. Then, B returns r to A.

If the adversary has not queried the hash oracle at its
i∗-th call on the message msg∗ returned by the adversary
after the first stage, then B aborts. Otherwise he returns
τ∗ = u2 as the supposed tag on msg∗. After the second
stage of the algorithm the adversary will make its guess
on whether τ∗ is valid, i.e. sk0 has been used to gener-
ate the tag τ∗ on message msg∗. The tag is only valid if
|τ∗ − (H(msg∗) · sk0 + e)| ≤

√
2β, where H(msg∗) = u1.

Algorithm B responds with the output ofA, which is a solution
to decision Ring-LWEn,αq . �

Lemma 3.6: Let Rq be defined as above. Let
a1, . . . ,am−1 ←↩ Rq be uniform random polynomials.
Suppose there exists a PPT algorithm S that solves
‖a1 · s1 + . . .+ am−1 · sm−1‖ ≤ γ for non-zero si, s.t.
‖si‖ ≤ γ and 1 ≤ i ≤ (m − 1), then there exists a PPT
algorithm B that solves Ring-SISn,m,γ .

Proof. Suppose there exists such an algorithm. Define by
[a1, . . . ,am] the problem instance. B is challenged to solve
the R-SIS problem a1 · s1 + . . . + am · sm ≡ 0 mod q
for ‖si‖ ≤ γ and 1 ≤ i ≤ m. Assume that one of the
ring elements is invertible, which exists with non-negligible
probability. Without l.o.g. assume that am ∈ R×q . Then define
by [a′1 := a−1

m a1, . . . ,a
′
m−1 := a−1

m am−1] the input to S,
which outputs si for 1 ≤ i ≤ (m − 1) in polynomial time
such that ‖si‖ ≤ γ and

∥∥a′1 · s1 + . . .+ a′m−1 · sm−1

∥∥ ≤
γ. Algorithm B outputs then
[s1, . . . , sm := −(a′1 · s1 + . . . + a′m−1 · sm−1)] as a
solution to the problem instance. This concludes the proof.
�

Theorem 3.7 (LINK): In the RO model, if there exists a PPT
adversary A breaking the linkability property of the RLWE-
LIT, then there exists an efficient algorithm B solving Ring-
SISn,m,γ for γ = 2

√
2β such that

AdvLINKLIT,A(n) ≤ q2
HAdvR−SISP,B (n),

6

where qH denotes the maximum number of hash function calls
of A.

Proof. We prove that given an PPT adversary A, that gen-
erates valid (msg0, τ0, sk0,msg1, τ1, sk1) such that τ0 − τ1 ∈
[−
√

2β,
√

2β], where τi = TAGLIT(msgi, ski) for i = 0, 1,
we can build an algorithm B to solve Ring-SISn,2,γ or Ring-
SISn,3,γ . In order to win the game, the adversary can choose
msgi and ski such that either sk0 6= sk1 or msg0 6= msg1

holds. We handle 3 cases.
1) sk0 = sk1 and msg0 6= msg1: Then,

‖(H(msg0)−H(msg1)) · sk0 + (e0 − e1)‖ ≤
√

2β,

which can further be bounded by
‖H(msg0)−H(msg1)) · sk0‖ ≤ 2

√
2β since

e0, e1 ∈ K\{0} for K = [−β, β]n ∩ Zn. Furthermore,
sk0 ∈ K\{0}. Suppose B is challenged to find an
R-SIS solution to [a1,a2], where a2 is invertible in
Rq with non-negligible probability. We can safely
assume that the adversary A makes calls to the hash
oracle to any messages before outputting its guess.
Suppose that the adversary makes at most qH calls,
where B selects i1, i2 ∈ {1, . . . , qH} such that i1 < i2,
which denote the critical calls. B maintains an H1-List
consisting of tuples (msg,h). If an entry has been
set B, outputs h. Otherwise, if A makes his i1 or
i2 query to the hash oracle, B samples a uniform
random r ←↩ Rq and adds the entries (msg0,−a−1

2 r)
and (msg1,a

−1
2 (r + a1)) at positions i1 and i2 to

the list. For all other queries B sets (msg,h) for a
uniform random h ∈ Rq and outputs h. Eventually A
outputs a valid (msg′0, τ0, sk0,msg′1, τ1, sk1) such that
sk0 = sk1 and ‖(H(msg′0)−H(msg′1)) · sk0‖ ≤ 2

√
2β.

If neither msg′0 nor msg′1 have been queried at the i1-th
and i2-th call, then B aborts. Otherwise B computes
(a−1

2 (r + a1) − a−1
2 r) · sk0 = s mod q, which is

equivalent to

a1 · sk0 + a2 · s ≡ 0 mod q

and hence a solution to Ring-SISn,2,2√2β . Finally, B
responds to the challenger with [sk0, s].

2) sk0 6= sk1 and msg0 = msg1: Then,

‖H(msg0) · (sk0 − sk1)‖ ≤ 2
√

2β,

with the relaxation ‖sk0 − sk1‖ ≤
√

2β . The proof is
straight forward similar to the first case, however B needs
only to program the oracle on the critical query at i1 on
msg0. In this case the i1-th entry in the H1-List is set to
(msg0,a

−1
2 a1). All other proof steps remain exactly the

same.
3) sk0 6= sk1 and msg0 6= msg1: In this case, we have to

solve Ring-SIS instance in a higher dimension:

‖H(msg0) · sk0 −H(msg1) · sk1‖ ≤
√

2β .

The input problem instance to B is [a1,a2,a3] for which
he is challenged to output an SIS solution such that

a1 · s1 + a2 · s2 + a3 · s3 ≡ 0 mod q

and ‖si‖ ≤ 2
√

2β. Assuming that a3 is invertible, we
proceed as in the previous cases with the small difference
that the entries (msg0,a

−1
3 a1) and (msg1,a

−1
3 a2) are

added to the H1-list for the critical queries i1 and i2.
All other steps are straight forward. This solves Ring-
SISn,3,2√2β . �

IV. SECURITY MODEL

We adopt the most recent security model for DAA given by
Camenisch et al. in [13]. The security definition is given in the
Universal Composability (UC) framework [14] w.r.t. an ideal
functionality F`daa. In a UC model, an environment E should
not be able to distinguish with more than negligible probability
between two worlds; the first is the real world in which each
party in the DAA protocol Π executes its prescribed part of
the protocol, in the presence of an adversary A that controls
the network. The second is the ideal world in which all parties
forward their inputs to a trusted third party, called the ideal
functionality F`daa, that performs all the required tasks for
them, and sends back the desirable results. At a very high level,
we want to show that the “real world” is as correct and private
as the “ideal world”. For correctness, we want to show that
the outputs observed by the environment E , while interacting
with both worlds are the same; whereas for privacy, we want
to show that whatever information the adversary A can learn
in the real world, there exists a simulator S that can learn
exactly the same information in the ideal world, so that the
environment E can’t tell if it is interacting with (F`daa,S) or
(Π,A). This simply shows that whatever damage the adversary
A can do to the real world, there exists a simulator S that
can do the same damage to the ideal world. In other words,
whatever A can compute, can be computed given only the
prescribed outputs. In a nutshell, the security properties that a
DAA scheme should enjoy are the following:

Unforgeability. This property requires that the issuer is honest
and should hold even if the host is corrupt. It guarantees that,
if all the TPMs are honest, then no adversary can output a
signature on a message msg w.r.t. a basename bsn. Moreover,
if not all TPMs are honest, say n TPMs are corrupt, then the
adversary can at most output n unlinkable signatures w.r.t. the
same bsn 6= ⊥.

Anonymity. This property requires that the entire platform
(tpmi + hostj) is honest and should hold even if the issuer
is corrupt. It guarantees that, given two valid signatures w.r.t.
two different bsn or bsn = ⊥, the adversary can’t tell whether
these signatures were produced by one or two different honest
platforms.

Non-frameability. This requires that the entire platform
(tpmi + hostj) is honest and should hold even if the issuer is
corrupt. It guarantees that no adversary can produce a signature
that links to signatures generated by an honest platform.

Def inition 4.1 (Universally Composable Security): Given a
protocol Π, an ideal functionality F`daa and an environment
E , we say that Π securely realises F`daa if the real world in
which Π is used is as secure as the ideal world in which
F`daa is used. More formally, for any adversary A in the real

7

world, there exists a simulator S in the ideal world such that
(E ,F`daa,S) ≈ (E ,Π,A).

A. The ideal Functionality F`daa
Similar to [13], we will define our ideal functionality in the

static setting, i.e. the adversary A decides which parties are
corrupt and informs F`daa about them beforehand. F`daa has
five interfaces, i.e. (Setup, Join, Sign, Verify, Link) which will
be described below. In the UC model, several sessions of the
protocol are allowed to run at the same time. Therefore, each
session will be given a global identifier that consists of some
issuer I and a unique string sid′, i.e. sid = (I, sid′); similarly,
we will identify the Join and Sign sub-sessions by jsid and
ssid. The parameter ` in F`daa represents a leakage function
` : {0, 1}∗ → {0, 1}∗. This function ` models the leakage of
information in the communication between a host hostj and
a tpmi.

We define two useful functions that check whether or
not a TPM key is consistent with the records of the ideal
functionality F`daa. We distinguish between the cases where
the TPM is honest or corrupt as follows:
• CheckGskHonestTPM(gsk): if tpmi is honest, and no

signatures in Signed or valid signatures in VerResults
identify to be signed by gsk, then gsk is eligible, and
therefore return 1, otherwise return 0.

• CheckGskCorruptTPM(gsk): if tpmi is corrupt and 6
∃gsk′ 6= gsk and (msg, σ, bsn) s.t. both keys identify as
the owners of this signature, then gsk is eligible, and
therefore return 1, otherwise return 0

We also define the algorithms that will be used inside the
functionality as follows:
• kgen(1λ): A probabilistic algorithm that generates keys

for honest TPMs.
• sig(gsk,msg, bsn): A probabilistic algorithm that gener-

ates signatures for honest TPMs. On input a secret key
gsk, a message msg, and a basename bsn, it outputs a
signature σ.

• ver(σ,msg, bsn): A deterministic algorithm that will be
used in the Setup interface, which outputs 1 if σ is a valid
signature on msg w.r.t. bsn, and 0 otherwise.

• link(σ,msg, σ′,msg′, bsn): A deterministic algorithm that
will be used in the Link interface, which outputs 1 if
both σ and σ′ were generated by the same TPM, and 0
otherwise.

• identify(gsk, σ,msg, bsn): A deterministic algorithm that
will be used in various places to enforce consistency with
the ideal functionality F`daa’s internal records. It outputs
1 if gsk was used to produce σ, and 0 otherwise.

Note that the ideal functionality F`daa will use its internal
records to enforce the correctness of the verification and
linkage of the signatures it produces. However, ver() and
link()’s role will be to help with signatures that weren’t pro-
duced by the ideal functionality. Moreover, we require the link
algorithm to be symmetric, i.e. link(σ,msg, σ′,msg′, bsn) =
link(σ′,msg′, σ,msg, bsn), for all inputs. We now present the
interfaces of F`daa as follows:

Setup. On input (SETUP, sid) from an issuer I, F`daa does
the following:
• Verify that sid = (I, sid′) and output (SETUP, sid) to S.
• Upon receiving the algorithms

(kgen, sig, ver, link, identify) from the simulator S,
it checks that (ver, link, identify) are deterministic
[Check−I].

• Output (SETUPDONE, sid) to I.

Join. On input (JOIN, sid, jsid, tpmi) as a join request from
a hostj , that asks for the TPM tpmi to join, the ideal
functionality F`daa deals with it as follows:
JOIN REQUEST. Output a (JOINSTART, sid, jsid, tpmi, hostj)
to S .
• Proceed upon receiving a delivery notification from S .
• if I or tpmi is honest and < tpmi,−,− > is already in

Members, output ⊥ [Check−II].
• Otherwise, output a (JOINPROCEED, sid, jsid, tpmi) re-

quest to I.
JOIN PROCEED. Proceed upon receiving an approval from I,

i.e. receiving (JOINPROCEED, sid, jsid) from I.
• Output (JOINCOMPLETE, sid, jsid) to S .
• On input (JOINCOMPLETE, sid, jsid, gsk) from S, if

both (hostj , tpmi) are honest:
◦ Ignore the secret key gsk provided by the adversary,

i.e. set gsk← ⊥,
◦ Members.add(< tpmi, hostj , gsk >)

• If either of (hostj , tpmi) is not honest, it distinguishes
between two cases to check if the provided gsk is an
eligible one:
◦ If hostj is corrupt and tpmi is honest, b ←

CheckGskHonestTPM(gsk) [Check−III].
◦ Otherwise, if tpmi is corrupt, b ←

CheckGskCorruptTPM(gsk) [Check−IV].
◦ If gsk is eligible, i.e. b = 1, then do Members.add(<

tpmi, hostj , gsk >).
• Output (JOINED, sid, jsid) to hostj .

Sign. On input (SIGN, tpmi,msg, bsn, σ) from a host hostj ,
that asks for a DAA signature by tpmi on a message msg
w.r.t. a basename bsn, the ideal functionality F`daa deals with
the request as follows:

SIGN REQUEST. If the issuer I is honest and <
tpmi, hostj ,− > 6∈ Members, abort.
• Output (SIGNSTART, sid, ssid, `(msg, bsn), tpmi, hostj)

to S.
• Proceed upon receiving a delivery notification from S
• Output (SIGNPROCEED, sid, ssid,msg, bsn) to tpmi.

SIGN PROCEED. Proceed upon reception of
(SIGNPROCEED, sid, ssid) from tpmi, i.e. tpmi approves.
• Output (SIGNCOMPLETE, sid, ssid) to S
• On input (SIGNCOMPLETE, sid, ssid, σ) from S, if both

the hostj and tpmi are honest, then;
◦ Ignore the signature σ provided by the adversary,
◦ If bsn 6= ⊥, look up < tpmi, bsn, gsk > in

DomainKeys and retrieve gsk. Else If bsn = ⊥ or no
gsk was found, generate a fresh key gsk← kgen(1λ). If

8

CheckGskHonestTPM(gsk) = 1 [Check−V] , then add
the new key to DomainKeys, i.e. DomainKeys.add(<
tpmi, bsn, gsk >).

◦ Generate σ ← sig(gsk,msg, bsn) and check that
ver(σ,msg, bsn) = 1 [Check−VI].

◦ Check that identify(σ,msg, bsn, gsk) = 1
[Check−VII].

◦ Check that no tpm′i 6= tpmi exists such that
(tpm′i, gsk′) is in Members or DomainKeys with
identify(σ,msg, bsn, gsk′) = 1 [Check−VIII].

• If tpmi is honest, then do Signed.add(<
σ,msg, bsn, tpmi >).

• Output (SIGNATURE, sid, ssid, σ) to hostj .

Verify. This interface takes as input
(VERIFY, sid, σ,msg, bsn,RL), it can be called by any
party V to check whether or not a given signature σ is a
valid signature on a message msg w.r.t. the basename bsn
and the revocation list RL; the ideal functionality deals with
this request as follows:
• Extract all pairs (gski, tpmi) from DomainKeys and

Members, for which identify(σ,msg, bsn, gsk) = 1. Set
b = 0 If any of the following conditions holds:
◦ Distinct keys gskis were found [Check−IX].
◦ I is honest and no (gski, tpmi) was found [Check−X].
◦ a gski was found, but no entry of the form (<
∗,msg, bsn, tpmi >) was found in Signed [Check−XI].

◦ There exists a gsk′ ∈ RL for which
identify(σ,msg, bsn, gsk′) = 1 and no (gski, tpmi) for
an honest tpmi was found [Check−XII].

• If b 6= 0, set b← ver(σ,msg, bsn) [Check−XIII].
• VerResults.add(< σ,msg, bsn,RL, b >).
• Output (Verified, sid, b) to V

Link. This interface takes as input
(LINK, sid, σ1,msg1, σ2,msg2, bsn) and can be called
by any party V to check whether or not two given signatures
that are directed at the same recipient bsn 6= ⊥ stem from the
same signer. The ideal functionality deals with this request as
follows:
• If any of (σi,msgi, bsn,RL = ∅) = 0 for i = 1 or 2 is

not valid (using the Verify interface with RL = ∅), output
⊥ to V [Check−XIV].

• Compute aij ← identify(σi,msgi, bsn, gskj), for all gskj
in Members and DomainKeys, for i = 1, 2
◦ If there exists a gskj s.t. a1j 6= a2j , set b = 0

[Check−XV].
◦ Else if there exists a gskj s.t. a1j = a2j = 1, set b = 1

[Check−XVI].
• If b is not defined yet, set b ←

link(σ1,msg1, σ2,msg2, bsn)
• Output (LINK, sid, b) to V .

B. F`daa’s Enforcement of DAA’s Security Properties

We now show that F`daa indeed enforces the desired security
properties of DAA, i.e. unforgeability, anonymity, and non-
frameability. We refer to [13] for a more detailed discussion,

in particular, to show the consistency of verify, and the
consistency and symmetry of link.
Completness. A signature σ produced by an honest tpmi

and honest hostj on message msg and w.r.t. a basename bsn,
should be accepted by the verifier. The ideal functionality F`daa
ensures this property and this can be easily checked by looking
at the internal checks [Check−IX, X, XI, XII].
Unforgeablity. For the first unforgeability scenario, i.e. when
all TPMs are honest, the adversary shouldn’t be able to
produce a signature on a message msg w.r.t. basename bsn if
no honest TPM signed msg w.r.t. to a basename bsn. This is
indeed ensured by [Check−X] and [Check−XI]. The former
ensures that the signature must trace back to some TPM’s
gsk whereas the latter ensures that any signature on messages
not signed by that TPM will get rejected. For the second
forging scenario, i.e. some TPMs are corrupt (say n corrupt
ones), the adversary shouldn’t be able to produce more than
n non-linkable signatures w.r.t. the same bsn 6= ⊥. Assume
that the adversary manages to output n + 1 signatures, one
can easily show, by the internal checks [Check−X, XI, XVI],
that this gives a contradiction, i.e. these n + 1 signatures
can’t simultaneously verify w.r.t. same non-empty bsn and be
pairwise unlinkable.
Anonymity. This ensures that signatures produced for honest
platforms (tpmi + hostj) by F`daa are always anonymous.
This is due to the fact that F`daa always uses fresh keys to
sign messages w.r.t. different basenames or to empty ones.
Therefore, the distribution of the signatures with different or
empty basenames is independent of the platforms. On the other
hand, [Check−XII] makes sure that exploit the revocation
property to break the anonymity of honest users, i.e. F`daa
ignores the {gski} ∈ RL that belong to honest TPMs when
testing for revocation. Note that the simulator is allowed to
provide the signatures for corrupt platforms, which implies
that anonymity can’t be guaranteed here as those signatures
might depend on the identity of the signers.
Non-frameability. An adversary should not be able to frame
honest platforms, i.e he shouldn’t be able to produce signatures
on messages that were never signed by the platform and yet
link to signatures signed by this platform. We stress here that
this property can’t be achieved if only the TPM is honest but
the host is corrupt. This property is indeed guaranteed by the
internal checks [Check−XIV, XI, XV].

V. OUR CONSTRUCTION: A (STATEFUL) LATTICE-BASED
DIRECT ANONYMOUS ATTESTATION (DAA) PROTOCOL

Following [13] we use the following abstractions and as-
sume that there exist secure realizations of some standard
functionalities. First, we denote by Fca a common certifi-
cate authority functionality that is available to all parties. A
common reference ring Fcrs provides the participants with
all the system parameters. These functionalities are accessed
by parties if key material of other participants are needed.
Furthermore, it is required to have an authenticated channel
between the issuer and the TPM in the Join protocol, where
the host has the power to block the communication. Since the
authentication mechanism can be realized in different ways,

9

this feature is captured by the ideal functionality Fauth∗ . For
a secure message transmission between the TPM and the
host we exploit the functionality Fsmt, which is normally
assumed to be given due to the close physical proximity of
both participants on the platform.

1) Setup: The issuer I creates a key-pair for Boyen’s
signature scheme. Subsequently he registers the key with
Fca.
Upon input (SETUP, sid) the I proceeds as follows to
generate his key pair:
• He checks that sid = (I, sid′).
• He invokes Gen(1n) of the Boyen signature

scheme in combination with the trapdoor
construction [26], [4] in order to obtain a trapdoor
R̂ = [R̂1, . . . , R̂k] with small entries and a
verification key (Â, Â0, . . . , Â`,u), where Âi

defines a uniform random vector of polynomials and
Â = [B̂,g1 − hB̂(R̂1), . . . ,gk − hB̂(R̂k)] ∈ Rmq for
k = dlog qe,m = 2k,gi = 2i−1 and a generalized
knapsack function hB̂(Ĉ) =

∑
i bi · ci with

B̂ = [b1, . . . ,bk] and Ĉ = [c1, . . . , ck]. He further
generates a random polynomial b ←↩ Rq and sets
isk := R̂ and gpk := (b, Â, Â0, . . . , Â`,u).
The issuer I produces a signature of knowledge for
the correct generation of the verification keys, i.e.

π0 = SPK{
public := {b, Â, {Âi}`i=1,u},witness := {R̂} :

Â = [B̂,g1 − hB̂(R̂1), . . . ,gk − hB̂(R̂k)] ∧
‖ R̂i ‖≤ β for 1 ≤ i ≤ k}

This proof can be generated in different ways such as
the protocol from Section V-B or standard protocols
for small SIS secrets. Finally, the issuer publishes the
public key gpk := (b, Â, Â0, . . . , Â`,u) together with
the proof π0.

• He initializes the list of joining participants
Members← ∅ .

• Finally, he registers (π0, gpk) at
Fca, stores its private key isk and
outputs (SETUPDONE, sid).

2) Join Request: Assuming the correctness of the public
key gpk via its associated proof, a secure communica-
tion channel between Pi and I is established using for
instance the TPM endorsement secret key. The issuer I
verifies that the certificate of the endorsement public key
of the TPM is valid and checks if the TPM-host tuple is
qualified to receive an attestation. In case of acceptance, I
outputs a credential enabling Pi to create attestations. Via
the unique sub-session identifier jsid, I can differentiate
various join sessions that are executed simultaneously.
• On input query (JOIN, sid, jsid, tpmi), where sid is

parsed as sid = (I, sid′) the host hostj forwards
(JOIN, sid, jsid) to I.

• On input query (JOIN, sid, jsid) sent by hostj the issuer
I replies by (sid, jsid, µ) back to hostj for a uniform
random nonce µ←R {0, 1}λ.

• The message (sid, jsid, µ) sent by I to hostj is subse-
quently forwarded to tpmi.

• When tpmi receives (sid, jsid, µ), it proceeds as fol-
lows
i) It first checks that no such entry exists in it storage.

ii) Subsequently, it samples secret polynomials

ŷ = (y1, . . . ,y2m+1)←↩ DZn,s1×DZn,s2×. . .×DZn,s2

and stores its key as (sid, hostj , ŷ,⊥).
iii) The TMP tpmi computes ũ = [b, Âid] · ŷ mod q

for id = i, which statistically hides y1, and gener-
ates

π1 = SPK{public := {bsnI ,b, Âid, ũ},
witness := {ŷ = (y1, . . . ,y2m+1)} :

{ũ = [b, Âid] · ŷ mod q ∧ ‖ŷ‖ ≤ β1}
∧ {nym = H(bsnI) · y1 + e ∧ ‖e‖ ≤ β2}}(n) .

iv) It stores the record (sid, hostj , ŷ, id).
v) Finally, the message (nym, ũ, id, π1) is sent via

hostj to I by means of Fauth∗ .

• The host extends the unauthenticated part of the mes-
sage by appending its identity to it and subsequently
forwards the complete message to I and keeps the state
(jsid, ũ, id).

• The issuer receives an authenticated message
(nym, ũ, id, π1) from tpmi together with the unau-
thenticated identity of hostj . It then verifies the proof
π1 and makes sure that tpmi /∈ Members. It stores
(jsid, nym, ũ, id, tpmi, hostj) and sub-
sequently generates the message
(JOINPROCEED, sid, jsid, tpmi).

3) Join Proceed: Once the platform wishes to proceed with
the join session, the message (JOINPROCEED, sid, jsid)
is sent over to the issuer, which in turn generates a valid
credential:
• Upon input (JOINPROCEED, sid, jsid) the issuer pro-

ceeds as follows:
i) First, the issuer looks up the record

(jsid, nym, ũ, id, tpmi, hostj) and puts tpmi

into the list Members.
ii) The issuer samples a preimage x̂ ∈ R2m of u− ũ

as a credential for the vector of polynomials Âid.
iii) The message (sid, jsid, x̂) is subsequently sent to

hostj via Fsmt

• When hostj receives the message (sid, jsid, x̂), it pro-
ceeds as follows:
i) It checks that Âid · x̂ = u− ũ mod q and ‖x̂‖ ≤ β.

ii) If satisfied, it stores (sid, tpmi, ũ, id, x̂) and then
outputs (JOINED, sid, jsid).

4) Sign Request: Once the join protocol is completed, tpmi

and hostj can interactively sign a message msg under
basename bsn. In order to distinguish different sub-
sessions, a unique identifier ssid is used.
• Upon input (SIGN, sid, ssid,msg, bsn) the host pro-

ceeds as follows:

10

i) It looks up the record (sid, tpmi, ũ, id, x̂).
ii) The message (sid, ssid,msg, bsn) is subsequently

sent to tpmi.
• When tpmi receives the message (sid, ssid,msg, bsn),

it proceeds as follows:
i) It makes sure to have a join record

(sid, hostj , ŷ, id).
ii) Subsequently, it generates a sign entry

(sid, ssid,msg, bsn) in its storage and outputs
(SIGNPROCEED, sid, ssid,msg, bsn).

5) Sign Proceed: After hostj grants permission to proceed,
the signature is generated.
• Upon input (SIGNPROCEED, sid, ssid) the TPM pro-

ceeds as follows:
i) It retrieves the join record (sid, hostj , ŷ, id) and

sign record (sid, ssid,msg, bsn).
ii) In order to randomize its signature, tpmi samples

a uniform random vector of polynomials t̂ with
integer coefficients in [−d, d] such that

Âid · (ŷ + [0, t̂]) = u′

is uniform random.
iii) Depending on the input bsn, there are two cases

to be considered:

Case bsn =⊥:
The TPM samples v ←↩ H(µ) for a random
seed µ ← {0, 1}λ, computes nym = v · y1 +
e = TAGLIT(µ,y1) for an error term e such that
‖e‖ ≤ β2 and generates a signature of knowledge

π2 = SPK{
public := {v,b, Â, {Âi}`i=1,u, nym, bsn},
witness := {sk = ŷ + [0, t̂], id} :

{[b, Âid] · sk = u′ ∧ ‖sk‖ ≤ β + d}
∧{nym = TAGLIT(µ,y1)}}(msg) .

Finally, it sends (π2, t̂) to hostj , where nym and
µ are parts of π2.

Case bsn 6=⊥:
The TPM looks up in its storage for a
basename-tag pair (bsn, nym) such that
LINKLIT(TAGLIT(bsn,y1), nym) = 1, otherwise
it generates a tag nym = TAGLIT(bsn,y1) and
stores the respective entry. The TPM generates a
signature of knowledge

π2 = SPK{
public := {b, Â, {Âi}`i=1,u, nym, bsn},
witness := {sk = ŷ + [0, t̂], id} :

{[b, Âid] · sk = u′ ∧ ‖sk‖ ≤ β + d}
∧nym = TAGLIT(bsn,y1)}(msg),

iv) Finally, it sends (sid, ssid, π2, t̂,msg) to hostj ,
where nym and bsn are parts of π2.

• When hostj receives the message (sid, ssid, π2, t̂,msg),
it proceeds as follows:
i) It checks that the proof π2 is valid and

∥∥t̂∥∥ ≤ d.
ii) Subsequently, it generates a signature of knowledge

for the same message msg

π3 = SPK{
public := {b, Â, {Ai}`i=1,u− u′,msg, π2},
witness := {sk = [0, x̂− t̂], id} :

{Âid · sk = u− u′

∧‖sk‖ ≤ β + d}}(msg).

iii) Finally, the host outputs

(SIGNATURE, sid, ssid, σ = (π2, π3,u
′,msg))

as the signature.

Remark. Both π2 and π3 prove the knowledge of
short elements ẑ1 and ẑ2 such that [b, Âid] · ẑ1 = u′

and Âid · ẑ2 = u − u′. Together they can combine
their secret data to obtain a valid credential satisfying
[b, Âid ·(ẑ1+[0, ẑ2]) = u with ‖ẑ1 + [0, ẑ2]‖ ≤ 2(β+d).
Since there are only polynomially many platforms
involved, the probability that two parties from different
platforms can combine their secret data to a valid
credential system is negligible. Otherwise this would
mean that two different parties have sampled polynomials
mapping to the same syndrome, which is uniform
random for discrete Gaussian distributed polynomials
with parameter s ≥ ηε(Λ

⊥
q (Â)). We note that we can

also distribute the generation of tags to both parties in
case this procedure has to be shared among the TPM
and the host. This technique may be of independent
interest.

6) Verify: The verifier checks that the obtained signature σ
is valid given the message msg, basename bsn, private
key revocation list RL.
• Upon input (VERIFY, sid, σ,msg) the verifier V checks

the signature
i) He parses σ as π2, π3,u

′, nym, bsn, µ
ii) He checks the SPKs π2 and π3 with respect to

bsn, µ, nym,msg and u′ or u−u′, which together
represent a valid signature on msg with respect to
a valid credential satisfying

[b, Âid] · ẑ = u ∧ ‖ẑ‖ ≤ 2(β + d) ∧
nym = TAGLIT(str, z1),

where either str = bsn or str = µ holds for a
uniform random string µ.

iii) He also checks that no key in sk =
[y1, . . . ,y2m+1] ∈ RL has been used to generate
nym, i.e. LINKLIT(nym, H(str) · y1) = 0.

iv) Finally, V outputs (VERIFIED, ssid, out), where
out = 1 if all checks are successful, otherwise
out = 0.

7) Link: Direct anonymous attestation protocols allow the

11

user to generate signatures that can be linked to previ-
ously issued signatures. This is realized in our protocol
via a tag that is appended to the signature and is generated
from a basename bsn, which can take as values a random
bit string or the pseudonym of the verifier’s name. In the
first case, the verifier is not able to link signatures of the
same signer. In the second case, the verifier can link and
identify all signatures of a particular signer/TPM, where
the tag is generated from the same base name.
• The verifier V upon input

(LINK, sid, σ,msg, σ′,msg′, bsn) proceeds as follows:
i) The signatures σ, σ′ are parsed as
σ = π2, π3,ua, nym, bsn, µ and σ′ =
π′2, π

′
3,ub, nym′, bsn′, µ′, respectively. He outputs

⊥ if the signatures σ, σ′ are not valid.
ii) If both are valid, the verifier checks that bsn =

bsn′ and computes out = LINKLIT(nym, nym′) ∈
{0, 1}. In case of out = 1 the same TPM signed
σ and σ′, otherwise two different signers were
involved.

iii) Finally, the TPM outputs (LINK, sid, out).

A. Security

In the following section we show that our construction
is secure in the model presented in Section IV, which is
inspired by the work by Camenisch et al. in [13]. In particular,
we instantiate the SPKs using Unruh’s transformation [30]
to achieve a non-interactive zero-knowledge proof system
providing online extractability and security in the quantum
random oracle model as well. But as noted in [13] one could
in principal also use extractability by rewinding (e.g. via
Fiat-Shamir), which puts forward a more efficient scheme.
However, care has to be taken such that the security proof
does not rely on rewinding consuming exponential time. This
is avoided, for instance, by putting a constrain on the number
of simultaneous sessions of the join protocol, where π1 is
subject to rewinding. Using a bound that is logarithmic in the
security parameter, the scheme gets secure, however in a stand-
alone fashion only and not in the UC model, which prohibits
rewinding in order to claim composability.

Theorem 5.1: In the (Fcrs,Fca,Fauth∗ ,Fsmt)−hybrid model
using random oracles and static corruptions the protocol Πdaa

given in Section V securely realizes F`daa assuming the
hardness of (Ring-)LWE and (Ring-)SIS, the unforgeability
of Boyen signatures and the MAC scheme, and the proofs-of-
knowledge are online extractable.

B. Zero-Knowledge Argument of Knowledge
In this section, we show how to adapt the sZKAoK provided

in [24] to the ring setting in order to prove the language (cf.
[24] for the matrix variant).

π = {public := {c, Â, Â0, . . . , Â`,u, nym, µ,msg},
witness := {id, ẑ = (z0, . . . , z2m)} :

{[c, Âid] · ẑ = u ∧ ‖ẑ‖ ≤ β} ∧
{nym = H(msg, µ) · z0 + e ∧ ‖e‖ ≤ β}},

where nym = TAGLIT((msg, µ), z0) = H(msg, µ) · z0 + e.
Since we are operating in the ring Rq , we can transform
any linear transformation into matrix vector products. We
construct the matrices B0 = rot(b) and Bi = rot(ai) ∈
Zn×nq for all polynomials in Â, Â0, . . . , Â` leading to
B1, . . . ,B(`+2)m. The error polynomial e and the polynomials
in ẑ = (z0, . . . , z2m) = (z0, ẑ1, ẑ2) are now considered as
vectors in Zn such that

B0·z0+

2m∑
i=1

Bi · zi︸ ︷︷ ︸
[Â | Â0]·ẑ

+
∑̀
j=1

idj ·
m∑
i=1

Bi+(j+2)m · zi+m︸ ︷︷ ︸
Âj ·ẑ2

= u mod q .

Furthermore, id is extended to id∗ ∈ B2`, which
is the set of vectors of hamming weight `. Using
the Extension-Decomposition technique and letting
k = blog βc + 1, we can decompose and extend
e and each vector zi into k vectors {ej}kj=1,
{zj0}kj=1, . . . , {z

j
2m}kj=1 ∈ {−1, 0, 1}3n such that

2m∑
i=0

B∗i (

k∑
d=1

βdz
d
i)︸ ︷︷ ︸

zi

+

2∑̀
j=1

idj

m∑
i=1

B∗i+(j+2)m (

k∑
d=1

βdz
d
i+m)︸ ︷︷ ︸

zi+m

= u mod q,

where all zdi contain exactly the same number of
entries from each of {−1, 0, 1} and {βi}ki=1 repre-
sents a decomposition of the interval [0, β] such that
|
∑k
i=1 βixi| ≤ β for any xi ∈ {−1, 0, 1}. The extended

matrices are of the following form B∗i = [Bi | 0 ∈ Zn×2n]
and B∗i+(j+2)m = 0 for j > `. Let therefore zi = 0 ∈ Zn for
2m < i ≤ (2+2`)m. A set of vectors v = [v0, . . . ,v(2+2`)m]
is said to be valid with respect to id∗ ∈ B2`, if

v = [v0, . . . ,v2m ||id∗1 · (vm+1, . . . ,v2m)||
. . . || id∗2` · (vm+1, . . . ,v2m)] .

We now present our description of the sZKAoK proof
system based on the same techniques as provided in [24].
Via the Fiat-Shamir heuristic one obtains a signature
of knowledge, where the challenge is computed as
{CHj}cj=1 = H(msg, {CMTj}cj=1, pp) containing all
public parameters pp such as u,b, Â, {Âi}`i=0.

Commitments
• Generate masking terms {rje ←↩ Z3n

q }kj=1,
{rji ←↩ Z3n

q }kj=1 for i ∈ [2m]∪0 and
j ∈ [k] and rid∗ ←↩ Z2`

q

• Sample permutations τ ←↩ S2`, {ψj ←↩ S3n}kj=1, {πj ←↩
S3n}kj=1, {ϕj ←↩ S3n}kj=1

The prover P generates commitments CMT = (c1, c2, c3)
and sends them to the verifier V. Let rj = [rj0, . . . , r

j
(2+2`)m]

and denote D = [rot(H(m,µ)) | 0] ∈ Zn×3n
q .

• c1 = COM([
∑(2+2`)m
i=0 B∗

i · (
∑k
j=1 βjr

j
i),D · (

∑k
j=1 βjr

j
0) +

[I | 0] · (
∑k
j=1 βjr

j
e), τ, {πj}kj=1, {φj}kj=1, {ϕ}kj=1)

• c2 = COM({[πj(rj0), . . . , πj(r
j
m), ψj(r

j
m+1), . . . , ψj(r

j
2m),

ψj(r
j
(τ(1)+1)m+1

), . . . , ψj(r
j
(τ(1)+2)m

), . . . , ψj(r
j
(τ(2`)+1)m+1

),

12

. . . , ψj(r
j
(τ(2`)+2)m

)]}kj=1, {ϕj(r
j
e)}kj=1, τ(rid∗))

• c3 = COM({[πj(vj0), . . . , πj(v
j
m), ψj(v

j
m+1), . . . , ψj(t

j
2m),

ψj(v
j
(τ(1)+1)m+1

), . . . , ψj(v
j
(τ(1)+2)m

), . . . , ψj(v
j
(τ(2`)+1)m+1

),

. . . , ψj(v
j
(τ(2`)+2)m

)]}kj=1, {ϕj(v
j
e)}kj=1, τ(vid∗)} .

where vji = zji + rji ,v
j
e = ej + rje and vid∗ = id∗ + rid∗ .

Challenge: The verifier generates a challenge CH ←↩ {1, 2, 3}
uniformly at random.
Response: The response is computed by the prover depending
on the outcome of CH .

We differentiate 3 cases:
• CH = 1: The response is composed as follows. First,

determine {bji = πj(r
j
i)}kj=1 and {wj

i = πj(z
j
i)}kj=1 for

i ∈ [m]∪0, {bji = ψj(r
j
i)}kj=1 and {wj

i = πj(z
j
i)}kj=1 for

m < i ≤ 2m, {bj(l+2)m+i = ψj(r
j
(τ(l))+2)m+i)}

k
j=1 and

{wj
(l+2)m+i = πj(z

j
(τ(l)+2)m+i)}

k
j=1 for 1 ≤ i ≤ m and

1 ≤ l ≤ 2`. Furthermore, compute wid∗ = τ(id∗),bid∗ =
τ(rid∗) and {wj

e = ϕj(e
j)}kj=1, {bje = ϕj(r

j
e)}kj=1 .

Output

RSP1 = {{bj0, wj
0}kj=1, . . . , {b

j
(2+2`)m, wj

(2+2`)m}
k
j=1,

{wj
e,b

j
e}kj=1,wid∗ ,bid∗} .

• CH = 2: The prover needs only to output the response

RSP2 = {τ, {ψj}kj=1, {πj}kj=1, {ϕj}kj=1,

{[rj0, . . . , r
j
(2+2`)m]}kj=1, {rje}kj=1, rid∗} .

• CH = 3: For i ∈ [(2 + 2`)m]∪0 compute
{vji = zji + rji}kj=1. Determine vid∗ = id∗ + r∗id
and {vje = ej + rje}kj=1. The response is then given by

RSP3 = {τ, {ψj}kj=1, {πj}kj=1, {ϕj}kj=1,

{vj0}kj=1, . . . , {v
j
(2+2`)m}

k
j=1, vid∗} .

Verification Via the inputs of the prover, the verifier can
always check 2 out of 3 commitments, since responses to all
3 commitments already reveal the witness.

C. Discussion: DAA and Removing the State

In the previous sections we gave a construction that is secure
in a complex security model [13] adopting the UC framework.
In fact, we were able to construct a full DAA scheme from
lattice assumptions that allows the TPM and host to be in
different states each owning its partial private key share, where
both interact in order to generate anonymous attestations. A
great deal of efforts has been spent in the past years to improve
the security model, where most of them failed to offer the
appropriate model until recently [13]. The Pre-DAA scheme
[5] based on classical assumptions only considers the TPM
and host as one party not covering the case where an honest
TPM is in a corrupt host (cf. discussions in [13]). In many of
the proposed constructions in the literature (and related ones)
the TPM owns the whole private key. This was indeed the
very first way to realize DAA until the potential advantages
of sharing private keys between the TPM and host has been

taken into account. Thus, we note that our proposal can easily
be modified such that the TPM owns the complete private key
rather than just a share. In this case, attestations are generated
solely by the TPM.

We further note that our scheme can be made stateless such
that the TPM does not need to keep track on already issued
tags that are, for instance, required to realize linkability in case
the verifier asks for that. For the sake of simplicity, we discuss
this aspect here as it represents an independent add-on that can
be realized in different ways. One possibility is to let the TPM
generate a large enough seed r, which then also belongs to the
private key. From this seed it generates the random values for
tags that are directed at some verifiers. More specifically, only
the error term is sampled using this seed. There must be a one-
to-one relationship between the verifier names and the random
values. When using a (deterministic) pseudorandom function,
for instance, we can deterministically generate random values
for any basename as input. These random values can also
deterministically be transformed into error vectors. Whenever
the same verifier asks for a linkable tag again, the TPM can
generate exactly the same tag that the verifier already knows.
As a result, the TPM is relieved from storing the tag.

ACKNOWLEDGEMENTS

We would like to thank Liqun Chen and Jan Camenisch
for their helpful comments and discussions. The first author
was supported by the DFG project P1 within the CRC 1119
CROSSING.

REFERENCES

[1] Trusted computing group: TPM main specification 1.2. 2004.
[2] Trusted computing group: Trusted platform module library specification,

family “2.0”. 2014.
[3] M. Ajtai. Generating hard instances of lattice problems (extended

abstract). STOC ’96, pages 99–108. ACM, 1996.
[4] Rachid El Bansarkhani and Johannes A. Buchmann. Improvement and

efficient implementation of a lattice-based signature scheme. In Selected
Areas in Cryptography - SAC 2013, pages 48–67, 2013.

[5] David Bernhard, Georg Fuchsbauer, Essam Ghadafi, Nigel P Smart,
and Bogdan Warinschi. Anonymous attestation with user-controlled
linkability. International Journal of Information Security, 12(3):219–
249, 2013.

[6] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for
fully secure short signatures and more. In PKC 2010, pages 499–517.
Springer, 2010.

[7] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
Damien Stehlé. Classical hardness of learning with errors. STOC ’13,
pages 575–584. ACM, 2013.

[8] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous
attestation. In Proceedings of the 11th ACM conference on Computer
and communications security, pages 132–145. ACM, 2004.

[9] Ernie Brickell, Liqun Chen, and Jiangtao Li. A new direct anonymous
attestation scheme from bilinear maps. In International Conference on
Trusted Computing, pages 166–178. Springer, 2008.

[10] Ernie Brickell, Liqun Chen, and Jiangtao Li. Simplified security notions
of direct anonymous attestation and a concrete scheme from pairings.
International Journal of Information Security, 8(5):315–330, 2009.

[11] Ernie Brickell and Jiangtao Li. Enhanced privacy id: A direct anonymous
attestation scheme with enhanced revocation capabilities. In Proceedings
of the 2007 ACM workshop on Privacy in electronic society, pages 21–
30. ACM, 2007.

[12] Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous
attestation using the strong diffie hellman assumption revisited. In
International Conference on Trust and Trustworthy Computing, pages
1–20. Springer, 2016.

13

[13] Jan Camenisch, Manu Drijvers, and Anja Lehmann. Universally com-
posable direct anonymous attestation. In IACR International Workshop
on Public Key Cryptography, pages 234–264. Springer, 2016.

[14] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Foundations of Computer Science, 2001.
Proceedings. 42nd IEEE Symposium on, pages 136–145. IEEE, 2001.

[15] Liqun Chen. A daa scheme requiring less tpm resources. In International
Conference on Information Security and Cryptology, pages 350–365.
Springer, 2009.

[16] Liqun Chen, Paul Morrissey, and Nigel P Smart. On proofs of security
for daa schemes. In International Conference on Provable Security,
pages 156–175. Springer, 2008.

[17] Liqun Chen, Paul Morrissey, and Nigel P Smart. Daa: Fixing the pairing
based protocols. IACR Cryptology ePrint Archive, 2009:198, 2009.

[18] Liqun Chen, Dan Page, and Nigel P Smart. On the design and
implementation of an efficient daa scheme. In International Conference
on Smart Card Research and Advanced Applications, pages 223–237.
Springer, 2010.

[19] Marc Fischlin. Communication-Efficient Non-interactive Proofs of
Knowledge with Online Extractors, pages 152–168. Springer, 2005.

[20] S. Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group
signature scheme from lattice assumptions. In ASIACRYPT 2010, pages
395–412. Springer, 2010.

[21] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently
Secure Identification Schemes Based on the Worst-Case Hardness of
Lattice Problems. Springer, 2008.

[22] Fabien Laguillaumie, Adeline Langlois, Benoı̂t Libert, and Damien
Stehlé. Lattice-based group signatures with logarithmic signature size.
In ASIACRYPT 2013, pages 41–61. Springer, 2013.

[23] Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang.
Lattice-based group signature scheme with verifier-local revocation. In
PKC 2014, pages 345–361. Springer, 2014.

[24] San Ling, Khoa Nguyen, and Huaxiong Wang. Group signatures from
lattices: Simpler, tighter, shorter, ring-based. In PKC 2015, pages 427–
449. Springer, 2015.

[25] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In EUROCRYPT 2010, pages 1–23.
Springer, 2010.

[26] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In EUROCRYPT 2012, pages 700–718. Springer,
2012.

[27] Daniele Micciancio and Oded Regev. Worst-case to average-case
reductions based on Gaussian measure. In FOCS 2004, pages 371–381.
IEEE, 2004.

[28] Phong Q. Nguyen, Jiang Zhang, and Zhenfeng Zhang. Simpler efficient
group signatures from lattices. In PKC 2015, pages 401–426. Springer,
2015.

[29] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC 05, pages 84–93. ACM Press, 2005.

[30] Dominique Unruh. Non-interactive zero-knowledge proofs in the quan-
tum random oracle model. In EUROCRYPT 2015, pages 755–784.
Springer, 2015.

VI. APPENDIX

VII. SECURITY PROOFS

Proof (sketch of Theorem 5.1). We will proceed via a
sequence of games in a similar fashion as in [13], [12]
for DAA protocols and show therein that there exists no
environment E that can distinguish the real world protocol
Πdaa with an adversary A, from the ideal world F`daa with
a simulator S. Starting with the real world protocol, we
change the protocol game by game in a computationally
indistinguishable way finally resulting in the ideal world
protocol. To this end, we introduce an entity C, which
first executes Πdaa for all honest parties. Subsequently and
unnoticeable to A, it is split into a simulator SC and a
functionality FC , which takes all inputs from and forwards
all outputs to the honest parties. The functionality FC and
the associated simulator SC are step by step changed leading
to the aimed ideal functionality F`daa and an associated

simulator S.

Game 1: This is the real world protocol.
Game 2: A new entity C is introduced, which receives all
inputs from honest parties and simulates the real world for
them, i.e. Game 1 is indistinguishable from Game 2 by
construction.
Game 3: As explained, C is split into FC and SC evolving
to become F`daa and S. The functionality FC receives and
forwards all inputs (authenticated and immediate) to SC ,
which simulates the real world protocol for honest parties
and sends all outputs to FC , which forwards them to E . The
adversary will notice no difference to Game 2, since beside
the structure nothing changed.
Game 4: Now, FC’s behavior is changed such that it also
stores the algorithms for I in the setup interface and further
checks for an honest issuer, if sid is built correctly. If not,
FC will abort. In case I is corrupt, SC extracts the secret
key and invokes the setup interface in place of I. Clearly,
both cases will not change the view of E , since the input and
output behavior is exactly as in Game 3.
Game 5: The functionality FC also performs verification and
linking checks and does not forward the associated queries
to SC . Both algorithms do not require any protocol messages
and can be accomplished by anyone, hence the outputs are
exactly the same as in the real world. However, FC performs
private-revocation checks separately leading to the same
result as in Game 4.
Game 6: In this game, FC stores the members that joined
and further stores for an honest issuer I the secret keys gsk
of corrupt TPMs, that have been extracted from the proof π
by SC during the simulation of the real world. (Extraction
via rewinding requires the inclusion of a fresh nonce to each
proof such that the proof is always fresh and extraction is
possible. The number of simultaneous sessions for an honest
I is at most logarithmic in the security parameter.) In almost
all cases SC and FC can produce the same outputs as in the
real world, since the information suffices to act on behalf of
any participant. However, in case I is honest and all other
participants are corrupt, SC does not know who triggered
join queries and can thus not act with FC on behalf of the
host. Since F`daa is only concerned with honest hosts in
Members, FC can safely choose any corrupt host and put it
into Members. FC does not prohibit a previously allowed
query. In the only case, where tpmi is already registered
and I is honest, FC may abort the protocol. This testing
has already been accomplished by I before continuing with
the query JOINPROCEED, hence FC will not abort. Since
SC can simulate the real world protocol in interaction with
FC , Game 5 is indistinguishable from Game 6. Within the
next four games FC is endowed with the capability to handle
signing queries. Previously, it was forwarding all these queries
to SC . We note that each output of FC has to be inspected by
SC such that it can still coordinate/block the output of FC in
order to match the real world protocol.
Game 7: In this game, FC creates anonymous signatures for
honest platforms using the algorithms defined in the setup
interface. We now show gradually that E can not make any

14

difference to the previous game.
In Game 7.k.k′, FC forwards all signing queries with tpmi

and i > k to SC , who creates these signatures as before. FC
handles all signing queries with tpmi and i < k using the
algorithms. The first k′ signing inputs with tmpk are handled
by FC . Subsequent inputs are then again forwarded to SC .
Clearly, we have then Game 7.0.0 = Game 6. One notes that
for increasing k′, Game 7.k.k′ will be at some point equal to
Game 7.k + 1.0 as there can only be a polynomial number
of signing queries to be processed. With this relationship and
for large enough k and k′ FC handles all TPMs such that
Game 7=Game 7.k.k′. Therefore, we need only to show that
Game 7.k.k′ + 1 is indistinguishable from Game 7.k.k′. It
then directly follows Game 7 is indistinguishable from Game
6.
To this end, we prove that if there exists a distinguisher
for Game 7.k.k′ + 1 and Game 7.k.k′, then we can solve
decision (Ring-)LWE. The simulator SC interacting with FC
is modified and parametrized with k, k′ such that we have
Game 7.k.k′ if it gets a (Ring-)LWE sample, otherwise we
have Game 7.k.k′ + 1. Suppose there exists an environment
that can distinguish a signature of an honest party using gsk
from a signature using a different gsk′, then we can use
the environment as a solver for the decision (Ring-)LWE
problem. This is possible, since assuming the hardness of
(Ring-)LWE it is even not possible to distinguish many
(Ring-)LWE samples generated with the same secret key
from uniform random samples. As a result it must follow that
(Ring-)LWE samples generated with different keys must be
indistinguishable. In fact, this has been shown in Theorem 3.5.
Thus, suppose SC is given tuples {(ai,bi)}k

′

i=1, (c,d), where
bi = ai · s + ei for uniform random ai, c ∈ Rq , and it
is challenged to decide, if (c,d) is from the (Ring-)LWE
distribution (for secret s) or uniform random. SC proceeds as
follows in order to simulate the TPM without knowing the
secret s. Since SC is controlling Fcrs, it answers H queries on
bsnj , if not already set, with H(bsnj) = aj for j ≤ k′. For
j = k′ + 1, it sets H(bsnk′) = c, otherwise H(bsnj) = rj
for uniform random rj and j > k′ + 1. Since SC simulates
tpmk, it generates (r,u′, id, π1) for uniform random r,u′ and
a simulated proof π1 in the join protocol. Signing queries on
behalf of tpmi for i < k are forwarded by FC to SC , which
calls the real world protocol. FC signs on behalf of tpmi

with the algorithms provided by SC for i > k, where the
gsks are always freshly sampled for each bsni. However, for
tpmk and i ≤ k′, the simulator SC sets nym = bi. And for
i = k′+ 1 it sets nym = d. For i > k′+ 1 it samples fresh si
and generates nymi = H(bsni) · si + ei keeping track of all
generated nymi (due to stateful tags) such that it can always
output the same nymi for an associated bsni. For each case,
tpmk can provide a simulated proof. By the f − IND property
of TAGLIT any distinguisher between Game 7.k.k′ and Game
7.k.k′ + 1 can solve decision (Ring-)LWE.
Game 8: As opposed to previous games, now FC does not
inform SC on (msg, bsn) used to generate signatures. In case
both the Host and the TPM are honest SC is not aware of
this pair in order to simulate the real world, instead learns
only the leakage `(msg, bsn) over the secure channel. To this

end, SC selects any dummy (msg′, bsn′) such that the leakage
`(msg′, bsn′) = `(msg, bsn) is still the same. Thus, SC can
still simulate the real world and A will observe no difference.
As a result, Game 9 is indistinguishable from Game 8.
Game 9: Now, platforms, that joined, are allowed by FC to
sign, if I is honest. E will notice no difference as SC is still
the same. For a signing query initiated by a TPM, an honest
host will in the real world protocol always check that it joined
together with that TPM prior to any continuation, otherwise it
aborts. Conversely, an honest TPM only generates signatures
in interaction with an host, if it has joined with it. Therefore,
no difference to the real world protocol is observed. Thus,
Game 10 is indistinguishable from Game 9, since FC does
not prevent any signing protocols that are possible in the real
world.
Game 10: In this game, FC performs honesty-
corruption checks prior to storing a secret key
gsk = ŷ, i.e. either CheckGskHonestTPM(gsk) = 1 or
CheckGskCorruptTPM(gsk) = 1 holds. This is true as it
is only needed to take valid signatures from VerResults
into account, since Signed only contains ⊥ such that
identify(⊥) = 0 for an honest TPM and corrupt host or
valid signatures of honest hosts and TPMs. Valid signatures
satisfy nym = H(bsn) · y1 + e, where ‖e‖ , ‖y1‖ ≤ β1

and ‖ŷ‖ ≤ β1. In fact, there exists only one tuple (y1, e)
satisfying this relation, as this represents an instance of a
(hard) BDD problem or (unique-SVP Problem) for a not too
large β2. We also refer to Lemma 3.7 for the security of the
linkability property. Thus, CheckGskCorruptTPM will always
give the correct output. Due to the large min-entropy of
discrete Gaussians the probability of two vectors being equal
is negligible. Thus, with overwhelming probability there does
not exist a signature already using gsk, which implies that
CheckGskHonestTPM will always give the correct output.
From this it follows that Game 9 is indistinguishable from
Game 10.
Game 11: In this game FC further checks (as done in
the signature generation interface of F`daa) that honestly
generated signatures are valid. Indeed, this is true as
sig always produces signatures passing the verification
checks. Furthermore, those signatures have to satisfy
identify(gsk, σ,msg, bsn) = 1, which is assured by FC
during sig via nym = TAGLIT(bsn),y1). Finally, it makes
sure by means of the internal key records Members and
DomainKeys that honest users are not using the same gsk.
To this end, we prove that this does not happen assuming the
hardness of (Ring-)LWE. The TPM is simulated using the
unknown secret of (Ring-)LWE samples {(ai,bi)}poly(n)

i=1 .
FC creates a credential on a uniform random value r ∈ Rq
and b1, sets nym = b2 and programs the random oracle
H(bsnI) = a1 and H(bsn) = a2 by means of SC for bsn
and finally simulates a matching proof π2. If the process
is repeated for different bsni, it can use the other samples,
which are generated from the same secret. If there is a
key gsk = ŷ in Members and DomainKeys such that
‖nym−H(bsn) · y1‖ ≤ β we break search (Ring-)LWE.
Thus, all checks pass except with negligible probability.

15

Hence Game 11 is indistinguishable from Game 10. In the
following games we successively include further checks from
the verification interface of F`daa.
Game 12: Within the first check multiple gsk values matching
one single signature are identified (Check−IX). If exists,
the signature is discarded. However, since there exists only
one secret and error pair satisfying nym = TAGLIT(msg,y1)
(BDD instance for appropriate bounds on the parameter s1

otherwise based on SISn,2,α for larger parameters) the check
will pass. Thus Game 12=Game 13.
Game 13: Now, we further add Check−X to FC as it prevents
from falsely accepting signatures that were issued by use of
join credentials not issued by the honest issuer. In our scheme
this can be reduced to existential unforgeability of Boyen
signatures or the hardness to solve (Ring-)ISIS. The entity C
registers the Boyen public key together with its associated
simulated proof. In case I has to generate join credentials,
it sends the extracted gsk = (ŷ, id) to the signing oracle,
which outputs x̂. I computes u′ = Âid · x̂ mod q. In order to
generate signatures on behalf of honest platforms, for which
FC stores gsk in Members or DomainKeys, FC uses the
signing oracle. For a valid signature σ = π2, π3,u

′, nym, bsn
the verifier checks, if there exists an entry gsk in Members or
DomainKeys such that ‖nym−H(bsn) · y1‖ ≤ β. If not, it
extracts by the special soundness of the proofs ẑ+(0, t̂), id(1)

and (0, x̂− t̂), id(2) such that we obtain a Boyen signature, if
id(1) = id(2), otherwise he must have solved (Ring-)ISIS such
that [b, Âid(1)] · (ẑ + (0, t̂)) + Âid(2) · (x̂ − t̂) ≡ u mod q,
since z1 6= y1 and with overwhelming probability there exist
no two TPMs with the same syndromes ũ = [b, Âid] · ẑ,
where one of them is honest. Furthermore, changing y1

to y1 + ∆ of a corrupt identity id(i) requires to solve
(Ring)ISIS w.r.t. an identity id(j) in order to satisfy
the equation, i.e. finding an admissible x̂′ such that
b · ∆ + [b, Âid(i)] · ŷ + Âid(j) · x̂′ ≡ u mod q. We refer to
Remark III-B for further details. Since Boyen signatures are
unforgeable and the computational problem (Ring-)ISIS is
hard to solve, Game 13=Game14.
Game 14,15: First, Check−XI is added to FC . In fact,
the goal of FC is to prevent any signatures that are signed
using the key and credentials of an honest TPM, but the
TPM never signed. We show that providing such a signature
can be reduced to solving search (Ring-)LWE. To this end,
the TPM is simulated by use of the unknown secret of a
(Ring-)LWE instance. Then, if a valid signature is given on
a message, that the TPM never signed, the proof could not
have been simulated. It extracts y1 and thus breaks search
(Ring-)LWE. Finally, we add Check−XII to FC , which
prohibits the revocation of an honest TPM. This task can
also be reduced to solving search (Ring-)LWE as the honest
TPM is simulated by means of the (Ring-)LWE problem
instance (and a uniform random element). If a proper key in
the revocation list is found, it must be the secret key of the
target instance.
Game 16: All remaining checks of F`daa are included, which
are related to link queries. FC’s outcome on a gsk that
matches one signature and not the other is 0 indicating that

the signatures are not linked. If both signatures match to
one gsk, then FC outputs 1 indicating that the signatures are
linked. These outputs match the output of the deterministic
algorithm link. This stems from the fact that if a gsk matches
one signature and not the other, then nym 6= nym′ and link
outputs 0 due to the soundness of the proofs. And if both
signatures match to one gsk, then ‖nym− nym′‖ ≤

√
2β1 by

the soundness of the proof and link outputs 1. Thus, Game 16
is indistinguishable from Game 15.
FC now includes all functionalities of F`daa. This concludes

our proof. �

16

	Introduction
	Contributions and Technical Overview
	Lattice-Based MAC Scheme.
	CMA-Secure Digital Signature Scheme.
	DAA Construction.
	Security.
	Organization.

	Preliminaries
	Lattices
	Computational Problems

	Building Blocks
	Non-Interactive Zero Knowledge Argument
	Boyen's Digital Signature Scheme
	A New MAC-based Signature Scheme from Lattices

	Security Model
	The ideal Functionality Fdaa
	Fdaa's Enforcement of DAA's Security Properties

	Our Construction: A (stateful) Lattice-based Direct Anonymous Attestation (DAA) Protocol
	Security
	Zero-Knowledge Argument of Knowledge
	Discussion: DAA and Removing the State

	References
	Appendix
	Security Proofs

