Bricklayer Attack: A Side-Channel Analysis on
the ChaCha Quarter Round

1, 1

Alexandre Adomnicai 3, Jacques J.A. Fournier?, and Laurent Masson

! Trusted Objects, Aix-en-Provence, France,
{a.adomnicai, l.masson}@trusted-objects.com
2 CEA-Leti, Grenoble, France,
jacques.fournier@cea.fr
3 EMSE, Gardanne, France,

Abstract. ChaCha is a family of stream ciphers that are very efficient on
constrainted platforms. In this paper, we present electromagnetic side-
channel analyses for two different software implementations of ChaCha20
on a 32-bit architecture: one compiled and another one directly written in
assembly. On the device under test, practical experiments show that they
have different levels of resistance to side-channel attacks. For the most
leakage-resilient implementation, an analysis of the whole quarter round
is required. To overcome this complication, we introduce an optimized
attack based on a divide-and-conquer strategy named bricklayer attack.

Keywords: ChaCha, Implementation, Side-channel attacks

1 Introduction

ChaCha [7] is a family of stream ciphers introduced by Daniel J. Bernstein in
2008. It is a variant of the Salsa20 family [8], which is part of the eSTREAM
portfolio [4], providing better diffusion for similar performances. ChaCha is an
ARX-based cipher, which means that it only uses modular additions, rotations
and bitwise XORs. It has been widely adopted for encryption, as well as for ran-
dom number generation in many operating systems (e.g. Linux, OpenBSD) and
protocols (e.g. SSH, TLS). Moreover, the upcoming version 1.3 of the Transport
Layer Security (TLS) protocol [36] will allow Authenticated Encryption with As-
sociated Data (AEAD) cipher suites only, leaving AES-CCM [32], AES-GCM [38]
and ChaCha20-Poly1305 [26] as the only three options. This update should sig-
nificantly increase the use of ChaCha in the near future. On top of that, the
Internet of Things (IoT) should be in favour of the ChaCha deployment (e.g.
Apple HomeKit for IoT devices [2]), since its instances are cheaper than AES
on microcontrollers that do not have any dedicated cryptographic hardware.
For instance, on Android phones, HTTPS connections from Chrome browsers to
Google now use ChaCha20-Poly1305 [12].

As a result of its standardization, ChaCha is under close scrutiny with re-
gards to cryptanalysis, especially regarding differential attacks [3,42,39,14,29].

Recently, studies have been carried out to evaluate its physical security, espe-
cially regarding fault attacks [33,25]. However, only one side-channel analysis
has been proposed so far [22]. We believe that further work must be undertaken
in this field since ChaCha is particularly well suited for embedded devices.

Our contribution. In this paper, we focus on the side-channel analysis of
ChaCha by taking two different implementations into consideration.

First, we investigate the OpenSSL C source code compiled on a 32-bit ARM
microcontroller. It results in a straightforward attack path, which consists in
targeting each 32-bit key word independently.

The second target is an assembly implementation which saves some memory
accesses. We highlight that, on the device under test (DUT), this slight modifi-
cation protects from the only side-channel attack published to date. Neverthe-
less, our implementation remains vulnerable even though attack paths are more
complex. We tackle this problem by introducing the bricklayer attack, which is
based on a divide-and-conquer approach, and emphasize that attacking from the
keystream rather than from the input is way more efficient.

Outline. First, we present the ChaCha family of stream ciphers before providing
an outline of side-channel attacks. Then, we describe our approaches on perform-
ing electromagnetic analyses depending on software implementations of ChaCha.
Subsequently, we present our practical results and discuss the feasibility of con-
ducting these attacks in real-world scenarios. Finally, we analyze the overhead
introduced by the masking countermeasure in the specific case of ChaCha20.

2 The ChaCha family of stream cipher

As its predecessor, and unlike traditional stream ciphers, ChaCha does not have
an initilization phase since it works like a block cipher used in counter (CTR)
mode [19]. Tts core is an ARX-based function which maps a 512-bit input block
to a 512-bit output key stream. Input blocks are built by arranging data in a
4x4 matrix where each element is a 32-bit word. The encryption key fills half of
the matrix as it is 256-bit long, while the two remaining quarters are repectively
occupied by the inputs and the constant ‘expand 32-byte k’. This constant
aims at reducing the amount of data an attacker can control while the inputs
refer to a nonce which is built from the block counter and the initial vector (IV).

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’
ko ky ko ks
ky ks kg k;

nonce nonce; nonces nonceg

Fig.1: ChaCha’s input block intialization

The core function is defined by iterating several rounds on the input block,
where each round consists of four parallel quarter round (QR) operations. A QR
updates 4 words (i.e. a block quarter) as defined in Algorithm 1 where B means
addition modulo 232, @ means XOR and <« means left bitwise rotation.

Algorithm 1 ChaCha quarterround(a, b, c, d)

a = b; d d= a; d K= 16;
c B= 4; b &= c; b K= 12;
a H= b; d = a; d K= 8;
c H= 4; b B= c; b K=17;

Depending on the round number (enumerated from 0), each QR operates
either on a column, or on a diagonal.

3
7
11
15

(a) Even round (b) Odd round

ChaChaR refers to a specific instance where R rounds are used. Several vari-
ants are defined with 8, 12 or 20 rounds, defining different trade-offs between
security and performance. Recently, it has been shown under certain assump-
tions that ChaChal2 is sufficiently secure to ensure a 256-bit security level [14].
Nevertheless, ChaCha20 remains the most widespread instance for security mar-

R

gins. In many implementations, ChaChaR uses % iterations of double rounds

instead of R rounds, which consists in a column round and a diagonal one.

On top of iterating several rounds on the input block, an additional step is
required. The reason is that while QRs scramble blocks beyond recognition, they
are invertible. Therefore, applying the reverse of each operation in the reverse
order leads to the original block and thus, the encryption key. ChaCha prevents
this by adding the original block to the scrambled one, word by word, in order
to generate the pseudo-random block. The whole encryption process is detailed
in Algorithm 2.

3 Background on Side-Channel Attacks

3.1 Correlation Electromagnetic Analysis

Cryptographic primitives are usually built to resist to mathematical cryptanal-
ysis or exhaustive key search. However, they are designed to be finally executed

Algorithm 2 ChaChaR encryption
Require:

n-bit plaintext P

encryption key k

counter ctr

IV iv
Ensure: n-bit ciphertext C

for 7 from 0 to L%J do

B <+ init(k,ctr,iv) > input block initialization
B « B > working variable
forjfromOto%—ldo

quarterround(By, By, Bg, B1o) > column rounds
quarterround(B}, By, By, B1s)
quarterround(Bs, Bg, Big, B14)
quarterround(Bj, Br, B11, Bi5)
quarterround(By, Bs, By, B1s) > diagonal rounds
quarterround(Bj, Bg, B1, Bis)
quarterround(Bj, By, By, B1s)
quarterround(Bj, B}, By, B14)
end for
B+ B@BB > final block addition
Ci+ P,®B
ctr < ctr +1
end for

on a given processor with its own physical characteristics. Electronic circuits are
inherently leaky as they produce emissions that make it possible for an attacker
to deduce how the circuit works and what data is being processed. Because these
emissions are nothing more than side effects, their use to recover cryptographic
keys has been termed ‘side-channel attacks’. Since the publication of Differen-
tial Power Analysis (DPA) [24], it is common knowledge that the analysis of
the power consumed by the execution of a cryptographic primitive might reveal
information about the secret involved.

A few years later, Correlation Power Analysis (CPA) has been widely adopted
over DPA as it requires fewer traces and has been shown to be more efficient [11].
The principle is to target a sensitive intermediate state of the algorithm and try
to predict its value from the known input and different key guesses. Then, to
uncover the link between these predictions and the leakage measurements, the
Pearson correlation coefficient between these two variables is computed using
an appropriate leakage model. The Hamming weight (HW) and the Hamming
distance (HD) model are the most commonly used models to simulate the leakage
of a cryptographic device. For each key hypothesis, it results in a value between
—1 (total negative correlation) and 1 (total positive correlation) for every point
in time, indicating how much the prediction correlates with the recorded values
over several measurements. The formula of this coefficient is

E(X-Y)—E(X) E(Y)
VE(r—E0R) e (v —E0)?)

where E(X) is the expected value of the random variable X. Finally, the hy-
pothesis which matches with the real key should return a significantly higher
coefficient than the other hypotheses. This attack remains valid when analyzing
electromagnetic emanations [20,35] instead of power consumption, since they are
mainly due to the displacement of current through the rails of the metal layers.
In this case, we talk about Correlation ElectroMagnetic Analysis (CEMA).

Corr (X, Y) = (1)

3.2 Selection Function

The intermediate state y on which the side-channel attack focuses is defined
by a selection function p(x,k) = y, which is part of the encryption algorithm.
It depends on x, a known part of the input and on k, an unknown part of
the secret key. Usually, selection functions are chosen to be easy to compute,
typically at the beginning of the encryption or decryption process. Furthermore,
a valuable property for selection functions is high non-linearity as it ensures a
good distinguishability between the correct and incorrect key guesses. Indeed,
correlation between the leakage and the prediction will be close to zero if the
key guess is incorrect due to their non-linear relationship.

In case of ARX structures, the non-linearity only relies on modular additions,
while diffusion is provided by rotations (diffusion within single words) and XORs
(diffusion between words). Although the carry propagation in the modular addi-
tion results in some non-linearity, it is not as good a candidate as S-boxes. It can
be explained by the fact that most significant bits in the output of a modular ad-
dition are more subject to non-linearity than least significant ones. However, side
channel attacks remain possible as shown in numerous publications [27,10,43].

4 Side-Channel Overview of ChaCha

4.1 ChaCha Case Study

To set up such a side-channel attack, one has to determine an attack path (i.e.
to choose a selection function) either starting from the plaintext, or from the
ciphertext. Physical attacks against stream ciphers can be challenging because
the key stream is computed independently from the plaintext/ciphertext, which
interferes in the relationship between known values and the secret key. However,
from a side-channel point of view, ChaCha differs significantly from other stream
ciphers’ designs such as linear-feedback shift registers where the key is only
directly involved during registers’ initialization. Indeed, as ChaCha operates like
a block cipher in CTR mode, the key is directly manipulated everytime a 512-bit
block needs to be encrypted. More precisely, each key word directly interacts

with other data during the first round (after which they have been updated)
and again during the final block addition.

An attack that takes advantage of the first round has already been published
n [22]. The attack on the i*" column round (0 < i < 4) relies on the selection
function defined by

©o (noncei, k; I k:,-+4) = ((noncei ®];1> <« 16) Bk .4 (2)

where l;l = k; B constant,;. Hence, as soon as a couple (l;i,ki_%) has been
recovered, one just has to subtract the corresponding constant word in order
to get k;. However, this selection function forces the attacker to target two key
words at once, which results in a key search space |K| = 254, Since the bit-size
of the targeted subkey determines the memory complexity of the side-channel
attack, one can understand why this would be undoable in practice. To get
around this problem, the authors exploit the QRs’ intermediate states in order
to operate step by step. They propose to first recover k; by targeting nonce; ® k;
and then take advantage of its knowledge to find k; 4. Therefore, recovering k;
and k; 4 requires the knowledge of nonce;. However, the paper also describes an
attack path that allows to recover the entire key with the knowledge of only two
words. This latter exploits several intermediate states in the first two rounds.

Regarding the final block addition, an attacker could choose ¢(z,k) = B
k where x refers to a keystream word and B refers to modular subtraction.
Compared to the previous attack path, it has the advantage of recovering all
key words using the modular substraction as selection function. Moreover, all
keystream words are pseudorandom values, which is not necessarily the case for
nonces. However, this selection function requires the knowledge of the keystream
(i.e. both plaintext and ciphertext).

Throughout this paper, we will make the assumption that an attacker has
access to all this information. In Sect. 6 we discuss the attacks’ feasibility in
practice and thus, whether our assumptions are reasonable.

4.2 Implementation Aspects

When targeting software implementations on load/store architectures, data trans-
fers due to memory accesses (i.e. loads and stores between memory and registers)
are known to leak the most information compared to arithmetic and logic oper-
ations [31,13], which only occur between registers and are usually unexploitable
in practice [9]. Our practical experiments on the DUT presented in Sect. 6 veri-
fied this hypothesis. Therefore, the intermediate values that are manipulated by
these senstive operations should be easiest to target, introducing a direct link
between selection functions and implementation aspects.

Throughout this paper we will study selection functions in relation to memory
accesses, assuming they are the main source of exploitable leakage.

4.3 OpenSSL Implementation

First, we decided to attack a C implementation of ChaCha20 in order to see
how compilers can deal with ARX structures and memory accesses. To do so,
we compiled the ChaCha20 C implementation from OpenSSL (version 1.0.1f)
for an ARM Cortex-M3 microcontroller using the GNU ARM C compiler 5.06
(update 2). Regardless of the optimization level chosen (from -00 to -03), as
detailed in Appendix A, within a QR, each addition and each rotation is followed
by a STR instruction. Hence, these memory accesses allowed us to carry out the
attacks described above. Practical results are briefly presented in Sect. 6 for
comparative purposes.

4.4 Side-Channel Analysis of the Salsa20 Quarter Round

In the next section, we show how memory accesses can be easily managed to
remove the leakage of intermediate states within a QR. This implies to target
the QR output without taking its intermediate values into consideration, making
the attacks presented in [22] irrelevant in this case. Although such an analysis
has already been performed on Salsa20 [30], it does not apply to ChaCha.

Algorithm 3 Salsa20 quarterround(a, b, c, d)

b= (alHAd K T; c ®= (b B a) < 9
d &= (c Hb) « 13; a ®= (d H ¢) K 18;

In the case of Salsa20, as described in Algorithm 3, the update of the second
input only depends on itself and two others (the first and the last). This allows to
recover the key words involved in this computation as first/last input words, with
two other ‘non-key’ operands (i.e. constant and nonce). The attack consists in
performing a CPA on a 32-bit value using a divide-and-conquer (D&C) approach,
which consists in separating the attack into [32] computations on n-bit windows
in parallel. The other key words that do not match these requirements were
retrieved by using the knowledge of those which have been previously recovered.
This allowed to keep a search space of 232 instead of 2°*. On top of providing
better diffusion, the ChaCha QR gives each input word a chance to affect the
other three twice. This adjustment makes the attack irrelevant against ChaCha
since the key search space cannot be less than 254 in any case.

5 Side-Channel Analysis of the Quarter Round

Throughout this section, for greater clarity, we assume that all operators are
left-associative so that

aBIPcxd<—= (((eBD)®c) K d).

5.1 Optimizing Memory Accesses

A solution to overcome attacks on intermediate states within QRs is a straight-
forward assembly implementation, which is a good way to reduce memory access
instructions for load/store architectures. As explained in [9], for some instances
of ARX lightweight block ciphers like Simon and Speck [5], it is possible to keep
the whole state in registers during the entire encryption process. Thereby, they
can be implemented in assembly without having to execute a single STR instruc-
tion during the whole encryption process, drastically reducing the amount of
leakage.

Unfortunately, in the case of ChaCha, the state consists of 16 32-bit words.
Therefore, it would require a 32-bit CPU with at least 16 general-purpose regist-
fers (excluding the stack pointer, the program counter and other specific cases
such as hardwired registers) to avoid memory accesses. As our chip only has
13 general-purpose registers, we implemented ChaCha so that word values are
loaded into registers at the beginning of each QR and are then stored in RAM at
the end. Furthermore, during the last round, related key words are also loaded
into registers at the beginning of QRs, resulting in

/
quarterround (xg, s, T19g, T15, k1, kg)

x 7$6,$1179€127k27k7)

1
/
quarterround (Z,, X7, Ty, L13, k3, kq)

/

(
quarterround’(
(
quarterround (zs3, Xy, Tg, L14, ko, ks)

where quarterround’ (a,b,c,d,z,y) = quarterround(a,b,c,d) B (0,z,y,0).
This method protects against leakages that would allow an attack from the
keystream using the modular subtraction as selection function. Thus, these el-
ementary implementation tricks imply to analyze the side-channel resilience of
the whole QR.

5.2 Focusing on the Quarter Round

As every word influences the three others, and is updated twice, the simplest
selection function would be defined by focusing, during the first column rounds,
on the word which is completely updated at first, resulting in having

¢ (nonce;, k; || k;4a) = nonce, ® k; << 16 Bk y © k; << 128k, (3)

However, as previously mentioned, this implies a side-channel attack on 64 bits,
which is not feasible in practice. Therefore, we investigated the relevance of the
D&C approach in this specific case. Figure 3 sketches how key words are involved
in computations. It results that targeting n bits of y = ¢, (nonce;, k; || k;4) does
not lead to a complexity equal to 22" since rotations make different n-bit windows
interact with each other. As there is a rotation of 16 bits followed by another

y L 16— S i S— —
A G G) 55) e)
ki () (Gy (Gy
ki+4[) ((o) ((o)

Fig.3: D&C approach on the ChaCha QR, n =8

one of 12, some bits of E:Z may overlap. Hence, the key search space depends on
the windows’ size.

24 ifn<4

K| = 25T if4<n <12 @
226 if 13 <n < 16
232 Gotherwise

Furthermore, rotations are discarded from the selection function, resulting in
T A 1B .B 7C A 7 A B B 7C
Pa.n (nonceiv K ke || Ripa |l ki) =nonce; ©k; B, ki, ® ki B, k7 (5)

where superscripts refer to intervals that define n-bit windows.

In order to evaluate this method, we performed software simulations using
the HW model (without any additional noise) and random nonces. As expected,
the right key matches with the highest correlation coefficient. Nevertheless, some
other hypotheses also lead to the maximum coefficient as shown in Fig. 4, re-
sulting in collisions.

Definition 1 (Collision). Let p(n, k) be a selection function and k be the right
key hypothesis. A collision is an hypothesis k' such that p(n, k) = @(n,x') for
all n.

0.4r

-0.21

Correlation coefficient
o

0.4 I I I I I]
0 50 100 150 200 250 300

Key hypotheses

Fig. 4: Attack simulation on ¢ 5

This observation bring us to Proposition 1 whose proof is given in Appendix B.

Proposition 1. An attack on ¢, ,, returns up ton - 2" collisions.

Another point that has not been discussed so far is the drawback caused by
carry propagations. Except when focusing on the least significant bits (LSBs),
one has no way of knowing if subkeys involved in additions are affected by a
carry. Thus, the positions of targeted windows are very important. Plus, we
made the choice to dissociate I;:2 from k; in order to prevent from erroneous
predictions of kf‘ H,, <:onsta.nt§4 and k‘ZC H,, constantg. For instance, in Fig. 3,
kic is the only hypothesis which could be erroneous due to a carry propagation
on its addend. As a result, an attacker should mount one attack taking this
carry into consideration, and another one without. This would mean that the
total number of collisions would be doubled. Although this selection function
may provide some information, we chose to investigate a more efficient attack
path.

5.3 Benefits of the Reverse Function

The ChaCha QR is trivially invertible and the inverse quarter round (IQR) is
defined in Algorithm 4.

Algorithm 4 ChaCha inv_quarterround(a, b, c, d)

b >»=7; b ®= c; c B= d;
d >»= 8; d &= a; a B= b;
b >>»= 12; b ®= c; c H= 4q;
d >>= 16; d d= a; a H= b;

What matters here is that each input word does not have a chance to influence
the other three, since the first word does not impact the update of the second
one as illustrated in Fig. 5b.

a b c d a Hb:I c d
= =
£
fd H—
B4
& =R
%
. 7 1]
a b c d a b c d

(a) Targeted word at the QR output (b) Targeted word at the IQR output

Fig.5: Advantage in reversing the QR to define a selection function

Hence, the overall selection can be defined as below
s (b el di,ky k) - (bEIkb > 7) @ (cEIk:C > 12) @ (cEIkCEIJi> (6)

where d; = d; B nonce;. Regarding the D&C approach where rotations are
discarded, it results in the following selection function.

pan (vl el dukit 1K 1K) = (B, k) @ (B8, 18) @ (£ 8, K B, &)

(7)
As less words are involved, the key search space is reduced and still depends on
the windows’ size.

23" if n <12
K| =222 if12<n<20 (8)
2732 otherwise

However, since the rotations are less pronounced, key words do not overlap if
the windows’ size does not exceed 12 bits, as depicted in Fig. 6. Throughout the
rest of this section, we only consider the case where n < 12.

A B C
y C) Isr7C COs1CC O)
K, Gy) () (Gy)
k.] [) [(THE) (i)

Fig. 6: D&C approach on the ChaCha IQR, n =8

As before, key hypotheses might be affected by carry propagations. However,
another advantage of ¢, ,, over ¢, is that one knows the entire 32-bit minuend
(i.e. b or ¢). Thus, depending on its value, one can calculate the probability of a

carry propagation. For instance, when targeting kl[)x’z+"[, the probability is
9% _ (b[o””[+ 1)
p=P (K> = 9)

For our simulation with n = 4, we took a carry into consideration only if p > 0.75.
On top of providing a smaller key search space, ¢, ,, is less prone to collisions
as shown by our simulation depicted in Fig. 7.

Proposition 2. An attack on ¢, returns 4 collisions.

Proof. Flipping the MSB of the minuend/subtrahend also flips the MSB of the
modular difference. Therefore, in the case of ¢, ,, flipping the MSB of two n-bit
key windows leads to the same output. As a result, the number of collisions is
equal to 1 + (g) =4. O

This property allows to halve the key search space (i.e. |[K| = 23"71), since all
collisions can be retrieved from just one. In the next section, we suggest a more
efficient method than repeating this computation over several windows and then
sorting the right key from the collisions.

o

N

&
1

o
N
T

o

a2

&
T

o
2

Correlation coefficient
& o
o &

)
o
2l

&
2

I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Key hypotheses

S
)

Fig. 7: Attack simulation on ¢, 4

5.4 Overview of the Brickerlayer Attack

Once collisions have been found using ¢, ,, or ¢, ,,, one has to reiterate the same
procedure on different windows. Instead of executing several attacks in parallel,
we suggest to take advantage of windows that have been previously recovered,
in order to target larger ones. For instance, once 4 collisions have been found
after an attack on ¢, ,, one can target ¢, ,,,, where m > n, with a complexity
|’C| _ 23(m—n)+1.

Proceeding in this sequential manner has two advantages. First, taking the
carry propagation into consideration is only necessary during the first attack.
This property is especially interesting for ¢, ,, since there is no way to estimate
carry propagations in this case. Second, each attack cancels collisions from the
previous ones, since the positions of the collision bits are changed. For instance,
regarding ¢, ,, where collisions only depend on MSBs, the bricklayer approach
transforms previous collisions into the predictions’ lower bits, allowing the cor-
rect collision to stand out. This property is less efficient in the case of ¢, ,, since
collisions depends on all bits of the n-bit word. Therefore, the correct collision
does not stand out directly but some wrong hypotheses are still discarded.

An example application of the bricklayer attack using ¢, , is depicted in
Fig. 8. Note that from the fourth step, the attack focuses two key windows
instead of three because rotations lead to a position that has already been re-
covered. Finally, the last step considers the entire 32-bit output word using 5
and the known bits/collisions.

6 Applications in Practice

6.1 Practical Experiments

All practical experiments presented below were done using an ARM 32-bit
Cortex-M3 processor clocked at 24MHz. Note that the DUT does not embed
any hardware countermeasure against side-channel attacks. A trigger signal was
inserted to indicate the beginning and the end of the penultimate round in order

() (
31 11 7 0 31 24 20 4 0
(EJINED SN =D
31 15 7 0 31 28 20 8 0
((T HES) EdEES EEN =
31 19 7 0 31 20 12 0
(BN ===) Chraes O B9
31 23 7 0 31 20 16 0
G e S B
31 27 7 0 31 16 0
I = e s D e e
31 27 7 0 31 16 0
0) S s (0 e e i o
31 0 31 0
] S
targeted bits collisions fully recovered bits

Fig. 8: Bricklayer attack example on IQR

to avoid synchronization complications. EM emanations were measured using a
Langer LF-U 5 near-field probe (100kHz-50MHz) and a LeCroy WaveSurfer 10
oscilloscope sampled at 10GS/s. The signal was amplified using a Langer PA 303
BNC preamplifier, providing a gain of 30dB. We used the same leakage model
as for our simulations, since our microcontroller leaks the HW of intermediate
values.

First, we tried to perform correlation analyses by focusing on arithmetic
operations, without success. Figure 9 emphasizes that attacking the final block
addition during executions of quarterround’ was not successfull, whereas for
the compiled C version (which stores the intermediate values in RAM), we were
able to retrieve the key bits. This reinforced our assumption that, depending on
the computing platform, memory accesses can be the only source of exploitable
leakage for software implementations.

In order to put the bricklayer attack into practice, the following hard-coded
input block was used to encrypt 250kB of data, where the counter (i.e. nonceg)
was incremented for each 512-bit block.

61707865 3320646e 79622d32 6b206574
ad0578eb e962fcOa 42ffc031 75018bee
b7ae69dc £1490ca8 89acl2fd be8466d3
00000000 £1d69cbf 8e34191d 7024af3b

Fig. 10: Input block used for practical experiments

0.3

‘g — Correct key . g ~— Correct key
3 02 — Wrong keys Leakage detection g 0.2/ —Wrong keys
£ %
8 g 01 |
$ S o
k) ©
°© 2.01 ;
5]
3 02 © 02
% 2000 4000 6000 8000 10000 0 2000 4.?.00 6°|°° 8000 10000
Time sample ime sample
(a) Attack on the final block addition (b) Attack on the final block addition
(C compiled) (ARM Assembly)

Fig.9: Impact of memory accesses on electromagnetic leakage

Figure 11 depicts all the correlation curves corresponding to each step of
the bricklayer attack when targeting k5 and k;. We incremented the windows’
length by 4 at each step, exactly as illustrated in Fig. 8, resulting in an overall
computational complexity of 2'°. All CEMAs were computed by halving the key
search space. Consequently, some results do not appear clearly on charts and
have to be deduced.

The first step, which targets k$3"'20 I k?'“o I ka%7 returned the collisions
I = {v1,72,73,74} = {56,176,2096,2232}. For the next stages, each key hy-
pothesis £ € K was coupled to each collision v; € I' and was placed at the
index i = k- [I'| + j of the prediction vector. Thus, higher coefficients at in-
dexes i revealed the correct collision of the previous step 7; by computing
j = imod |['|. Finally, the new collisions are equal to (i — j) / |I'|. For in-
stance, Fig. 11b indicates that the maximum coefficient appears at indexes
i € {6499,6979}. Both indexes are congruent to 3 modulo 4, which means that
vy = k2320 k20| k%7 As a result, the collisions for k2724 I ket || eyttt
are defined by I' = {1624,1744,3664, 3800}. The remaining steps followed the
same methodology, making it possible to recover ky and k; entirely. Obviously,
this can be applied on other IQRs in parallel to recover the whole encryption
key.

A drawback of the D&C method is the number of required measurements,
since the leakage of the omitted bits influences the attacked ones. Thus, more
traces are needed in order to average out noise. Figure 12 compares, regarding
the number of measurements, an attack on the QR using ¢, 5 with the first step
of the bricklayer attack presented above, using the same measurement setup.
As a result, to recover the same number of key bits, ¢4, requires less traces
as it targets larger windows than ¢, ,,. However, the number of required traces
decreases at each step of the bricklayer attack as the size of targeted windows
increases.

0.15

0.1

0.05
I

0

! of
-0.05

0 500 1000 1500 2000 2500 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(a) K= k$3m20 ” k?O || k%ou.'? (b) K = k$7m24 ” k;4 || k%élu.ll

0.05

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 600

(C) K = kl;l...28 ” k‘%l...S ” k%S...lS (d) K= k;5...12 ” ng,_,lg

0.3 0.6
0.5 l
0.4

0.3

0.2

0 50 100 150 200 250 300 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(e) K= k;Q.A.IG H kgG..AZS (f) K = kglm27 ” kgO

Fig.11: CEMAs to recover ky and k;

‘g 0.45 \ =
— { [} . e
L 03| Collisions S Collisions
5 &
bel [
3 3
S §
© k&,
. e
E -
3 S .
500 1000 1500 2000 2500 3000 : 500 1000 1500 2000 2500 3000
Number of measurements Number of measurements
(a) Attack on the QR using ¢s 3 (b) Attack on the IQR using ¢y 4

Fig. 12: Correlation coefficients to recover 12 key bits

6.2 Attacks’ Feasibility on Existing Protocols

In a typical side-channel analysis, it is assumed that the attacker has access to
either the plaintext or the ciphertext, but not necessarily to both. In the case
of ChaCha, we can consider the knowledge of the nonce as the knowledge of the
plaintext. However, attacks using ¢, ,, require the knowledge of the keystream
(i.e. plaintexts and ciphertexts), in addition to nonces. This is a strong assump-

tion that could be available in an evaluation laboratory but might be hard to
set up in practice, leaving the attacks from nonces more realistic. Therefore, we
discuss whether the knowledge of nonces is a fair assumption.

By definition, the single requirement for a cryptographic nonce is to be used
only once. Therefore, a simple counter could suit the need. However, in cases
where many different keys are used, some protocols (e.g. TLS) force a part of
the nonce (e.g. the IV) to be random in order to thwart multi-key attacks [28].
This leaves the block counter as the only predictable part of the nonce. Therefore,
if this latter is defined on n bits, then a correlation analysis cannot recover more
than 2 - n key bits. As a result, it introduces a protocol-level countermeasure
which protects a large part of the key.

Still, existing protocols are not defined in this way. For instance, the Secure
Shell (SSH) protocol uses the packet sequence number as a 64-bit IV [1] whereas
the remaining 64 bits are used for the block counter, which is reset for each
packet. Consequently, observing an entire SSH session makes it possible to pre-
dict the entire nonce, giving an attacker the opportunity to recover all key words
as soon as enough packets are transmitted.

Furthermore, another construction that can be encountered in practice is
XChaCha20, which is implemented in the Sodium crypto library [18]. This con-
struction was first proposed for Salsa20 [6] and aims at extending the nonce to
192 bits so that it can be picked at random. The main idea is to encrypt a block
with a fixed key k and 128 bits of the random nonce, without executing the final
block addition. The first and last 16 bytes of the output result in a 256-bit subkey
k'. Finally, the regular ChaCha20 algorithm is executed using the 64 remaining
bits of the 192-bit nonce as IV, and k’ as encryption key. Note that XChaCha20
is intrinsically resistant against attacks from the keystream, since the final block
addition is omitted during the subkey generation. However, the 192-bit nonce
must be transmitted in clear and can be entirely known by the attacker.

These real life case studies introduce the need of dedicated countermeasures
against side-channel attacks when ChaCha is deployed in such conditions.

7 Towards a Secure Implementation

A common approach to thwart side-channel attacks is the use of masking. This
countermeasure consists in blinding the processed values z by means of random
masks r, so that intermediate variables are impossible to predict. Thus, an at-
tacker has to analyze multiple point distributions, which exponentially increases
the attack complexity with the number of shares. In this section, we only discuss
first-order masking i.e. the case where a single mask is used to randomize the
data. Because of their structures, ARX designs need both boolean (z' = x @ r)
and arithmetic (z" = 2 B) masking.

To overcome this complication, there are two main approaches. The first one
is to switch from one masking scheme to the other whenever necessary. The first
conversion algorithms, described by Goubin in [21], have complexity of O(1) for
boolean to arithmetic and O(k) for arithmetic to boolean, where k refers to the
addends’ bit size. The latter was then improved by Coron et al. to O(log k) [15].
The second approach is to directly perform an addition on the masked val-
ues, eliminating the need for conversions [23]. However, secure adders usually
rely on the recursion formulae involved in arithmetic to boolean conversions.
Consequently, they inherit from the same complexity. Some properties of these
algorithms are listed in Table 1.

Table 1: Several algorithms’ parameters for first-order masking

Randoms Auxiliary Operations
variables
Goubin B—A [21] 1 2 7
Goubin A—B [21] 1 3 5-k+1
Karroumi et al. SecAdd [23] 1 3 5-k+8
Coron et al. A—B [15] 2 4 28 -log, k + 4
Coron et al. SecAdd [15] 3 4 28 -logy k—3

Variants based on precalculations have also been proposed, where time-
memory tradeoffs ensure better performances for arithmetic to boolean con-
versions [17], as well as for secure adders [40].

The best method, in terms of performance, depends on the algorithm to be
protected. For instance, masks conversions are more efficient when several arith-
metic operations are processed sucessively, since only one arithmetic to boolean
conversion is ultimately required. Otherwise, secure adders can lead to better
performances as shown by a practical comparison between HMAC-SHA-1 and
Speck in [15]. In order to give an insight into the overhead introduced by a
first-order masking, we implemented the two secure adders listed in Table 1 in
C language, using the same compilation options as described in Sect. 4.3. This
allowed us to compare, in terms of performance, our secure implementations of
ChaCha20 with the one from the OpenSSL library. Running times given in Ta-
ble 2 are expressed in clock cycles and were computed with the help of debug
sessions. Note that these measurements do not take the generation of random
numbers into account since this operation depends a lot on the computing plat-
form. As these countermeasures were implemented in C, they do not ensure the
absence of memory accesses within QRs. On the other hand, handling all data
in registers during a whole QR may not be possible, since masking also increases
memory requirements. Indeed, all algorithms depicted in Table 1 require, in ad-
dition to shares, randoms and auxiliary variables. Further investigations need

Table 2: Running time in clock cycles to encrypt a 512-bit block using
ChaCha20 on an ARM Cortex-M3

Time Penalty factor
ChaCha20 unmasked 4380 1
ChaCha20 with Karroumi et al. SecAdd [23] 121618 28
ChaCha20 with Coron et al. SecAdd [15] 93993 22

to be carried out to determine which algorithms could minimize memory access
within QRs and how to securely manage them.

These practical results point out how difficult it is to effectively secure ARX
ciphers’ implementations. However, masking is not the only answer to side-
channel attacks and is often combined with hiding countermeasures. The princi-
ple of hiding is to randomize an algorithm execution by running its operations at
different moments in time, during each execution [41,37]. This can be achieved
by randomly inserting dummy operations and shuffling. Shuffling intends to ran-
domly change the sequence of operations that can be computed in arbitrary or-
der. In practice, hiding countermeasures increase the number of traces needed
to carry out an attack [34,16].

Regarding ChaCha, operations within a QR cannot be shuffled as they are ex-
ecuted sequentially. On the other hand, each QR can be computed independently
from the other, but this is only true for a single round because of switching from
column to diagonal rounds. However, there are many ways to implement hiding
in practice and further investigations will have to be carried out on the specific
case of ChaCha.

8 Conclusions and Further Work

This paper presents side-channel analyses of ChaCha based on leakages related to
memory accesses. Our study emphasizes that quantifying the signal available to
the attacker at the instruction level could allow to strengthen implementations
without much effort.

We compare, from a side-channel point of view, two different software imple-
mentations of ChaCha20 on a 32-bit processor. As a result, minimizing memory
accesses makes selection functions more complex, to such an extent that they
may lead to collisions. We introduce the bricklayer attack to defeat such im-
plementations. Our results show that attacking the reverse QRs (i.e. from the
keystream) is more efficient than attacking the regular ones (i.e. from the input
block). However, we highlight that attacks from the input block are the most
pragmatic threats since the knowledge of the keystream is a strong assumption.

Finally, we discuss possible countermeasures at several levels and highlight how
expensive it is to implement first-order masking for ChaCha20 with practical
measurements. Therefore, further work must be undertaken to propose efficient
secure implementations of ChaCha.

References

10.

11.

12.

13.

14.

15.

chacha20-poly1305@openssh.com Authenticated Encryption Mode (May 2016),
http://bxr.su/0penBSD/usr.bin/ssh/PROTOCOL. chacha20poly1305

iOS 10 Security White Paper. Tech. rep., Apple Inc. (March 2017), https://www.
apple.com/business/docs/i0S_Security_Guide.pdf

Aumasson, J.P.; Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Fea-
tures of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. Cryptology ePrint
Archive, Report 2007/472 (2007), http://eprint.iacr.org/2007/472

Babbage, S., Borghoff, J., Velichkov, V.: The eSTREAM Portfolio in 2012, http:
//www.ecrypt.eu.org/ecrypt2/documents/D.SYM. 10-v1.pdf

Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
SIMON and SPECK: Block Ciphers for the Internet of Things. Cryptology ePrint
Archive, Report 2015/585 (2015), http://eprint.iacr.org/2015/585

Bernstein, D.J.: Extending the Salsa20 nonce, https://cr.yp.to/snuffle/
xsalsa-20081128.pdf

Bernstein, D.J.: ChaCha, a variant of Salsa20. In: SASC - The State Of
The Art Of Stream Ciphers. pp. 273-278 (2008), http://cr.yp.to/chacha/
chacha-20080128.pdf

Bernstein, D.J.: The Salsa20 Family of Stream Ciphers, pp. 84-97. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008), http://dx.doi.org/10.1007/
978-3-540-68351-3_8

Biryukov, A., Dinu, D., Grofischadl, J.: Correlation Power Analysis of Lightweight
Block Ciphers: From Theory to Practice, pp. 537-557. Springer International Pub-
lishing, Cham (2016), http://dx.doi.org/10.1007/978-3-319-39555-5_29
Boura, C., Lvque, S., Vigilant, D.: Side-Channel Analysis of Grostl and Skein. In:
2012 IEEE Symposium on Security and Privacy Workshops. pp. 16-26 (May 2012),
https://www.ieee-security.org/TC/SPW2012/proceedings/4740a016.pdf
Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage
Model, pp. 16-29. Springer Berlin Heidelberg, Berlin, Heidelberg (2004), http:
//dx.doi.org/10.1007/978-3-540-28632-5_2

Bursztein, E.: Speeding up and strengthening HTTPS connections for Chrome on
Android . Tech. rep. (April 2014), https://security.googleblog.com/2014/04/
speeding-up-and-strengthening-https.html

Callan, R., Zaji¢, A., Prvulovic, M.: A Practical Methodology for Measuring the
Side-Channel Signal Available to the Attacker for Instruction-Level Events. In:
Proceedings of the 47th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. pp. 242-254. MICRO-47, IEEE Computer Society, Washington,
DC, USA (2014), http://dx.doi.org/10.1109/MICR0O.2014.39

Choudhuri, A.R., Maitra, S.: Differential Cryptanalysis of Salsa and ChaCha —
An Evaluation with a Hybrid Model. Cryptology ePrint Archive, Report 2016/377
(2016), http://eprint.iacr.org/2016/377

Coron, J.S., Grofischadl, J., Tibouchi, M., Vadnala, P.K.: Conversion from
Arithmetic to Boolean Masking with Logarithmic Complexity, pp. 130-149.

http://bxr.su/OpenBSD/usr.bin/ssh/PROTOCOL.chacha20poly1305
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://eprint.iacr.org/2007/472
http://www.ecrypt.eu.org/ecrypt2/documents/D.SYM.10-v1.pdf
http://www.ecrypt.eu.org/ecrypt2/documents/D.SYM.10-v1.pdf
http://eprint.iacr.org/2015/585
https://cr.yp.to/snuffle/xsalsa-20081128.pdf
https://cr.yp.to/snuffle/xsalsa-20081128.pdf
http://cr.yp.to/chacha/chacha-20080128.pdf
http://cr.yp.to/chacha/chacha-20080128.pdf
http://dx.doi.org/10.1007/978-3-540-68351-3_8
http://dx.doi.org/10.1007/978-3-540-68351-3_8
http://dx.doi.org/10.1007/978-3-319-39555-5_29
https://www.ieee-security.org/TC/SPW2012/proceedings/4740a016.pdf
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-540-28632-5_2
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
http://dx.doi.org/10.1109/MICRO.2014.39
http://eprint.iacr.org/2016/377

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Springer Berlin Heidelberg, Berlin, Heidelberg (2015), https://doi.org/10.1007/
978-3-662-48116-5_7

Couroussé, D., Barry, T., Robisson, B., Jaillon, P., Potin, O., Lanet, J.L.: Runtime
Code Polymorphism as a Protection Against Side Channel Attacks. Cryptology
ePrint Archive, Report 2017/699 (2017), http://eprint.iacr.org/2017/699
Debraize, B.: Efficient and Provably Secure Methods for Switching from Arithmetic
to Boolean Masking, pp. 107-121. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012),https://doi.org/lo.1007/978—3—642-33027-8_7

Denis, F.: The XChaCha20-Polyl305 construction, https://download.
libsodium.org/doc/secret-key_cryptography/xchacha20-poly1305_
construction.html

Dworkin, M.J.: SP 800-38A 2001 Edition. Recommendation for Block Cipher
Modes of Operation: Methods and Techniques. Tech. rep., Gaithersburg, MD,
United States (2001)

Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results,
pp. 251-261. Springer Berlin Heidelberg, Berlin, Heidelberg (2001), http://dx.
doi.org/10.1007/3-540-44709-1_21

Goubin, L.: A Sound Method for Switching between Boolean and Arithmetic
Masking, pp. 3-15. Springer Berlin Heidelberg, Berlin, Heidelberg (2001), https:
//doi.org/10.1007/3-540-44709-1_2

Jungk, B., Bhasin, S.: Don’t fall into a trap: Physical side-channel analysis of
chacha20-poly1305. In: Design, Automation Test in Europe Conference Exhibition
(DATE), 2017. pp. 1110-1115 (March 2017)

Karroumi, M., Richard, B., Joye, M.: Addition with Blinded Operands, pp. 41—
55. Springer International Publishing, Cham (2014), https://doi.org/10.1007/
978-3-319-10175-0_4

Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Proceedings of
the 19th Annual International Cryptology Conference on Advances in Cryptology.
pp. 388-397. CRYPTO ’99, Springer-Verlag, London, UK, UK (1999), http://d1.
acm.org/citation.cfm?id=646764.703989

Kumar, S.V.D., Patranabis, S., Breier, J., Mukhopadhyay, D., Bhasin, S., Chat-
topadhyay, A., Baksi, A.: A Practical Fault Attack on ARX-like Ciphers with a
Case Study on ChaCha20. In: 2017 Workshop on Fault Diagnosis and Tolerance
in Cryptography, FDTC, Taipei, Taiwan (2017)

Langley, A., Chang, W., Mavrogiannopoulos, N., Strombergson, J., Josefsson,
S.: ChaCha20-Poly1305 Cipher Suites for Transport Layer Security (TLS). RFC
7905, RFC Editor (June 2016), http://tools.ietf.org/rfc/rfc7905.txt, http:
//tools.ietf.org/rfc/rfc7905.txt

Lemke, K., Schramm, K., Paar, C.: DPA on n-Bit Sized Boolean and Arithmetic
Operations and Its Application to IDEA, RC6, and the HMAC-Construction.
In: CHES. pp. 205-219 (2004), http://www.iacr.org/archive/asiacrypt2007/
31560191/31560191 . pdf

Luykx, A., Mennink, B., Paterson, K.G.: Analyzing multi-key security degradation.
Cryptology ePrint Archive, Report 2017/435 (2017), http://eprint.iacr.org/
2017/435

Maitra, S.: Chosen IV Cryptanalysis on Reduced Round ChaCha and Salsa. Dis-
crete Appl. Math. 208(C), 88-97 (Jul 2016), http://dx.doi.org/10.1016/j.dam.
2016.02.020

Mazumdar, B., Ali, S.S., Sinanoglu, O.: Power analysis attacks on arx: An appli-
cation to salsa20. In: 2015 IEEE 21st International On-Line Testing Symposium
(IOLTS). pp. 40-43 (July 2015)

https://doi.org/10.1007/978-3-662-48116-5_7
https://doi.org/10.1007/978-3-662-48116-5_7
http://eprint.iacr.org/2017/699
https://doi.org/10.1007/978-3-642-33027-8_7
https://download.libsodium.org/doc/secret-key_cryptography/xchacha20-poly1305_construction.html
https://download.libsodium.org/doc/secret-key_cryptography/xchacha20-poly1305_construction.html
https://download.libsodium.org/doc/secret-key_cryptography/xchacha20-poly1305_construction.html
http://dx.doi.org/10.1007/3-540-44709-1_21
http://dx.doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/978-3-319-10175-0_4
https://doi.org/10.1007/978-3-319-10175-0_4
http://dl.acm.org/citation.cfm?id=646764.703989
http://dl.acm.org/citation.cfm?id=646764.703989
http://tools.ietf.org/rfc/rfc7905.txt
http://tools.ietf.org/rfc/rfc7905.txt
http://tools.ietf.org/rfc/rfc7905.txt
http://www.iacr.org/archive/asiacrypt2007/31560191/31560191.pdf
http://www.iacr.org/archive/asiacrypt2007/31560191/31560191.pdf
http://eprint.iacr.org/2017/435
http://eprint.iacr.org/2017/435
http://dx.doi.org/10.1016/j.dam.2016.02.020
http://dx.doi.org/10.1016/j.dam.2016.02.020

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

McCann, D., Eder, K., Oswald, E.: Characterising and Comparing the Energy
Consumption of Side Channel Attack Countermeasures and Lightweight Cryptog-
raphy on Embedded Devices. Cryptology ePrint Archive, Report 2015/832 (2015),
http://eprint.iacr.org/2015/832

McGrew, D., Bailey, D.: AES-CCM Cipher Suites for Transport Layer Secu-
rity (TLS). RFC 6655, RFC Editor (July 2012), http://tools.ietf.org/rfc/
rfc6655.txt

Mozaffari-Kermani, M., Azarderakhsh, R.: Reliable Hash Trees for Post-Quantum
Stateless Cryptographic Hash-based Signatures. In: 2015 IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFTS). pp. 103-108 (Oct 2015)

Patranabis, S., Roy, D.B., Vadnala, P.K., Mukhopadhyay, D., Ghosh, S.: Shuffling
across rounds: A Lightweight Strategy to Counter Side-Channel Attacks. In: 2016
IEEE 34th International Conference on Computer Design (ICCD). pp. 440-443
(Oct 2016)

Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-measures for Smart Cards, pp. 200-210. Springer Berlin Heidelberg,
Berlin, Heidelberg (2001), http://dx.doi.org/10.1007/3-540-45418-7_17
Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. Internet-
Draft draft-ietf-tls-tls13-21, Internet Engineering Task Force (Jul 2017), https:
//tlsug.github.io/tls13-spec/draft-ietf-tls-tls13.html, work in Progress
Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software
implementations of block ciphers. Cryptology ePrint Archive, Report 2009/420
(2009), http://eprint.iacr.org/2009/420

Salowey, J., Choudhury, A., McGrew, D.: AES Galois Counter Mode (GCM)
Cipher Suites for TLS. RFC 5288, RFC Editor (August 2008), http://www.
rfc-editor.org/rfc/rfc5288.txt

Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved Key Recovery Attacks on Reduced-
Round Salsa20 and ChaCha, pp. 337-351. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2013), http://dx.doi.org/10.1007/978-3-642-37682-5_24

Vadnala, P.K., Grofischédl, J.: Faster Mask Conversion with Lookup Tables, pp.
207-221. Springer International Publishing, Cham (2015), https://doi.org/10.
1007/978-3-319-21476-4_14

Veyrat-Charvillon, N.; Medwed, M., Kerckhof, S., Standaert, F.X.: Shuffling
against Side-Channel Attacks: A Comprehensive Study with Cautionary Note, pp.
740-757. Springer Berlin Heidelberg, Berlin, Heidelberg (2012), https://doi.org/
10.1007/978-3-642-34961-4_44

Yadav, P., Gupta, I., Murthy, S.K.: Study and analysis of eSTREAM cipher Salsa
and ChaCha. In: 2016 IEEE International Conference on Engineering and Tech-
nology (ICETECH). pp. 90-94 (March 2016)

Zohner, M., Kasper, M., Stottinger, M.: Butterfly-Attack on Skein’s Modular
Addition, pp. 215-230. Springer Berlin Heidelberg, Berlin, Heidelberg (2012),
https://doi.org/10.1007/978-3-642-29912-4_16

http://eprint.iacr.org/2015/832
http://tools.ietf.org/rfc/rfc6655.txt
http://tools.ietf.org/rfc/rfc6655.txt
http://dx.doi.org/10.1007/3-540-45418-7_17
https://tlswg.github.io/tls13-spec/draft-ietf-tls-tls13.html
https://tlswg.github.io/tls13-spec/draft-ietf-tls-tls13.html
http://eprint.iacr.org/2009/420
http://www.rfc-editor.org/rfc/rfc5288.txt
http://www.rfc-editor.org/rfc/rfc5288.txt
http://dx.doi.org/10.1007/978-3-642-37682-5_24
https://doi.org/10.1007/978-3-319-21476-4_14
https://doi.org/10.1007/978-3-319-21476-4_14
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-642-29912-4_16

A ARM Instructions for Implementations of ChaCha’s

QR

-00 Compilation

LDR
LDR
ADD
STR
LDR
LDR
EORS
LSLS
LDR
LDR
EORS
ORR
STR
LDR
LDR
ADD
STR
LDR
LDR
EORS
LSLS
LDR
LDR
EORS
ORR
STR
LDR
LDR
ADD
STR
LDR
LDR
EORS
LSLS
LDR
LDR
EORS
ORR
STR
LDR
LDR
ADD
STR
LDR
LDR
EORS
LSLS
LDR
LDR
EORS
ORR
STR

ri,[sp,#0x10]
r0, [sp,#0x00]
r0,r0,rl

r0, [sp,#0x00]
r1,[sp,#0x00]
r0, [sp,#0x30]
r0,r0,rl
rl,r0,#16
r2,[sp,#0x00]
r0, [sp,#0x30]
r0,r0,r2

r0,r1,r0,LSR #16

r0, [sp,#0x30]
ri,[sp,#0x30]
r0, [sp,#0x20]
r0,r0,r1
r0, [sp,#0x20]
r1l,[sp,#0x20]
r0, [sp,#0x10]
r0,r0,rl
rl,r0,#12
r2,[sp,#0x20]
r0,[sp,#0x10]
r0,r0,r2

rO0,rl1,r0,LSR #20

r0,[sp,#0x10]
rl,[sp,#0x10]
r0, [sp,#0x00]
r0,r0,rl
r0, [sp,#0x00]
r1,[sp,#0x00]
r0, [sp,#0x30]
r0,r0,rl
rl,r0,#8
r2,[sp,#0x00]
r0, [sp,#0x30]
r0,r0,r2

r0,r1,r0,LSR #24

r0, [sp,#0x30]
r1,[sp,#0x30]
r0, [sp,#0x20]
r0,r0,rl
r0, [sp,#0x20]
ri,[sp,#0x20]
r0,[sp,#0x10]
r0,r0,rl
rl,r0,#7
r2,[sp,#0x20]
r0, [sp,#0x10]
r0,r0,r2

r0,r1,r0,LSR #25

r0, [sp,#0x10]

-03 Compilation

LDR
LDR
ADD
STR
LDR
LDR
EORS
ROR
STR
LDR
LDR
ADD
STR
LDR
LDR
EORS
ROR
STR
LDR
LDR
ADD
STR
LDR
LDR
EORS
ROR
STR
LDR
LDR
ADD
STR
LDR
LDR
EORS
ROR
STR

rl,[sp,#0x10]
r0, [sp,#0x00]
rO0,r0,r1

r0, [sp,#0x00]
rl,[sp,#0x00]
r0, [sp,#0x30]
r0,r0,r1
rO,r0,#16

r0, [sp,#0x30]
rl,[sp,#0x30]
r0, [sp,#0x20]
r0,r0,r1

r0, [sp,#0x20]
rl,[sp,#0x20]
r0, [sp,#0x10]
r0,r0,r1
r0,r0,#20

r0, [sp,#0x10]
rl,[sp,#0x10]
r0, [sp,#0x00]
r0,r0,rl

r0, [sp,#0x00]
r1l,[sp,#0x00]
r0, [sp,#0x30]
r0,r0,rl
r0,r0,#24

r0, [sp,#0x30]
rl,[sp,#0x30]
r0, [sp,#0x20]
r0,r0,rl

r0, [sp,#0x20]
rl,[sp,#0x20]
r0, [sp,#0x10]
r0,r0,rl
r0,r0,#25

r0, [sp,#0x10]

Assembly Coded

PUSH
LDR
LDR
LDR
LDR
ADD
EOR
ROR
ADD
EOR
ROR
ADD
EOR
ROR
ADD
EOR
ROR
STR
STR
STR
STR
POP

{r4-r7}
r4, [r0]
r5, [ri1]
ré6, [r2]
r7, [r3]
rd, r4,
r7, r7,
r7, r7,
r6, r6,
r5, r5,
r5, r5,
rd, r4,
r7, r7,
r7, r7,
r6, r6,
r5, r5,
r5, r5,
r4, [ro0]
r5, [r1]
ré, [r2]
r7, [r3]
{r4-r7}

rb5
ré4
#16

r6é
#20
r5
r4
#24
r7
ré
#25

B Proof of Proposition 1

Proof. We first prove the specific case where x = kt I k> a4l K> I k2 is such that
Pon (m,l;f,k?,kﬁzl,lziic) =z for all x.

Let @5 ,,(-,a,b,c,d) be the function that maps x € Zyn to ¢y, (z,a,b,c,d).
From the definition of ¢ ,,, we can trivially ensure that if @5 ,,(-,a,b,¢c,d) is an
identity function on Zy», then ¢, ,,, (-, a, b, ¢, d) is an identity function on Zym for
m < n.

If b,d are both multiples of 2™ for m < n, the addition terms modulo 2"
do not interfere with the lower m bits. Hence if we split the numbers into lower
m and upper n — m bits, i.e. x = x - 2™ + x, we can split 9 p(2,a,b,c,d) into
two separate actions: ¢, ,_,, (T, @, b,¢,d) on Lgn—m and @y 5, (2,a,0, ¢, 0) on Zgm.
The latter of these, @5 ,,,(z,4a,0,c,0) gives the identity function if a = c.

Since we may pick the largest such m < n so that 2™ divides b and d, where
m = n corresponds to the case when b = d = 0 in Z,~, what remains to be solve
is the case where either b or d is odd.

A class of identity functions on Zyn is defined by ¢, ,,(-,0,b,0,d) where
b, d = 0. Moreover, XORing with 2" " has the same effect as adding 2" ",
so we get identify functions ¢y ,,(-,a,b,c,d) for b,d € Zy» and a,c € {0,2" "}
whenever ¢ B, b B, cH, d = 0. Afterwards, XORing = with 2" — 1 returns
2" — 11—z in Zy», thus ¢, ,,(-,2" —1,5,2" — 1,d) is an identity function when
b = d. Finally, these two may be combined: a,c € {2"7' —1,2" — 1} makes
©o.n(- a,b,c,d) an identity function if a B,, b = cH,, d.

In all classes of solution, b and d are either both odd or both even. We focus
on the case where they are both odd as the basic solution. We can pick a,c in 8
different ways, either a,c¢ € {0,2" 7'} or a,c € {2" —1,2""" — 1}, an arbitrary
odd d, and then solve for b. Thus, there are 2"%2 solutions with b,d odd.

For the m lower bits, we have b = d = 0 and need a = ¢ to get an identity
function, which gives 2™ solutions. For the upper n — k bits, we get the 2"~ ™12
solutions found above. We now have to add up the counts for different values of
m. For m = 0,...,n — 2 this is straightforward. However, the cases m =n — 1
and m =n (i.e. b= d = 0) are both a little different, but are easy to check: they
have 3-2" and 2" solutions, respectively. In fact, for these two cases we may use
that adding 2"~ " is the same as XORing with 2", so ©9.n(-,a,b,c,d) becomes
an identity function for b,d € {0,2" '} if a®bdcdd = 0.

All in all, this result in n - 2”12 identity functions.

An apparent advantage of the identity function is that we can make its ad-
dition and XOR components independtly zero. If k does not define an identity
function, positions may be more tightly coupled to the others. For example, an

attack on g 3 with £ = (000 || 001 || 001 || 000)5 only returns 36 collisions. How-
ever, the simulation presented in Fig.4 also returns n - 2" %2 collisions despite the
fact that x = (00] 01| 11 || 11), does not define an identity function.

Finally, if n > 4, there are less than n - 2"%2 collisions since some key bits
overlap. a

	Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round

