
Differential Cryptanalysis of 18-Round PRIDE

Virginie Lallemand and Shahram Rasoolzadeh

Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany.
firstname.lastname@rub.de

Abstract. The rapid growth of the Internet of Things together with the
increasing popularity of connected objects have created a need for secure,
efficient and lightweight ciphers. Among the multitude of candidates, the
block cipher PRIDE is, to this day, one of the most efficient solutions for
8-bit micro-controllers. In this paper, we provide new insights and a bet-
ter understanding of differential attacks of PRIDE. First, we show that
two previous attacks are incorrect, and describe (new and old) properties
of the cipher that make such attacks intricate. Based on this understand-
ing, we show how to properly mount a differential attack. Our proposal
is the first single key differential attack that reaches 18 rounds out of 20.
It requires 261 chosen plaintexts and recovers the 128-bit key with a final
time complexity of 263.3 encryptions, while requiring a memory of about
235 blocks of 64 bits.

Keywords: Block cipher, PRIDE, Differential cryptanalysis

1 Introduction

We are currently facing a growing need for secure and efficient cryptographic
primitives that aim to protect the myriad of resource-constrained devices that
are more and more part of our daily lives.

Most popular examples of such targeted devices of the Internet of Things
include RFID tags and nodes in sensor networks. For the latter, one of the pre-
ferred platforms are 8-bit micro-controllers. Ciphers dedicated to this platform
require to be lightweight and software-oriented, that is, in addition to being se-
cure will only require a small program memory and have a small execution time.
Examples of ciphers proposed to meet these needs include SEA [10], KLEIN [5],
ITUbee [7], PRIDE [1] and the Feistel ciphers designed by the National Se-
curity Agency (SIMON and SPECK [2]). Among the academic proposals, the
substitution permutation network (SPN) PRIDE proposed by Albrecht et al. at
Crypto 2014 is the most efficient, result that sources from the designers’ care-
ful analysis of linear layers that reach interesting trade-off between security and
efficiency.

Previous works on PRIDE include a side-channel attack presented at CRi-
SIS 2016 [9]. In the black box scenario, Dinur presented at Eurocrypt 2015 [4] a
new cryptanalytic time-memory-data trade-off, while Guo et al.[6] gave observa-
tions on the impact of increasing the number of rounds of the cipher. The more

powerful attacks published to date are a related-key differential attack of the full
cipher [3] by Dai and Chen, and two differential attacks on 18 [15] and 19 [14]
rounds out of 20. Quoting from the specification document1, the related key at-
tack is out of scope: “ PRIDE does not claim any resistance against related-key
attacks (and actually can be distinguished trivially in this setting)”, so the best
type of attack appears to be single key differential attack.

In this paper we provide insight on the resistance of PRIDE against this
type of attack and give a twofold contribution: first, we show that the two pre-
vious attacks ([15] and [14]) are erroneous — even when taking into account the
corrections proposed by [12] — due to a miscomputation of the known bits and
second we show how to correctly mount a differential cryptanalysis to attack 18
rounds of PRIDE.

Our attack requires 261 chosen plaintexts and the equivalent of 263.3 encryp-
tions. Since the security claim of the designers is that the product of data and
time complexity cannot be smaller than 2127, our proposal is a valid attack of
the cipher reduced to 18 rounds.

The paper is organized as follows. Next section gives a short description of
the block cipher PRIDE and introduces our notations. Then, we start our study
with a section reporting old and new properties of PRIDE Sbox and key sched-
ule. In Section 4, we describe our first contribution by disclosing why the two
previous differential cryptanalyses of PRIDE fail to recover the key, even when
the flaws spotted in previous works are corrected. We then put into practice our
comprehension of PRIDE to build high probability differential characteristics
(Section 5) and mount an 18-round differential attack in Section 6. The paper
ends with a conclusion.

2 PRIDE Block Cipher

2.1 Description of PRIDE

PRIDE [1] is a lightweight block cipher proposed at Crypto 2014 by Albrecht,
Driessen, Kavun, Leander, Paar and Yalçin. The cipher follows an SPN struc-
ture and benefits from an extensive analysis of secure and efficient linear layers,
presented in the same article. It is software-oriented and reaches notable perfor-
mance figures when implemented on 8-bit micro-controllers.

Round Function. PRIDE uses 64-bit blocks and 128-bit keys and makes
use of the FX construction [8] in the following way: the first 64 bits of the master
key k, denoted k0, is used as pre- and post-whitening key, while the other half
k1 is used to compute the round keys. In the following, we denote the whitening
key by K0 and the round key of round i by Ki, 1 ≤ i ≤ 20 (see Figure 1).

PRIDE encryption routine is made of 20 rounds. The first 19 rounds are
identical and denoted by R, while the last one does not contain the linear layer
and is denoted by R′. The cipher ends (resp. starts) with the application of a
bit-permutation (resp. its inverse) for bit-sliced implementation reasons. Since

1Section 5.5 of [1].

P−1m

K0

⊕

K1

R

K2

R

K3

R

K4

R · · ·

K16

R

K17

R

K18

R

K19

R

K20

R′ ⊕ P c

K0

Fig. 1. Overall structure of PRIDE block cipher.

these operations can easily be inverted, what we call in the following plaintext
and ciphertext are the states before (resp. after) the first (resp. last) whitening
operation. The cipher is based on the following operations, combined as depicted
in Figure 2:
– A key addition layer,
– An Sbox layer, which consists in applying the same 4 × 4 Sbox S (given in

Table 1) to each nibble (group of 4 bits) of the state,
– A linear layer, combining:
• The application of bit permutations P and P−1, described in Appendix A,
Table 7,

• The application of matrices, more precisely the application of matrix Li,
i = 0, · · · , 3 (given in Appendix A) to the ith 16-bit word of the state.

Table 1. Definition of the Sbox of PRIDE.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 0 4 8 f 1 5 e 9 2 7 a c b d 6 3

Ir

Yr

P

P−1

Xr

Zr

Wr

Ir+1

R′

RL0

S S S S

L1

S S S S

L2

S S S S

L3

S S S S

Fig. 2. R and R′ round functions of PRIDE. The naming conventions used for the
intermediate states are detailed in Table 2.

Key-Schedule. The round keys of PRIDE are 64-bit words given by Ki =
P−1(fi(k1)) (1 ≤ i ≤ 20) where fi(k1) is:

fi(k1) = k10 ||g
(0)
i (k11)||k12 ||g

(1)
i (k13)||k14 ||g

(2)
i (k15)||k16 ||g

(3)
i (k17)

k1i , 0 ≤ i < 8, is byte number i of k1 and the gi functions are given by:

g
(0)
i (x) = (x+ 193i) mod 256, g

(1)
i (x) = (x+ 165i) mod 256,

g
(2)
i (x) = (x+ 81i) mod 256, g

(3)
i (x) = (x+ 197i) mod 256.

2.2 Notations

To ease comprehension of the remainder of the paper, we use the same notation
as in the two previous differential attacks on PRIDE ([15,14]). These notations
are recalled in Table 2. In order to remain consistent with it, we also start
counting bits from 1, and more particularly we denote by (x1, x2, x3, x4) the
binary decomposition of the nibble x, where x1 is its most significant bit.

Table 2. Notations.

Symbol Definition
Ir input state of r-th round
Xr state after key addition of r-th round
Yr state after the Sbox layer of r-th round
Zr state after the application of P of r-th round
Wr state after the matrices layer of r-th round
∆S xor difference of the state S
Sr[i] i-th nibble of the state Sr
Sjr [i] j-th bit of the i-th nibble of Sr

3 Properties of PRIDE Components

In this section, we present important properties of the Sbox and of the Key-
Schedule that impact a differential attack of PRIDE. These properties are cru-
cial to understand the mistakes made in the previous differential cryptanalyses
as well as to get the techniques used in our new attack.

3.1 Sbox Properties

We start by recalling the component functions of the Sbox:

Definition 1. (Component functions of PRIDE Sbox) If we denote x =
(x1, x2, x3, x4) the input nibble of the Sbox, then the expressions of the corre-
sponding output nibble S(x) = y = (y1, y2, y3, y4) is given by:

y1 = x1x2 ⊕ x3

y2 = x2x3 ⊕ x4

y3 = x1x2x3 ⊕ x1x2x4 ⊕ x2x3 ⊕ x3x4 ⊕ x1

y4 = x1x2x4 ⊕ x1x4 ⊕ x2x3 ⊕ x3x4 ⊕ x2

We can remark that y1 and y2 depend only on 3 bits out of 4 of the input
and that only two of the input bits are involved in the degree 2 monomials. This
remark turns useful in our attack since it implies that instead of requiring a
complete nibble to get the value of bit number 1 or 2 we only need the value of
3 bits. Note that since PRIDE Sbox is an involution these properties also hold
for its inverse.

What’s more, this observation impacts the possible differential transitions
of the Sbox, a property that was formalized by Tezcan in [11] and applied to
PRIDE in [12].

Definition 2. (undisturbed bit [11]) For a specific input difference of an S-box,
if some bits of the output difference remain invariant, then we call such bits
undisturbed.

For instance, if the input difference of PRIDE Sbox is equal to 8 (1000), its
output difference is of the form ?0?? (see [12]).

In [13], Tezcan and Özbudak introduced the notion of differential factor, that
plays a role in the number of key bits one can recover and on the time complexity:

Definition 3. (differential factor [13]) Let S be a function from Fn2 to Fm2 . For
all x, y ∈ Fn2 that satisfy S(x)⊕S(y) = µ, if we also have S(x⊕λ)⊕S(y⊕λ) = µ,
then we say that the S-box has a differential factor λ for the output difference µ.
(i.e. µ remains invariant for λ).

3.2 Key-Schedule Properties
We introduce here a property of the key schedule that allows to reduce the
number of key-guesses required in our attack:
Property 1. (Difference between round keys) The binary difference between
two round keys Ki and Kj for i and j of different parity is given by the following
expression, where ’?’ represents an unknown bit :

Ki ⊕Kj = (00000000||00000000||00000000||00000000||????????||????????||????????||????1111)

Also, the difference between Ki and K` for i and ` of same parity2 is given by:
Ki ⊕K` = (00000000||00000000||00000000||00000000||????????||????????||????????||????0000).

Proof. The first relation results from the definition of the round key, from which
we obtain that:
Ki ⊕Kj = P

−1(00000000||???????1||00000000||???????1||00000000||???????1||00000000||???????1)

where the differences of ’1’ in bit 16, 32, 48 and 64 of P (Ki ⊕Ki+1) are easily
explained by the fact that i and j have different parities and that the values
added to k1 in g functions are odd. The second relation results from the fact
that i and ` have the same parity.

As described later, we select our characteristic so that when checking the
active Sboxes we have common bits so less guesses to make.

2Note that simple relations can also be found between other keys; Ki and Ki+16
for instance.

4 Previous Differential Attacks on PRIDE

Two single key differential attacks ([15],[14]) have been published prior to our
work. In [12], Tezcan et al. show that the complexities of these attacks are miss-
computed due to the oversight of the impact of differential factor and propose a
correction. Their patch mainly results in an increase of the final time complexity.

In this section, we show that there are more problems in [15] and [14] than the
ones reported in [12] and that consequently the proposed patches are insufficient.
The problem we disclose and that is common to both attacks is that the attacker
misses information to compute the required internal state bits.

4.1 18-Round Differential Attack of Zhao et al.

In [15], Zhao et al. proposed an attack on 18-round PRIDE. They use a 15-
round characteristic3 of probability 2−58 and add one round to the top and two
rounds to the bottom. Their attack procedure starts by eliminating some wrong
pairs by looking at the ciphertext difference. Then, they guess 10 nibbles of the
whitening key K0 – namely K0[1, 2, 3, 5, 6, 7, 10, 11, 14, 15] – in order to be able
to check that the differences at the input of the corresponding Sboxes of round
18 have the right form (see Table 3).

They next introduce K ′18, a key that is equivalent to the last round key K18
and is given by: (M ◦ P)−1(f18(k1)). They make a guess on K ′18[6, 10, 14] in
order to be able to compute the difference entering Sbox number 6, 10 and 14
of penultimate round and access the corresponding sieve.

This attack suffers from several problems: first, as noted in [14] and later
in [12], the authors omitted to take into account the undisturbed bits. In addition
to that, [12] reveals that the 6 Sbox differences that are involved in the attack are
differential factors (namely λ = µ = 8), which implies that the attacker cannot
obtain information on 6 key bits. Quoting [12], this error results in the fact that
"the correct time complexity of this attack is 270 18-round Pride encryptions,
not 266".

The new problem we spotted is a miscomputation of the known bits of the
internal states. Namely: to compute the difference entering Sbox number 6, 10
and 14 of penultimate round we need the value of Y17[6, 10, 14], but it is impossi-
ble to determine the two middle bits of any of these 3 nibbles. This phenomenon
appears clearly if we look at Table 3, where we have depicted the bits of rounds
17 that can be computed from the ciphertext given the key guesses on K0. We
clearly see that the 3 highlighted nibbles Y17[6], Y17[10] and Y17[14] are not com-
pletely determined.

As it is, the sieve offered by these 3 Sboxes cannot be accessed, so each
possible value for the 52 bits of key would be suggested 27 times in average, and
the right value would not be distinguishable. Consequently, the attack fails.

3It corresponds to what we name in next section the first characteristic of type
(I, a), see Table 5.

Table 3. Analysis of 18-round differential attack of PRIDE by Zhao et al. [15]. All
the bit values that are computable are depicted with a ’1’, while other bits are shown
by ’0’.

P = I1 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
K0 ⊕K1 0000 0000 0000 0000 0000 1111 0000 0000 0000 1111 0000 0000 0000 1111 0000 0000
X1 0000 0000 0000 0000 0000 1111 0000 0000 0000 1111 0000 0000 0000 1111 0000 0000
Y1 0000 0000 0000 0000 0000 1111 0000 0000 0000 1111 0000 0000 0000 1111 0000 0000
· · · · · ·
X17 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
K′18 0000 0000 0000 0000 0000 1111 0000 0000 0000 1111 0000 0000 0000 1111 0000 0000
Y17 0000 1001 1001 0110 0000 1001 1001 0110 0000 1001 1111 0000 0000 1001 1111 0000
Z17 0110 0110 0110 0110 0001 0001 0010 0010 0001 0001 0010 0010 0110 0110 0110 0110
W17 1110 1110 0110 0110 1110 1110 0110 0110 1110 1110 0110 0110 1110 1110 0110 0110
X18 1111 1111 1111 0000 1111 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000
Y18 1111 1111 1111 0000 1111 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000
K0 1111 1111 1111 0000 1111 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000
C 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

The attack of Zhao et al. has high requirements (260 messages and 266 encryp-
tions), so taking into account the correction from the differential factors already
leads to an attack that does not break the security claim (260 × 270 > 2127). In
addition to that, correcting the problem we spotted in a straightforward manner
would require to make more guesses on K0, that is to guess 22 bits of the nibbles
K0[4, 8, 9, 12, 13, 16], so clearly fixing Zhao et al. paper does not lead to an attack
that threaten the cipher.

The authors’ confusion comes probably from the fact that the linear layer is
not an involution. In the case it was, knowing the bits they name would have
been enough to access the active Sboxes in round 17. Unfortunately, L1 and L2
do not define involutions so more bits are required to find the output of the 3
active Sboxes of round 17.

4.2 19-Round Differential Attack by Yang et al.

There is a similar mistake in the 19-round attack described by Yang et al. in [14].
They use a 15-round characteristic4 and expand it two rounds to the plaintext

side and two rounds to the ciphertext side. After discarding pairs that for sure
do not follow the characteristic, they guess nine nibbles of key in plaintext side,
namely (K0 ⊕ K1)[1, 2, 3, 5, 7, 9, 10, 13, 14], and partially encrypt the plaintext
pairs through the first Sbox layer. On the ciphertext side, they guess the seven
nibbles 1, 2, 5, 8, 9, 10 and 13 of K0 and partially decrypt the ciphertext pairs
through the last Sbox layer. They next claim that they can also recover nibbles
number 5 and 9 of K2 and nibbles 5 and 9 of K ′19 = (M ◦ P)−1(f19(k1)).

Similarly to the 18-round attack discussed in previous section and as de-
scribed in [12], this attack uses difference transitions that are differential factors,
meaning that it fails to recover 4 bits of the key (each most significant bit of
nibbles number 5 and 9 of K2 and nibbles 5 and 9 of K ′19).

4The fourth characteristic of type (II, a) given in Table 5.

Table 4. Analysis of 19-round differential attack of PRIDE by Yang et al. [14]. We
use the same notation as before and depict known bits with ’1’.

P = I1 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
K0 ⊕K1 1111 1111 1111 0000 1111 0000 1111 0000 1111 1111 0000 0000 1111 1111 0000 0000
X1 1111 1111 1111 0000 1111 0000 1111 0000 1111 1111 0000 0000 1111 1111 0000 0000
Y1 1111 1111 1111 0000 1111 0000 1111 0000 1111 1111 0000 0000 1111 1111 0000 0000
Z1 1110 1010 1100 1100 1110 1010 1100 1100 1110 1010 1100 1100 1110 1010 1100 1100
W1 1000 1100 1000 1000 0100 0000 0100 0000 0000 0100 0000 0100 1000 1000 1000 1100
I2 1001 0100 0000 0000 1001 1010 0000 0000 1001 0100 0000 0000 1001 0011 0000 0000
K2 0000 0000 0000 0000 1111 0000 0000 0000 1111 0000 0000 0000 0000 0000 0000 0000
X2 0000 0000 0000 0000 1001 0000 0000 0000 1001 0000 0000 0000 0000 0000 0000 0000
Y2 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
· · · · · ·
X18 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
K′19 0000 0000 0000 0000 1111 0000 0000 0000 1111 0000 0000 0000 0000 0000 0000 0000
Y18 1001 0000 0100 0000 1001 0000 0010 0000 1001 0010 0000 0000 1001 0100 0000 0000
Z18 1000 1000 1000 1000 0010 0000 0000 0100 0000 0010 0100 0000 1000 1000 1000 1000
W18 1100 1001 1100 1000 1100 1001 1100 1000 1100 1001 1100 1000 1100 1001 1100 1000
X19 1111 1111 0000 0000 1111 0000 0000 1111 1111 1111 0000 0000 1111 0000 0000 0000
Y19 1111 1111 0000 0000 1111 0000 0000 1111 1111 1111 0000 0000 1111 0000 0000 0000
K0 1111 1111 0000 0000 1111 0000 0000 1111 1111 1111 0000 0000 1111 0000 0000 0000
C 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

Moreover, as in previous section, we note that there is a problem upstream
to that one. Namely, the authors simply cannot compute the desired Sbox tran-
sitions given their guesses: they lack information to compute the two middle bits
of I2[5, 9] and Y18[5, 9]. Consequently, they cannot obtain information on these
four nibbles, and the right key cannot be identify (even if the correction given
by Tezcan et al. is applied).

The detail of which bits are computable in first and last two rounds is pro-
vided in Table 4.

The initial attack requires 262 chosen plaintexts and 263 19-round encryp-
tions. To correct the errors we spotted, it is necessary to significantly increase
the number of key guesses. We need the value of 24 bits of nibbles number 3, 4,
7, 11, 12, 15, 16 of K0 to be able to treat the 2 Sboxes of penultimate round,
while we need the value of (K0⊕K1)[12, 16] and 3 bits of (K0⊕K1)[6] to access
the 2 Sboxes of round 2. Clearly, the straightforward correction does not lead to
a correct attack since the time complexity explodes.

5 Differential Characteristics for PRIDE

5.1 1 and 2-Round Iterative Differential Characteristics

As already shown in [15,14], there are 56 high-probability iterative characteris-
tics on 1 and 2 rounds of PRIDE, each activating only 4 Sboxes on 2 rounds
whose both input and output differences are equal to 8. Hence, the probability
of any of these iterative characteristics is equal to (2−2)4 = 2−8. The 56 possible
input/output differences are given in Table 5, where they are grouped according
to the number of active Sboxes in the first round (line I, II or III) and to
the index of the first active Sbox in the input difference (column a, b, c and d).

Note that all type II characteristics are iterative on 1 round while the others
are iterative on 2 rounds.

Table 5. Hexadecimal value of all the 1 and 2-round iterative differential characteristics
of PRIDE. The characteristic used in our attack is highlighted.

a b c d

I

8000 0000 0000 0000 0800 0000 0000 0000 0080 0000 0000 0000 0008 0000 0000 0000
0000 8000 0000 0000 0000 0800 0000 0000 0000 0080 0000 0000 0000 0008 0000 0000
0000 0000 8000 0000 0000 0000 0800 0000 0000 0000 0080 0000 0000 0000 0008 0000
0000 0000 0000 8000 0000 0000 0000 0800 0000 0000 0000 0080 0000 0000 0000 0008

II

8000 8000 0000 0000 0800 0800 0000 0000 0080 0080 0000 0000 0008 0008 0000 0000
8000 0000 8000 0000 0800 0000 0800 0000 0080 0000 0080 0000 0008 0000 0008 0000
8000 0000 0000 8000 0800 0000 0000 0800 0080 0000 0000 0080 0008 0000 0000 0008
0000 8000 8000 0000 0000 0800 0800 0000 0000 0080 0080 0000 0000 0008 0008 0000
0000 8000 0000 8000 0000 0800 0000 0800 0000 0080 0000 0080 0000 0008 0000 0008
0000 0000 8000 8000 0000 0000 0800 0800 0000 0000 0080 0080 0000 0000 0008 0008

III

0000 8000 8000 8000 0000 0800 0800 0800 0000 0080 0080 0080 0000 0008 0008 0008
8000 0000 8000 8000 0800 0000 0800 0800 0080 0000 0080 0080 0008 0000 0008 0008
8000 8000 0000 8000 0800 0800 0000 0800 0080 0080 0000 0080 0008 0008 0000 0008
8000 8000 8000 0000 0800 0800 0800 0000 0080 0080 0080 0000 0008 0008 0008 0000

5.2 14-Round Differential Characteristics

Repeating any of the iterative characteristics of Table 5 gives a 14-round charac-
teristic of probability 2−56. To find out if there are other 14-round characteristics
with similar or better probability, we searched for characteristics with up to 3
active Sboxes in each round. Our program returned 168 (new) 14-round charac-
teristics of probability 2−56. Unfortunately, these characteristics are less advan-
tageous than the iterative ones since when we propagate them with probability
1 in the forward and backward direction they activate more Sboxes.

Assume then that we use a 14-round characteristic (built from one of Table 5)
between round 3 and 17 of the cipher. By inverting the linear layer, we compute
∆Y2 from ∆I3, thus capturing 56 pairs (∆Y2 , ∆X17) that hold with probability
2−56. In addition to that, a 14-round characteristic defines a limited number of
possible differences for∆I2 and∆Y18 that can be computed from the distribution
table of the Sbox (Table 8 in Appendix). Namely, each active Sbox of ∆I2 and
∆Y17 can only take 4 values, so we obtain that ∆I2 and ∆Y17 can respectively
take 4n2 and 4n17 values, where ni represents the number of active Sboxes in
round i.

6 Differential Cryptanalysis of 18-Round PRIDE

This section describes our 18-round differential cryptanalysis of PRIDE. We
start by exposing a differential property of PRIDE Sbox and then show how
to use it in an attack to easily find information on key bits. We then detail the
complexities of our attack.

6.1 PRIDE Sbox Properties for our Differential Characteristics

As discussed in Section 5.2, the difference transitions made by the Sboxes of
round 2 and 17 are either from 8 to 2, 3, 8 or a or from 2, 3, 8 or a to 8. For these
configurations, the following property holds:

Property 2. (Relations defined by difference transitions of the Sbox)
If two Sbox inputs differ by 2 (respectively 3, 8 or a) and lead to an output
difference of 8 then the following relations hold:

S(x)⊕ S(x⊕ 2) = S(x1x2x3x4)⊕ S(x1x2x̄3x4) = 8 ⇒ x2 = 0, x4 = 0
S(x)⊕ S(x⊕ 3) = S(x1x2x3x4)⊕ S(x1x2x̄3x̄4) = 8 ⇒ x2 = 1, x3 = x4
S(x)⊕ S(x⊕ 8) = S(x1x2x3x4)⊕ S(x̄1x2x3x4) = 8 ⇒ x2 = 1, x3 = x̄4
S(x)⊕ S(x⊕ a) = S(x1x2x3x4)⊕ S(x̄1x2x̄3x4) = 8 ⇒ x2 = 0, x4 = 1

Proof. The property results from the component functions (Definition 1).

In other words, if we are able to check that the input difference of an active
Sbox is 2, 3, 8 or a and if we expect its output difference to be equal to 8 then
we are able to deduce information on the value of the state entering this Sbox.
Namely, we obtain the value of x2 together with either the value of x4 or a
relation between x4 and x3.

This observation implies that to check if an Sbox executes the right transi-
tion (so to have access to the corresponding filter of probability 2−2) we only
require information on (at most) 3 bits (bits 2, 3 and 4). This can be seen as a
reinterpretation of the undisturbed bits of [11].

6.2 Overview of the Attack Procedure

In our attack, we use the 14-round characteristic5 of type II given in row 16 of
Table 9, and extend it 2 rounds to the plaintext and 2 rounds to the ciphertext.
This extension defines 4 rounds of key recovery that will allow us to recover 10
bits of key on the plaintext side and 10 bits of key on the ciphertext side.

The reasons why we decided to use this particular characteristic are the
following. First, among the 224 (168 new and 56 previously found) characteristics
we prefer the ones which imply less active Sboxes on the plaintext and ciphertext
side, and consequently require to make less guesses and computations when
checking that first and last round transitions are correct. This downsizes the
set of candidate characteristics to 24 (8 of each type), each activating a total
of 14 Sboxes on the plaintext and ciphertext side. As can be seen in Table 9
of Appendix C, type I characteristics activate 9 Sboxes on plaintext side and
5 Sboxes on ciphertext side while for type II we have 7 active Sboxes on each
side, and for type III the distribution is of 6 active Sboxes on plaintext side and
8 on ciphertext side.

5Note that this characteristic is iterative on 1 round.

Then, among the 24 possible characteristics, we prefer the ones that lead to
smaller amount of possible differences6 when extending the characteristic with
probability 1 in plaintext and ciphertext. We also take into account the number
of key bits that we need to guess.

When looking for minimizing these parameters, both some of the character-
istics of type I and type II seem good. Type I characteristics require 1 more
key bit guess, but lead to less possible differences in plaintext and ciphertext.
Eventually we prefer characteristics of type II since the memory size required
to store a full structure is more reasonable.

This selection is further explained in Appendix C.

Table 6. Differential extension of the 14-round characteristic used in our attack.

∆P = ∆X1 0000 0000 0000 ???? ???? ???? 0000 ???? ???? 0000 0000 ???? 0000 0000 0000 ????
∆Y1 0000 0000 0000 ?00? 00?0 00?0 0000 ?00? 00?0 0000 0000 ?00? 0000 0000 0000 ?0??
∆Z1 000? 000? 000? 000? 0000 0000 0000 0000 0000 ??00 ?000 000? 000? 000? 000? 000?
∆W1 0000 000? 0000 000? 0000 0000 0000 0000 0000 000? 0000 000? 0000 000? 0000 000?

∆I2 = ∆X2 0000 0000 0000 0000 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000 ?0??
∆Y2 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000
· · · · · ·

∆I17 = ∆X17 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000
∆Y17 0000 0000 0000 0000 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000 ?0??
∆Z17 0000 000? 0000 000? 0000 0000 0000 0000 0000 000? 0000 000? 0000 000? 0000 000?
∆W17 000? 000? 000? 000? 0000 0000 0000 0000 ?0?? 0000 ?00? 000? 000? 000? 000? 000?

∆I18 = ∆X18 00?0 0000 00?0 ?0?? 0000 0000 0000 ?00? 00?0 0000 0000 ?0?? 0000 0000 0000 ?0??
∆Y18 = ∆C ???? 0000 ???? ???? 0000 0000 0000 ???? ???? 0000 0000 ???? 0000 0000 0000 ????

For the selected characteristic, and as explained in Section 5.2, ∆X2 can take
42 = 16 possible values, implying that there are also 16 possible values for ∆Y1
(these values are given in Appendix D). As shown in Table 6, we have 7 active
nibbles for the 16 possible differences of ∆Y1 (nibbles 4, 5, 6, 8, 9, 12 and 16)
while the other 9 nibbles are always inactive. We use this property to reduce
the necessary amount of data by building data structures: the messages we ask
for encryption are organized as sets of 24·7 = 228 plaintexts that are all equal
in the corresponding 9 inactive nibbles and take all possible values in the above
mentioned 7 nibbles. So in each structure there is about 28·7−1 = 255 plaintext
pairs that differ in the 7 nibbles of interest.

A pair from this structure has the correct difference in ∆Y2 if it reaches one
of the 16 targeted values for ∆Y1 and then makes happen the correct transitions
of Sbox 8 and 16 of the Sbox layer of round 2. The probability of this event can
be computed as follows.

Probability that a pair takes one of the 16 targeted values in ∆Y1.
Consider a complete structure, that is the set made by all the messages with the
same – fixed – value on our 9 inactive nibbles and taking all possible values on the
other 7 nibbles. There are exactly 228 such plaintexts. Since the key addition step
defines a permutation, we still have 228 messages differing on 7 nibbles after the
addition of the whitening keyK0 and the first round keyK1. The same reasoning

6Here we look at real values instead of truncated differences.

applies to the Sbox layer: the messages in our structure take all possible values
at the input of 7 Sboxes, so since PRIDE Sbox is a permutation the images of
these messages still correspond to 228 messages differing on the same positions.
Consequently, when forming pairs of these messages, every possible non null
difference on the 7 nibbles appears 227 times, so in one structure exactly 16×227

pairs out of 255 are useful for our attack (i.e. a ratio of 1 out of 224).
Probability that one of the 16 differences in ∆Y1 leads to the cor-

rect ∆Y2. If ∆Y1 is as required, the probability that the second round leads
to the desired characteristic is equal to (2−2)2 = 2−4, which corresponds to the
probability that the two active Sboxes of round 2 output a difference of 8 given
an entering difference of 2, 3, 8 or a.

In sum, the total probability that one of our pairs follows the characteristic
is equal to:

2−24 · 2−4 · 2−56 = 2−84

which corresponds to realizing the correct transitions in round 1 and 2, following
the 14-round characteristic7 and finally propagating with probability 1 in the last
2 rounds.

This indicates that we need to encrypt about a · 284 plaintext pairs in order
to obtain a pairs that follow the characteristic (also called right pairs). This
amount can be obtained with a · 284 · 2−55 = a · 229 data structures i.e. with
a · 257 chosen plaintexts.

In the forward extension there are 42 = 16 possible values for ∆Y17, so there
are 16 possible values for ∆X18 (see Appendix D). As shown in Table 6, these
16 possible values for ∆X16 define at most 7 active nibbles (nibbles 1, 3, 4, 8,
9, 12 and 16) while other 9 nibbles are always inactive. A common technique to
filter out wrong pairs consists in discarding pairs that have active Sboxes at any
of these 9 positions. Given our harsh restrictions in terms of time complexity, we
prefer considering a stronger filter which consists in checking that the difference
observed in both plaintext and ciphertext differences are consistent with the 16
possible differences that can take Y1 and X18.

Once we generated enough messages and filtered them according to plaintext
and ciphertext differences, we start making key guesses: we test together a pair
with a possible value for the key by making partial encryptions and checking
that the necessary conditions are fulfilled. We discard all the candidates that do
not follow the characteristic.

We start by considering the ciphertext side and make a guess on the seven
nibbles K0[1, 3, 4, 8, 9, 12, 16]. We partially decrypt each of the pairs through the
matching seven nibbles of the last Sbox layer, and look at the difference that we
obtain: any candidate which difference is not one of the previously computed 16
possible values for ∆X18 is discarded.

We follow a similar procedure in plaintext side: we make a guess on the
28 key bits that intervene in the computation of the 7 active Sboxes ((K0 ⊕
K1)[4, 5, 6, 8, 9, 12, 16]) and partially encrypt the corresponding nibbles. If the

7Our experiments for up to 7 rounds showed that the probability of the differential
matches the one of the characteristic.

obtained difference is one of the 16 precomputed ones, we keep the candidate as
possible, otherwise we discard it.

At this point, each pair is associated with 28 + 28 = 56 bits of key corre-
sponding to (K0 ⊕K1)[4, 5, 6, 8, 9, 12, 16] and K0[1, 3, 4, 8, 9, 12, 16]. From these
possible values for parts of (K0 ⊕K1) and of K0, we deduce possible values for
K1[4, 8, 9, 12, 16]. In addition to that, Property 1 implies that we can deduce
nibble 4, 8 and 16 of any round key Ki.

We now have a look at the Sbox layer of round 2. We know the value of
the differences entering Sbox 8 and 16, together with the value of K2[8, 16]. To
check if the Sboxes execute the right transitions, we lack the value of the two
middle bits of nibble I2[8] and I2[16]. By inverting the linear layer, we can see
that these values depend on the values of 3 unknown bits which are bit 2, 42 and
59 of state Y1 (see Figure 3). The ANF description of the Sbox (see Section 6.1)
indicates that the values of these 3 bits depend on 10 bits of the plaintext (which
is known), together with 10 key bits: (K0 ⊕K1)2,3,4[1], (K0 ⊕K1)2,3,4[11] and
(K0 ⊕K1)[15] respectively. Consequently, the idea would be to make a guess on
these 10 key bits, deduce the value of X2[8] and X2[16] and check whether the
transitions are satisfied or not. The probability that a guess passes this test is
2−4.

We follow a similar procedure to handle the last 2 rounds. Let us recall here
that our 14-round characteristic ends at round 16 and that the difference spreads
freely in rounds 17 and 18, which are respectively of type R and R′. Our goal
here is to check the transitions of Sbox 8 and 16 of round 17 by using Property 2.
To limit the complexity of this step, we only check that the value of x2 is correct
instead of checking both relations, so we are only interested in Y 2

17[8] and Y 2
17[16]

(denoted c2 and d2 in Figure 4). By referring to the linear layer, we obtain that
their expressions in function of I18 are:{

Y 2
17[8] = I2

18[6]⊕ I2
18[7]⊕ I2

18[14],
Y 2

17[16] = I2
18[3]⊕ I2

18[11]⊕ I2
18[12].

The value of I18 depends on ciphertext bits (state C) together with bits of K0
and K18. For instance, Y 2

17[8] can be rewritten as:
Y 2

17[8] = (K2
18[6]⊕X2

18[6])⊕ (K2
18[7]⊕X2

18[7])⊕ (K2
18[14]⊕X2

18[14])
= (K2

18[6]⊕K2
18[7]⊕K2

18[14])⊕ (Y 4
18[6]⊕ Y 3

18[6]Y 2
18[6])⊕ (Y 4

18[7]⊕ Y 3
18[7]Y 2

18[7])
⊕ (Y 4

18[14]⊕ Y 3
18[14]Y 2

18[14])
= (K2

18[6]⊕K2
18[7]⊕K2

18[14])⊕ ((C4[6]⊕K4
0 [6])⊕ (C3[6]⊕K3

0 [6])(C2[6]⊕K2
0 [6]))

⊕ ((C4[7]⊕K4
0 [7])⊕ (C3[7]⊕K3

0 [7])(C2[7]⊕K2
0 [7]))⊕ ((C4[14]⊕K4

0 [14])
⊕ (C3[14]⊕K3

0 [14])(C2[14]⊕K2
0 [14])).

Which indicates that we need to make a guess on:
K2,3

0 [6],K2,3
0 [7],K2,3

0 [14],K2
18[6]⊕K2

18[7]⊕K2
18[14]⊕K4

0 [6]⊕K4
0 [7]⊕K4

0 [14].

We follow a similar procedure for Y 2
17[16] and conclude that we need to guess

another 3 bits, namely:
K2,3

0 [11],K4
0 [11]⊕K2

18[3]⊕K2
18[11]⊕K2

18[12].

To sum up the key guessing process, we started from a set of a · 284 possible
pairs, we guessed 28 + 28 + 10 + 10 = 76 key bits and we had access to a filter of
2−36 · 2−24 · 2−24 · 2−4 · 2−2 = 2−54 (which corresponds respectively to filtering
on the ciphertext difference, checking last and first round and finally second and
seventeenth rounds). The number of candidates remaining in the last step is then
equal to a · 270. So, in average, each of the 76-bit key candidate will be counted
a · 270 · 2−76 = a · 2−6 times, while as we expect to have a right pairs, the right
key candidate will be counted a times. The signal to noise ratio (S/N) will then
be equal to 26, which ensure that we can distinguish the right key candidate
from the wrong ones.

The last step of the attack consists in doing an exhaustive search to find the
correct value for the remaining 128− 76 = 52 key bits.

6.3 Detailed Description of the Attack and of its Complexities

In this section, we detail the time, data and memory complexities of our attack.
We show that a naive implementation of the attack procedure described in Sec-
tion 6.2 would lead to a time complexity overrun, and show how to deal with
this issue.

Data Complexity: As detailed previously, we need about a ·257 chosen plaintexts
in order to successfully achieve the attack. We choose a = 24, which means that
the data complexity of our attack is equal to 261. We recall that the security
provided by PRIDE when the attacker has access to 2d messages is equal to
2127−d. Since our attack requires 261 messages, we are limited to a number of
operations lower than 266 encryptions.

Time Complexity: To summarize the process described in Section 6.2, the attack
is made of 6 main steps:

1. Encrypt 233 structures and filter wrong pairs by looking at their input and
output differences.

2. Make a guess on 28 bits of K0 and check the transitions of the active Sboxes
of last round. Eliminate wrong candidates, (that are associations of a pair
with a key value that do not satisfy the transitions).

3. Make a guess on 28 bits of K0 ⊕K1 and check the transitions of the active
Sboxes of first round. Eliminate wrong candidates.

4. Make additional guesses on 10 bits of K0 ⊕K1 to access the value entering
Sbox number 8 and 16 of round 2 and check their transitions.

5. Make additional guesses on 10 bits of K0 and K18 to access the value out-
putting Sbox number 8 and 16 of round 17 and check their transitions.

6. The key guess that is suggested the most is the correct one. Make a guess on
remaining 52 key bits and do trial encryptions to recover the 128-bit master
key.

A naive implementation of this process would lead to several problems. First,
the attack involves many key bit guesses and uses many pairs, which would make
the time complexity exceed our upper bound of 266 PRIDE encryptions as soon
as step 3. Second, detecting which key candidate is the most frequent would
require to keep track of 276 counters, which is clearly not reasonable.

As described next, we solve those two problems by making small guesses at
the time and by studying each possible key guess for all possible pairs instead
of studying each pair one after the other with all the possible key candidates.

First 3 Steps of the Attack. As briefly mentioned in Section 6.2, the first
step of the attack consists in filtering the 288 pairs of messages by looking at
their plaintext and ciphertext differences.

Starting from the known 16 possible differences in ∆Y1 and ∆X18, we refer
to the difference distribution table and precompute the possible differences in
P and C. A search returns that ∆P can take 170164 = 217.38 values while ∆C
can take 999448 = 219.93 values. This implies that out of the 288 initial pairs of
messages only 288 · (217.38 · 2−28) · (219.93 · 2−64) = 233.31 pairs will remain.

In practice, we start by filtering pairs according to the truncated difference
in the ciphertext. We are left with 252 pairs whose differences on the plaintext
and ciphertext sides are only on (at most) 7 nibbles. We then build two tables
of 228 bits each: the first table indicates if a difference on 28 bits is possible in
the plaintext side (so contains a ’1’ at the position corresponding to the 217.38

possible ∆P), while the second indicates which 28-bit differences are valid on
the ciphertext side. Each of the 252 remaining pairs then requires at most two
table look up to be filtered.

Then, we store all these 233.31 pairs and evaluate them with all possible key
values. This change implies that instead of needing 276 counters, we have to save
the 233.31 pairs (so we require 235.31 blocks of 64 bits).

In step 2, we start by guessing 7 nibbles of K0 (K0[1, 3, 4, 8, 9, 12, 16]). For
each possible value we study the 233.31 pairs, and cancel the ones that do not
fulfill the required conditions. More precisely, the key guess is used to invert
last round Sbox layer and compute the difference ∆X18. We only keep pairs
that lead to one of the 16 possible differences given in Table 10. Since there are
228 possible values for the 7 key nibbles and that we repeat these operations for
each of the 233.31 pairs, this step is made 261.31 times. To express this complexity
in terms of PRIDE encryptions, we can see that it consists in computing two
times 7 Sboxes (for a pair), while 1 full encryption with the cipher requires
18 · 16 = 288 = 28.17 Sbox computations. Step 2 is then roughly equivalent to
256.95 PRIDE encryptions.

Step 3 consists in the same operations as step 2 but in plaintext side. We
guess the 7 nibbles (K0⊕K1)[4, 5, 6, 8, 9, 12, 16] and compute the corresponding
7 Sboxes of round 1 for all the remaining pairs. The pairs that are processed
in this step correspond to the pairs that remain after step 2, that is on average
233.31 · (16 · 2−19.93) = 217.38 pairs associated to each possible value for the 28
bits of key. In its naive form, the number of PRIDE encryptions made in this

step would then be equal to 228 · 228 · 217.38 · 7 · 2 · 2−8.17 = 269.02, which exceeds
our limit of 266 PRIDE encryptions. To solve this problem, we encrypt one
Sbox after the other and immediately check if the conditions are fulfilled. We
start with Sbox number 5, for which according to Table 10 the targeted output
difference is 2. Given one of the 24 possible values for (K0 ⊕ K1)[5] fixed, we
compute Y1[5] (this requires a total of 228 ·24 ·217.38 ·2 = 250.38 Sbox operations)
and check that the obtained difference is equal to 2. To compute the number of
pairs that pass this test we need to take into account the proportion of pairs
for which Sbox number 5 is active (equal to 152004

170164 = 2−0.16) together with the
probability that an active Sbox of our pre-filtered set leads to a difference of 2
(which is 1

6). We obtain the following estimate:

217.38 · (152004
170164 ·

1
6 + 18160

170164 · 1) = 217.38 · 2−1.97 = 215.41.

In the same way, we make a guess on the 4 bits of (K0⊕K1)[6], which requires
228 · 24 · 24 · 215.41 · 2 = 252.41 Sbox encryptions. We then filter out wrong pairs
by checking that active Sboxes give a difference of 2. The number of remaining
pairs is then equal to8 213.37. We then process Sbox number 9, which requires
228 · (24)3 · 213.37 · 2 = 254.37 Sbox encryptions and leaves us with an average of
212.33 pairs for each partial key guess. Next, we treat Sbox number 4 and 12,
taking advantage of the fact that they must have the same output difference.
The number of Sbox encryptions is equal to 261.33 and 28.73 pairs remain in
average. We finally handle the last 2 Sboxes together, which requires 265.73 Sbox
encryptions and discard all but 24 pairs in average for each key candidate9. To
sum up, total time complexity of this step is 250.38 + 252.41 + 254.37 + 261.33 +
265.73 = 265.80 which is equivalent to 266.80−8.17 = 257.63 PRIDE encryptions.

Step 4 and 5. Next operations (step 4 and 5) consist in checking the transitions
of Sbox number 8 and 16 in round 2 and in round 17. As explained before, we
look at the value of only 3 out of their 4 input bits in round 2 and only 1 out of
4 output bits in round 17. In the following, we name these bits ai, bi, (2 ≤ i ≤ 4)
and c2, d2, respectively (see Figure 3 and Figure 4).

We start by explaining how to check the 2 active Sboxes of round 2. We re-
mark here that if a2 (respectively b2) defines a condition on its own, the condition
that a4 (resp. b4) must fulfill sometimes depends on a3 (resp. b3).

As briefly mentioned in Section 6.2 and as illustrated in Figure 3, a2 and b2
are given by the following two expressions:

a2 = K2
2 [8]⊕ Y 2

1 [1]⊕ Y 2
1 [8]⊕ Y 2

1 [11]
b2 = K2

2 [16]⊕ Y 2
1 [8]⊕ Y 2

1 [11]⊕ Y 2
1 [12]

8The computation of the quantities used in this step are detailed in Appendix E.
9217.38 · (16 · 2−17.38) = 24

P

Y1

X1

Z1

W1

K0 ⊕K1

L0

S S S S

L1

S S S S

L2

S S S S

L3

S S S S

I2
X2

S S S S S S S S S S S S S S S Sa2a3a4 b2b3b4

K2

Fig. 3. Bits involved in the computation of a2, a3, a4 and b2, b3, b4.

that when referring to Definition 1 can be rewritten as:

a2 = K2
2 [8]⊕ P 4[1]⊕ (K0 ⊕K1)4[1]
⊕(P 3[1]⊕ (K0 ⊕K1)3[1]) · (P 2[1]⊕ (K0 ⊕K1)2[1])
⊕Y 2

1 [8]⊕ P 4[11]⊕ (K0 ⊕K1)4[11]
⊕(P 3[11]⊕ (K0 ⊕K1)3[11]) · (P 2[11]⊕ (K0 ⊕K1)2[11]) (1)

b2 = K2
2 [16]⊕ Y 2

1 [8]⊕ P 4[11]⊕ (K0 ⊕K1)4[11]
⊕(P 3[11]⊕ (K0 ⊕K1)3[11]) · (P 2[11]⊕ (K0 ⊕K1)2[11])
⊕Y 2

1 [12], (2)

for which the only unknown bits are (K0⊕K1){2,3,4}[1] and (K0⊕K1){2,3,4}[11].
Indeed, the plaintext bits are known andK2

2 [8] andK2
2 [16] are deduced from key-

schedule properties, while a2 and b2 are determined by the difference observed
in X2 together with the relations given by Property 2.

Consequently, we make a guess on these 6 key bits and check that the relations
given by Equation (1) and Equation (2) hold, which happens with probability
2−2.

Since we have an average of 24 candidates for each possibility for the 56 bits
of key guessed so far, this step is repeated 24 × 256 × 26 = 266 times. We expect
that 24 × 256 × 26 × 2−2 = 264 candidates remain after it. Since computing a2
and b2 requires less operations than for an Sbox encryption, the time complexity
of this step is less than 2 · 266−8.17 = 258.83 full cipher encryptions.

We then look at a3, a4, b3 and b4. As can be seen in Figure 3, the bits that
are necessary to compute a4 and b4 are Y 4

1 [4], Y 4
1 [8], Y 4

1 [12], Y 4
1 [16], K4

2 [8] and
K4

2 [16]. Since all these bits are known from previous computations, we can obtain
a4 and b4 and deduce from the value of ∆Y1 and Property 2 the conditions that
they must fulfill on their own or with respect to a3 and b3.

I17

Y17

X17

Z17

W17

K17

L0

S S S S

L1

S S S S

L2

S S S S

L3

S S S S

I18
X18

S S S S S S S S S S S S S S S S

c2 d2

K18

Y18
C

K0

Fig. 4. Bits involved in the computation of c2 and d2.

To simplify the explanation, we consider that a3 and b3 are always necessary
to check the Sboxes. Note that this simplification is at the disadvantage of the
attacker and results in an over estimation of the time complexity.

Bits a3 and b3 are given by the following expressions (see also Figure 3):

a3 = K3
2 [8]⊕ Y 3

1 [4]⊕ Y 3
1 [5]⊕ Y 3

1 [15]
b3 = K3

2 [16]⊕ Y 3
1 [4]⊕ Y 3

1 [15]⊕ Y 3
1 [16]

in which the only unknown bit is Y 3
1 [15]. Since this term appears linearly in

both a3 and b3, we can obtain a relation relying only on known bits by xoring
the two expressions:

a3 ⊕ b3 = K3
2 [8]⊕K3

2 [16]⊕ Y 3
1 [5]⊕ Y 3

1 [16].

Therefore without any key guessing we can filter our candidates and reduce
their number by a factor of 2−1: as a result, 263 candidates remain at this point,
while the complexity of this step is lower than 264−8.17 = 255.83 encryptions.

For the remaining candidates, we guess (K0⊕K1)[15] to be able to compute
Y 3

1 [15] and we check that a3 takes the right value. This requires a guess of 4
bits, and leads to a reduction of the set of possible candidates by a factor of 2−1.
With 267 simple computations (each roughly equal to one Sbox computation, so
with a time complexity that is less than 258.83 PRIDE encryptions), we reduce
the number of candidates to 266.

At this point, we have 266 candidates made of a pair of plaintext/ciphertext
associated to a guessed value for 66 key bits. The average count for a wrong key
is expected to be 1, while we built our messages so that the right key appears
around a = 24 times.

The distribution of keys in the candidates follows a binomial distribution of
parameters n = 266 and p = 2−66 (B(266, 2−66)) that can be approximated by a
Poisson distribution of parameter λ = np = 1 so the probability that a wrong

key appears strictly more than t times in our set of candidates is given by:

Pt = 1−
t∑

k=0
e−1 · 1k

k! = 1− e−1 ·
t∑

k=0

1
k!

The idea here is to do an additional filtering step (that is checking the 2
active Sboxes of round 17) only for candidates that are associated with a key
that is suggested t+ 1 times or more. Doing so, the ratio of candidates that we
have to study is equal to Pt.

We choose t = 13, meaning that we are now looking at 266 · 2−37.7 = 228.3

candidates. For these, we start by computing the value of c2 and d2, that as can
be seen in Figure 4 depend on the following unknown bits:

– For c2: K{2,3}0 [6], K{2,3}0 [7], K{2,3}0 [14] and K2
18[6] ⊕ K2

18[7] ⊕ K2
18[14] ⊕ K4

0 [6] ⊕
K4

0 [7]⊕K4
0 [14].

– For d2: K{2,3}0 [11] and K4
0 [11]⊕K2

18[3]⊕K2
18[11]⊕K2

18[12].

We start by guessing the 3 key bits required to compute d2, and we filter our
guesses by confronting the obtained value with the value given by Property 2.
The filtering ratio is of 2−1, so the number of candidates after this step is:
228.3 × 23 × 2−1 = 230.3.

Next, we repeat the same process by guessing the 7 unknown key bits that
are necessary to compute c2. The number of candidates obtained at this point is:
230.3× 27× 2−1 = 236.3, and the time complexity of these two steps is negligible
in comparison to previous ones.

For all the key candidates that are (still) suggested 14 times or more, we
do an exhaustive search to find the value of the 128− 76 = 52 unknown key
bits and check them by doing a trial encryption. Since we expect 211.3 such key
candidates, this step will at most require 211.3 · 252 = 263.3 encryptions.

To sum up, the total data complexity of our attack is 261 chosen plaintexts, its
time complexity is less than 263.3 18-round PRIDE encryption and its memory
complexity is of 235 64-bit blocks.

7 Conclusion

In this paper, we studied the resistance of PRIDE against differential crypt-
analysis. We first proved that two previous differential attacks are wrong since
essential bits are unknown to the attacker, making her unable to succeed. Our
main contribution is a 18-round differential cryptanalysis of the cipher that re-
sults from a careful analysis of its high probability characteristics and of its
diffusion layer. Our attack recovers the full 128-bit master key with 261 cho-
sen plaintexts, a time complexity equivalent to 263.3 encryptions and requires to
store around 235 64-bit blocks.

References
1. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçin, T.: Block

Ciphers - Focus on the Linear Layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) Advances in Cryptology - CRYPTO 2014, Proceedings, Part I. LNCS, vol.
8616, pp. 57–76. Springer (2014)

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference, 2015. pp. 175:1–175:6. ACM (2015)

3. Dai, Y., Chen, S.: Cryptanalysis of full PRIDE block cipher. SCIENCE CHINA
Information Sciences 60(5), 052108:1–052108:12 (2017)

4. Dinur, I.: Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions with
Applications to PRINCE and PRIDE. In: Oswald, E., Fischlin, M. (eds.) Advances
in Cryptology - EUROCRYPT 2015, Proceedings, Part I. LNCS, vol. 9056, pp.
231–253. Springer (2015)

5. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A New Family of Lightweight Block
Ciphers. In: Juels, A., Paar, C. (eds.) RFID. Security and Privacy, RFIDSec 2011,
Revised Selected Papers. LNCS, vol. 7055, pp. 1–18. Springer (2011)

6. Guo, J., Jean, J., Mouha, N., Nikolic, I.: More Rounds, Less Security? IACR Cryp-
tology ePrint Archive 2015, 484 (2015)

7. Karakoç, F., Demirci, H., Harmanci, A.E.: ITUbee: A Software Oriented
Lightweight Block Cipher. In: Avoine, G., Kara, O. (eds.) Lightweight Cryptog-
raphy for Security and Privacy, LightSec 2013, Revised Selected Papers. LNCS,
vol. 8162, pp. 16–27. Springer (2013)

8. Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search (an
Analysis of DESX). J. Cryptology 14(1), 17–35 (2001)

9. Lac, B., Beunardeau, M., Canteaut, A., Fournier, J.J., Sirdey, R.: A First DFA
on PRIDE: from Theory to Practice (extended version). IACR Cryptology ePrint
Archive 2017, 075 (2017)

10. Standaert, F., Piret, G., Gershenfeld, N., Quisquater, J.: SEA: A Scalable En-
cryption Algorithm for Small Embedded Applications. In: Domingo-Ferrer, J.,
Posegga, J., Schreckling, D. (eds.) Smart Card Research and Advanced Applica-
tions, CARDIS 2006, Proceedings. LNCS, vol. 3928, pp. 222–236. Springer (2006)

11. Tezcan, C.: Improbable differential attacks on Present using undisturbed bits. J.
Computational Applied Mathematics 259, 503–511 (2014)

12. Tezcan, C., Okan, G.O., Senol, A., Dogan, E., Yücebas, F., Baykal, N.: Differential
Attacks on Lightweight Block Ciphers PRESENT, PRIDE, and RECTANGLE Re-
visited. In: Bogdanov, A. (ed.) Lightweight Cryptography for Security and Privacy,
LightSec 2016, Revised Selected Papers. LNCS, vol. 10098, pp. 18–32. Springer
(2016)

13. Tezcan, C., Özbudak, F.: Differential Factors: Improved Attacks on SERPENT. In:
Eisenbarth, T., Öztürk, E. (eds.) Lightweight Cryptography for Security and Pri-
vacy, LightSec 2014, Revised Selected Papers. LNCS, vol. 8898, pp. 69–84. Springer
(2014)

14. Yang, Q., Hu, L., Sun, S., Qiao, K., Song, L., Shan, J., Ma, X.: Improved Differ-
ential Analysis of Block Cipher PRIDE. In: Lopez, J., Wu, Y. (eds.) Information
Security Practice and Experience - ISPEC 2015, Proceedings. LNCS, vol. 9065,
pp. 209–219. Springer (2015)

15. Zhao, J., Wang, X., Wang, M., Dong, X.: Differential Analysis on Block Cipher
PRIDE. IACR Cryptology ePrint Archive 2014, 525 (2014)

A Specifications of L0, L1, L2, L3 and P , P−1

L0 = L−1
0 =



0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0


, L1 =



1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0


,

L2 =



0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1


, L3 = L−1

3 =



1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1


,

L−1
1 =



0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0


, L−1

2 =



0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1


.

Table 7. P and P−1 bit-permutation.

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P (x) 1 17 33 49 2 18 34 50 3 19 35 51 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55 8 24 40 56
x 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

P (x) 9 25 41 57 10 26 42 58 11 27 43 59 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63 16 32 48 64

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P−1(x) 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

x 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
P−1(x) 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

B Difference Distribution Table of PRIDE Sbox

Table 8. Difference distribution table of PRIDE Sbox.

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 4 0 0 4 2 2 2 2
3 0 0 0 0 0 0 0 0 4 0 0 4 2 2 2 2
4 0 4 0 0 0 0 4 0 0 2 2 0 2 0 0 2
5 0 4 0 0 0 4 0 0 0 2 2 0 2 0 0 2
6 0 4 0 0 4 0 0 0 0 2 2 0 0 2 2 0
7 0 4 0 0 0 0 0 4 0 2 2 0 0 2 2 0
8 0 0 4 4 0 0 0 0 4 0 4 0 0 0 0 0
9 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
a 0 0 0 0 2 2 2 2 4 0 4 0 0 0 0 0
b 0 0 4 4 0 0 0 0 0 0 0 0 2 2 2 2
c 0 0 2 2 2 2 0 0 0 2 0 2 2 0 2 0
d 0 0 2 2 0 0 2 2 0 2 0 2 0 2 0 2
e 0 0 2 2 0 0 2 2 0 2 0 2 2 0 2 0
f 0 0 2 2 2 2 0 0 0 2 0 2 0 2 0 2

C Best 14-Round Differential Paths

As explained in Section 5.2, there are many differential characteristics reaching
the minimum probability of 2−56. To find out which one is the best for our
attack, we first make the following observations:

– Probability of the 14-round differential path: 2−p
– Number of active Sboxes in round i: ni
– Probability that a pair of messages of the same structure leads to the correct

difference: 2−4n1

– Number of pairs needed to get around a right pairs: a · 2p+4n1

– Number of encryptions needed to obtain a full structure: 24n1

– Number of pairs that can be made with one structure: 28n1−1

– Number of structures required to get enough pairs: a · 2p−4n1+1

– Number of encryptions required to get enough pairs: a · 2p+1

From this, we can see that the number of encryptions needed to conduct
the attack only depends on p, so all the 14-round characteristics with maximal
probability (that is with p = 56) lead to the same data complexity.

Among these, we want to select the characteristic that leads to the minimal
time complexity. The parameters that impact it are first the number of active
Sboxes on plaintext and ciphertext side (nP and nC) but also the number of
possible differences in plaintext and ciphertext (N∆P and N∆C), and the number
of key bits that we need to guess (|KP | and |Kc|). Table 9 gives a comparison of
the best probability characteristics of minimal nP + nC .

Table 9. Comparison of 14-round characteristics with minimal nP + nC .

Type ∆It = ∆It+14 nP nC N∆P N∆C |KP | |KC |

I

8000 0000 0000 0000

9 5 224.86 210.97

53

27

0800 0000 0000 0000 53
0080 0000 0000 0000 53
0008 0000 0000 0000 50
0000 8000 0000 0000 53
0000 0800 0000 0000 53
0000 0080 0000 0000 53
0000 0008 0000 0000 50

II

8000 0000 8000 0000

7 7 217.38 219.93

40

38

0800 0000 0800 0000 40
0080 0000 0080 0000 40
0008 0000 0008 0000 40
0000 8000 0000 8000 40
0000 0800 0000 0800 40
0000 0080 0000 0080 40
0000 0008 0000 0008 38

III

8000 8000 0000 8000

6 8 214.10 224.33

35

45

0800 0800 0000 0800 35
0080 0080 0000 0080 35
0008 0008 0000 0008 35
8000 8000 8000 0000 35
0800 0800 0800 0000 35
0080 0080 0080 0000 35
0008 0008 0008 0000 33

D Possible Values for ∆Y1 and ∆X18

Table 10. 16 possible hexadecimal values for ∆Y1 and ∆X18.

∆X2[8, 16] ∆Y1 ∆Y17[8, 16] ∆X18

22 0000 2000 0000 0002 22 2022 0000 2002 0002
23 0001 2000 0001 0003 23 2023 0000 2003 0003
28 0008 2208 2008 0000 28 002a 0008 000a 0000
2a 0008 2008 0008 0002 2a 202a 0008 200a 0002
32 0001 2001 0001 0002 32 2023 0001 2003 0002
33 0000 2001 0000 0003 33 2022 0001 2002 0003
38 0009 2209 2009 0000 38 002b 0009 000b 0000
3a 0009 2009 0009 0002 3a 202b 0009 200b 0002
82 0008 0200 2008 000a 82 2008 0000 2008 000a
83 0009 0200 2009 000b 83 2009 0000 2009 000b
88 0000 0008 0000 0008 88 0000 0008 0000 0008
8a 0000 0208 2000 000a 8a 2000 0008 2000 000a
a2 0008 2000 0008 000a a2 202a 0000 200a 000a
a3 0009 2000 0009 000b a3 202b 0000 200b 000b
a8 0000 2208 2000 0008 a8 0022 0008 0002 0008
aa 0000 2008 0000 000a aa 2022 0008 2002 000a

E Details of the Filtration Ratio Used in the Attack
(Step 3)

We make the (sensible) assumption that the distribution observed in our set is
close to the one of a complete ∆P , in particular that filtering first according
to the output difference does not impact on the input difference distribution.
The successive filtering ratio are then similar to the ones we would observe on a
complete ∆P set.

Table 11. Successive filtering steps and expected number of remaining candidates for
a complete ∆P set.

∆X2[8, 16] |∆Y1| SB5 SB6 SB9 SB4 + SB12
(2, 2) 36 6 6 6 6
(2, 3) 576 96 96 96 6
(2, 8) 13 824 2 304 384 64 4
(2, a) 2 304 384 384 384 24
(3, 2) 2 304 384 384 384 24
(3, 3) 144 24 24 24 24
(3, 8) 110 592 18 432 3 072 512 32
(3, a) 16 128 2 688 2 688 2 688 168
(8, 2) 3 456 3 456 576 96 6
(8, 3) 13 824 13 824 2304 384 24
(8, 8) 16 16 16 16 16
(8, a) 864 864 144 24 24
(a, 2) 576 96 96 96 6
(a, 3) 1 920 320 320 320 20
(a, 8) 3 456 576 96 16 16
(a, a) 144 24 24 24 24
total 170 164 = ∆P 43 494 10 614 5 134 424

Table 11 should be read as follows: originally, ∆P is made of 170 164 differ-
ences corresponding to the 16 values that ∆X2 can take. We make a guess on
the value of (K0⊕K1)[5] and compute Sbox number 5 of first round. In case the
Sbox was active, the only correct output difference is 2, while a different result
expresses that the key guess associated to the given pair is not correct. In case
the Sbox is inactive, we cannot tell if a candidate is wrong so we keep it. This
phenomenon is depicted in column "SB5" of Table 11: the number of differences
that have nibble 5 active get divided by 6 (see the highlighted number) after we
checked that they give the right output difference, while other sets remain un-
changed. 43 494 pairs out of 170 164 remain, that is a ratio of 2−1.97. We follow
a similar procedure for Sbox 6 and 9, that also have to lead to a difference of 2.
We then look at Sbox number 4 and 12 together. As can be seen in Table 10,
their outputs have to take the same value equal to 1, 8 or 9. The probability of
obtaining any of these 3 values from an active Sbox of our set is in the worst
case for the attacker equal to 3 · 2−2. Then, the probability of getting a correct
pair of differences is equal to 3 · 2−2 · 2−2 · 1

3 = 2−4, which leads to the results
given in last column of Table 11.

The final step consists in checking Sbox 8 and 16 together with the consis-
tency of all the Sbox differences as a whole. This leaves only 16 differences.

	Differential Cryptanalysis of 18-Round PRIDE

