
Secure Computation with Differentially Private
Access Patterns

Sahar Mazloom1 and S. Dov Gordon1

1George Mason University

October 16, 2018

Abstract

We explore a new security model for secure computation on large
datasets. We assume that two servers have been employed to compute
on private data that was collected from many users, and, in order to im-
prove the efficiency of their computation, we establish a new tradeoff with
privacy. Specifically, instead of claiming that the servers learn nothing
about the input values, we claim that what they do learn from the com-
putation preserves the differential privacy of the input. Leveraging this
relaxation of the security model allows us to build a protocol that leaks
some information in the form of access patterns to memory, while also
providing a formal bound on what is learned from the leakage.

We then demonstrate that this leakage is useful in a broad class of com-
putations. We show that computations such as histograms, PageRank and
matrix factorization, which can be performed in common graph-parallel
frameworks such as MapReduce or Pregel, benefit from our relaxation.
We implement a protocol for securely executing graph-parallel computa-
tions, and evaluate the performance on the three examples just mentioned
above. We demonstrate marked improvement over prior implementations
for these computations.

1 Introduction
Privacy and utility in today’s Internet is a tradeoff, and for most users, utility
is the clear priority. Citizens continue to contribute greater amounts of private
data to an increasing number of entities in exchange for a wider variety of
services. From a theoretical perspective, we can maintain privacy and utility if
these service providers are willing and able to compute on encrypted data. The
theory of secure computation has been around since the earliest days of modern
cryptography, but the practice of secure computation is relatively new, and still
lags behind the advancements in data-mining and machine learning that have
helped to create today’s tradeoff.

1

Recently, we have seen some signs that the gap might be narrowing. The
advancements in the field of secure computation have been tremendous in the
last decade. The first implementations computed roughly 30 circuit gates per
second, and today they compute as many as 6 million per second [40]. Scat-
tered examples of live deployments have been referenced repeatedly, but most
recently, in one of the more promising signs of change, Google has started us-
ing secure computation to help advertisers compute the value of their ads, and
they will soon start using it to securely construct machine learning classifiers
from mobile user data [23]. A separate, more recent line of research also offers
promise: the theory and techniques of differential privacy give service providers
new mechanisms for aggregating user data in a way that reasonably combines
utility and privacy. The guarantee of these mechanisms is that, whatever can be
learned from the aggregated data, the amount that it reveals about any single
user input is minimal. The Chrome browser uses these techniques when aggre-
gating crash reports [14], and Apple claims to be employing them for collecting
usage information from mobile devices. In May, 2017, U.S. Senator Ron Wyden
wrote an open letter to the commission on evidence-based policymaking, urging
that both secure computation and differential privacy be employed by “agen-
cies and organizations that seek to draw public policy related insights from the
private data of Americans [39].”

The common thread in these applications is large scale computation, run by
big organizations, on data that has been collected from many individual users.
To address this category of problems, we explore new improvements for two-
party secure computation, carried out by two dedicated computational servers,
over secret shares of user data. We use a novel approach: rather than attempting
to improve on known generic constructions, or tailoring a new solution for a
particular problem, we instead explore a new trade-off between efficiency and
privacy. Specifically, we propose a model of secure computation in which some
small information is leaked to the computation servers, but this leakage is proven
to preserve differential privacy for the users that have contributed data. More
technically, the leakage is a random function of the input, revealed in the form
of access patterns to memory, and the output of this function does not change
“by too much” when one user’s input is modified or removed.

The question of what is leaked by memory access patterns during compu-
tation is central to secure computation. Although the circuit model of com-
putation allows us to skirt the issue, because circuits are data oblivious, when
computing on large data there are better ways of handling the problem, the most
well-studied being the use of secure two-party ORAM [31, 16, 38, 24, 41, 40].
However, when looking at very large data sets, it is often the case that both
circuits and ORAM are too slow for practical requirements, and there is strong
motivation to look for better approaches. In the area of encrypted search,
cryptographers have frequently proposed access-pattern leakage as a tradeoff
for efficiency [5, 4, 33, 20]. Unfortunately, analyzing and quantifying the leak-
age caused by the computation’s access pattern is quite difficult, as it depends
heavily on the specific computation, the particulars of the data, and even the
auxiliary information of the adversary. Furthermore, recent progress on study-

2

ing this leakage has mostly drawn negative conclusions, suggesting that a lot
more is revealed than we might originally have hoped [19, 27, 3, 21, 11]. Em-
ploying the definition of differential privacy as a way to bound the leakage of
our computation allows us to offer an efficiency / privacy tradeoff that cryp-
tographers have been trying to provide, while quantifying, in a rigorous and
meaningful way, precisely what we have leaked.

1.1 Graph-Parallel Computations
While the proposed security relaxation is appealing, it is not immediately clear
that it provides a natural way to improve efficiency. Our main contribution
is that we identify a broad class of highly parallelizable computations that are
amenable to the privacy/ efficiency tradeoff we propose. When computing on
plaintext data, frameworks such as MapReduce, Pregel, GraphLab and Pow-
erGraph have very successfully enabled developers to leverage large networks
of parallelized CPUs [9, 26, 25, 15]. The latter three mentioned systems are
specifically designed to support computations on data that resides in a graph,
either at the nodes or edges. The computation proceeds by iteratively gathering
data from incoming edges to the nodes, performing some simple computation
at the node, and pushing the data back to the outgoing edges. This simple
iterative procedure captures many important computational tasks, including
histogram, gradient descent and page-rank, which we focus on in our experi-
mental section, as well as Markov random field parameter learning, parallelized
Gibbs samplers, and name entity resolution, to name a few more. Recently,
Nayak et al. [28], generalizing the work of Nikolaenko et al. [29], constructed
a framework for securely computing graph-parallel algorithms. They did this
by designing a nicely parallelizable circuit for the gather and scatter phases,
requiring O(|E|+ |V |) log2(|E|+ |V |) AND gates.

1.2 A Connection to Differential Privacy
The memory access pattern induced by this computation is easily described: dur-
ing the gather stage, each edge is touched when fetching the data, and the adja-
cent node is touched when copying the data. A similar pattern is revealed during
the scatter phase. (The computation performed during the apply phase is typi-
cally very simple, and can be executed in a circuit, which is memory oblivious.)
Let’s consider what might be revealed by this access pattern in some concrete
application. In our framework, each user is represented by a node in the graph,
and provides the data on the edges adjacent to that node. For example, in a rec-
ommendation system, the graph is bipartite, each node on the left represents a
user, each node on the right represents an item that users might review, and the
edges are labeled with scores indicating the user’s review of an item. The access
pattern just described would reveal exactly which items every user reviewed!

Our first observation is that if we use a secure computation to obliviously
shuffle all of the edges in between the gather and scatter phases, we break the
correlation between the nodes. Now the only thing revealed to the computing

3

parties is a histogram of how many times each node is accessed – i.e. a count
of each node’s in-degree and out-degree. When building a recommendation
system, this would reveal how many items each user reviewed, as well as how
many times each item was reviewed. Fortunately, histograms are the canonical
problem for differential privacy. Our second observation is that we can shuffle
in dummy edges to help obscure this information, and, by sampling the dummy
edges from an appropriate distribution (which has to be done within a secure
computation), we can claim that the degrees of each node remain differentially
private.

1.3 Contributions and Related Work
Contributions. We make several new contributions, of both a theoretical and
a practical nature.
Introducing the model. As cryptographers have attempted to support secure
computation on increasingly large datasets, they have often allowed their pro-
tocols to leak some information to the computing parties in the form of access
patterns to memory. This is especially true in the literature on encrypted search.
The idea of bounding the leakage in a formal way, using the definitions from
literature on differential privacy, is novel and important. (Concurrent and inde-
pendent of our work, He et al. [18] proposed a very similar security relaxation,
which we discuss below.)
Asymptotic improvement. The relaxation we introduce enables us to improve the
asymptotic complexity of the target computations by a factor of (roughly) logn
over the best known, fully oblivious construction. Using the best known sorting
networks, the construction of Nayak et al. [28] requires O((|E|+ |V |) log(|E|+
|V |)) AND gates. In comparison, our construction requires O(|E|+α|V |) AND
gates, where α depends on the privacy parameters, ε and δ. For graphs with
|E| = O(α|V |), our improvement is by a factor of log |E|. While we do not have
a lower bound in the fully oblivious model, we find it very exciting that there
exist computations where our relaxation is this meaningful, and we suspect that
improved asymptotic results in the fully oblivious model are not possible. The
details of this improvement appear in Section 5.
Concrete improvement. We demonstrate that the asymptotic improvements
lead to tangible gains. We have implemented our system, and compared the
results to the system of Nayak et al. [28]. We demonstrate up to a 20X factor
improvement in the number of garbled AND gates required in the computation,
while preserving differential privacy with strong parameters: ε = .3 and δ =
2−40. We note that, in practice, both results are worse than previously described
by a factor of log |E|. In their implementation, Nayak et al. rely on a practical
oblivious sort, using O((|E|+ |V |) log(|E|+ |V |))2 AND gates. Our construction
using O(|E|+α|V |) gates requires performing decryption inside a garbled circuit,
which we avoid in our implementation through the use of a two-party oblivious
shuffle, resulting in O((|E| + α|V |) log(|E| + α|V |)) AND gates. However, we
still save a factor of log |E| for sufficiently dense graphs. The details of this

4

construction appear in Section 4, and an evaluation of its performance appears
in Section 6.
Securely generating noise We describe a new noise distribution that is amenable
to efficient implementation in a garbled circuit. Dwork et al. previously de-
scribed an efficient method for sampling the geometric distribution in a garbled
circuit [12], but they did this for the 1-sided geometric distribution, which is not
immediately useful for providing differential privacy. Unfortunately, the stan-
dard 2-sided geometric distribution needs to be normalized in a way that ruins
the simplicity of the circuit they describe. We construct a slightly modified
distribution that addresses this problem, and prove that it provides differential
privacy.
Related Work. The most relevant work, as already discussed, is that by
Nayak et al. [28], which generalizes the work of Nikolaenko et al. [29], comput-
ing graph parallel computations with full security. (The latter work focused
solely on the problem of sparse matrix factorization.) Papadimitriou et al. [32]
also build a system for the secure computation of graph-structured data, and
ensure differential privacy of the output. They do not consider differentially
private leakage in the access patterns, and they focus on MPC and the net-
working challenges that arise in that setting; in particular, they do not rely on
computational servers, but assume that all data contributors are involved in the
computation, and focus on how to hide the movement of data between users
in a way that preserves privacy of the edge structure. Kellaris et al. construct
protocols for encrypted search, and use differential privacy to bound the leakage
from access patterns [22]. This work directly inspired us to consider a more gen-
eral approach to modeling leakage in secure computation through differential
privacy. Wagh et al. [35] define and construct differentially private ORAM in
which the server’s views are “similar” on two neighboring access patterns. They
consider the client/server model, and don’t consider using their construction in
a secure computation, but it is very interesting to note that we could use their
result in a generic way to build a protocol for generic secure computation with
differentially private access patterns. While feasibility follows from their work,
the resulting protocol provides no asymptotic improvement, and would be quite
impractical.

Independent of our work, He et al. define a security notion that is similar to
our own, and construct new protocols for private record linkage [18]. Informally,
their definition requires that for any input set D1, and for two neighbors D2, D

′
2

for which f(D1, D2) = f(D1, D
′
2), the protocol views should preserve differen-

tial privacy. We note that their definition is not in the simulation paradigm,
which leads to some important differences. For one, they only require secu-
rity on inputs that map to the same output, and in particular, cannot apply
their definition to randomized functionalities1. They also have no correctness
requirement (which is captured in the simulation paradigm by default): this is

1For example, because our protocol outputs random secret shares to each of the servers, it
could not be proven secure under their definition, but can be proven secure in our simulation
paradigm.

5

intentional, as they explore not just an efficiency / privacy tradeoff, but a cor-
rectness tradeoff as well. Perhaps the biggest difference between their work and
our own is the application space. In private record linkage protocols, items are
typically hashed into bins, and dummy items are used to hide the load of each
bin. When applying their relaxation, they gain efficiency over fully secure pro-
tocols by cutting down on the number of dummy items and claiming differential
privacy, in place of statistically hiding the bin load. Since the maximum load
on a bin is logn

log logn with high probability, they can only claim improvement if
they use very few dummy items, and as such they can only claim fairly weak se-
curity. Specifically, in most of their experiments δ = 2−16. While there may be
settings where this security parameter suffices, it is important to recognize that
δ denotes the statistical probability that a user’s data is completely recovered,
and this value is typically set to 2−40 in MPC research. Finding an application
space where the security relaxation provides significant efficiency improvements
while also guaranteeing strong security parameters was a major challenge, and
we view it as one of our main contributions.

Chan et al. study differential obliviousness in the client / server model [6].
They also show asymptotic improvement for several computations, together with
lower bounds for fully secure variants of the same algorithms, demonstrating
that this relaxation allows us to bypass impossibility results. Their results are
purely theoretical, but raise the very interesting question of whether we can
lower-bound the number of AND gates needed in fully secure graph parallel
computation. An initial version of our work did not include Section 5, where we
show how to remove the oblivious shuffle, improving the asymptotic complexity
of our solution. While our initial work predates the work of Chan et al., the
asymptotic improvement of Section 5 was concurrent with their work.

M2R [10] and Ohrimenko et al. [30] consider secure implementation of MapRe-
duce jobs on untrusted cloud servers, where the adversary has access to the
network and storage back-end, and can observe all encrypted traffic between
Map and Reduce nodes, but cannot corrupt those nodes; they assume secure
hardware, such as SGX. They hide flow between map and reduce operations by
shuffling the data produced by the Mappers in secure hardware before sending
it to the Reducers. They do not use any notion of differential privacy. Finally,
Airavat [34] protects the output of the map-reduce computation by adding ex-
ponentially distributed noise to the output of computation.

2 Notation and Definitions
Secret-Shares: We let 〈x〉 denote a variable which is XOR secret-shared be-
tween parties. Arrays have a public length and are accessed via public in-
dices; we use 〈x〉i to specify element i within a shared array, and 〈x〉i:j to
indicate a specific portion of the array containing elements i through j, inclu-
sive. When we write 〈x〉 ← c, we mean that both users should fix their shares
of x (using some agreed upon manner) to ensure that x = c. For example, one
party might set his share to be c while the other sets his share to 0.

6

Multi-Sets: We represent multi-sets over a set V by a |V | dimensional vector of
natural numbers: D ∈ N|V |. We refer to the ith element of this vector by D(i).
We use |D| in the natural way to mean

∑|V |
i=1 D(i). We use DBi to denote the

set of all multi-sets over V of size i, and DB =
⋃
iDBi. We define a metric on

these multi-sets in the natural way: |D1 −D2| =
∑|V |
i=1 |D1(i)−D2(i)|. We say

two multi-sets are neighboring if they have distance at most 1: |D1 −D2| ≤ 1.
Neighboring Graphs: In our main protocol of Section 4, the input is a data-
augmented directed graph, denoted by G = (V,E), with user-defined data on
each edge. We need to define a metric on these input graphs, in order to claim
security for graphs of bounded distance.2 For each v ∈ V , we let in-deg(v)
and out-deg(v) denote the in-degree and out-degree of node v. We define the in-
degree profile of a graphG as the multi-set Din(G) = {in-deg(v1), . . . , in-deg(vn)}.
Intuitively, this is a multi-set over the node identifiers from the input graph, with
vertex identifier v appearing k times if in-deg(v) = k. We define the full-degree
profile of G as the pair of multi-sets: {Din(G),Dout(G)}, where
Dout(G) = {out-deg(v1), . . . , out-deg(vn)}. We now define two different metrics
on graphs, using these degree profiles. Later in this section, we provide two
different security definitions: we rely on the first distance metric below when
claiming security as defined in Definition 5, and rely on the second metric below
when claiming security as defined in Definition 6.

Definition 1 We say two graphs G and G′ have distance at most d if they have
in-degree profiles of distance at most d: |Din(G)− Din(G′)| ≤ d. We say that G
and G′ are neighboring if they have distance 1.

Definition 2 We say two graphs G and G′ have full-degree profiles of distance d
if the sum of the distances in their in-degree profiles and their out-degree profiles
is at most d: |Din(G)−Din(G′)|+|Dout(G)−Dout(G′)| ≤ d. We say that G and G′
have neighboring full-degree profiles if they have full-degree profiles of distance
2.

2.1 Differential Privacy
We use the definition that appears in [13].

Definition 3 A randomized algorithm L : DB → RL, with an input domain DB
that is the set of all multi-sets over some fixed set V , and output RL ⊂ {0, 1}∗,
is (ε, δ)-differentially private if for all T ⊆ RL and ∀D1, D2 ∈ DB such that
|D1 −D2| ≤ 1:

Pr[L(D1) ∈ T] ≤ eε Pr[L(D2) ∈ T] + δ

where the probability space is over the coin flips of the mechanism L.
2In Section 3, the input to the computation is a multi-set of elements drawn from some

set S, rather than a graph, so we use the simple distance metric described above to define the
distance between inputs.

7

The above definition describes differential privacy for neighboring multi-sets.
Letting G denote the set of all graphs, we define it for neighboring graphs as
well:

Definition 4 A randomized algorithm L : G → RL is (ε, δ)-edge private if for
all neighboring graphs, G1, G2 ∈ G, we have:

Pr[L(G1) ∈ T] ≤ eε Pr[L(G2) ∈ T] + δ

2.2 Secure computation with differentially private access
patterns

Input model: We try to keep the definitions general, as we expect they will
find application beyond the space of graph-structured data. However, we use
notation that is suggestive of computation on graphs, in order to keep our
notation consistent with the later sections. We assume that two computation
servers have been entrusted to compute on behalf of a large set of users, V, with
|V| = n, and having sequential identifiers, 1, . . . , n. Each user i contributes data
vi. They might each entrust their data to one of the two servers (we call this
the disjoint collection setting), or they might each secret-share their input with
the two-servers (joint collection setting). In the latter case, we note that both
servers learn the size of each vi but neither learns the input values; in the former
case, each server learns a subset of the input values, but learns nothing about
the remaining input values (other than the sum of their sizes).3 Below we will
define two variant security notions that capture these two scenarios.

In all computations that we consider in our constructions, the input is rep-
resented by a graph. In every case, each user is represented as a node in this
graph, and each user input is a set of weighted, directed edges that originate at
their node. In some applications, the graph is bipartite, with user nodes on the
left, and some distinct set of item nodes on the right: in this case, all edges go
from user nodes to item nodes. In other applications, there are only user nodes,
and every edge is from one user to another. In the joint collection setting, we
can leak the out-degree of each node, which is the same as the user input size,
but must hide (among other things) the in-degree of each node. In the disjoint
collection setting, the protocol must hide both the in-degree and out-degree of
each node. We note that in some applications, such as when we perform gradi-
ent descent, the graph is bipartite, and it is publicly known that the in-degree of
every user is 0 (i.e. the movies don’t review the viewers). In the joint collection
setting, this knowledge allows for some improvement in efficiency that we will
leverage in Section 6.

3We note that the disjoint collection setting corresponds to the “standard” setting for
secure computation where each computing party contributes one set of inputs. Just as in
that setting, each of the two computing parties could pad their inputs to some maximum size,
hiding even the sum of the user input sizes. In fact, we could have them pad their inputs
using a randomized mechanism that preserves differential privacy, possibly leading to smaller
padding sizes, depending on what the maximum and average input sizes are. We don’t explore
this option further in this work.

8

Defining secure computation with leakage: For simplicity, we start with
a standard definition of semi-honest security4, but make two important changes.
The first change is that we allow certain leakage in the ideal world, in order to
reflect what is learned by the adversary in the real world through the observed
access pattern on memory. The leakage function is a randomized function of
the inputs. The second change is an additional requirement that this leak-
age function be proven to preserve the differential privacy for the users that
contribute data. Our ideal world experiment is as follows. There are two par-
ties, P1 and P2, and an adversary S that corrupts one of them. The parties
are given input, as described above; we use V1 and V2 to denote the inputs
of the computing parties, regardless of whether we are in the joint collection
setting or the disjoint collection setting, and we let V = {v1, . . . , vn} denote
the user input. Technically, in the joint collection setting, V = V1 ⊕ V2, while
in the disjoint collection setting, V = V1 ∪ V2. Each computing party submits
their input to the ideal functionality, unchanged. The ideal functionality recon-
structs the n user inputs, v1, . . . , vn, either by taking the union of the inputs
submitted by the computation servers in the disjoint collection setting, or by
reconstructing the input set from the provided secret shares in the joint col-
lection setting. The ideal functionality then outputs f1(v1, . . . , vn) to P1 and
f2(v1, . . . , vn) to P2. These outputs might be correlated, and, in particular, in
our own use-cases, each party receives a secret share of a single function evalua-
tion: 〈f(v1, . . . , vn)〉1, 〈f(v1, . . . , vn)〉2. The ideal functionality also applies some
leakage function to the data, L(V), and provides the output of L(V), along with∑
i∈V |vi| to S.5 Additionally, depending on the choice of security definition,

the ideal functionality might or might not give the simulator, ∀i ∈ V, |vi|.
Our protocols are described in a hybrid world, in which the parties are given

access to several secure, ideal functionalities. In our implementation, these are
replaced using generic constructions of secure computation (i.e. garbled circuits).
Relying on a classic result of Canetti [2], when proving security, it suffices to
treat these as calls to a trusted functionality. In the definitions that follow, we
let G denote an appropriate collection of ideal functionalities.

As is conventionally done in the literature on secure computation, we let
hybridGπ,A(z) (V1, V2, κ) denote a joint distribution over the output of the hon-
est party and, the view of the adversary A with auxiliary input z ∈ {0, 1}∗,
when the parties interact in the hybrid protocol πG on inputs V1 and V2, each
held by one of the two parties, and computational security parameter κ. We let
idealF,S(z,L(V),∀i∈V :|vi|)(V1, V2, κ) denote the joint distribution over the out-
put of the honest party, and the view output by the simulator S with auxil-
iary input z ∈ {0, 1}∗, when the parties interact with an ideal functionality
F on inputs V1 and V2, each submitted by one of the two parties, and secu-

4We stress that our allowance of differentially private leakage brings gains in the circuit
construction, so we could use any generic secure computation of Boolean circuits, including
those that are maliciously secure, and benefit from the same gains. See more details below.

5In the joint collection setting, the simulator can infer this value from the size of the
input that was submitted to the ideal functionality. But it simplifies things to give it to him
explicitly.

9

rity parameters κ. Letting v =
∑
i∈V |vi|), we define the joint distribution

idealF,S(z,L(V),v)(V1, V2, κ) in a similar way, the only difference being that the
simulator is given the sum of the input sizes and not the value of each input
size.

Definition 5 Let F be some functionality, and let π be a two-party protocol
for computing F , while making calls to an ideal functionality G. π is said to
securely compute F in the G-hybrid model with L leakage, known input sizes,
and (κ, ε, δ)-security if L is (ε, δ)-differentially private, and, for every PPT,
semi-honest, non-uniform adversary A corrupting a party in the G-hybrid model,
there exists a PPT, non-uniform adversary S corrupting the same party in the
ideal model, such that, on any valid inputs V1 and V2{

hybridGπ,A(z) (V1, V2, κ)
}
z∈{0,1}∗,κ∈N

c≡{
ideal(1)

F,S(z,L(V),∀i∈V :|vi|)(V1, V2, κ)
}
z∈{0,1}∗,κ∈N

(1)

The above definition is the one that we use in our implementations. However,
in Section 4 we also describe a modified protocol that achieves the stronger
security definition that follows, where the adversary does not learn the sizes of
individual inputs. This property might be desirable (or maybe even essential)
in the disjoint collection model, where users have not entrusted one of the two
computing parties with their inputs, or even the sizes of their inputs. On the
other hand, the previous definition is, in some sense, more “typical” of definitions
in cryptography, where we assume that inputs sizes are leaked. It is only in this
model where data is outsourced that we can hope to hide each individual input
size among the other inputs.

Definition 6 Let F be some functionality, and let π be a two-party protocol
for computing F , while making calls to an ideal functionality G. π is said
to securely compute F in the G-hybrid model with L leakage, and (κ, ε, δ)-
security if L is (ε, δ)-differentially private, and, for every PPT, semi-honest,
non-uniform adversary A corrupting a party in the G-hybrid model, there exists
a PPT, non-uniform adversary S corrupting the same party in the ideal model,
such that, on any valid inputs V1 and V2{

hybridGπ,A(z) (V1, V2, κ)
}
z∈{0,1}∗,κ∈N

c≡{
ideal(2)

F,S(z,L(V),
∑

i∈V
|vi|)

(V1, V2, κ)
}
z∈{0,1}∗,κ∈N

(2)

Differentially Private Output: As is typical in secure computation, we are
concerned here with how to securely compute some agreed upon function, rather
than what function ought to be computed. In other words, we view the question
of what the output itself might reveal about the input to be beyond scope of our
work. Our concern is only that the process of computing the output should not

10

reveal too much. Nevertheless, one could ask that the output of all computations
also be made to preserve differential privacy. Interestingly, for the specific case of
histograms, which we present as an example in Section 3, adding differentially
private noise to the output is substantially more efficient than preserving an
exact count. This is not true for the general protocol, but the cost of adding
noise for these cases has been studied elsewhere [32], and it would be minor
compared to the rest of the protocol.

Nevertheless, we take a different approach. In all of our computations, the
output of each server is a secret share of the desired output, and thus it is un-
conditionally secure. The question of where to deliver these shares is left to the
user, though we can imagine several useful choices. Perhaps most obvious, the
shares might never be reconstructed, but rather used later inside another secure
computation that makes decisions driven by the output. Or, as Nikolaenko et
al. suggest [29], when computing gradient descent to provide users with recom-
mendations, the recommendation vectors can be sent to the user to store for
themselves. Regardless, since the aim of our work is to study the utility of our
relaxation, this concern is orthogonal, and we mainly leave it alone.
Privacy versus efficiency In the “standard” settings where differential privacy
is employed, additional noise affects the accuracy of the result. Here, added
noise has no impact on the output, which is always correct, and is protected
by the secure computation. Instead, the tradeoff is with efficiency: using more
noise helps to further hide the true memory accesses among the fake ones, but
requires additional, costly oblivious computation.

Malicious security and multi-party computation: Extending these defini-
tions to model malicious adversaries and/or multi-party computation is straight-
forward, so we omit redundant detail. Similarly, we stress that by leveraging
the security relaxation defined above, we gain improvement at the circuit level,
so we can easily extend our protocols to either (or both) of these two settings in
a generic way. To make our protocol from Section 4 secure against a malicious
adversary, the only subtlety to address is that our protocols make iterative use
of multiple secure computations (i.e. the functionality we realize is reactive),
so we would need to authenticate outputs and verify inputs in each of these
computations. While this can be done generically, such authentication comes
“for free” in many common protocols for secure computation (e.g. [37, 8]). To
extend our protocols to a multiparty setting, the only subtlety is in construct-
ing a multiparty oblivious shuffle. With a small number of parties, c, it is very
efficient to implement c iterations of a permutation network, where in each iter-
ation, a different party chooses the control bits that determine the permutation.
As c grows, it becomes less clear what the best method is for implementing an
oblivious shuffle. Interestingly, we note that there has been some recent work on
parallelizing multi-party oblivious shuffle [7]. We do not explore this direction in
our work; presenting our protocols in the two-party, semi-honest setting greatly
simplifies the exposition, and suffices to demonstrate the advantages of our se-
curity relaxation. In our performance analysis, we primarily focus on counting
the number of AND gates in our construction, which makes the analysis more

11

general and allows for more accurate comparison with prior work (than, say,
comparing the timed performance of systems that use different frameworks for
implementing secure computation).

3 A Differentially Private Protocol for Comput-
ing Histograms

To illustrate our main idea, we describe an algorithm that computes the data
histogram (i.e. counting, or data frequency) with differentially private access
patterns. Although this computation can be formalized in the context of our
general framework, it is instructive to demonstrate some of the main technical
ideas with this simple example before considering how they generalize (which
we do in Section 4). We defer a discussion about security until we present the
more general protocol.

In this computation, we assume that each user in the system contributes
a single input value, xi ∈ S, where we call the set S the set of types. The
computation servers (parties) each begin the computation with secret shares of
the input array, denoted by 〈real〉. The output is a secret share of |S| counters,
where the counter for each type contains the exact number of inputs of that
type. The full protocol specification appears in Figure 1.

The protocol is in a hybrid model, where the parties have access to three
ideal functionalities: DumGenp,α,FShuffle,Fadd. The two parties begin by calling
DumGenp,α, which generates some number of dummy inputs. The ideal func-
tionality for this is described in the left of Figure 2, and it is realized using a
generic secure two-party computation. As part of this computation, the parties
have to securely sample from the distribution Dp,α. In the next section, we
define this distribution and describe our method for sampling it. We simply
remark now that it has integer support, and is negative with only negligible
probability (in δ). The output of DumGenp,α is a secret sharing of values in
S ∪ {⊥}: the size of the output is 2α|S|, where α is determined by the desired
privacy values ε and δ (see Section 4). The number of dummy items of each
type is random, and neither party should learn this value; shares of ⊥ are used
to pad the number of dummy items of each type until they total 2α.

Each party locally concatenates their share of the real input array with their
share of the dummy values. They also initialize shares of an array of flags,
denoted as isReal, which will be used to keep track of which item is real and
which is dummy. They then shuffle the real and dummy items together using
an oblivious shuffle. This is presented as an ideal functionality, but in practice
we implement this using two sequential, generic secure computations of the
Waksman permutation network [1], where each party randomly choose one of
the two permutations. The same permutations are used to shuffle the array
isReal flags, ensuring that these flags are “moved around with” the items. We
note that all secret shares are updated during the process of shuffling, so while
the parties knew which items and flags were real and which were not before the

12

Differentially Private Histogram Protocol

Input: Each party, P1 and P2, receives a secret-share of real items de-
noted as 〈real〉 (r stands for number of real items, and d for number of
dummy ones)

Output: Secret share of counter values denoted as 〈Counter〉, where the
counter for each type contains the exact number of inputs of that type
(S is the number of counter types)

Preprocessing:
〈Counter〉1:|S| ← 0

Computation:
〈dummy〉1:d ← DumGenp,α
〈data〉1:(r+d) = 〈real〉1:r||〈dummy〉1:d
〈isReal〉1:r ← 1 , 〈isReal〉(r+1):(r+d) ← 0
〈d̂ata〉 ← FShuffle(〈data〉, 〈ρ〉)
〈îsReal〉 ← FShuffle(〈isReal〉, 〈ρ〉)
d̂ata← Open(〈d̂ata〉)
for i = 1 . . . (n+ d)
Fadd(〈isReal〉i, 〈Counter〉t) where t = d̂atai

Figure 1: A protocol for two parties to compute a histogram on secret-shared
data with an access pattern that preserves differential privacy.

shuffle, they have no way of knowing this after they receive fresh shares of the
shuffled items and isReal flags.

The parties now open their shares of the data types, while leaving the flag
values unknown. This is where our protocol leaks some information: revealing
the data types allows the parties to see a noisy sum of the number inputs of
each type. On the other hand, this is also where we gain in efficiency: the
remainder of the protocol requires only a linear scan over the data array, with
a small secure computation for each element in order to update the appropriate
counter value. More specifically, the parties iterate through the shuffled array,
opening each type. On data type i, they fetch their shares of the counter for
type i from memory, and call the Fadd functionality. This functionality adds
the (reconstructed) flag value to the (reconstructed) counter; if the item was a
real item, the counter is incremented, while if it was a dummy item, the counter
remains the same. The functionality returns fresh shares of the counter value.
Neither party ever learns whether the counter was updated. In particular, they
cannot know whether they fetched that counter from memory because of a real
input value, or because of a dummy value. In our implementation, we instantiate
Fadd with a garbled circuit.
Simple extensions: In Section 4 we show how to generalize this protocol to the
wider function class. However, we note that in this specific case, if we did want

13

to add noise to the output, we could simply instruct the servers to count the
number of times each counter is accessed. They would no longer have to update
the counter values through a secure computation, so this would be a (slightly)
faster protocol. The output would contain the one-sided noise, but they could
simply subtract off α from each counter to get a more accurate estimate of the
counts. We stress that in this modified protocol, the dummy items are still
shuffled in with the real items, so the access pattern still preserves differential
privacy for each user. The modification ensures that the (reconstructed) output
preserves differential privacy as well.

We also note that the protocol in Figure 1 can be applied to other simi-
lar computations, such as taking averages or sums over r values of |S| types
(though, now again without adding noise to the output). For example, if each
user contributed a salary value and a zip-code, we could use the above method
for computing the average salary in each zip-code, while ensuring that the access
patterns preserve user privacy. We simply need to modify the Fadd functional-
ity: instead of incrementing the secret-shared counter by 1 when the input is
a real item, the functionality would increment the counter by the value of the
secret-shared salary. In this case, though, the noisy access pattern alone does
not suffice for creating noisy output: the use of Fadd is essential. If we want
ensure that the reconstructed output preserves privacy, the noise would have
to be generated independently, through a secure computation, and then added
obliviously to the output.

4 The OblivGraph Protocol
When considering how the protocol from the previous section might be general-
ized, it is helpful to recognize the essential property of the computation’s access
pattern that we were leveraging. When computing a histogram, the access pat-
tern to memory exactly leaks a histogram of the input! This might sound like
a trivial observation, but it is in fact fairly important, as histograms are the
canonical example in the field of differential privacy, and finding other compu-
tations where the access pattern reveals a histogram of the input will allow us
to broadly apply our techniques.

With that in mind, we extend our techniques to graph structured data,
and the graph-parallel frameworks that support highly parallelized computa-
tion. There are several frameworks of this type, including MapReduce, Pregel,
GraphLab and others [9, 25, 26]. We describe the framework by Gonzalez et
al. [15] called PowerGraph since it combines the best features from both Pregel
and GraphLab. PowerGraph is a graph-parallel abstraction, consisting of a
sparse graph that encodes computation as vertex-programs that run in parallel
and interact along edges in the graph. While the implementation of vertex-
programs in Pregel and GraphLab differ in how they collect and disseminate
information, they share a common structure called the GAS model of graph
computation. The GAS model represents three conceptual phases of a vertex-
program: Gather, Apply, and Scatter. The computation proceeds in iterations,

14

DumGenp,α

Input: None.

Computation:
d = 2α|S|
dummy1:d ← ⊥
for i = 0 . . . |S| − 1

j = 2αi
γi ← Dp,α

k = γi + j
dummyj:k = i

Output: 〈dummy〉

DumGenp,α

Input: None.

Computation:
d = 2α|V |
DummyEdges1:d ← ⊥
for i = 0 . . . |V | − 1

j = 2αi
γi ← Dp,α

k = γi + j
DummyEdgesj:k.v = i

Output: 〈DummyEdges〉

DumGenp,α

Input: None.

Computation:
d = 2α|V |
DummyEdges1:d ← ⊥
for i = 0 . . . |V | − 1

j = 2αi
γi ← Dp,α

δi ← Dp,α

k = γi + j
` = δi + j
DummyEdgesj:k.v = i
DummyEdgesj:`.u = i

Output: 〈DummyEdges〉

Figure 2: Three variations on the Ideal functionality, DumGenp,α. Each is pa-
rameterized by α, p. The leftmost functionality is used in the histogram protocol
described in Section 3. The middle definition is the one used in our implementa-
tion, and suffices for satisfying security according to Definition 5. The right-most
adds differential privacy to out-degrees, which is needed in the disjoint collection
model (i.e. when hiding the input sizes for all users, in Definition 6).

and in each iteration, every node gathers (copy) data from their incoming edges,
applies some simple computation to the data, and then scatters (copy) the re-
sult to their outgoing edges. Viewing each node as a CPU (or by assigning
multiple nodes to each CPU), the apply step, which constitutes the bulk of the
computational work, is easily parallelized.

When performing such computations securely, the data is secret-shared be-
tween the computing servers as it moves from edge to node and back, as well
as during the Apply phase. The Apply phase is performed on these secret shares
using any protocol for secure computation as a black-box. The main challenge
is to hide the movement of the data during the Gather and Scatter phases, as
these memory accesses reveal substantial information about the user data.

Take matrix factorization as an example: an edge (u, v,Data) indicates that
user u reviewed item v, and the data stored on the edge indicates the value of the
user’s review. Because the data is secret shared, the value of the review is never
revealed. During the Gather phase, the right vertex of every edge is opened, and
the data is moved to the corresponding vertex. After the Apply phase, the left

15

Fgas
GAS Model Operations

Inputs: Secret share of edges denoted as 〈Edges〉, each edge is
edge : (u, v, uData, vData, isReal). Secret share of vertices denoted as
〈Vertices〉, each vertex contains vertex : (x, xData)
Outputs: Updated 〈Vertices〉

Gather(Edges)
for each edge ∈ Edges

for each vertex ∈ Vertices
if edge.v == vertex.x

vertex.xData← copy(edge.uData)

Applyf(Vertices)
for each vertex ∈ Vertices

vertex ← f(vertex)

Scatter (Edges)
for each edge ∈ Edges

for each vertex ∈ Vertices
if edge.u == vertex.x

edge.uData← copy(vertex.xData)

Figure 3: Ideal functionality for a single iteration of the GAS model operations

vertex of every edge is open, and data is pulled back to the edge. If this data
movement were performed in the clear, the memory access pattern would reveal
the edges between nodes, exactly revealing which users reviewed which items.
Our first observation is that, because we touch only the right node of every edge
during the gather, and only the left node of every edge during the scatter, by
adding an oblivious shuffle of the edges between these two phases, we can hide
the connection between neighboring nodes. The leakage of the computation
is then reduced to two histograms: the in-degrees of each node, and, after the
shuffle, the out-degrees of each node!

Histograms are the canonical problem in differential privacy; we preserve
privacy by adding noise to these two histograms, just as we do in Section 3.
Details follow below, the formal protocol specification appears in Figure 4, and
the ideal functionality for the PowerGraph framework appears in Figure 3.

We denote the data graph by G = (V,E). The structure of each edge
is comprised of (u, v, uData, vData, isReal), where isReal indicates if an edge is
“real” or “dummy”. Each vertex is represented as (x, xData). The xData field
is large enough to hold edge data from multiple adjacent edges. As in Section
3, our protocol is in a hybrid model where we assume we have access to three
ideal functionalities: DumGenp,α, FShuffle, Ffunc. As compared to Section 3, here
we have dropped an explicit specification of the permutation used in FShuffle.

16

πgas
Secure Graph-Parallel Computation with Differentially Private

Access Patterns

Inputs: Secret share of edges denoted as 〈RealEdges〉, each edge is
edge : (u, v, uData, vData, isReal). Secret share of vertices denoted as
〈Vertices〉, each vertex contains vertex : (x, xData). (r stands for number
of real items, and d for number of dummy ones)
Output: 〈Edges〉, 〈Vertices〉

Initialization:
〈DummyEdges〉1:d ← DumGenp,α
〈Edges〉1:r ← 〈RealEdges〉1:r
〈Edges〉r+1:r+d ← 〈DummyEdges〉1:d
〈Edges.isReal〉1:r ← 〈1〉
〈Edges.isReal〉r+1:r+d ← 〈0〉

Gather(〈Edges〉)
〈Edges〉 ← FShuffle(〈Edges〉)
for each 〈edge〉 ∈ 〈Edges〉

edge.v← Open(〈edge.v〉)
for 〈vertex〉 ∈ 〈Vertices〉

if edge.v == vertex.x
〈vertex.xData〉 ← copy(〈edge.uData〉)

Apply(〈Vertices〉)
for 〈vertex〉 ∈ 〈Vertices〉
〈vertex.xData〉 ← Ffunc(〈vertex.xData〉)

Scatter(〈Edges〉)
〈Edges〉 ← FShuffle(〈Edges〉)
for each 〈edge〉 ∈ 〈Edges〉

edge.u← Open(〈edge.u〉)
for 〈vertex〉 ∈ 〈Vertices〉

if edge.u == vertex.x
〈edge.uData〉 ← copy(〈vertex.xData〉)

Figure 4: A protocol for two parties to compute a single iteration of the
GAS model operation on secret-shared data. This protocol realizes the ideal
functionality described in Figure 3.

During the initialization phase, the DumGenp,α functionality is used to gen-
erate secret-shares of the dummy edges. These are placed alongside the real
edges, and are then repeatedly shuffled in with the real edges during the itera-
tive phases. We describe DumGenp,α in detail later in this section. Every call
to FShuffle uses a new random permutation. (Since the dummy flags are now
included inside the edge structure, we no longer need to specify that they are
shuffled using the same permutation as the data elements.)

Both the Gather and Scatter phases begin with calls to FShuffle, which takes

17

secret shares of the edge data from each party, and outputs fresh shares of the
randomly permuted data. In practice we implement this using two sequential,
generic secure computations of the Waksman permutation network [1], where
each party randomly chooses one of the two permutations. Then, the parties
iterate through the shuffled edge set, opening one side of each edge to reveal
the neighboring vertex. Opening these vertices in the clear is where we leak
information, and gain in efficiency. As we mentioned previously, this reveals
a noisy histogram of the node degrees. In doing so, the parties can fetch the
appropriate vertex from memory, without performing expensive oblivious sort
operations, as in GraphSC, and without resorting to ORAM. After fetching the
appropriate node, the secret shared data is copied to/from the adjacent edge.

During Apply, the parties make a call to an ideal functionality, Ffunc. This
functionality takes secret shares of all vertices, reconstructs the data from the
shares, applies the specified function to the real data at each vertex (while ignor-
ing data from dummy edges), and returns fresh secret shares of the aggregated
vertex data. In our implementation, we realize this ideal functionality using gar-
bled circuits. We don’t focus on the details here, as they have been described
elsewhere (e.g. [28, 29]).
DumGenp,α in detail: The ideal functionality for DumGenp,α appears in Figure
2 The role of DumGenp,α is to generate the dummy elements that create a
“noisy” degree profile, D̂. Starting with in-degree profile D = Din(G), for each
i ∈ V , D̂(i) = D(i) + γi, where each γi is drawn independently from a shifted
geometric distribution, parameterized by a “stopping” probability p, and “shift”
of α: we denote the distribution by Dp,α, and define it more precisely below.
The shift ensures that negative values are negligible likely to occur. This is
necessary because the noisy set determines our access pattern to memory, and
we cannot accommodate a negative number of accesses (or, more accurately, we
do not want to omit any accesses needed for the real data). More specifically,
we will define below a “shift function” α : R×R→ N that maps every (ε, δ) pair
to a natural number. (When ε and δ are fixed, we will simply use α to denote
α(ε, δ).)

The functionality iterates through each vertex identifier i ∈ V , sampling
a random number γi ← Dp,α, and creating γi edges of the form (⊥, i). The
remainder of the array contains “blank” edges, (⊥,⊥), which can be tossed away
as they are discovered later in the protocol, after the dummy edges have all been
shuffled 6 DumGenp,α returns secret shares of the dummy edges, 〈DummyEdges〉.
The only difference between the functionality described in the middle column,
and the one in the left portion of the figure (which was used in Section 3),
is that our “types” are now node identifiers, and they are stored within edge
structures. However, the reader should note that only the right node in each
edge is assigned a dummy value, while the left nodes all remain ⊥. This design
choice is for efficiency, and comes at the cost of leaking the exact histogram

6Revealing these blank edges before shuffling would reveal how many dummy edges there
are of the form (∗, i), which would break privacy. After all the edges are shuffled, revealing
the number of blank edges only reveals the total number of dummy edges, which is fine.

18

defined by the out-degrees of the graph nodes when executing Open(Edgesi.u)
in the Scatter operation. As an example of how this impacts privacy, when
computing gradient descent for matrix factorization, this reveals the number of
reviews written by each user, while ensuring that the number of reviews received
by each item remains differentially private. This hides whether any given user
reviewed any specific item, which suffices for achieving security with known
input sizes, as defined in Definition 5. This is the protocol that we use in our
implementation, but we briefly discuss what is needed to achieve Definition 6
below.

In some computations, the graph is known to be bipartite, with all edges
starting in the left vertex set and ending in the right vertex set (again, recom-
mendation systems are a natural example). In this case, since it is known that
all nodes in the left vertex set have in-degree 0, we do not need to add dummy
edges containing these nodes. This cuts down on the number of dummies re-
quired, and we take advantage of this when implementing matrix factorization.

Implementing DumGenp,α: Intuitively, we sample γi by flipping a biased coin
p until it comes up heads. We flip one more unbiased coin to determine the sign
of the noise, and then add the result to α. We will determine p based on ε and
δ. Formally, γi is sampled as follows:

Pr[γi = α] = p

2

∀k ∈ N, k 6= 0 : Pr[γi = α+ k] = 1
2(1− p

2)p(1− p)|k|−1.

As just previously described, we view p as the stopping probability. However, in
the first coin flip, we stop with probability p/2. We note that this is a slight mod-
ification to the normalized 2-sided geometric distribution, which would typically
be written as Pr[γi = α+k] = 1

2−pp(1−p)
|k|. The advantage of the distribution

as it is written above is that it is very easy to sample in a garbled circuit, so long
as p is an inverse power of 2; normalizing by 1

2−p introduces problems of finite
precision and greatly complicates the sampling circuit. We note that Dwork et
al. [12] suggest using the geometric distribution with p = 2`, precisely because
it is easy to sample in a garbled circuit. However, they describe a 1-sided geo-
metric distribution, which is not immediately useful for preserving differential
privacy, and did not seem to consider that, after normalizing, the 2-sided dis-
tribution cannot be sampled as cleanly. A security analysis of our mechanism,
including concrete settings of the parameters, appears in Section 4.1.

We note that with some probability that is dependent on the choice of α,
∃i ∈ V s.t. D̂(i) < 0, which leaves us with a bad representation of a multiset.
We therefore modify the definition of F to output ∅ whenever this occurs, and
we always choose α so that this occurs with probability bound by δ. In our
implementation, we set δ = 2−40.

To securely sample Dp,α, each party inputs a random string, and we let
the XOR of these strings define the random tape for flipping the biased coins.

19

If the first ` bits of the random tape are 1, the first coin is set to heads, and
otherwise it set to tails: this is computed with a single `-input AND gate. We
iterate through the random tape, ` bits at a time, determining the value of each
coin, and setting the dummy elements appropriately. We use one bit from the
random tape to determine the sign of our coin flips, and we add α dummies
to the result. Recall that the output length is fixed, regardless of this random
tape, so after we set the appropriate number of dummy items based on our coin
flips, the remaining output values are set to ⊥.

The cost of this implementation of DumGenp,α is O(V), though this hides
a dependence on ε and δ: an exact accounting for various values can be found
in Section 6. This cost is small relative to the cost of the oblivious shuffle,
but we did first consider a much simpler protocol for DumGenp,α that is worth
describing. Instead of performing a coin flip inside a secure computation, by
choosing a different distribution, we can implement DumGenp,α without any
interaction at all! To do this, we have each party choose d random values from
{1, . . . , |V |}, and view them as additive shares (modulo |V |) of each dummy
item. Note that this distribution is already one-sided, so we do not need to
worry about α, and it already has fixed length output, so we do not need to
worry about padding the dummy array with ⊥ values. Intuitively, this can be
viewed as |V | correlated samples from the binomial distribution, where the bias
of the coin is 1/|V |. Unfortunately, the binomial distribution performs far worse
than the geometric distribution, and in concrete terms, for the same values of
ε and δ, this protocol resulted in 250X more dummy items. The savings from
avoiding the secure computation of DumGenp,α were easily washed away by the
cost of shuffling so many additional items.

4.1 Proof of security
We begin by describing the leakage function L(G). Intuitively, we leak a noisy
degree profile. As we mentioned previously, we analyze the simpler DumGenp,α
algorithm, and prove that the mechanism provides differential privacy for graphs
that have neighboring in-degree profiles. Then, we proceed afterwards to show
that this leakage function suffices for simulating the protocol, achieving security
in the joint-collection model, corresponding to Definition 5. (Extending the
proof to meet Definition 6 is not much harder to do: we would use the DumGenp,α
algorithm defined for the disjoint collection model, and prove that differential
privacy holds for graphs that have neighboring full-degree profiles.)

We remind the reader that we use the following distribution, Dp,α for sam-
pling noise:

Pr[γi = α] = p

2

∀k ∈ N, k 6= 0 : Pr[γi = α+ k] = 1
2(1− p

2)p(1− p)|k|−1.

We define a randomized algorithm, Fε,δ : D → D̂, whose input and output
are multi-sets over V : ∀i ∈ {1, . . . , |V |}, D̂(i) = D(i) + γi, where γi ← Dp,α.

20

Definition 7 The leakage function is
L(G) = (Fε,δ(Din(G)),DoutG) where Din(G) denotes the in-degree profile of graph
G, and Dout(G) denotes the out-degree profile.

Theorem 1 The randomized algorithm L is (ε, δ)-approximate differentially
private, as defined in Definition 4.

We note that Dout(G) can be modeled as auxiliary information about Din(G),
so the proof that L preserves differential privacy follows from the fact that the
algorithm Fε,δ is differentially private for graphs with neighboring in-degree
profiles. It is well known that similar noise mechanisms preserve differential
privacy, but, for completeness, we prove it below for our modified distribution,
which is much simpler to execute in a garbled circuit.

Proof: To simplify notation, we use F to denote Fε,δ. Consider any two
neighboring graphs, and let D1, D2 denote their neighboring in-degree profiles.
Let FR denote the range of F , and let D̂ be a multi-set in FR. We say that
D̂ ∈ Bad if ∃i ∈ {1, . . . , V }, D̂(i) < 0, and assume for now that D̂ /∈ Bad.
Let D̂1 = F(D1), let D̂2 = F(D2), and (without loss of generality) let i be
the value for which D1(i) = D2(i) + 1. By the definition of F , for j 6= i,
Pr[D̂1(j) = D̂(j)] = Pr[D̂2(j) = D̂(j)]. Furthermore, for k 6= j, k 6= i, b ∈ {1, 2},
D̂b(k) and D̂b(j) are sampled independently. Therefore,

Pr[D̂1 = D̂]
Pr[D̂2 = D̂]

= Pr[D̂1(i) = D̂(i)]
Pr[D̂2(i) = D̂(i)]

≤ 1
(1− p)

(Note that the case |D̂(i)| = |D̂1(i)| – i.e. where there is no noise of type i
added to the first dataset – Pr[D̂1=D̂]

Pr[D̂2=D̂]
≤ 1

1−p/2 <
1

1−p .) By choosing 1−p = e−ε,
we achieve the desired bound. Then, for any Tg ⊆ FR \ Bad,

Pr[F(D1) ∈ Tg] =
∑
D∈Tg

Pr[F(D1) = D]

≤
∑
D∈Tg

eε Pr[F(D2) = D]

= eε Pr[F(D2) ∈ Tg]

We now consider the probability that F(D) ∈ Bad. Recall, this is exactly the
probability that for some i ∈ V , γi < 0, which grows as a negligible function in α.
We choose α such that this probability is δ. (We will derive the exact function
below, and demonstrate some sample parameters.) Then, for any T ⊆ FR,
letting Tg = T \ Bad,

Pr[F(D1) ∈ T] = Pr[F(D1) ∈ Tg] + Pr[F(D1) ∈ Bad]
≤ eε Pr[F(D2) ∈ Tg] + δ

≤ eε Pr[F(D2) ∈ T] + δ

21

Setting the parameters Note that the sensitivity of the distance metric de-
fined in Definition 1 is 1. Although our proof here is for neighboring graphs, we
can use standard composition theorems to claim differential privacy for graphs
of distance d, at the cost of scaling ε by a factor of d. We also note that
eε = 1/(1 − p), where p is the stopping probability defined in our noise distri-
bution.

We set δ = 2−40, and show how to calculate α; this allows us to give the
expected size of D̂ as a function of ε and δ. We first fix some i ∈ V and calculate
Pr[γi < 0], and then we take a union bound over |V |.

Pr[γi < 0] =
∞∑

k=α+1

1
2(1− p

2)p(1− p)k−1

= p

2(1− p

2)
∞∑
k=0

(1− p)α(1− p)k

= p

2(1− p

2)(1− p)α 1
1− (1− p)

= 1
2(1− p

2)(1− p)α

After taking a union bound over |V |, we have Pr[F(D) ∈ Bad] ≤ 2−40 when
α >

−40−log(1
2−

p
4)−log(|V |)

log(1−p) . Recall that (1−p) = e−ε. So, as an example, setting
ε = .3 and |V | = 212, we have α = 118, and E(|F(D)|) = 118|V |+ |D|. That is,
for these privacy parameters, we expect to add 118 dummy edges for each node
in the graph.

Theorem 2 The protocol πgas defined in Figure 4 securely computes Fgas with
L leakage in the
(Ffunc,FShuffle,DumGenp,α)-hybrid model according to Definition 5 (respectively
Definition 6) when using the second (resp. third) variant of DumGenp,α.

Proof: (sketch.) We only prove the first Theorem statement, and omit the
proof that we can meet the stronger security definition. At the end of this
section, we give some intuition for what would change in such a proof.

Recall that the leakage functionality contains
(F(DBR), out-deg(V)). In particular, then, we assume that out-deg(V) is public
knowledge and given to the simulator, which holds in the joint collection model
of Definition 5. Note that |V | and |E| are both determined by out-deg(V), and
these values will be used by the simulator as well.

We construct a simulator for a semi-honest P1. For all three ideal function-
alities, the output is simply an XOR secret sharing of some computed value.
The output of all calls to these functionalities can be perfectly simulated using
random binary strings of the appropriate length. Let simEdges1 denote the ran-
dom string used to simulate the output of FShuffle the first time the functionality

22

is called, and let simEdges2 denote the random string used to simulate the out-
put on the second call. Let simEdges1.u denote the restriction of simEdges1 to
the bits that make up the sharings of Edges.u, and let simEdges2.v be defined
similarly.

There are only two remaining messages to simulate:
Open(edge.u), and Open(edge.v). Recall that there are |E|+ 2α|V | edges in the
Edges array: the original |E| real edges, and the 2α|V | dummy edges generated in
DumGenp,α. To simulate the message sent when opening Edges.u, the simulator
uses the values |V | and out-deg(V) to create a bit string representing a random
shuffling of the following array of size |E| + 2α|V |. For each u ∈ V , the array
contains the identifier of u exactly out-deg(u) times. This accounts for |E| =∑
u out-deg(u) positions of the array; the remaining 2α|V | positions are set to

⊥, consistent with the left nodes output by DumGenp,α. Letting r denote the
resulting bit-string, the simulator sends r ⊕ simEdges1.u to the adversary.

To simulate simEdges2.v, the simulator creates another bit-string represent-
ing a random shuffling of the following array, again of size |E|+ 2α|V |. Letting
D̂ = F(DBR) denote the first element output by the leakage L, the simulator
adds the node identifiers in D̂ to the array. In the remaining |E|+ 2α|V | − |D̂|
positions of the array, he adds ⊥. Letting r denote the resulting bit-string, the
simulator sends r ⊕ simEdges2.v to the adversary.

So far, this results in a perfect simulation of the adversary’s view. However,
note that the outputs of the two parties should be correlated. To ensure that
the joint distribution over the adversary’s view and the honest party’s output
is correct, the simulator has to submit the adversary’s input, 〈Vertices〉, to the
trusted party. He receives back a new sharing of Vertices, and has to “plant” this
value in his simulation. Specifically, in the final iteration of the protocol, when
simulating the output of Ffunc for the last time, the simulator uses 〈Vertices〉, as
received from the trusted party, as the simulated output of this function call.

Hiding the out-degree of each node. We include another variant of DumGenp,α
on the right side of Figure 2. In that variant, separate noise is added to the
left node of each edge as well as to the right, which provides security according
to Definition 6. We do not implement or analyze the security of this variant.
Intuitively, though, for a graph G = (E, V), it is helpful to think of the edge set
as defining two databases of elements over V : for each (directed) edge (u, v), we
will view u as an element in database EL and v as an element in database ER.
Because the oblivious shuffle hides the edges between these two databases, the
access pattern can be fully simulated from two noisy histograms (one for each
database). This doubles the “sensitivity” of the “query”, and, because differen-
tial privacy composes, the added noisy information has the affect of cutting ε
in half. Since our analysis includes multiple values of ε, the reader can easily
extrapolate to get a sense of how we perform under our stronger security notion.

Hiding a user’s full edge set. The leakage function described above provide
edge privacy to each contributing party. That is, we have defined two databases

23

to be neighboring when they differ in a single edge. To understand the dis-
tinction, consider the application of building a movie recommendation system
through matrix factorization. If we guarantee edge privacy, then nobody can
learn whether a particular user reviewed a particular movie, but we cannot rule
out the possibility that an adversary could learn something about the set of
movies they have reviewed, perhaps, say, the genre that they enjoy. We could
also define two neighboring databases as differing in a single node. Using the
same example, this would guarantee that nothing can be learned about any
individual user’s reviews, at all. It would require more noise: if the maximum
degree of any node is d, ensuring node privacy would have the affect of scal-
ing ε by d. In our experiments, we have included some smaller values of ε to
help the reader evaluate how this additional noise would impact performance.
However, we note that if the maximum degree in the graph is large, achieving
node privacy might be difficult. We defer investigating other possible notions
of neighboring graphs to future work.

Sequential composition. The standard security definition for secure compu-
tation composes sequentially, allowing the servers to perform repeated compu-
tations on the same data without impacting security. With our relaxation, if we
later use the same user data in a new computation, the leakage does compound.
The standard composition theorems from the literature on differential privacy
do apply, and we do not address here how privacy ought to be budgeted across
multiple computations. The reader should note that in our iterative protocol,
there is no additional leakage beyond the first iteration, because we do not re-
generate the dummy items: the leakage in each iteration is the exactly the same
noisy degree profile that was leaked in all prior iterations.

5 Differentially Private Graph Computation with
O(|E|) complexity

The construction in Section 4 requires O((|E| + α|V |) log(|E| + α|V |)) gar-
bled AND gates. In comparison, the implementation of Nayak et al. [28] uses
O(|E|+ |V |) log2(|E|+ |V |) garbled gates. As we found in the previous section,
α = O(log δ−log |V |

ε). When |E| = O(α|V |), this amounts to an asymptotic im-
provement of O(log(|E|)). This improvement stems from our ability to replace
several oblivious sorting circuits with oblivious shuffle circuits, which we are
able to do only because of our security relaxation. However, while less practi-
cal, Nayak et al. could instead rely on an asymptotically better algorithm for
oblivious sort, reducing their runtime to O((|E|+ |V |) log(|E|+ |V |)). We there-
fore find it interesting to ask whether our security relaxation admits asymptotic
improvement for this class of computations, in addition to the practical improve-
ments described in the previous section. Indeed, we show that we can remove
the need for an oblivious shuffle altogether by allowing one party to shuffle the
data locally. As long as the party that knows the shuffling permutation does not
see the access pattern to V during the Scatter and Gather phases, the protocol

24

remains secure. The reason this protocol is less practical then the protocol of
Section 4 is because Ffunc now has to perform decryption and encryption, which
would require large garbled circuits.

The construction we present here requires O(|E|+α|V |) garbled AND gates,
demonstrating asymptotic improvement over the best known construction for
this class of computations, whenever |E| = O(α|V |). Figure 5 shows the formal
description of the protocol. We assume that the two computation servers hold
key pairs, (skAlice, pkAlice) and (skBob, pkBob). When data owners upload their
data, they encrypt the data under Alice’s key, encrypt the resulting ciphertext
under Bob’s key, and send the result to Bob (obviously this second encryption
is unnecessary, but it simplifies the exposition to assume Bob receives the input
in this form).7 Recall that edge data contains (u, v, uData, vData, isReal), and
vertex data contains (x, xData). We assume each of these elements are encrypted
independently, so that we can decrypt portions of edges when needed. We also
assume that these encryption schemes are publicly re- randomizable: anyone can
take an encryption of x under pk, and re-randomize the ciphertext to give an
encryption of x, with fresh randomness, under the same pk. We assume that
re-randomized ciphertexts and “fresh” ciphertexts are equivalently distributed.
Throughout this protocol, we use JxKy to denote the encryption of x using y’s
public key.

The protocol follows the same outline as the one in Section 4, but here
we separate the tasks of shuffling and data copying. Bob locally shuffles the
edges, JJEdgesKAliceKBob according to a permutation of his choice. He sends the
encrypted, shuffled arrays to Alice. For each edge, he also partially decrypts the
node identifier for the right node, recovering JEdges.vKAlice. He re-randomizes
the resulting ciphertext, and sends it to Alice. Alice can now find the right
vertex of every edge. She executes the Gather operation locally by performing
a linear scan over the edge data, opening the right vertex of edge, and copying
data from edge to vertex.

The two parties then execute the Apply operation together, performing a lin-
ear scan over the vertices, and calling a two-party functionality at vertex.8 Alice
supplies the functionality, Ffunc, with the encrypted data at each vertex, and
both parties provide their decryption key. The functionality decrypts, performs
the Apply function to all real data, and re-encrypts. The updated, encrypted
vertex data is output to Alice.

Bob now reshuffles all the edges and dummy flags, just as before, re-randomizing
Alice’s ciphertexts. He sends
JJEdgesKAliceKBob to Alice, who now performs the Scatter operation, as with
Gather. That is, for each edge, she receives the re-randomized encryption of the
left vertex id, JEdges.uKAlice, recovers the vertex identifier, and copies the vertex
data from u back to the appropriate edge. She re-randomizes all ciphertexts,
and sends the edge data back to Bob.

7The data could instead be uploaded as in the previous section, and the servers could
perform a linear scan on the data to encrypt it as described here. This wouldn’t impact the
asymptotic claim; we chose the simpler presentation.

8As before, we can replace this functionality with a two-party computation.

25

The proof of security is not substantially different than in the previous sec-
tion, so we only give an intuition here. Instead of using random strings to
simulate secret shares, we now rely on the semantic security of the encryp-
tion scheme. When simulating Alice’s view, for each u ∈ Vertices, the leakage
function is used to determine how many times the identifier for u should be
encrypted. The rest of the ciphertexts can be simulated with encryptions of 0
strings. The rest of the simulation is straightforward.
When simulating Bob’s view, an interesting subtlety arises. Even though Bob
does not get to see the access pattern to the vertices during the Gather and
Scatter operations, he does in fact still learn F(DBR). This is because the in-
stantiation of Ffunc with a secure computation will leak the input size of Alice
(assuming we use a generic two-party computation for realizing the function-
ality). This reveals the number of data items that were moved to that vertex
during Gather.9 These input sizes can be exactly simulated using the leakage
function.

6 Implementation and Evaluation
In this section, we describe and evaluate the implementation of our proposed
framework. We implement OblivGraph using FlexSC, a Java-based garbled
circuit framework. We measure the performance of our framework on a set
of benchmark algorithms in order to evaluate our design. These benchmarks
consist of histogram, PageRank and matrix factorization problems which are
commonly used for evaluating highly-parallelizable frameworks. In all scenar-
ios, we assume that the data is secret-shared across two non-colluding cloud
providers, as motivated in Section 1. For comparison, we compare our results
with the closest large-scale secure parallel graph computation, called GraphSC
[28].

6.1 Implementation
Using the OblivGraph framework, the histogram and matrix factorization prob-
lems can be represented as directed bipartite graphs, and PageRank as a directed
non-bipartite graph. When we are computing on bipartite graphs, if we consider
Definition 5 where we aim to hide the in-degree of the nodes (nodes on the left
have in-degree 0), the growth rate of dummy edges is linear in the number of
nodes on the right and it is independent of the real edges or users. If we con-
sider the stronger Definition 6, the growth rate of dummy edges is linear with
max(users, items).

Histogram: In histogram, left vertices represent data elements, right vertices
are the counters for each type of data element, and existence of an edge indicates
that the data element on the left has the type on the right.

9If Bob knew how many dummy edges have the form (∗, v), he could immediately deduce
in-deg(v); this is why DumGenp,α is still executed by an ideal functionality, and not entrusted
to Bob.

26

Edge data is represented as (u, v, uData, vData, isReal), and vertex data is
represented as (u, uData). We assume that each server holds and encryp-
tion key pair, (skAlice, pkAlice) and (skBob, pkBob), and that the public keys
are known to the data owners at the time the data is uploaded.
Input Preparation:
Users encrypt their edge data under Alice’s public key, then under Bob’s
public key, and upload the data to Bob: JJRealEdgesKAliceKBob. (We assume
that the 4 data elements in the edge are encrypted separately.)
Dummy Generation: The parties call the ideal functionality for
DumGenp,α. The functionality is just as described in either the mid-
dle or right of Figure 2, except that we modify the format of the output.
Instead of providing XOR shares of the output, 〈DummyEdges〉, the func-
tionality is assumed to return a doubly encrypted array of dummy edges,
JJDummyEdgesKAliceKBob.

GAS operations in a single iteration:
1. Shuffle: Bob randomly permutes the arrays JJEdgesKAliceKBob ac-

cording to a single random permutation, p. He re-randomizes the
(outer) ciphertexts and sends the encrypted arrays to Alice.

2. Gather: For each edge in JJEdgesKAliceKBob, Bob decrypts the outer
ciphertext of the right vertex id, re-randomizes JEdges.vKAlice, and
sends it to Alice. For each edge in JJEdgesKAliceKBob, Alice recovers
Edges.v and copies the encrypted edge data to vertex v.

3. Apply: For each vertex, Alice and Bob query a modified Ffunc func-
tionality. Alice provides JJVertices.vDataKAliceKBob, and both parties
provide their secret keys. Alice receives updated, re-encrypted ver-
tex data as output, still denoted by JJVertices.vDataKAliceKBob.

4. Shuffle: Bob executes the second shuffling operation by randomly
permuting JJEdgesKAliceKBob according to a random permutation p′.
He re-randomizes the (outer) ciphertexts, and sends the encrypted
array to Alice.

5. Scatter: For each edge in JJEdgesKAliceKBob, Bob decrypts the outer
ciphertext of the left vertex id, re-randomizes JEdges.uKAlice, and
sends it to Alice. For each edge in JJEdgesKAliceKBob, Alice re-
covers Edges.u and copies the encrypted vertex data at u to the
corresponding edge. She re-randomizes all ciphertexts, and sends
JJEdgesKAliceKBob back to Bob.

Figure 5: An O(|E|) protocol for OblivGraph.

Matrix Factorization: In matrix factorization, left vertices represent the
users, right vertices are items (e.g. movies in movie recommendation systems),
an edge indicates that a user ranked an item, and the weight of the edge repre-
sents the rating value.

PageRank: In PageRank, each vertex corresponds to a webpage and each
edge is a link between two webpages. The vertex data comprises of two real

27

values, one for the PageRank of the vertex and the other for the number of
its outgoing edges. Edge data is a real value corresponding to the weighted
contribution of the source vertex to the PageRank of the sink vertex.

Vertex and Edge representation: In all scenarios, vertices are identified us-
ing 16-bit integers and 1 bit is used to indicate if the edge is real or dummy.
For Histograms, we use an additional 20 bits to represent the counter values.
In PageRank, we represent the PageRank value using a 40-bit fixed-point rep-
resentation, with 20-bits for the fractional part. In our matrix factorization
experiments, we factorized the matrix to user and movie feature vectors; each
vector has dimension 10, and each value is represented as 40-bit fixed-point num-
ber, with 20-bits for the fractional part. We chose these values to be consistent
with GraphSC representation.
System setting: We conduct experiments on both a lab testbed, and on a
real-world scale Amazon AWS deployment. Our lab testbed comprises 8 virtual
machines each with dedicated (reserved) hardware of 4 CPU cores (2.4 GHz)
and 16 GB RAM. These VMs were deployed on a vSphere Cluster of 3 physical
servers and they were interconnected with 1Gbps virtual interfaces. We run our
experiments on p ∈ {1, 2, 4, 8, 16, 32} pairs of these processors, where in each
pair, one processor works as the garbler, and the other as the evaluator. Each
processor can be implemented by a core in a multi-core VM, or can be a VM in
our compute cluster.

6.2 Evaluation
We use two metrics in evaluating the impact of our security relaxation: circuit
complexity (e.g. # of AND gates), and runtime. Counting AND gates provides
a “normalized” comparison with other frameworks, since circuit size is inde-
pendent of the hardware configuration and of the chosen secure computation
implementation. However, it is also nice to have a sense of concrete runtime,
so we provide this evaluation as well. Of course, runtime is highly affected by
the choice of hardware, and ours can be improved by using more processors or
dedicated hardware (e.g. AES-NI).
Evaluation setting: For the LAN setup, we use synthesized data and run all
the benchmarks with the similar set of parameters that have been used in the
GraphSC framework. In our histogram and matrix factorization experiments,
we run the experiments for 2048 users and 128 items. The number of nodes in
our PageRank experiment is set to be 2048.

For real world experiment using AWS, we run matrix factorization using
gradient descent on the real-world MovieLens dataset that contains 1 million
ratings provided by 6040 users to 3883 movies [17] on 2 m4.16xlarge AWS in-
stances on the Northern Virginia Data-center.
Circuit Complexity: The results presented in Figures 6a, 6b and 6c are for
execution on a single processor, to show the performance of our design without
leveraging the desired effect of parallelization.

28

Histogram: Figure 6a demonstrates the number of AND gates for computing
histogram in both the GraphSC and OblivGraph frameworks. With 2048 data
elements and 128 data types, we always do better than GraphSC when ε >= 0.3.
When ε = 0.1, we start outperforming GraphSC when there are at least 3400
edges.

Matrix Factorization: In Figure 6b, we use the (batch) gradient decent
method for generating the recommendation model, as in [29, 28]. With 2048
users, 128 items, and ε = 0.3, we outperform GraphSC once there are at least
15000 edges. When ε = 0.1, we start outperforming them on 54000 edges. We
always do better than GraphSC when the ε = 1 or higher.

PageRank: Figure 6c provides the result of running PageRank in our frame-
work with 2048 nodes and different values of ε. With ε = 0.3, we outperform
GraphSC when the number of edges are about 400000, and with ε = 1 we out-
perform them on just 130000 edges. In both cases, the graph is quite sparse,
compared to a complete graph of 2 million edges. Note, though, that our com-
parison is slightly less favorable for this computation. Recall, the number of
dummy edges grow with the number of nodes in the graph, and, when hid-
ing only in-degree in a bipartite graph, this amounts to growing only with the
number of nodes on the right. In contrast, the runtime of GraphSC grows equiv-
alently with any increase in users, items, or edges, because their protocol hides
any distinction between these data types. We therefore compare best with them
when there are more users than items. When looking at a non-bipartite graph,
such as PageRank, our protocol grows with any increase in the size of the singu-
lar set of nodes, just as theirs does. If we increase the number of items in matrix
factorization to 2048, or decrease the number of nodes in PageRank to 128, the
comparison to GraphSC in the resulting experiments would look similar. We let
the reader extrapolate, and avoid the redundancy of adding such experiments.
Large scale experiments on Amazon AWS: OblivGraph factorizes the
MovieLens recommendation matrix consist of 1 million ratings provided by 6040
users to 3883 movies, in almost 2 hours while GraphSC does it in 13 hours. We
provide results of computing matrix factorization problem for different values
of ε and different numbers of ratings in Table 2. We outperform the best result
achieved by GraphSC, using 128 processors and 1M ratings.
Effect of Parallelization: Figure 7 illustrates that the execution time can
be significantly reduced through parallelization. We achieve nearly a linear
speedup in the computation time. The lines corresponds to two different num-
bers of edges for 2048 users and 128 movies. Since in our these problems, the
computation is the bottleneck, parallelization can significantly speed up the
computation process. Table 1 shows the effect of parallelization in our frame-
work as compared to GraphSC in terms of number of AND gates. As shown in
the Table 1, adding more processors in the GraphSC framework increases the
total number of AND Gates by some small amount. In contrast, the size of the
circuit generated in our framework is constant in the number of processors: par-
allelization does not affect total number of AND gates in the OblivGraph GAS
operations, or in DumGen.

29

(a) Histogram

(b) Matrix factorization

(c) PageRank

Figure 6: Histogram and Matrix Factorization with 2048 users and 128 types,
PageRank with 2048 webpages, with varying ε

30

20 21 22 23 24 25

Processors

102

103

T
im

e(
S
ec
)

Edges

4K

20K

Figure 7: Effect of parallelization on Matrix Factorization computation time
Processors GraphSC [28] OblivGraph

|E| = 8192 |E| = 24576 |E| = 8192 |E| = 24576
1 4.047E + 09 1.035E + 10 2.018E + 09 4.480E + 09
2 4.055E + 09 1.039E + 10 2.018E + 09 4.480E + 09
4 4.070E + 09 1.046E + 10 2.018E + 09 4.480E + 09
8 4.092E + 09 1.057E + 10 2.018E + 09 4.480E + 09

Table 1: Cost of Parallelization on OblivGraph vs. GraphSC in computing
Matrix Factorization

Optimization using Compaction: It is important to note that the measured
circuit sizes in our OblivGraph experiments correspond to the worst-case sce-
nario in which the number of dummy edges are equal to d = 2α|V |, which is the
maximum number of dummies per type. Consequently the time for OblivShuffle
is its maximum value. However, looking at the geometric distribution used in
the DumGen procedure, the expected number of dummy edges is α|V |, so half of
the dummy items are unnecessary. Removing these extra dummy items during
DumGen is non-trivial, because, while it is safe to reveal the total number of
dummy items in the system, revealing the number of dummy items of each type
would violate differential privacy. After the first iteration of the computation,
once the dummy items are shuffled in with the real items, an extra flag marking
the excessive dummy items can be used to safely remove them from the sys-
tem; this optimization can significantly reduce the shuffling time (roughly by
half) in the following iterations. However, our graphs are showing only the first
iteration of the algorithm and they do not reflect this simple optimization.
Comparison with a Cleartext Baseline GraphSC [28] compared their exe-
cution time with GraphLab [25], a state-of-the-art framework for running graph-
parallel algorithms on clear text. They ran Matrix Factorization using gradient

31

descent with input length of 32K in both frameworks and demonstrated that
GraphSC is about 200K - 500K times slower than GraphLab when run on 2 to
16 processors. Considering our improvements over GraphSC, we estimate our
secure computation to be about 16K-32K times slower than insecure baseline
computation (GraphLab), running the same experiments.
Oblivious Shuffle: We use an Oblivious Shuffle in our OblivGraph framework,
which has a factor of log(n) less overhead than the Bitonic sort used in GraphSC.
We designed the Oblivious Shuffle operation based on the Waksman network
[36]. The cost of shuffling is approximately BW (n) using a Waksman network,
where W (n) = n logn − n + 1 is the number of oblivious swaps required to
permute n input elements, and B indicates the size of the elements being shuf-
fled. In the original Waksman switching network, the size of the input, n, is
assumed to be a power of two. However, in order to have an Oblivious Shuffle
for arbitrary sized input, we must use an improved version of the Waksman
network proposed in [1] which is called AS-Waksman (Arbitrary-Sized Waks-
man). In our current set of experiments, we have only implemented the original
version of the Waksman network and have not implemented AS-Waksman. We
interpolate precisely to determine the size of arbitrary AS-Waksman when using
arbitrary sized input. Details of this appear in the full version of the paper.
Cost of each operation in OblivGraph framework: In order to understand
how expensive the DumGen and OblivShuffle procedures are, as compared to
other GAS model operations, we show the number of AND gates for each of
these procedures in Figure 8. The figure corresponds to Matrix Factorization
problem, with 2048 users, 128 movies and 20K ratings, with epsilon 0.5. The
cost of a single iteration in the OblivGraph framework is first dominated by the
Apply operation which computes the gradient descent and second by Oblivious
Shuffle. Figure shows the effect of parallelization on decreasing the circuit size of
each operation. See the full version to compare the cost of DumGen procedure
in different protocols.

OblivGraph GraphSC[28]
ε=0.3 ε=0.5 ε=1

Real Edges 1.2M 1.5M 1.8M 1M
Time(hours) 2.2 2.3 2.4 13

Table 2: Runtime of a single iteration of OblivGraph vs. GraphSC to solve
matrix factorization problem in scale, with real-world dataset, MovieLens with
6040 users ranked 3883 movies

7 Conclusion and Open Problems
We have established a new tradeoff between privacy and efficiency in secure
computation by defining a new security model in which the adversary is pro-
vided some leakage that is proven to preserve differential privacy. We show that

32

20 21 22 23 24 25

Processors

0

1

2

3

4

5

6

#
A
N
D

G
a
te
s

×108

16K

DumGen

Shuffle

Gather

Apply

Scatter

Figure 8: Cost of each operation in OblivGraph for Matrix Factorization

this leakage allows us to construct a more efficient protocol for a broad class of
computations: those that can be computed in graph-parallel frameworks such
as MapReduce. We have evaluated the impact of our relaxation by comparing
the performance of our protocol with the best prior implementation of secure
computation for graph-parallel frameworks.
Our work demonstrates that differentially private leakage is useful, in that it
provides opportunity for more efficient protocols. The protocol we present has
broad applicability, but we leave open the very interesting question of deter-
mining, more precisely, for which class of computations this leakage might be
help. Graph-parallel algorithms have the property that the access pattern to
memory can be easily reduced to revealing only a histogram of the memory
that is accessed, and histograms are the canonical example in the differential
privacy literature. Looking at other algorithms will likely introduce very inter-
esting leakage functions that are new to the differential privacy literature, and
security might not naturally follow from known mechanisms in that space.

References
[1] B. Beauquier and É. Darrot. On arbitrary size waksman networks and their

vulnerability. Parallel Processing Letters, 12(03n04):287–296, 2002.

[2] R. Canetti. Security and composition of multiparty cryptographic proto-
cols. Journal of Cryptology, 13(1):143–202, 2000.

[3] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks
against searchable encryption. In ACM CCS 2015, pages 668–679, Oct.
2015.

33

[4] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner. Dynamic searchable encryption in very-large databases: Data
structures and implementation. In NDSS 2014. The Internet Society, Feb.
2014.

[5] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner.
Highly-scalable searchable symmetric encryption with support for Boolean
queries. In Crypto 2013, Part I, volume 8042 of LNCS, pages 353–373,
Aug. 2013.

[6] T.-H. H. Chan, K.-M. Chung, B. Maggs, and E. Shi. Foundations of
differentially oblivious algorithms. Cryptology ePrint Archive, Report
2017/1033, 2017. https://eprint.iacr.org/2017/1033.

[7] T.-H. H. Chan, K.-M. Chung, and E. Shi. On the depth of oblivious parallel
RAM. In ASIACRYPT 2017, Part I, LNCS, pages 567–597, Dec. 2017.

[8] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In Crypto 2012, volume
7417 of LNCS, pages 643–662, Aug. 2012.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, OSDI’04, pages
10–10, Berkeley, CA, USA, 2004. USENIX Association.

[10] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang. M2r:
Enabling stronger privacy in mapreduce computation. In 24th USENIX
Security Symposium (USENIX Security 15), pages 447–462, Washington,
D.C., 2015. USENIX Association.

[11] F. B. Durak, T. M. DuBuisson, and D. Cash. What else is revealed by
order-revealing encryption? In ACM CCS 2016, pages 1155–1166, Oct.
2016.

[12] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our
data, ourselves: Privacy via distributed noise generation. In Euro-
crypt 2006, volume 4004 of LNCS, pages 486–503, May / June 2006.

[13] C. Dwork and A. Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407,
2014.

[14] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized ag-
gregatable privacy-preserving ordinal response. In ACM CCS 2014, pages
1054–1067, Nov. 2014.

[15] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph:
Distributed graph-parallel computation on natural graphs. In Presented
as part of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12), pages 17–30, Hollywood, CA, 2012. USENIX.

34

https://eprint.iacr.org/2017/1033

[16] S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and
Y. Vahlis. Secure two-party computation in sublinear (amortized) time. In
ACM CCS 2012, pages 513–524, 2012.

[17] F. M. Harper and J. A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, Dec. 2015.

[18] X. He, A. Machanavajjhala, C. J. Flynn, and D. Srivastava. Composing
differential privacy and secure computation: A case study on scaling private
record linkage. In ACM CCS 2017, pages 1389–1406, 2017.

[19] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation. In NDSS 2012.
The Internet Society, Feb. 2012.

[20] S. Kamara and T. Moataz. Boolean searchable symmetric encryption with
worst-case sub-linear complexity. In J. Coron and J. B. Nielsen, editors,
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part III, volume 10212
of Lecture Notes in Computer Science, pages 94–124, 2017.

[21] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Generic attacks on secure
outsourced databases. In ACM CCS 2016, pages 1329–1340, Oct. 2016.

[22] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Accessing data while pre-
serving privacy. https://www.youtube.com/watch?v=u9LIU4Frce8, 2017.
Communication with the authors.

[23] B. Kreuter. Secure multiparty computation at google. https://www.
youtube.com/watch?v=ee7oRsDnNNc, 2017. Real World Crypto.

[24] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A pro-
gramming framework for secure computation. In 2015 IEEE Symposium
on Security & Privacy, pages 359–376, 2015.

[25] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Graphlab: A new framework for parallel machine learning.
CoRR, abs/1408.2041, 2014.

[26] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: A system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’10, pages 135–146, New York, NY, USA,
2010. ACM.

[27] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-
preserving encrypted databases. In ACM CCS 2015, pages 644–655, Oct.
2015.

35

https://www.youtube.com/watch?v=u9LIU4Frce8
https://www.youtube.com/watch?v=ee7oRsDnNNc
https://www.youtube.com/watch?v=ee7oRsDnNNc

[28] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi.
GraphSC: Parallel secure computation made easy. In 2015 IEEE Sympo-
sium on Security & Privacy, pages 377–394, May 2015.

[29] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh.
Privacy-preserving matrix factorization. In ACM CCS 2013, pages 801–812,
Nov. 2013.

[30] O. Ohrimenko, M. Costa, C. Fournet, C. Gkantsidis, M. Kohlweiss, and
D. Sharma. Observing and preventing leakage in mapreduce. In Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, CCS ’15, pages 1570–1581, New York, NY, USA, 2015. ACM.

[31] R. Ostrovsky and V. Shoup. Private information storage. In 29th ACM
STOC, pages 294–303, 1997.

[32] A. Papadimitriou, A. Narayan, and A. Haeberlen. Dstress: Efficient differ-
entially private computations on distributed data. In G. Alonso, R. Bian-
chini, and M. Vukolic, editors, Proceedings of the Twelfth European Confer-
ence on Computer Systems, EuroSys 2017, Belgrade, Serbia, April 23-26,
2017, pages 560–574. ACM, 2017.

[33] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi,
W. George, A. D. Keromytis, and S. Bellovin. Blind seer: A scalable
private DBMS. In 2014 IEEE Symposium on Security & Privacy, pages
359–374, May 2014.

[34] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel. Airavat:
Security and privacy for mapreduce. In Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implementation, NSDI’10,
pages 20–20, Berkeley, CA, USA, 2010. USENIX Association.

[35] S. Wagh, P. Cuff, and P. Mittal. Root ORAM: A tunable differentially
private oblivious RAM. CoRR, abs/1601.03378, 2016.

[36] A. Waksman. A permutation network. Journal of the ACM (JACM),
15(1):159–163, 1968.

[37] X. Wang, S. Ranellucci, and J. Katz. Authenticated garbling and efficient
maliciously secure two-party computation. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’17,
pages 21–37, New York, NY, USA, 2017. ACM.

[38] X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi. SCORAM:
Oblivious RAM for secure computation. In ACM CCS 2014, pages 191–202,
2014.

[39] R. Wyden. Letter to commission on evidence-based poli-
cymaking. https://www.wyden.senate.gov/download/?id=
B10146F5-EDEB-4A2C-AD5E-812B363EE0DC&download=1, 2017. U.S.
Senate.

36

https://www.wyden.senate.gov/download/?id=B10146F5-EDEB-4A2C-AD5E-812B363EE0DC&download=1
https://www.wyden.senate.gov/download/?id=B10146F5-EDEB-4A2C-AD5E-812B363EE0DC&download=1

[40] S. Zahur and D. Evans. Obliv-c: A language for extensible data-oblivious
computation. Cryptology ePrint Archive, Report 2015/1153, 2015. http:
//eprint.iacr.org/2015/1153.

[41] S. Zahur, X. S. Wang, M. Raykova, A. Gascón, J. Doerner, D. Evans, and
J. Katz. Revisiting square-root ORAM: Efficient random access in multi-
party computation. In 2016 IEEE Symposium on Security & Privacy, pages
218–234, 2016.

37

http://eprint.iacr.org/2015/1153
http://eprint.iacr.org/2015/1153

	Introduction
	Graph-Parallel Computations
	A Connection to Differential Privacy
	Contributions and Related Work

	Notation and Definitions
	Differential Privacy
	Secure computation with differentially private access patterns

	A Differentially Private Protocol for Computing Histograms
	The OblivGraph Protocol
	Proof of security

	Differentially Private Graph Computation with O(|E|) complexity
	Implementation and Evaluation
	Implementation
	Evaluation

	Conclusion and Open Problems

