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Abstract

Many digital signature schemes rely on random numbers that are unique and non-predictable
per signature. Failures of random number generators may have catastrophic effects such as com-
promising private signature keys. In recent years, many widely-used cryptographic technologies
adopted deterministic signature schemes because they are presumed to be safer to implement.

In this paper, we analyze the security of deterministic ECDSA and EdDSA signature schemes
and show that the elimination of random number generators in these schemes enables new kinds
of fault attacks. We formalize these attacks and introduce practical attack scenarios against
EdDSA using the Rowhammer fault attack. EdDSA is used in many widely used protocols such
as TLS, SSH and IPSec, and we show that these protocols are not vulnerable to our attack. We
formalize the necessary requirements of protocols using these deterministic signature schemes
to be vulnerable, and discuss mitigation strategies and their effect on fault attacks against
deterministic signature schemes.

1. Introduction

The Digital Signature Standard (DSS) describes a family of cryptographic methods such as the
Digital Signature Algorithm (DSA) for digitally signing content. The Elliptic Curve Digital Signature
Algorithm (ECDSA) is a variant of DSA using elliptic curve cryptography. Both depend on a crypto-
graphic random value r, which must never repeat under different messages. This value is also known
as a digital signature’s ephemeral key, session key, or secret nonce to underline the fact that r also
needs to be confidential. We focus in this paper on the “number used once” property of r and thus
call it nonce throughout the paper, although the different standards have different names for it.
RNG failures. Using a given nonce only for one message is crucial: If a nonce is reused for two
different messages, an attacker can trivially calculate the private key for generating signatures. This is
caused by the fact that the underlying primitive – an interactive zero-knowledge proof [1] – requires
distinct nonces in order to be secure. Thus, the developers of cryptographic implementations have
to make sure that nonces are never reused. A common way to achieve this is using a high entropy
RNG to generate fresh nonces per signature. One prominent example where usage of repeating nonces
led to a compromise of signature keys was Sony’s Playstation 3 [2]. The hacker group fail0verflow
showed that Sony was reusing the same nonce for every digitally signed game. The members could
then calculate the private key and create valid signatures for arbitrary files including pirated games or
Linux applications. Another security breach that resulted out of insufficient entropy in the nonce of
ECDSA signatures happened in a Bitcoin Android app [3]. As a result, attackers stole Bitcoins worth
several thousand Dollar.
Deterministic signature schemes. To cope with this well-known pitfall in implementing DSA and
ECDSA, a nonce may be calculated deterministically, as initially proposed by Barwoord1 and Wigley.2
The idea is to calculate the nonce from the to-be-signed message M and the private signing key. The

1. https://groups.google.com/forum/#!msg/sci.crypt/SalLSLBBTe4/xtYNGDe6irIJ
2. https://groups.google.com/forum/#!msg/sci.crypt/3g8DnnEkv5A/a26mLrwfjiMJ

https://groups.google.com/forum/#!msg/sci.crypt/SalLSLBBTe4/xtYNGDe6irIJ
https://groups.google.com/forum/#!msg/sci.crypt/3g8DnnEkv5A/a26mLrwfjiMJ


advantage here is that there is no need for generating fresh random numbers per signature. Edwards
curve Digital Signature Algorithm (EdDSA) follows a similar approach and uses the hash of the private
key and the message M as a nonce. Thus, any change of M results in a new nonce. A deterministic
variant of DSA and ECDSA was described by Pornin in [4].
Fault attacks and the case of Rowhammer. Fault attacks are a well-known technique in cryptanalysis
that induces errors during cryptographic computations. Traditionally, fault attacks require physical ac-
cess to the hardware to induce faults, for example, by using electrical glitching with power disturbances,
thermal fluctuations or emitting radiation to the memory chips. Rowhammer is a recently found attack
technique that allows inducing bit-flips in DRAM memory chips on commodity computers without
physical access to the device. The idea is to repeatedly read DRAM rows very fast to increase internal
cell leakage. When a cell leakage is raised to a level such that a cell can’t keep its charge for a specific
time frame, it will lose its data. Due to the fact that read access is sufficient and nearby memory regions
are affected, Rowhammer enables an attacker to flip bits in memory areas she should have no access
to. This allows for bypassing any memory protection mechanism.
Fault attacks on deterministic signatures. In this paper, we analyze the effects of fault attacks on
deterministic cryptographic signature schemes. We analyze signature schemes under the assumption
that an attacker can induce semi-targeted bit flips in different intermediate signature values. Our main
observation is as follows: Deterministic signatures produce the nonce from a private key and the
message M . Thus, the signing application has to read M twice: once for producing the nonce and
again for calculating the digital signature. If an attacker is able to change M to M just after the nonce
was calculated but before the actual signing, then M is signed with a nonce for M . We show that it is
possible to achieve such a situation by using bit-flips induced by double-sided as well as single-sided
Rowhammer attacks. The evaluation results show that this presents a new attack against EdDSA that
allows the attacker to retrieve the private signature key. This stands in contrast to the current state of
the art where EdDSA was found to be resilient to fault attacks [5]. Our work shows the importance of
considering fault attacks on deterministic signature algorithms in general and specifically on EdDSA.
This is underlined by a large number of recent cryptographic protocols implementing these signature
algorithms [6], [7], [8], [9], [10].
Contributions. We make the following contributions:
• We describe a new fault attack against deterministic signature schemes that allows the attacker to

retrieve the private signature key.
• We formally analyze the properties of cryptographic primitives that are the reason for the vulner-

ability. We conclude that our attack is generally applicable to a well-known class of deterministic
signatures derived via the Fiat-Shamir transform [11].

• We investigate real-world protocols and find one potentially vulnerable to our attacks: Online
Certificate Status Protocol (OCSP).

• We evaluate the practicality of our attack and implement a realistic attack against EdDSA utilizing
double-sided and single-sided Rowhammer.

• We propose and discuss possible countermeasures and extensions to EdDSA to counter our attack.

2. Cryptographic background

In this section, we briefly introduce Elliptic Curve Cryptography (ECC), and outline two signature
algorithms, ECDSA (both the non-deterministic and the deterministic variant) and EdDSA.

Throughout this paper, we use the following notation: M is a plaintext message. H denotes a hash
function. G denotes the base point of an elliptic curve E, which is constructed over the finite field Fp.
f is a function that returns the x-coordinate of a point. [d]P denotes a point multiplication of point P
with a scalar d. If a hash over a value is computed, we assume a correct encoding as described in the
relevant standard or literature [12]. || denotes concatenation of bytes. Random sampling from a set or
the return value of a probabilistic algorithm is denoted by $←−.



2.1. Elliptic curve cryptography

We are mainly interested in elliptic curves E over finite prime fields Fp with p > 3. Such curves
can be described in the short Weierstrass form

E : y2 = x3 +AWx+BW .

Other representations of elliptic curves exist and are widely used in implementations. One being
the Edwards form of elliptic curves.

The set of points on an elliptic curve carries a natural abelian group law which we will write
additively. By [d]P we denote the sum P + · · ·+ P (d times).

We fix a base point G of prime order q in E(Fp). Typically, cryptographic algorithms based on
elliptic curves compute [d]P for a secret scalar d and P ∈ 〈G〉. The security of the ECC algorithm
relies on the presumed difficulty of the Elliptic Curve Discrete Logarithm Problem (ECDLP) in 〈G〉.
The best-known algorithms to tackle the ECDLP have a complexity of O(

√
q). Therefore q (and thus

p) should be at least 256 bit primes.
In standard applications of ECC, the point multiplication described above is implemented in a

randomized way to counter side-channel attacks. For example, one computes [d+ λq]P = [d]P such
that an attacker cannot recover d from e.g. an electromagnetic trace. This countermeasure is also called
blinding.

2.2. ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a signature standard building upon
elliptic curve cryptography.
Parameters. ECDSA’s domain parameters are given by (H,Fp, E, q,G) with H being a hash function,
E being an elliptic curve over the finite field Fp and G being a point in E(Fp) with prime order q.
The public/private key pair is given by (A, a) with private key a $←− Fp and public key A = [a]G.

Signing. To sign a message M the signer generates a random number r $←− {1, . . . , q − 1}, and
computes:

R = f([r]G) mod q (1)
s = (H(M) + aR)/r mod q (2)

The pair (R, s) is a signature for M , if both R and s are non-zero.
Verification. (R, s) is accepted as signature for M if

R = f([H(M)/s]G+ [R/s]A), (3)

Note that there are many sophisticated attacks on randomized signatures. An overview of attacks
and countermeasures is given in [13].

2.3. Deterministic signature schemes

Securely implementing elliptic curve algorithms is hard due to many pitfalls and can result in
critical security flaws [14], [15], [16]. Some of these pitfalls emerge from the used curve (i.e. incorrect
point addition or missed point membership checks) and some due to difficulties in a signature scheme
(lack of entropy or implementation flaws when generating secret values). The fragility of ECDSA
allows an attacker to learn the ECDSA private key if two different messages M,M ′ are signed using
the same nonce r. Deterministic signature schemes were developed to avoid this pitfall by eliminating
the need for random numbers during signature generation.



2.3.1. Deterministic ECDSA. Deterministic ECDSA [4] uses the same parameters and procedure as
described in the previous section. The only difference is that instead of generating the nonce r at
random, r is derived deterministically from the message M by using a nested HMAC construction
with fixed key values (HMAC DRBG). The full description of the algorithm is not needed to state
the results of this paper and can be found in sec. 3.2 of [4].

The parameters and algorithms for generation of the pair (R, s) are the same as described in the
previous section. For our paper, it is important to note that the signature generation results in equal
signature outputs if the same message and private key are used.

Note that [4] explicitly mentions that side-channel attacks are not taken into account. Fault attacks
are not mentioned as well.

2.3.2. EdDSA. The Edwards Digital Signature Algorithm (EdDSA) is a digital signature scheme with
a focus on simple implementation and high-performance [17]. The specifics of EdDSA include the
choice of an Edwards curve [18] (which facilitates curve arithmetic), a deterministic nonce generation
(to avoid forgery due to implementation flaws and eliminate the need for a reliable source of entropy)
and avoidance of secret branch-conditions or lookup-indices (to prohibit side-channel attacks like cache-
or timing-attacks) [17]. The name Ed25519 is used to describe an instance of EdDSA with a specific
set of parameters, specifically with a twisted Edwards curve birationally equivalent to Curve25519 [17].
Parameters. EdDSA, as initially proposed in [17], has the following parameters: b ∈ N with b ≥ 10,
a hash function H with 2b-bit output, a prime power p ≡ 1 (mod 4), an encoding of elements of the
finite field Fp with b− 1 bits, a non-square element d ∈ Fp, a prime q with 2b−4 ≤ q ≤ 2b−3 and an
element G 6= (0, 1) such that [q]G = (0, 1) [17]. The elliptic curve E is given as

E =
{

(x, y) ∈ Fp × Fp : −x2 + y2 = 1 + dx2y2
}

(4)

with the complete addition law being

(x1, y1) + (x2, y2) = (
x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 + x1x2

1− dx1x2y1y2
) (5)

An EdDSA secret key is a randomly generated string k with b bits. In order to derive the public
key, obtain the hash (h0, h1, . . . , h2b−1) = H(k) and calculate

a = 2b−2 +
∑

3≤i<b−2

2ihi (6)

The public key is A = [a]G.
Signing. The signature of a message M is a pair (R, s) with

r = H(hb, . . . , h2b−1,M) (7)
R = [r]G (8)
s = (r +H(R,A,M) a) mod q (9)

Please note that for the simplicity we omit elliptic curve point encoding in our description.
Verification. Given the signature (R, s), the message M and the public key A, check if

[s]G = R+ [H(R,A,M)]A (10)

holds. The signature is valid if the equation holds and no errors occurred during encoding/parsing of
the values.
PureEdDSA and HashedEdDSA. One of the parameters of EdDSA is the pre-hash function PH that
is applied to M before signing and whose output is then signed. If PH is the identity function, i.e.
PH(M) = M , the signature algorithm signs the full M . This is called PureEdDSA. If PH uses a
collision resistant hashing function like SHA-512, then the SHA-512 hash of M is signed instead of
M directly. This is called HashedEdDSA. The authors of [19] recommend PureEdDSA.



3. Fault injection background

The effects of faults on electronic systems have been studied for over 40 years. Since then, various
forms of fault injections like varying the voltage supply, casting high temperatures on hardware,
using x-rays, etc. have been applied to real hardware [20]. Due to the need of physical access to
a device, fault injections were mainly a threat to tamper-proof hardware like smart cards or hardware
security modules. This has changed with the appearance of Rowhammer, a hardware fault affecting
a computer main memory [21]. In 2014 Kim et al. showed that malicious software can utilize main
memory hammering to induce bit flips in nearby memory regions, bypassing the hardware’s memory
protection [21]. With Rowhammer, faults may be injected remotely and by pure software means making
it a novel and very powerful form of fault injection.

While we focus in this paper on Rowhammer, we stress that our findings will work with other
“faulting primitives”.

3.1. Rowhammer

Main memory is composed of multiple memory Integrated Circuits (ICs) packed on a Dual Inline
Memory Module (DIMM). Although the form factor may differ, the used memory technology in each
IC is Dynamic Random Access Memory (DRAM). DRAM is used because each cell, i.e. each bit, is
made up of a relative simple circuitry mainly containing a transistor and a capacitor (see Fig. 1 (d)).
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Figure 1. Simplified topology of DRAM organization.

3.1.1. Accessing data. DRAM cells are not directly accessible and each access must be served through
a bank’s row buffer (Fig.1 (c)) [21]. Data is accessed in three steps: (1) Opening a row, which transfers
the current of the cells in one row into the bank’s row buffer, (2) invoking read- or write operations
on the row buffer and (3) closing the row by transferring the row buffer’s current back into the cells
[21].

3.1.2. Refreshing data. Due to internal current leakage, DRAM cells have a very limited retention
time [21], [22]. This means that each cell will slowly leak its current and eventually lose its state
when it is not periodically refreshed – hence the term “dynamic memory”. DRAM memory controllers
thus guarantee that each cell is refreshed at least once in a 64-millisecond time frame. This has two



implications: (1) the memory controller must constantly refresh the current in each cell and (2) each
cell must be guaranteed to keep its state for at least 64 ms in order to avoid data loss.

3.1.3. Disturbance errors. As the proximity between each cell increases, disturbance errors become
more likely. As a result, cells may leak charge at an accelerated rate when inferring with other electrical
components. When the cell leakage is raised to a level such that a cell can’t keep its charge for 64
ms, it will lose its data [21]. This physical effect is the cause of the Rowhammer bug and probably
known since 2012 [21], [23], [24], [25], [26], [27], [28], [29].

3.2. Hammering

Kim et al. demonstrated how bit flips can be triggered by software means. This is done by repeatedly
activating two or more rows in a single bank while bypassing the CPU cache via cache-flush instructions
[21]. There are two possible variants of those activations, namely single- and double-sided hammering.
For both variants, an attacker must trigger row activation commands to one particular DRAM bank. For
double sided hammering, the two selected rows must additionally enclose one victim row to intensify
the leakage. Although, memory banks were reported to be vulnerable against both variants, double-
sided hammering is more effective and often reported as the only way to trigger bit flips in reasonable
time [30].

3.3. Memory optimization techniques

Rowhammer attackers face basically two challenges: (1) bypassing the CPU cache and (2) finding
appropriate rows to hammer. The first challenge can be solved by utilizing special CPU instructions,
like clflush and non-temporal instructions, or by crafting memory access patterns for fast cache
eviction [21], [31], [32]. However, based on the attacker model, it is not immediately clear how the
appropriate rows can be found.

With “Flip Feng Shui”, Razavi et al. demonstrated how certain memory optimizations can be
exploited for precise Rowhammer attacks [33]. A machine may deploy memory optimization strategies
to reduce its memory footprint and increase system performance. Two features facilitating Rowhammer
attacks are in particular memory deduplication (discussed in form of Linux’ Kernel Samepage Merging)
and huge pages (discussed in form of Linux’ Transparent Huge Pages). Both technologies combined
allow for controlled bit flips across virtual machine boundaries [33].

3.3.1. Kernel samepage merging. Memory deduplication is an operating system feature to reduce the
overall memory consumption of a system. Deduplication works by identifying and merging memory
pages with the same content, such that multiple processes can transparently share the same physical
memory. Since a page may be writable a Copy-on-Write (CoW) mechanism is introduced such that a
page is unmerged prior to a write operation [34].

The idea behind KSM exploitation is rather simple: if an attacker knows the exact content of a
memory page she wants to corrupt, she allocates a page with the same content and waits for the
deduplication system to merge her and the victims page. This way, she gets her virtual addresses
pointing to the physical page of the victim with little effort. Obviously, a write operation will trigger
the CoW-mechanism, such that changes will not propagate to a victim-VM. However, Rowhammer
is a physical fault. Thus, the CoW mechanism is not triggered and the bit flip propagates to each
application having a page with the same content.

3.3.2. Transparent huge pages. Transparent Huge Pages (THP) are a technology to automate the
creation and management of huge pages. Typically, pages have a size of 4096 bytes and allocating
a large amount of memory will take multiple pages which must all be tracked by the system and
hardware. With huge pages – which are typically 2 MiB in size – the mapping overhead can be
reduced. The algorithm does this in the background: it identifies small pages and merges them into
huge pages when possible.
Relationship to Rowhammer. Most importantly, THP allows for efficient hammering. A single DRAM
row (as defined in the DDR3 spec.) is 8KiB in size. Given that there are, for example, 16 banks, 128



KiB of data fall into the same row index (but different bank). With huge pages in place, a single page
spans across 512 “small pages” (2 MiB / 4 KiB) and hence covers 32 physical rows independently
from the DRAM bank. As such, double-sided Rowhammering becomes possible. Using huge pages
for double-sided Rowhammering was first described in [32].
Relationship to KSM. Currently, KSM works with 4 KiB pages only, but will split a huge page into
small pages for deduplication. It is noteworthy, that the physical alignment during the split may not
be destroyed. Thus, first allocating a large amount of memory, waiting for THP to merge the pages to
huge pages and then utilizing KSM is feasible [33].

3.4. Templating

An attacker can search and “collect” pages vulnerable to bit flips, even with a particular offset.
This was coined “templating” in [33]. The idea is to search for bit flips in attacker-controlled memory,
adjust the content of a vulnerable page and wait for deduplication. This way, precise bit flips can be
induced. For more details refer to [33].

4. Fault-attacking deterministic signatures

In the following, we describe how fault attacks on deterministic signature schemes work in general.
Furthermore, we show concrete attacks against Deterministic ECDSA and EdDSA to confirm that
the generic attacks work against real algorithms. We also discuss the steps and variables in the
signature algorithms for which fault attacks can compromise the security. Finally, we discuss possible
countermeasures and note that the type of fault injection heavily influences the choice of effective
countermeasures.

4.1. Nonce reuse in deterministic ECDSA

Fault attacks on deterministic signatures require only one faulty signature (R, s ) over M and one
correct signature (R, s) over M to recover the secret key a. Note that the attack described below only
affects deterministic signature schemes and does not apply to randomized signatures such as ECDSA
under usage of correct randomness sources.

We assume a scenario, in which a signing process runs i times and in which the attacker can read
the respective signature (Ri, si). The computation of Ri := f([(K(a,M)+λiq]G) mod q with K being
a pseudorandom function (PRF) is performed multiple times, using blinding values λi. Blinding is a
typical countermeasure for implementations of ECC and the result of this computation is independent
from λ. We assume a blinded implementation in order to show that blinding does not prevent fault
attacks against deterministic signatures.

First the attacker gets a correct value

s0 = (aR0 +H(M))K(a,M)−1 mod q.

Introducing an arbitrary fault in the computation of R leads to a faulty R , from which s is computed
using the identical nonce K(a,M). From the signatures (R0, s0) and (R , s ) we construct a system
of two linear equations over Fq:

K(a,M)s0 = aR0 +H(M)

K(a,M)s = aR +H(M)

This system of two equations for two unknowns can easily be solved. The point here is that the
nonces are identical. For deterministic ECDSA, two types of faults are possible:
• The attacker modifies M after K(a,M) has been computed. I.e. s is computed using the correct

nonce K(a,M), the correct value R0 but an incorrect hash. In this case, an internal validation of
the signature would be successful.

• The computation of R := f([K(a,M) + λ1q]G) mod q is attacked, i.e. R is incorrect.
A similar attack for the classic (i.e. non-deterministic) ECDSA is not possible, because the above

equations would end up with three unknowns, which has no unique solution. Thus, the fault attack is
only possible for deterministic nonces, but not for random nonces as in classic ECDSA.



4.2. Nonce reuse in EdDSA

In contrast to classic ECDSA, EdDSA uses deterministic nonces by design. EdDSA calculates its
nonces by hashing a long-term secret concatenated with M (see eq. 7), so that different messages will
lead to different, hard-to-predict values of r [17].

In order to demonstrate the effects of a repeating nonce, we will assume for a moment that an
attacker can produce two messages M1 6= M2 that yield identical hash values in the computation with
hb, ..., h2b−1, and thus result in an identical nonce r:

H(hb, ..., h2b−1,M1) = r = H(hb, ..., h2b−1,M2). (11)

To produce the EdDSA signature for M1,M2, we continue with

s = (r +H(R,A,M1) a) mod q (12)
s′ = (r +H(R,A,M2) a) mod q (13)

with s 6= s′. It follows that

H(R,A,M1) a− s = −r mod q (14)
H(R,A,M2) a− s′ = −r mod q (15)

and hence
=:Ĥ1︷ ︸︸ ︷

H(R,A,M1) a− s =

=:Ĥ2︷ ︸︸ ︷
H(R,A,M2) a− s′ (16)

⇔ (Ĥ1 − Ĥ2) a = s− s′ (17)

⇔ a =
s− s′

Ĥ1 − Ĥ2

(18)

which yields the private key a.3 Note that the values s, s′, Ĥ1 and Ĥ2 are all known by an attacker.
Contrary to [5], hb, . . . , h2b−1 is not needed to create forged signatures for different messages.

Of course, crafting two messages M1 6= M2 such that eq. 11 holds is infeasible for secure
cryptographic hash functions such as SHA-512. Hence, the only realistic possibility to generate the
same nonce twice is using the same two messages M1 = M2. This, however, yields two identical
signature pairs – which reveals no further information.

We now observe that M is read twice during the signature process. First, to generate the nonce
r and second, M is read again to calculate s. If an attacker is able to change M to M just after
the generation of r, then r was calculated from M but is used to sign M 6= M . Now assume that
the attacker can perform the signing process twice: Once with an unchanged M and once with the
changed M . If both resulting signatures use the same r then the attacker has just forced the target
to reuse a nonce for two different messages.

This attack gets practical when taking fault-injections into account as M can be transformed into
M by inducing bit flips in M . In other words, instead of crafting two messages whose hashes collide,
we sign the same message M twice and induce a bit flip during one signing just after r was calculated.

When looking closely at eq. 12, we see that not only is M used to produce the hash to be signed,
but also R and A. If an attacker can change any of R,A,M , the above attack is possible, see Tab. 1.
However, note that depending on the scenario, M can be much larger than R or A. Thus, it may be
easiest for an attacker to inject faults into M .

5. Attack strategies on EdDSA via Rowhammer

Traditionally, fault injection attacks required physical access to the targeted machine. With the
publication of the Rowhammer attack, it became feasible to perform fault injections remotely, which
is highly relevant for the attacks on deterministic signature schemes. This section describes prerequisites

3. As per definition, the b-bit string k is considered the private key. But a is the secret scalar for the public key A = [a]G
and knowing a allows for signature forgery as knowing k would do. Thus, the term secret key is used for both k and a.



TABLE 1. THREE FAULT INJECTIONS PROVOKING NONCE REUSE AND REVEALING THE SECRET KEY IN EDDSA.

Faulty R Faulty A Faulty M

Step 1 r = H(hb, . . . , h2b−1,M) r = H(hb, . . . , h2b−1,M) r = H(hb, . . . , h2b−1,M)
Step 2 R = [r]G R = [r]G R = [r]G

Step 3 s R = (r + H(R , A,M) a) mod q s A = (r + H(R,A ,M) a) mod q s M = (r + H(R,A,M ) a) mod q

on both the protocol and machine under attack, and introduces strategies for Rowhammering under
different constraints. We concentrate on the analysis of EdDSA since this algorithm is considered for
further standardization by NIST and FIPS 186, and it is currently being standardized in several well-
used cryptographic protocols [6], [7], [8], [9], [10]. As discussed in the previous section, we see three
obvious ways to provoke a nonce reuse in EdDSA: (1) faulting the scalar multiplication, (2) flipping
bits in the public key A and (3) flipping bits in the message M .

5.1. Attacker scenario and prerequisites

We consider a cloud scenario and an attacker whose virtual machine is co-located to a victim’s
virtual machine. It was shown in the past that this is feasible [35]. The victim is running a cryptographic
application using EdDSA signatures. The attacker can execute Rowhammer attacks as described in
sec. 3.4. The goal of our attacker is to recover the victim’s private EdDSA key.

5.1.1. Cryptographic protocol prerequisites. The cryptographic scheme has to meet the following
prerequisites:
• Signatures can be observed by an attacker, i.e. the victim serves as a signature oracle.
• At least two EdDSA signature generations (Pure- or HashedEdDSA) can be triggered.
• It must be feasible for an attacker to trigger independent signature generations yielding the same

result. In other words: No uncontrollable random is incorporated into the signature generation.
• The to-be-signed message M is known to an attacker, but it is not necessary to choose its content.

5.1.2. Prerequisites for Rowhammer. The prerequisites for executing a Rowhammer attack are as
follows:
• Rowhammering must be feasible on the machine under attack.
• For the weak attacker scenario, the system needs to be vulnerable to single-sided Rowhammering

and M needs to be relatively large compared to the overall available main memory.
• For the stronger cross-VM attack scenario, it is necessary for the host system to support KSM

and THP.
Note that THP is a default-on feature in many Linux distributions [33]. Thus most setups differ in

the deployment of memory deduplication only, i.e. if a form of memory deduplication is active or not.

5.2. Attack strategies

The success probability of the different Rowhammer attack strategies depends on the setup under
attack and the attacker’s choice of the faulted variable. For example, random single-sided hammering
is unlikely to flip bits in small public keys A, but has a realistic success chance to flip bits in large
messages M . Additionally, with the Flip-Feng-Shui [33] method using KSM and THP, it may even
become feasible to flip bits in assembly instructions or the base point G to inject faults in the scalar
multiplication – a scenario typically found in side-channel analysis of smartcards and tamper-proof
hardware.
Example for weak attacker scenario. Consider the following configuration of the weak attacker
scenario deploying single-sided hammering. The host is equipped with 4 GiB of main memory, the
attacker-VM allocates 2 GiB, M is 1 GiB in size. Assuming a uniform distribution of M over the
main memory, the probability that two randomly picked addresses are in the same bank depends on the
DRAM configuration. We assume 16 banks in total, thus yielding a probability of 1

16 for picking two



rows in the same bank. Each of those rows will typically have 2 adjacent rows (corner cases excluded).
The probability that at least one of those 4 adjacent rows in total contains a slice of the message is
thus 1 − (1 − 1

4 )4. This yields roughly a probability of 1
24 for randomly choosing an address pair

which can potentially inject bit flips in a page of M . The probability is expected to be much lower in
practice, because not each row is vulnerable to hammering. However, many hammering attempts are
possible and the success rate highly depends on the quality of the deployed DRAM.
Constraints. Single-sided hammering has various constraints on its own:
• Implementations may limit the message size and provide a fallback from PureEdDSA to HashedEd-

DSA for bigger messages.
• The corrupted message M is required to reconstruct the private key and thus the exact bit flips in
M must be known. Otherwise, a large message with multiple bit flips will become a combinatorial
problem, i.e. with

( amount of bits
amount of bit flips

)
possible combinations. In fact, with large messages, more than

one bit flip would become infeasible to test for. However, an attacker can observe the first change
and test under the assumption that exactly one bit has flipped – which is often the case when
conducting less aggressive hammering. Furthermore, optimizations can be applied, for example,
when bit flips are known to flip from 1 to 0 only.

• Many machines are assumed to exhibit bit flips only via double-sided hammering in reasonable
time [30]. However, we experienced bit flips in longer test periods and conclude that single-sided
hammering is feasible on our testing setup. Typically, we were able to identify randomly induced
bit flips within a few hours of hammering. Similar results were also reported on the Rowhammer
mailinglist.4

5.2.1. Faulting R. This fault injection was previously discussed in [5]. The authors state that “since
the value of k [r using our notation – ed. note] depends on both msg and an unknown portion of the
hash [hb, . . . , h2b−1 using our notation – ed. note] of d [k using our notation – ed. note], the attacker
will not be able to exploit it to successfully forge a signature for any message different from msg” [5].
Their conclusion was motivated by the fact that a forged signature can be proven not to be generated
by the legitimate owner since the determinism of r will deduce the correct values for hb, . . . , h2b−1.5
However, we find that a signature check will pass. This is because an attacker in possession of the
private key a can simply choose another h′b, . . . , h

′
2b−1 instead of the original one and generate a valid

signature for any M .
We see two ways to induce faults in R via bit flips: by corrupting the calculating code, i.e. by

inducing bit flips into the corresponding assembler instructions, or by inducing faults into the base
point G. The preferred way depends on the outcome of the templating phase (see sec. 3.4). The base
point is expected to have at least 32 bytes. Hence, there are 32 exploitable offsets per page. The number
of exploitable bit flips in the assembler code depends on the particular implementation.

5.2.2. Faulting A. The authors of [33] implemented a successful attack against OpenSSH by inducing
faults in RSA public keys. Their attack benefits from Linux’ page cache, a consolidated cache used
to accelerate file reads from disk. When a file is read for the first time, it is stored in the page cache,
so that subsequent reads are served from main memory instead of disk. The whole main memory of
a virtual machine is candidate for deduplication. Therefore, an attacker can (1) trigger a signature
generation to put the public key file into page cache, (2) wait for KSM to deduplicate the page, (3)
induce a bit flip in A and (4) trigger a second signature generation to obtain the required faulty s . If a
protocol meets the requirements discussed earlier, those four steps are sufficient to obtain the EdDSA
private key.

Secret keys are likely protected in a way such that bit flips will cause key loading routines to fail.
Public keys, on the other hand, may experience less protection as OpenSSH demonstrates: OpenSSH
documentation recommends that the authorized_keys file is not accessible by others, but no
integrity checks are used.

4. https://groups.google.com/forum/#!forum/rowhammer-discuss
5. We thank the authors of [5] for clarification.

https://groups.google.com/forum/#!forum/rowhammer-discuss


5.2.3. Faulting M . Compared to R and A, the message M can be a particular good attack target
due to the fact that M can be very large. When large messages are signed, the probability to inject
faults into the message increases. Additionally – because whole pages can be filled with known data
– deduplication becomes easier to trigger.

Faulting the message is especially useful for applications which read a message twice from disk
as is the case for PureEdDSA implementations. Due to the page cache, the same properties as in the
public key scenario may apply. Additionally, since the message may fill whole pages, each template
becomes exploitable.

However, a fault must be induced in a specific time frame, i.e. after step 1 and before step 3
in Tab. 1. For small pages, the scalar multiplication is the most time-consuming operation. For large
messages, the computation is dominated by the hash operations in the first and in the last step of
signing. The time window, in which bit flips in M are exploitable, can thus be estimated as the time
between two reads at the same offset in the message. To conclude, an approximate time window for
hammering is at least 50% of the hashing time, plus the time needed for scalar multiplication.

It is noteworthy, that bit flips may become persistent as long as a file is kept in page cache. Thus, if
the time frame was missed by an attacker, subsequent messages will differ from the original by exactly
the bit flips induced in the prior attempt. This leads to different messages, but is not problematic, since
each bit flip is registered and can easily be taken into account for future attempts. The exact behavior
is highly dependent on the application-under-attack, i.e. if files are mmaped or read, etc.

6. Applicability of the attack to other signature schemes

In this section, we introduce the background and explain the general applicability of our results
regarding signatures of a form similar to EdDSA. Therefore, we first give the structural connection
between interactive zero-knowledge proofs and signatures of this form and thereby the origin of
such signatures. More precisely, we concentrate on Σ-protocols as a special class of interactive zero-
knowledge proofs since they automatically provide an algorithm for the extraction of the secret key if
nonces collide. Subsequently we explain the impact of the issue, caused by fault attacks regarding the
set of signatures originated from Σ-protocols.

6.1. From Σ-protocols to signatures

Σ-protocols are a special form of interactive zero-knowledge proofs [1] between a prover P and a
verifier V in which P proofs the knowledge of a witness w for a public element x such that (x,w) ∈ R
holds for the binary relation R between a public element and its private counterpart. P proves the
knowledge towards V without revealing any non-public knowledge to V . Consequently, V is not able
to perform a proof of this knowledge after the execution of the protocol towards another party. Σ-
protocols are defined as Σ = (KGen,P1,P2,ChSet,Ver) such that KGen generates a pair (x,w) ∈ R
where the possession of the private parameter w is proven for the public parameter x. P1 generates
parameters for a session for which the proof is computed with P2. The internal state St of the prover
is handed over from P1 to P2. The verifier’s challenge which is also input to the algorithm P2 is
randomly chosen from a challenge set ChSet. Finally, the Ver algorithm of V outputs 1 if the proof
is correct or 0 otherwise. Typically, the proof setting is parameterized by (x,w) but in order to show
the connection between zero-knowledge proofs and the respective signatures we add the setup phase
to the description.

In the protocol description in Fig. 2, P proofs the possession of the witness w for the public
element x in the session specified by R, where h is V ’s challenge. A zero-knowledge protocol of this
form must satisfy three main conditions: 1) Completeness: if P possesses a witness w for x, then V is
satisfied by the proof, 2) Soundness: if P does not know a witness w for x, then P is able to proof its
possession to V only with negligible probability and 3) Zero-Knowledge: by executing the protocol,
V learns nothing but the fact that P possesses a witness w for x.

Soundness is formally shown by fulfilling Special Soundness: for two correct transcripts (R, h, s),
(R, h′, s′), h 6= h′, there exists an algorithm Ext(x,R, h, h′, s, s′) → w. Essentially this property
implies that if a prover can correctly answer two different challenges of V for one session started with
R, then P already knew w for x such that (x,w) ∈ R. Although this property is only mandatory for



Prover P Verifier V

Setup:
(x,w)

$←− KGen()

Protocol:
(R,St)

$←− P1(w)

h
$←− ChSet

s
$←− P2(w,R, h, St) b := Ver(x,R, h, s)

x

R

h

s

Figure 2. Generic Σ-protocol.

Σ-protocols, according to Cramer et al. this restriction is non-serious because “all known proofs of
knowledge have this property” [36].

In this sense one can consider the three messages as: R is a unique session identifier, h is the
unforeseeable challenge by the verifier, and s is the proof of knowledge in the session R for the
challenge h. Now h is the protection for V that P cannot cheat and in the light of special soundness,
R is the protection for P that nobody can retrieve her secret.

Fiat and Shamir proposed a generic transformation [11] to construct signature schemes (see Fig. 3)
from identification schemes, and thereby from zero-knowledge proofs and Σ-protocols. In order to
convert the interactive protocol into a non-interactive proof, the unpredictable challenge from V is
replaced by the output of a collision resistant hash function H. The resulting signature scheme Sig =
(Gen,Sign,Vfy) can be proved to be secure according to the definition of existential unforgeability
under chosen message attacks (EUF-CMA) in the random oracle model (ROM).

Gen(): (pk, sk)
$←− KGen()

Sign(sk,M): (R,St)
$←− P1(sk)

h := H(R,M)

s
$←− P2(sk,R, h, St)

σ := (R, s)
Vfy(pk,M, σ) : h := H(R,M)

b := Ver(pk,R, h, s)

Figure 3. Signature scheme derived from the Fiat Schamir transform.

The binary relation from the zero-knowledge proof is the relation between secret keys and public
keys in the signature scheme.

In EdDSA, the computation of h also includes the signer’s public key h = H(R,A,M). In contrast
to the Fiat Shamir transformation where R is computed probabilistically, in EdDSA the algorithm P1

is deterministically computed on the message and a secret value.
The proof of the transformation however assumes no collisions of R. Particularly Fiat and Shamir

require that ”P uses each Ri only once” during multiple executions of the proof.6
Since EdDSA not only computes the challenge from the verifier with a deterministic function

but also the algorithm P1, and the procedure P2 is deterministic, the whole signing algorithm is
deterministic. Thereby collisions of R are an intrinsic side effect of the EdDSA construction. This
effect is contrary to the original intent of R, which requires R to be randomly chosen and free of
collisions.

6. The R in Fiat and Shamir’s construction consists of multiple values Ri and the proof originally is conducted between
parties A and B.



6.2. General applicability on deterministic signatures from Σ-protocols

The issue presented in this paper applies to all signature schemes that are based on a Fiat Shamir
transformed Σ-protocol (e.g. [11], [17], [37], [38], [39], [40]) and more generally zero-knowledge
proof that fulfill special soundness (e.g. [41], [42], [43]). In fact, many post-quantum secure signature
schemes employ Σ-protocols (e.g., [38]). However, as long as the computation of R is probabilistic,
the extraction algorithm Ext from the special soundness condition cannot be used to derive the secret
key. As soon as R is computed deterministically and h can be manipulated such that two tuples
(h, s), (h′, s′), h 6= h′ are gathered for one R, the secret key can be computed.

Since h is not computable from the signature (R, s), the fault attack has to be performed carefully
(see sec.5.2). If a similar determinism would be applied to a scheme like the Schnorr signature scheme
[37] where h is part of the signature (h, s), the attack could be much easier. Instead of attacking few
bits of the processed message, the input of the second call of H can arbitrarily be manipulated (i.e.
any number of bits) in order to compute the secret key.

As a consequence, either the determinism of a scheme is effectively preserved or randomness is
inevitable to derive a secure signature scheme from a zero-knowledge proof with special soundness.

7. Application of the attack to real-world protocols

We are not aware of any current cryptographic standards adapting the deterministic ECDSA scheme.
On the other hand, there exist several major cryptographic standards and implementations adapting
EdDSA. EdDSA is being implemented in TLS [6], SSH [7], IPsec [8], X.509 infrastructures [9], or
DNSSEC [10]. In the following, we analyze the major cryptographic standards using EdDSA with
respect to the prerequisites described in sec. 5.1.

7.1. On the impossibility of attacking TLS, SSH and IPSec

7.1.1. TLS. Version 1.3 of the Transport Layer Security (TLS) protocol [6] specifies the usage of
PureEdDSA for securing the authenticity of server-generated (EC)DH parameters exchanged in the
TLS handshake. A typical handshake with server authentication in TLS 1.3 works as follows. The
client starts the handshake with the ClientHello messages. The ClientHello contains a list of
cipher suites, client random and further cryptographic properties of the TLS connection. In addition,
it contains a fresh (EC)DH key denoted as ClientKeyShare. The server responds with a list
of TLS messages. ServerHello contains a fresh server random, ServerKeyShare, and further
cryptographic properties. Certificate contains an X.509 certificate possibly with an EdDSA public
key. The server signature is constructed over all the previous messages using the PureEdDSA algorithm.
At the end, both peers exchange Finished messages to confirm that they are in possession of the
secret key established based on the exchanged (EC)DH key shares.

Even though TLS 1.3 uses PureEdDSA, from the perspective of our attacker, a practical attack on
EdDSA is infeasible. The reason for this is that the EdDSA signature is always generated over fresh
server-generated inputs: server nonce and server key share. Therefore, the attacker is not able to force
the server to sign the same message several times. Previous TLS versions do not officially support
EdDSA.

7.1.2. SSH. Recent implementations of the Secure Shell (SSH) transport layer protocol [7] support
Ed25519 (e.g., OpenSSH since version 6.7). However, the SSH protocol exposes similar behavior
as TLS 1.3, and makes the attack infeasible. SSH specifies two key exchange mechanisms: Diffie-
Hellmann and RSA key exchange. In both cases, the signature input is derived by incorporating the
server’s random cookie, which is sent at the beginning of the protocol flow in the SSH_MSG_KEXINIT
message.

7.1.3. IPsec. Internet Key Exchange Protocol Version 2 (IKEv2) [44], [45] standardizes the key
exchange mechanisms for IPsec [46]. A recent Internet draft specifies the usage of EdDSA for
IKEv2 [8]. In IKEv2 the server computes a signature over its initial message and the initiator nonce
(Ni). The server initial message contains Header data (HDR), Security Association (SA), and two



random values: server nonce (Nr) and fresh DH key share (KEr). Therefore, similarly to TLS and
SSH, our Rowhammer attacks are not applicable.

7.2. Potential dangers in OCSP

Online Certificate Status Protocol (OCSP) allows a client to query a certificate authority about
the current status of a certificate [47]. For this purpose, the client sends a certificate identifier in its
request. The server responds with a message containing the current certificate status (good, revoked
or unknown), the time when the response was generated, and a signature computed across a hash of
the response. Both OCSP messages can contain extensions with client- and server nonces. They are
not mandatory.

OCSP fulfills the protocol prerequisites described in section 5.1.1 and establishes a valid scenario for
our Rowhammer attack: an attacker may be able to force the OCSP responder to generate signatures
over equal messages within a short time period without uncontrollable random. This is due to the
existence of a client nonce extension which is reflected in the OCSP response. Since any nonce can
be send to the server, it is unlikely that equal nonces are cached. Even though we are not aware of
EdDSA actively being used in OCSP, given the fast deployment of this signature algorithm in other
standards, we can assume its future deployment as well. In that case, we strongly recommend to use
server nonce extensions in OCSP responses and refer to sec. 9.

8. Attacking Minisign

In this section, we analyze the feasibility of our attack in a realistic setting using Minisign7 – a
tool similar to OpenBSD’s signify – and demonstrate two variants how EdDSA can be faulted in a
cross-VM scenario. Minisign utilizes libsodium8 (a fork of NaCl) for its cryptographic primitives. NaCl
itself utilizes the “ref10” reference C-implementation of Ed25519. Minisign supports both variants of
EdDSA, Pure- and HashedEdDSA. HashedEdDSA is not used by default, but mandatory for messages
above 1 GiB in size. However, if one chooses a message smaller than 1 GiB, Minisign defaults to
PureEdDSA.

8.1. Hard- and software setup

Our test device (Arch Linux 4.12.6 x86 64) was equipped with 8 GiB of DRAM known to be vul-
nerable against Rowhammer and deployed two virtual machines (Ubuntu 16.04 LTS) via KVM/QEMU
called the attacker- and the victim-VM. On this machine, we typically observed bit flips induced by
single-sided hammering (using the probabilistic version of rowhammer-test9) within some hours of
testing. With double-sided hammering, we typically observed bit flips within a few seconds of testing.
Attacker-VM. The attacker machine ran a hammering program which could be configured for random
(single-sided) and deduplication-based (double-sided) hammering. In order to induce precise bit flips
in memory pages, we reproduced the findings of [33] and implemented the templating phase to find
vulnerable pages.
Victim-VM. The victim machine repeatedly signs a file and was able to listen for incoming signature
requests. Each signature request was passed to Minisign and the resulting signature was sent to the
attacker-VM. That is, so the victim-VM becomes a signature oracle.

8.2. Proof of concept with memory deduplication

When memory deduplication is active, a similar attack to [33] can be executed. As stated earlier, a
single bit flip in the public key can result in private key compromise. However, in Minisign, the public
key is protected by a checksum.10 We thus opted to fault the message. However, the message is not

7. https://github.com/jedisct1/minisign
8. https://download.libsodium.org/doc/
9. https://github.com/google/rowhammer-test
10. See Secret key format at https://jedisct1.github.io/minisign/

https://github.com/jedisct1/minisign
https://download.libsodium.org/doc/
https://github.com/google/rowhammer-test
https://jedisct1.github.io/minisign/


an optimal target either, because Minisign does not mmap the message, but creates an internal copy
via malloc/fread. This means that KSM must deduplicate the internally created copy. Furthermore,
since the message is likely to stay in the page cache, bit flips induced over time will accumulate. Being
aware of this pitfall, we designed the hammering program to collect each observed bit flip for later
analysis and eventually tested for each permutation. Our hammering program allocated memory pages
(e.g., based on file input) and created a backup for each page. The backup pages were “blinded” by
XORing with a constant value (or using a random 8 byte page prefix) so that KSM did not merge the
to-be-hammered pages with the backup pages.

The attack was conducted as follows:
1) Directly after bootup allocate a large message in the attacker-VM that is co-located to the victim-

VM.
2) Wait for THP in the victim-VM as well as for THP in the host-OS to merge 4 KiB pages into huge

pages (THP). The intuition here is that both merge operations will roughly result in physically
continuous huge pages in DRAM [33].

3) Allocate the same message a second time in the attacker-VM and wait for KSM to deduplicate
both memory pages. This is so that the pages are added to KSM’s stable tree.

4) Trigger a signature generation with the message in the victim-VM. The obtained signature will
be used as a reference.

5) Trigger further signature generations while hammering the deduplicated addresses.
6) If a signature deviates from the reference signature, a bit flip was triggered in the page cache or

during signature generation. If it does not, go to step 5.
7) Try to extract the private key as discussed in sec. 4.2. If this is not successful, for example, if R

differs from the reference signature, go to step 5.

8.3. Proof of concept without memory deduplication

Executing precise Rowhammer attacks in cloud-scenarios is difficult due to indirections in the mem-
ory system. Typically, an attacker with control over the virtual machine is able to access
/proc/<pid>/pagemap which allows for virtual-to-physical address translation. However, the
physical addresses obtained in a virtual machine are so called “guest-physical” addresses and its
relationship to real physical addresses, i.e. “host-physical” addresses, is typically unknown to an
attacker.

Nonetheless, one can opt for random (single-sided) hammering. By using random hammering, no
information on virtual-to-physical mapping of addresses (how the operating system maps virtual pages
to physical frames) or physical-to-DRAM mapping (how physical addresses are mapped to rank, bank,
row, etc.) is needed. Furthermore, no “memory massaging” primitives as used by [33] are needed.

We estimate the feasibility of an attack based on random hammering with two variables: the
interleave of attacker- and victim-pages and the amount of vulnerable cells in main memory. We
examined the memory of our test machine (via a patched version of KVM to translate guest-physical
addresses to host-physical addresses) and evaluated how many attacker-VM rows are adjacent to victim-
VM rows. We call these rows “neighboring rows”. We measured the interleave of two 1 GiB messages
allocated in the attacker- and victim-VM over 20 reboots of the host machine.

We measured up to 18.83% max neighboring rows on reboot (0.03% min, 8.55% mean, 9.97%
median) and up to 18.55% max (0.02% min, 8.78% mean, 10.49% median) after idle for five minutes.

8.3.1. Analysis. In order to extract the private key, we developed an analysis program which takes
a list of signatures and encountered bit flips (if available) as input. First, a hash map with R as key
and a list of s’ is created. The reason is that we reconstruct the secret key only if two signatures
with R1 = R2 and s1 6= s2 were found. Afterwards, each bit flip is tested against candidate signature
pairs. The test succeeds if the private key is found. This can be verified by calculating A′ = [a′]G and
checking if A = A′.

8.4. Analysis of single-sided hammering

We explored our test scenario and found that we can successfully inject cross-VM bit flips only by
random hammering. During our tests, we were able to conduct the full attack in under four hours of



random hammering and a 700 MiB large message. It is important to note, that these tests are highly
specific to the hardware of the machine-under-attack and that the attack outcome may vastly differ
among hardware.11 To our knowledge, there are no public studies investigating the vulnerability of
off-the-shelf hardware to single-sided hammering and we did no further evaluation of the outcome of
the attack, i.e. how likely a key compromise in a specific time frame is.

Nonetheless, our test hardware was vulnerable to random hammering, which shows that weaker
attackers with no access to double-sided hammering primitives may be able to perform the presented
attack. Furthermore, we expect that optimizations as discussed in [30], [32], [48] may be applied to
make single-sided hammering more efficient.

9. Countermeasures

In the following we present several countermeasures and discuss why some of these countermea-
sures do not work.

9.1. Signature validation

Our Rowhammer attack on EdDSA leads to the computation of invalid signatures. A typical coun-
termeasure against such fault attacks is signature verification. This countermeasure can be successfully
applied in the RSA signature generation process with the Chinese Remainder Theorem (CRT) as
showed by Lenstra [49], [50]. Lenstra’s attack exploits a random fault injected in a CRT multiplication
step during signature generation. Since the signature verification does not include CRT multiplication,
a simple signature verification step can detect a fault attack.

However, this countermeasure does not help to prevent our attack on EdDSA. Imagine the attacker
managed to induce a bit flip in the message M , which is located in the memory and used as an input
to the signing function (see also Tab. 1):

s = (r +H(R,A,M )a) mod l

In that case, the signature verification process would lead to a correct result, because the modified
message M is used for the verification:

[s ]G = R+ [H(R,A,M )]A

This interesting property of fault attacks on EdDSA has also been independently discussed by Tony
Arcieri.12

9.2. Signature generation

A potential countermeasure against our Rowhammer attack on EdDSA would be to generate the
signature twice and compare the outputs of both signature generation functions. However, a more
precise Rowhammer attacker might be able to introduce a bit flip on the same position in two or even
more messages. Given the recent development in the Rowhammer attacks, this threat should not be
overlooked.

Another important point that needs to be considered is the performance penalty that is introduced
by generating signatures. Even though this penalty is not as high as for RSA signatures. Especially
for large messages over 1 MiB, the signature generation process is slower than signature verification.
See also Tab. 2.

11. See the rowhammer-discuss mailinglist (https://groups.google.com/forum/#!forum/rowhammer-discuss) for reportedly
failing and surviving machines.

12. https://github.com/jedisct1/libsodium/issues/170
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https://github.com/jedisct1/libsodium/issues/170


TABLE 2. DURATION OF SIGNING AND VERIFICATION OPERATIONS DEPENDING ON THE MESSAGE SIZE PERFORMED WITH
THE LIBSODIUM LIBRARY (METHODS CRYPTO_SIGN_ED25519_VERIFY_DETACHED AND

CRYPTO_SIGN_ED25519_DETACHED). THE MEASUREMENT RESULTS ARE PROVIDED IN CLOCK CYCLES OBTAINED BY
RDTSC .

Message (bytes) Signing (cycles) Verification (cycles)

10 232,155 550,380
100 207,795 461,272

1.000 230,442 415,431
10.000 682,785 546,288

100.000 3,022,662 1,718,436
1.000.000 28,205,265 14,153,310

9.3. Usage of HashedEdDSA

EdDSA can be used in two variations: PureEdDSA and HashedEdDSA. PureEdDSA uses message
M directly as an input. HashedEdDSA hashes M with a hash function H before executing further
operations. From a Rowhammer attacker perspective, the PureEdDSA algorithm offers more flexibility
by executing the attack since she needs to flip a single bit in a message of arbitrary length. On the other
hand, HashedEdDSA forces the attacker to induce a bit flip in the output of a few bytes (depending
on the hash algorithm and the internal representation of the hash result). Therefore, HashedEdDSA
would be a better choice to counter the Rowhammer attacks.

However, PureEdDSA is recommended because of possible hash collisions [19]. Even if the attack
on HashedEdDSA is more complicated than on PureEdDSA, we need to consider a more skilled
Rowhammer attacker who can induce precise bit flips in the hashed message input as well.

9.4. Checksum over input values

Another countermeasure for EdDSA would be to introduce checksum computation over input values
R, A and M before and after signature generation. If the checksums are equal, no bit has been flipped.
Otherwise, a fault attack can be assumed and the signature generation process must be interrupted.

Minisign implements this countermeasure on public keys. The checksums over public keys are
verified during the signature generation. This made our Rowhammer attack with public keys infeasible.

9.5. Additional randomness

The main argument for deterministic signatures is the need for strong randomness (e.g., following
[51], [52]). One could instead combine a somewhat weaker random number generator with the de-
terministic procedure to generate “ephemeral” keys. This construction would have the same security
properties as EdDSA, but the signatures over equal messages would always be different.

XEdDSA [53] implements this kind of countermeasure and appends 64 bytes of secure random
data Z to the message M while computing r: r = H(hb, . . . , h2b−1,M,Z). This makes our fault
attacks infeasible.

10. Related work

10.1. Attacks on cryptographic algorithms

RNG failures. Invalid functionality of RNGs lead to several remarkable attacks on cryptographic
implementations. In 2010, the hacker group fail0overflow retrieved Sony’s ECDSA key that could allow
them to sign any application for PS3 [2]. The reason was a reused ECDSA nonce. A vulnerability in
a Java RNG lead to a further failure by the usage of ECDSA. Reuse of nonces allowed attackers to
retrieve private keys from Bitcoin Android apps [3].

Vulnerabilities in RNGs do not only influence the security of ECDSA cryptosystems. For example,
if the same nonce is used during the AES-GCM encryption process, the attacker can learn the



authentication key and create arbitrary valid ciphertexts [54]. This attack is also called the Forbidden
attack. Therefore, several cryptographers recently described AES-GCM as “fragile” [55], [56]. In 2016
Böck et al. showed that about 70.000 servers are potentially vulnerable to this attack [57].
Attacks on elliptic curves. In 2000 Biehl et al. presented an invalid curve attack that allows to extract
EC private keys from applications that do not check whether the incoming ECDH share lies on a
correct curve [58]. Practical application of this attack to TLS implementations was shown by Brumley
et al. [59] and Jager et al. [16].

ECDSA implementations can enable further side-channels. For example, Brumley et al. showed that
ECDSA key extraction from TLS servers is possible remotely by measuring timing differences [60],
[61]. Genkin et al. showed that the ECDSA key extraction is possible even with magnetic side-
channels [62].
Attacks on EdDSA. Very recently two publications pointed out problems in deterministic signature
schemes. Romailler and Pelissier presented a practical fault attack on EdDSA [63]. They developed
an attack scenario based on the original implementation by Bernstein [64] which was run on Arduino
Nano. Samwel et al. presented a differential power analysis (DPA) attack on EdDSA which was
able to leak private keys from about 4000 traces. In particular, the attack targeted the ephemeral key
generation with the SHA-512 hash function [65] (see the computation of r in Equation 7). Our paper
is a concurrent work and was created independently of these two results.

10.2. Rowhammer attacks

Local attacks. Kim et al. assumed that they can “develop (...) a disturbance attack that (...) perhaps
even hijacks control of the system” [21]. Their assumption was proven right by Seaborn et al. as
they demonstrated the first kernel privilege escalation under GNU/Linux based on Rowhammer [30].
Govindavajhala et al. presented a similar approach, by utilized a classic fault attack, e.g. by overheating
the memory with a light bulb [66]. One of the first cryptographic Rowhammer-based attacks was
presented by Bhattacharya et al. [67]. The authors showed how to flip bits in an RSA secret exponent
and eventually how to reconstruct it. With Windows 8.1 and Windows 10, memory deduplication is used
per default. Bosman et al. demonstrated a JavaScript-based exploit targeted to hijack Microsoft’s Edge
browser [68]. The attack involves a memory deduplication side-channel to disclose valuable data (high
entropy byte-by-byte disclosure) and utilizes Rowhammer to gain arbitrary read and write capabilities
in Microsoft’s Edge browser.
Cross-VM attacks. Xiao et al. introduced a method to get arbitrary access to a paravirtualized Xen host
via Rowhammer [69]. Paravirtualization, in contrast to full virtualization solutions, is not transparent
for the virtualized operating system and it must be adapted to cooperate with the hypervisor through
a specific Hypercall-API. They presented a page table replacement attack to replace page tables via
Rowhammer bit flips. Razavi et al. introduced the first cross-VM Rowhammer attack [33]. They were
able to precisely induce bit flips in deduplicated pages, break OpenSSH’s public key authentication
and compromise Ubuntu’s update mechanism.
Remote attacks. Seaborn et al. were able to escape from Google’s Native Client by utilizing the
clflush instruction [30]. Google’s Native Client validated the code prior to executing it, such that
it conforms to a specific subset of x86. The authors were able to execute a bit flip in a previously
validated code and escape the sandbox. The first JavaScript-based Rowhammer attack was presented by
Gruss et al. [32]. In order to execute bit flips the authors had to solve basically two key challenges: (1)
find a way to bypass the CPU cache in JavaScript and (2) retrieve information on physical addresses
in JavaScript. The first challenge was solved by using a novel cache eviction strategy. The second
challenge was solved by the observation that operating systems tend to use huge pages when large
typed arrays are used. Qiao et al. analyzed whether it is possible to trigger memory access patterns
remotely from benign code [31], and performed a search of clflush- and non-temporal instructions.
They found 7 packages containing clflush and 21 packages containing non-temporal instructions
in the Debian source code repository. They were, for example, able to induce bit flips via benign code
located in the Newlib C library.



11. Conclusion

In this paper, we presented practical fault attacks on EdDSA and deterministic ECDSA signatures.
Somewhat unexpected, we found EdDSA more susceptible to Rowhammer-based attacks than classic
ECDSA. The fault attacks are not only applicable on smartcards, but also on commodity hardware.
With the newest developments in the area of Rowhammer, remote fault attacks are becoming a more
prevalent threat that needs to be considered.

Even though the presented attacks are only effective in special situations, they show a new fragile
side of deterministic signature schemes and their sensitivity to fault attacks in general. Our aim is to
raise the awareness regarding recent fault attacks on these signature schemes, given their importance
and fast deployment in practice.

We presented several countermeasures that could effectively mitigate our fault attacks. It is recom-
mended to extend EdDSA to incorporate a long-term secret as well as additional per-signature entropy
during nonce generation as already specified in XEdDSA. This hardens EdDSA against Rowhammer-
based attacks and does not, under realistic assumptions, decrease its security, even with bad RNGs
in place. This countermeasure should be implemented together with a checksum protecting EdDSA’s
public keys and messages if not otherwise deployed.
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