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Abstract This paper evaluates the security level of the River Keyak against the cube-like attack. River
Keyak is the only lightweight scheme of the Keccak-permutation-based Authenticated Encryption Cipher
Keyak, which is one of the 16 survivors of the 3rd round CAESAR competition. Dinur et al. gave the seven-
round cube-like attack on Lake Keyak (1600-bit) using the divide-and-conquer method at EUROCRYPT
2015, then Huang et al. improved the result to 8-round using a new conditional cube attack at EUROCRYPT
2017. While for River Keyak, the 800-bit state is so small that the equivalent key (256-bit capacity) occupy
double lanes, the attacks can not be applied to the River Keyak trivially.

In this paper, we comprehensively explore the conditional cube attack on the small state (800-bit) River
Keyak. Firstly, we find a new conditional cube variable which has a much weaker diffusion than Huang
et al.’s, this makes the conditional cube attack possible for small state (800-bit) River Keyak. Then we
find enough cube variables for 6/7-round River Keyak and successfully launch the key recovery attacks on
6/7-round River Keyak with the time complexity 2°% and 2*° respectively. We also verify the 6 and 7-round
attack on a laptop. Finally, by using linear structure technique with our new conditional cube variable, we
greatly increase the freedom degree to find more cube variables for conditional cube attacks as it is complex
for 800-bit state to find enough cube variables for 8-round attack. And then we use the new variables by
this new method to launch 8-round conditional cube attack with the time complexity 2%'. These are the
first cryptanalysis results on round-reduced River Keyak. Our attacks do not threaten the full-round (12)
River Keyak.

Keywords River Keyak - Conditional Cube - Key Recovery - Authentication Encryption - CAESAR
Mathematics Subject Classification (2000) 94A60

1 Introduction

Nowadays, the Authenticated Encryption (AE) schemes, which provide message confidentiality and integrity
simultaneously, attract a lot of attentions of the worldwide cryptanalysts. In order to find the alternatives
for AES-GCM [17], the CAESAR [3] competition was launched to find secure AE algorithms in 2014, which
processed to the 3rd round and 16 survivors are remained. In order to get the secure finalist, there have
been a lot of security evaluations for them such as [4] [10] [16] and more analyses are needed.

Keyak [12] is one of the 16 candidates of 3rd round CAESAR competition, which is based on the Keccak-
p permutation. It has five instances: River Keyak, Lake Keyak, Sea Keyak, Ocean Keyak and Lunar Keyak.
The River Keyak is the only lightweight, 800-bit-state instance and the others all have 1600-bit state. Its
key size is variable, with a minimum of 128 bits; its tag sizes is 128 bits long if not truncated and the
capacity is set to 256 bits long when its security strength is 128 bits according to their security claims.

Cube attack [7] is a chosen IV key-recovery attack, which was introduced by Dinur and Shamir. Since
then, cube attack was applied to many different cryptographic primitives such as [1] [8] [11]. In Eurocrypt
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Table 1: summary of key recovery attacks on Keyak

Instances Rounds Method Time | Data | Memory Source
Lake Keyak 7 Divide and Conquer 276 275 243 9]
Lake Keyak 7 Conditional cube attack 242 242 negligible [15]
Lake Keyak 8 Conditional cube attack 274 274 negligible [15]
River Keyak 6 Conditional cube attack 233 233 negligible | Section 4.1
River Keyak 7 Conditional cube attack 249 249 negligible | Section 4.2
River Keyak 8 Conditional cube attack 281 281 negligible Section 5

2015, Dinur et al. [9] presented a key-recovery cube-like attack on round-reduced Keccak-MAC and Lake
Keyak using a divide-and-conquer method. They use some auxiliary variables and carefully select the cube
variables so that the cube sums depend only on a small number of key bits. They finally achieved 7-round
key-recovery attack on Lake Keyak (1600 bit). Then Huang et al. [15] proposed a new conditional cube
attack on Keccak-MAC and Lake Keyak. By inducing some bit conditions, they carefully select a new
set of cube variables so that they do not multiply with each other in the first round as well as meet the
condition that there is one variable does not multiply with other variables in the second round and then
the degree over the cube variables is further reduced.

However, those attacks can not translate to the River Keyak trivially. For River Keyak, the state is 800-
bit, with 25 32-bit lanes. The 256-bit capacity occupy eight lanes, double of the situation of Lake Keyak.
For the divide-and-conquer method by Dinur et al., it is impossible to achieve 8-round attack and for 800-
bit-state River Keyak, the 7-round cube-like attack is also difficult. When applying Huang’s conditional
cube variable to the 800-bit-state cipher, only 25 cube variables could be found by Huang’s algorithms,
which just could be used to achieve 6-round cube-like attack for River Keyak.

1.1 Our contributions

In this paper, we comprehensively explore the secure level of River Keyak against cube-like attack. Our
contributions are in three folds. Firstly, we find a new set of conditional cube variable which has a much
weaker diffusion than Huang et al.’s. Then we find some new sets of 16/32 cube variables for River Keyak,
which meet the condition that they do not multiply with each other after the first round as well as meet
the condition that one cube variable does not multiply with the others after the second round. This makes
it possible to achieve 6/7-round key-recovery attacks on River Keyak. Secondly, we launch the 6/7-round
conditional cube attack on River Keyak successfully with the time complexity 23 and 2%°, respectively.
Our 6/7-round attacks are practical and we give the experimental verification. Finally, by applying linear
structure technique [14], we find 64 cube variables (including the conditional cube variable) and extend the
key-recovery attack on River Keyak to 8 rounds with the time complexity 28!. The attacks are summarized
in Table 1. Those are the first attacks on round-reduced River Keyak.

This paper is organized as follows: Section 2 introduces some notations, Keccak-p permutations, River
Keyak and assumptions for our attack. In Section 3, some related works are introduced. We present the
attacks on 6/7-round River Keyak in Section 4. In Section 5, we use the linear structure technique to find
enough new dynamic conditional cube variables and give the 8-round conditional attack result on River
Keyak. At last, we conclude this paper in Section 6.

2 Preliminary
In this section we give some notations and theorems used in this paper, a brief description of Keccak-p and

River Keyak, together with our attack assumptions.

2.1 notations

@, and & bitwise xor, negation, and logic AND
S the state after i-the round, for example, Sp.5 means before the x operation of 1st round;
that is, we treat the 0, p and w operation as the first half round

A the state after the first inner permutation of River Keyak, where the fist message is involved
Alz]ly] a lane in z-th column and y-th row of state A, 0 < x,y < 4

Alz][y][z] z-th MSB of Afz][y], 0 < z,y <4,0< 2z < 31

K the master 128-bit key used in the initialization stage, the master key of River Keyak

ki equivalent 32-bit key after first inner permutation of River Keyak, 1 <7 < 8

kils] the j-th MSB bit of k;, 1 <7 <8,0< j <31
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Fig. 1: (a)State of Keccak, (b)State in 2-dimension

2.2 The Keccak-p Permutations

The Keccak-p permutations are derived from the Keccak-f permutations [2] and have a tunable number of
rounds. A Keccak-p permutation is defined by its width b = 25x 21, with b € {25, 50, 100, 200, 400, 800, 1600},
and its numbers of rounds n,, denoted as Keccak-p[b, n.|. When n, = 12 + 2I, Keccak-p[b, n.|=Keccak-f.
The round function R consists of five operations:

R=toxomopob

Keccak-p[b, nr] works on a state A of size b, which can be represented as 5 X 5 2L

=-bit lanes, as depicted in
Figure 1, Alz][y] with z for the index of column and y for the index of row. In what follows, indexes of =

and y are in set {0,1,2,3,4} and they are working in modulo 5 without other specification.

0 :Alr,y] = Az, y] & Zj:O(A[a: 1) @ (Afz + 1, 4] << 1)).

p Al y] = Alz,y] < rlz,y].

7 :Aly, 2z + 3y] = Alz,y].

X :Alz,yl = Alz,y] & ((A[z + Ly &A[z + 2, 9]).
¢ :A[0,0] = A[0,0] ® RC.

In River Keyak, b = 800,n, = 12, and in other schemes, b = 1600, n, = 12. In this paper, we refer to
the linear step 6, p and 7 as the first half of a round, and the remaining step x and ¢ as the second half of
a round.

2.3 A Brief Description of Keyak

Authenticated Encryption cipher Keyak is one of the 16 candidates in the 3rd round CAESAR competition,
whose mode is based on Motorist mode, which is sponge-based and supports one or more duplex instances
operating in parallel. The Motorist makes duplexing calls with input containing key, nonce, plaintext and
metadata (possible associated data) bits and uses its output as tag or as key stream bits. To start a session,
Motorist takes input as a secret and unique value, and it has three layers: Motorist, Engine and Piston
layers. The Motorist layer implement user interface, Engine layer control I > 1 Piston objects and the
Piston layer keeps a b-bit state and applies permutation f(Keccak-p[b] in Keyak) to it.

In Keyak, five instances are proposed, shown in Table 2. For all instances, the round numbers of Keccak-
p[b] is nr = 12, the capacity ¢ = 256 and the tag length 7 = 128. The River Keyak is the only instance
which has 800-bit state and 1600-bit state for others. The primary recommendation is the Lake Keyak.
Readers can refer to [12] for more details.

2.4 Our Attack Assumptions

According to the specification of Keyak [12], in order to assure confidentiality of data, a nonce cannot be
reused; however, when confidentiality of data is not required, a variable nonce is not required. That is, a
nonce can be reused when just authenticity and integrity of data is required. Therefore, in our attack, we
only aim to break the authenticity and integrity of River Keyak. Like in [9] and [15], in our attack, the River
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Table 2: Five instances of Keyak

Name b I Main use case 2nd use case
River Keyak 800 1  defense-in-depth  lightweight

Lake Keyak 1600 1 defense-in-depth ~ high performance
Sea Keyak 1600 2  defense-in-depth  high performance
Ocean Keyak 1600 4  defense-in-depth  high performance
Lunar Keyak 1600 8  defense-in-depth  high performance

—c—
]

}—
%d
tag

Keccak internal
permutation

S

128-bit key||128-bit nonce

544 bits

Keccak internal
permutation

Keccak internal
permutation
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Fig. 2: Construction of River Keyak on two blocks

Keyak processes two plaintext blocks as shown in Figure 2. Although the associated data could provide
additional degrees of freedom, it has no effect on our cube attacks. Thus, the input of the first permutation
call contains a key and a nonce but no optional associated data.

3 Related Works
3.1 Cube Attack

The cube attack [7] is a key-recovery attack introduced by Dinur and Shamir at EUROCYPT 2009. It
assumes the output bit of a cipher can be regard as a polynomial f(ki1...,kn,v1...,9m) over GF(2), where
k1, ..., kn are secret variables (e.g. the key bits), v1, ..., vm are public variables (e.g. the nonce or IV bits).
The main observation is the following theorem.

Theorem 1 [7] Given a polynomial f : X™ — 0,1 of degree d. It can be written as a sum of two
polynomials:

f(kl..., kn,vl...,vm) =T -P+ Q(kl..., kn,vl...,vm)

T is called mazterm and is a product of certain public variables, for example (v1,...,vs),1 < s < 'm, which
is called a cube Cr; P is called superpoly; Q(ki..., kn,v1...,Um) is the remainder polynomial and none of its
terms is divisible by T. Then the sum of f over all values of the cube Cr (cube sum) is:

)y

z'=(v1,...,vs)ECT

flk1, . kn, 2’ ..om) = P

whose degree is at most d-s, where the cube Cr contains all binary vectors of the length s and the other
public variables are fixed to constants.

3.2 Dynamic Cube Attack

Dinur and Shamir introduce a variant of cube attack called dynamic cube attack [8] in FSE 2011. The basic
idea is to find dynamic variable, which depends on some of the public cube variables and some private
variables (the key bits), to nullify the complex function P = P; - P> + P5, where Pjs degree is relatively
lower than P and P; - P» is complex. Then guess the key and compute the dynamic cube variables to make
P1 to be zero and the function is simplified greatly. The right guess of key will lead the cube sum to be
zero otherwise the cube sums will be random generally.
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Fig. 3: 1-round linear structure

3.3 Dinur et al.’s Divide-and-Conquer Method

Dinur et al. presented cube-like attacks on Keccak keyed modes using Divide-and-conquer method in EU-
ROCRYPT 2015 [9]. They achieved key recovery attack for the Keccak-MAC, Keyak and stream cipher
mode respectively. They explored the property that the cube variables multiply less secret variables in the
first round then recover a part of secret variables and recover other secret bits using other cubes. In Dinur
et al.’s attack for 7-round Lake Keyak, where the secret bits are the 256 capacity which occupy 4 lanes.
They choose the 32 cube variables among the 5 lanes with £ = 0. More precisely, the 8 LSBs of first 4
lanes A[0][0], A[0][1], A[0][2], A[0][3] are set as independent cube variables while the 8 LSBs of A[0][4] act
as “parity checks”. Those 40 bits multiply 80 bits in the x operation of the first round which are regarded
as secret expressions. They enumerated all the possible values of 80 bits and store the 289 cube sums in
a hash table with 2'*2 computational complexity and 22° memory complexity. In order to recover all the
256 secret variables, they used 8 cubes by rotating the initial cube variables 8 bits towards the MSB. In
the balanced attack, they calculated 2%° cube sums only in the precomputing phase and the computational
complexity is 276 data complexity is 275,

3.4 Linear Structure

Inspired by Dinur et al.’s work [8], Guo, Liu and Song [14] developed a new technique named linear structure,
that allows linearization of the underlying permutation of Keccak for up to 3 rounds. After that, a series of
distinguishers and preimage attacks were launched by this technique. Let A[1,4],7 = {0, 1,2, 3} be variables
and A[1,4] = ®?_yA[1,4], then the sum of variables in each column is zero. How these variables affect the
internal state under the transformation of Keccak-f round function R is shown in Figure 3. The algebraic
degree of all the yellow lanes is 1, and the light grey’s is at most 1, the other lanes are all constants. In
fact, only the non-linear operation x can increase the algebraic degree through two neighbouring bits due
to the term (aij+1®1)-as+2. Hence, the algebraic degree of the state bits remains at most 1 after one round
function R. We denote the linear structure as 1-round linear structure. The size of free variables can be at
most 4 lanes. If we use the 1-round linear structure as a cube, then the cube variables will not multiply
with each other after 1 round.

3.5 Huang et al. Conditional Cube Attack

In [15], Huang et al. developed the Conditional cube attack and applied to Keccak keyed mode including
the Lake Keyak and accomplished the 8-round key-recovery attack on Lake Keyak. By introducing some
bit conditions in the first round, Huang et al. found 64-dimension cubes which do not multiply in the
first round and have one variable does not multiply others in the second round. They achieved 8-round
key-recovery attack with the time complexity 27%. We quote some definitions and theorems in [15] here.

Definition 1 Cube variables that have propagation controlled in the first round and are not multiplied
with each other after the second round of Keccak are called conditional cube variables. Cube variables
that are not multiplied with each other after the first round and are not multiplied with any conditional
cube variable after the second round are called ordinary cube variables.

Definition 2 Given a Boolean function f(zo,21,...,Zn—1), the bitwise derivative of f with respect to the
variable x,, is defined as

638mf = fﬂcmzl + fmm:O
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Table 3: Five derivation cases of x in Keccak-p

Input/Output Bitwise Derivative(Difference) Conditions
(170707070)_)(170701070) f1:07f4:1
(071707070)4>(0 1707070) f2:0»f021
(0’07170’0)%(0,071’0)0) f3:0)f1:1
(070707170) (070707170) f4:07f2 =1
(0’0707071) (070707071) f0:0»f3:1

Property 1 [15] (Bit Conditions) Write the input of x operation to be boolean function F' = (fo, f1, f2, f3, f4)
and the corresponding output as G = (go, g1, 92, g3, 94), denote the conditional cube variable as vy, if
0o F' = (1,0,0,0,0), then d,,G = (1,0,0,0,0) if and only if f1 =0 and f4 = 1.

From the view of the differential characteristic, if fi = 0 and fi = 1, then the differential characteristic
(1,0,0,0,0) — (1,0,0,0,0) holds with probability 1. The all of the five derivation cases shown in table 3
where each input bitwise derivative has only one non-zero bit.

Theorem 2 ( [15]) For (n + 2)-round Keccak sponge function (n > 0), if there are p (0 < p < 2™ +1)
conditional cube variables vo, ...,vp—1, and g = 2"t _9p+1 ordinary cube variables, uo, ..., ug—1 (If g =0,
we set p=2"+1), the term vovi...vp—1u0...ug—1 will not appear in the output polynomials of (n+ 2)-round
Keccak sponge function.

Actually, we use the special case of the above theorem when p = 1. We describe it as a corollary for
clearness.

Corollary 1 For (n + 2)-round Keccak sponge function (n > 0), if there is one conditional cube variable
vo, and ¢ = 2" — 1 ordinary cube variables, uo, wy Ug—1, the term vo...ug...uq—1 will not appear in the
output polynomials of (n + 2)-round Keccak sponge function.

For more details and proofs you can refer to [15].

4 Conditional Cube Attack on 6/7-round River Keyak

In this section, we present our key recovery attack results on 6/7-round River Keyak, including the at-
tack process, complexity analysis and experimental results. First, we describe a few property of Keccak
permutation as follows:

Property 2 [13] If the sum of the cube variables in one column is zero, these variables will not diffuse to
other bits after 6 operation.

Property 8 In x operation, one bit A[i][j][k] only multiplies with A[i — 1][j][k] ® 1 and A[i + 1][j][k], when
A[i][4][k] is cube variable vg and A[i — 1][j][k] &1 = A[i + 1][j][k] = O, then vg does not multiply with other
bits after x operation.

Property 4 [15] If we set two equal conditional variables vg in one column which both meet the condition
in Property 3 in x operation will affect 22 variables after 1.5-round Keccak internal permutation as shown
in Figure 4(a), called 2-2-22 pattern.

Property 5 [5,6] Six equal conditional variables vo shown in Figure 4(b) which all meet the condition in
Property 3 in x operation will affect 6 variables only after 1.5-round Keccak internal permutation as shown
in Figure 4(b), called 6-6-6 pattern.

Comparing with Huang et al.’s conditioal cube attack. As shown in Figure 4(a), if select two
conditional variables vgp in the same column, after 1.5-round the conditional variables vg are diffused to as
more as 22 bits. For 1600-bit state used in Lake Keyak, it is relatively sparse to find enough cube variables
which do not multiply with vg after the second round. However, for River Keyak’s 800-bit state, the effective
bits are too densely to find 32-dimension ordinary cube variables even. In fact, one could find at most 25
ordinary variables using the search algorithm by Huang et al.’s. In order to solve this problem, we find a
new conditional variable which follows the 6-6-6 pattern as shown in Figure 4(b). We select these six bits
AJ0][0][0],A[1][0][31],A[0][1][0],A[2][1][30],A[1][2][31] and A[2][2][30] as conditional cube variables vo, and use
the bit conditions as follows:

Ao 5[4][0][0] = 1; Ao.5[1][0][0] = O
Ao.5[1][0][9] = 1; Ao.5[3][0][9] = 0O
Ao 5[4][2][0] = 1; Ao.5[1][2][0] = 0
Ao.5[0][2][4] = 1; Ao.5[2][2][4] = 0
Ao.5[0][3][4] = 15 Ao.5[2][3][4] = 0
Ao.5[1][3][9] = 15 Ao.5[3][3][9] = 0
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Fig. 4: The 2-2-2 pattern and 6-6-6 pattern of Keccak-p permutation

The Agp.5 is the state before x operation in the first round, thus the conditional variables are only six bits
which are so sparse that we could find enough ordinary variables to launch the attack for 800-bit River
Keyak.

4.1 Conditional Cube Attack on 6-Round River Keyak

We use the 16-dimension cube variables denoted as vg, v1, ...v15 to implement the conditional cube attack on
6-round River Keyak. As discussed above, we take six bits as the conditional cube variables vg which follow
the 6-6-6 pattern in Property 5. These six bits impact only six bits after 1.5-round Keyak permutation.
Then we take the corresponding bit conditions and the cube variables following these requirements:

(1) wo,v1,...v15 do not multiply with each other in the first round,;
(2) wvo does not multiply with any of v1,...v15 in the second round.

The item (1) guarantees the algebraic degree of the first round is only 1 and of the first two rounds
is 2 at most. Under item (2), the term vov1...v15 would not appear in As which means after five rounds
the algebraic degree over vo,v1,...v15 is at most 15 not 16. Thus the cube sums of the output of 5-round
River Keyak over vg, v1,...v15 are all zero. On the other hand, we have as more as 800 — 256 = 544 known
output bits, as the 6, p and 7 are linear operations, the ANF of As5 and As are of the same algebraic
degree over cube variables, we could compute backward for one round (especially over the x operation)
of first 15 lanes. That is, we could extend the attack to 6 rounds with these 16-dimension cube variables.
The conditional and ordinary cube variables are listed in the Table 4 as well as the bit conditions. By
controlling the bit conditions and guess the 12-bit equivalent key listed in Table 4, we compute the cube
sums for 2'¢ different messages which take all possible values in the cube bits. When the equivalent key
guesses are right, the propagation of the conditional cube variable vg follows the 6-6-6 pattern and both
the above two requirements are met, which makes cube sums to be all zeros.

The conditional cube attack procedure, complexity analysis and experimental result are presented as
follows:

Attack Procedure

— Step 1 For all possible 2'2 equivalent keys, after the first Keccak internal permutation for initialization,
request 2'% messages over the 16-dimension cube variables listed in the Table 4, choose the message to
make sure the first 800 — 256 — 16 = 528 bits to be zero (or any other arbitrary constants). Then get the
outputs of the 6-round second Keccak internal permutation, compute backward for + and x operation
and compute the cube sums for the first 5-lane bits with these values, if the cube sums are all zeros, we
treat the 12 bits right key relations.
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Table 4: Parameters set for attack on 6-round River Keyak

Ordinary Cube Variables

A[L][0][0]=A[1][2][0]=v1,  A[1][0][1]=A[1][2][1]=v2,  A[1][0][2]=A[1][2][2]=vs,

A[L][0][5]=A[1][2][5]=va,  A[1][0][8]=A[1][2][8]=vs,  A[1][0)[15]=A[1][2][15]=vs,

A[1][0][20]=A[1] [2][20]=v7, A[1][0][23]=A[1][2][23]=vs, A[1][0][24]=A[1][2][24]=vo,

A[1][0][25]=A[L][2][25]=v10, A[1][0][28]=Al[1][2][28]=v11, A[2][0][4)=A[2)[2][4]=v12,

A2][0][13]=A[2][2][13]=v13, A[2][0][14]=A[2][2][14]=v14, A[2][0][15]=A[2][2][15]=v15

Conditional Cube Variables

Al0][0][0]=A[1][0])[31]=A[0][1][0]=A[2][1][30]=A[1][2][31]=A[2][2][30]=vo

Bit Condition

A[1][1][29]=A[2][0] [28]+A[0] [1] [29]+A[0] [0] [29]+A [2] [1] [28]+ A [0] [2] [29] + A [2] [2] [28]+ A [0] [3] [29]
+k1 [28]+k4[29]+k6 [28]+1,

A4][1][19]=A[4][0][19]+A[2][1][20]+A[2] [0] [20]+ A [2] [2] [20] + A [4] [2] [19]
+k1 [20]+k2 [20]+k3[19]+k‘6 [20]+k8[19],

A[3][1][18]=A[3][0][18]+A[0][1][17]+A[O][O][17]+A[0][2][17]+A[3][2][18]+A[O][3][17]
+ko[18]+ka[17)+k7[18]+ks[18]+1,

A[1][1][20]=A [2][0][19]+A [0][1][20]+ A [0] [0][20]+A[2] [1][19]+A[0] [2] [20]+A[2][2] [19]+A[0] 3] [20]
+k1[19]+k4[20]+k6[19],

A[2][1][11]=A[4][0][10]+A[2][0][11]+A[4][1][10]+A[2][2] [L1]+A[3][2][11]+A[4][2][10]
+k1[11]+k3[10]+k6[11]+k3[10],

A[L][1][13]=A[4][0] [14]+A[1][O][L3]+A[4] [1] [14]+A[1][2] [13]+A[4] [2] [14]+A[1] 3] [13]
+k3[14]+ka[14]4ks[13]+Es[14]+1,

A[2][1][26]=k1[26]

A[0][1][3]=A][L][0][3]+A [2][0][2]+A [0][0][3]+A[2][1][2]+ A[0][2] 3]+ A[2][2][2]+A[0] 3] [3]
+Ek1[2]+ka[3]+ke [2]+1,

A[0][1][26]=A[2][0] [25]+A[0] [0] [26]+A [2] [1] [25]+A[0] [2] [26]+ A [1] [2] [26]+ A [2] [2] [25]+ A [0] [3] [26]
+k1[25])+k4[26]+ke [25],

A[L][1][4]=A[4][0][5]+A[O][1][5]+A[1][O] [4]+A[4] [1][5]+A[1][2][4]+A[4][2][5]+A[1] [3] [4]
+k3 [5]+k5 [4}+/€8 [5]+1,

A[1][1][26]=A[3][0][25]+A[1][0][26]+ A [3][1][25]+ A [1][2][26]+A[3][2][25]+ A[1][3][26]+ k1 [26]
+k2[25]+k5[26]+k7[25],

A[0][1])8]=A([3][0][9]+A[4][0][9]+A[0][0] 8]+ A[3][1][9]+ A[0][2][8] +A[3][2][9]+A[0] 3] (8]
+k2[9]4-k4[8]+k7[9]+1

Guessed Key Bits

k1[28]+k4[29]+k6[28]+1, k‘l[20}-{-/@[20}+k3[19}-{-/(&6[20}-{-/(&3[19}, k1[19]+k4[20]+k6[19],
ko[18]4ka[17]+k7[18]4+kg[18]+1, k1[11]+k3[10]4ke[11]+ks[10], ka[14]4ka[14]+ks[13]4-ks[14]+1,
ki[26],  ki[2]+ka[3]4ke[2]+1,  k1[25]4+ka[26]4ke[25],  k3[5]4ks[4]+ks[5]+1,

K1 [26]+k2[25]+ k5 [26]+k7[25], K2 [9]+K4 [8]+k7 [9]+

— Step 2 Move the cube variables to the other 31 different depth in z axis and repeat step 1 for 31 times
with the new cube variables and bit conditions, then get another 12 x 31 = 372 key bits relations,
however, there are four guessed key relations would be repeated with each other pairwise and only ten
effective equations remained in each attack. In total, there are 10 x 32 = 320 key bits relations which
are enough to get all the 256-bit equivalent key and just compute backward the Keccak permutation to
get the initial real 128-bit key K.

Complexity Analysis

For each of the 22 possible equivalent key, we compute 2'¢ encryption for 6-round River Keyak, and
repeat for 32 times in total. So the complexity for our attack is 2'? x 2'¢ x 32 = 233, Our attack can be
implemented in several minutes on a laptop for one cube attack, so we just need several hours to recover the
right key. We present a experiment result of random key and a right key in Table 5. We should note that
this complexity is so low enough so reducing it is no more significance. In fact, we use the 2-2-22 patten
used by Huang et al. could reduce a few complexity.

Experimental Result

We present a simple experimental result in Table 5. In our experiment, we choose messages to make
the first 544 bits of the second Keccak internal permutation’s input to be zeros (which could be any other
arbitrary constants). The equivalent 256-bit key (capacity) is 0x724aa646 07a2f7ae 29063398 b972526e
5e0c0988 7c¢634775 0711592 b39481dc, and the right guessed key bits listed in the Table 4 are 100001011011,
for all possible 22 guessed keys we compute the cube sums and present in the Table 5, only when the guessed
key matches the right 12-bit equivalent key, the cube sums are all zeros.

4.2 Conditional Cube Attack on 7-Round River Keyak

We use the 32-dimension cube variables to implement the conditional cube attack on 7-round River Keyak.
As shown in Table 6, we use the same condition cube variables vg with the 6-round attack’s. The 12 bit
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Table 5: examples of test result of 6-round attack

Guessed Values | Cube Sums
000000 000000 | Oxcb84f226 16c5578 c34b83bf 13cad78d
000000 000001 Oxade38cde 03efal94 £3626098 2b9d71de

011001 111100 | 0x00000000 00000000 00000000 00000000

111111 111110 0xb82ea8ca ab719819 cbc44f46 d1230742
111111 111111 0xb7143bec ee410854 db23fad0 2176599

Table 6: Parameters set for attack on 7-round River Keyak

Ordinary Cube Variables

A[1[o][o] =A[1][2][0] =vi,A[1][0][1] =A[1][2][1] =ve,A[1][0][2] =A[1][2][2] =vs,

AQlJ[ol[5] =A[1][2][5] =wva,A1][0][8] =A[1][2][8] =vs,A[1][0][15]=A[1][2][15]=vs,
A[1][0][20]=A[1][2][20] =v7,A[1][0][23]=A[1][2][23] =vs,A[1][0][24]=A[1][2][24]=vy,
A[][0][25]=A[1][2][25]=v10,A[1][0] [28]=A[1] [2][28] =v11,A[2][0][4] =A[2][2][4] =v12,
A[2][0][13]=A[2][2][13]=v13,A[2][0][14] =A[2] [2][14]=v14,A[2] [0][15]=A[2][2][15]=v15,
A[2][0][18]=A [2][2][18] =v16,A[2][0][23] =A[2] [2][23]=v17,A[2] [0][27]= A[2][2] [27] =v1s,
A[2][0][28]=A[2][2][28]=v19,A [2][0] [29]=A[2] [2][29] =v20,A[3] [0][0] =A[3][2][0] =va1,
A[BJO][1] =A[3][2][1] =va2,A[3][0][4] =A[3][2][4] =v23,A[3][0][5] =A[3][2][5] =v24,
A3][0][8] =A[3][2][8] =v2s5,A[3][0][10]=A[3][2][10]=v26,A[3] [0][13]=A[3][2][13]=va7,
A[3][0][15]=A[3][2][15]=v2s,A[3][0][17]=A[3] [2][17]=v29,A[3] 0] [25]=A[3][2][25]=v30,
A[3][0][30]=A[3][2][30]=v31

Conditional Cube Variables

A[0][0][0]=A[1][0][31]=A[0][1][0]=A[2][1][30]=A[1][2][31]=A[2][2][30]=vo

Bit Condition

ATU1291=A[0][1][29] + A[0][0][29] A 2][1][28] + A[0] 2] 29] + A [0] 3][29]
+k1[28]+k4[29]+ ke [28]+1,

A4][1][19]=A[4][0][19]+A [2][1][20]+A [2][0][20]+A [2] [2][20] +A[4][2] [19]
+k1 [20]+k2 [20]+k3 [19]+k6 [20]+k8 [19]7

A[3][1][18]=A[3][0][18]+A[0][1][17]+A[O][0] [17]+A[0][2][1 7]+ A[3][2][18]
+A[0][3][17]+k2[18]+ka[17]+k7[18]+ ks [18]+1,

A[1][1][20]=A[2][0][19]+A[0][1][20]+A[0][0] [20]+-A[2][1][19]+A[0][2][20]
+A[2][2][19]+A[0][3][20]+k1[19]+k4[20]+k6[19],

AR =AR0] 1014 A[2][0][11]+ ALIAI[10] +A2] 2111+ A T3] 2) 1]
+A[4][2][10]+k1 [11]4+k3[10]+ke [11]4+ks[10],

AN)[1][13]=A[4][0][14]+A[1][0][13]+A[4] [1][14]+A[1] [2][13]+A[4][2][14]
+A[1][3][13]4 k3 [14]+ka[14]+k5[13]+ks[14]+1,

A2][1][26]=Fk1[26],

A[0][1][3]=A[1][0][3]+A[2][0][2]+A[0]) 0] [3]+A[2] [1] [2]+A[0][2][3]+A[2][2][2]
+A[0][3][3]+k1[2]+ka[3]+ke[2]+1,

AO)[1[261=A[2][0][25] + A [0][0] (26 A[2][1][25]-+ A 0] 2] 26] + A [1][2][26]
+A[2][2][25]4+A[0][3][26]+k1[25]+ k4 [26]+ K6 [25],

A1][1][4]=A[4][0][5]+A[0][1][5]+A[1][0][4]+A[4][1][5]+A[1][2][4]
+A[4)[2][5]+A[1][3][4]+ k3 [5]+Ks5 [4]+ks [5]+1,

A[1][1]26]=A[1][0][26]+A[3][1][25] +A[1][2][26]+A[1][3][26]
+k1[26]+k2[25]+ ks [26]+k7[25],

A[0][1][8]=A[3][0][9]+A[4][0][9]+A[0] 0] [8]+A[3][1][9]+A[0][2][8]
+A[3][2][9]+A[0][3][8] +k2[9]+ka[8]+K7[9]+1

Guessed Key Bits

k1[28]+k‘4[29]+k‘6[28]+1, k:l[20]-}—]62[20]-}—]63[19]-{—]66[20]-}—]68[19]7

o [18]+ha[17)+kr [18]-+hs[18]-+1, ot [19]-+ha [20] +g [19],
kl[11]+k3[10]+k6[11]+k8[10], k3[14]+k4[14]+k5[13]+k8[14]+1, k1[26],
k1[2]+ka[3]+ke[2]+1,  k1[25]+ka[26]+ke[25], ks[5]+ks[4]+ks[5]+1,
k1[26]+k2[25]+ks5[26]+k7(25], k2 [9]+ka[8]+k7[9]+1

Table 7: examples of test result of 7-round attack

Guessed Values | Cube Sums
000000 000000 | 0xf763c579 c45e671a 09c44a23 £59c4097
000000 000001 Ox1be9aal2 c3c3c3e7 30914305 100832df

001111 110101 0x00000000 00000000 00000000 00000000

111111 111110 0x5dc795e5 8823058b 60f7367a acffcbea
111111 111111 0x95563ecf 1e272a2b 722cc7db 86ae94cc
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I:l ordinary cube variables . secret variables

Fig. 5: linear structure of cube variables for 8-round attack

conditions are also similar to conditions presented in Section 4.1 (they are same when the 800—256—32 = 512
bits are constrained to be zeros). For all possible 2'? equivalent keys, we compute the 2%? cube sums of
the first 5 lanes of the output after 6.5-round Keyak round functions, if the sums are all zeros, then we
treat the 12 bits are the right key guesses. By shifting the cube variables along the z axis rotational for 31
times, we could use as more as 320 bit relations get all the 256-bit equivalent key (capacity) and compute
backward the first Keccak internal permutation to get the real key K. The time complexity of 7-round
attack is 22 x 232 x 2% = 2%°. Respect to experiment, we use the right 12-bit equivalent key and some
random equivalent keys to compute the cube sums in several hours on a laptop, the experiment results are
listed in Table 7. Like the experiment in Section 4.1, in this experiment we use the equivalent 256-bit key
(capacity) Ozef4bdf f3 6ebf27ce 49b01de8 acled0c6 adTafTc9 35dcl8cc cf42d588 5df5¢110, and the right
12-bit guessed key bits are 001111110101.

5 Conditional Cube Attack on 8-Round River Keyak Using Linear Structure Technique

When we attack the 8-round River Keyak using the conditional cube attack we need to find 64-dimension
cube variables. However, it is so complex to search for 64 variables which meet the condition that these cube
variables do not multiply with each other in the x operation of the first round and the condition that there
is one variable vg does not multiply with other cube variables in the second round. The probability is a
little high for ordinary variables which do not multiply with each other in the first round, but in the second
round, most of them would multiply with vg. In order to solve this problem, we use the linear structure
technique to find enough conditional cube variables for our 8-round attack.

We use the same conditional cube variables with that in the Section 4.1, as shown in Figure 5, we
choose the second column and the fourth column in yellow color to search the ordinary variables. Firstly,
we let A[1][3] = ®7_oA[1][i] and A[3][2] = ®i_oA[1][i], and we could note after 6, p and 7 operations, these
variables do not multiply with each other in the x operation in the first round. Then, what we need to do is
filtering the variables which do not multiply with v in the second round. For each column, the bits which
meet the second condition would be remained when the bits (do not multiply with vg) equal or more than
2 in the same column. Following this method, the freedom degree for cube variables increase greatly, we
could find more than 64 ordinary cube variables easily. We use the 64-dimension conditional cube variables
listed in Table 8 to launch the 8-round conditional cube attack for River Keyak. The attack procedure is
very similar to the 6/7-round attack. The complexity of our key-recovery attack is 212 x 264 x 32 = 281,

6 Conclusion

In this paper, we comprehensively explore the security of River Keyak against the conditional cube attack.
Firstly, we find a new conditional cube variable which diffuses much weaker than that used by Huang et al..
Based on this conditional cube variable, we find 16/32 conditional cube variables for River Keyak. Then we
launch the 6/7-round conditional cube attacks for River Keyak for the first time and give the experimental
results for 6/7-round attacks. At last, by using linear structure technique, we propose a new method to find
conditional cube variables with plenty of freedom degree, and we find enough 64-dimension cube variables
to launch 8-round attack successfully. Those attacks are the first results on River Keyak and they do not
threaten the full-round River Keyak.
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Table 8: Parameters set for attack on 8-round River Keyak

Ordinary Cube Variables

A[1][0][0]=v1, A[1][2][0]=v2, A[1][1][0]=v1 + vz, A[1][0][1]=vs, A[1][2][1]=va, A1][3][1]=v3 + v4,
A[L][0)[2]=A[1][2][2]=vs, A[1][1][4]=A[1][3][4]=ve, A[1][0][5]=A[1][2][5]=v7,
A3][1])[9)=A[3][2][9]=vs, A[L][0][7]=A[1][1][7]=ve, A[1][0][8]=A[1][2][8]=v10,
Af][ol=A[3][9l=v11, A[L)[0][10]=A[1](3][10]=v12, A[1][0][11]=v1a, A[LI[3][11]=v1s,
Al[1)[11]=0v13 + v14, A[1][0][12]=v15, A[][3][12]=v16, A[1][1][12]=v15 + v16, A[1][2][13]=v17,
Al1][3][13]=v1s, A[J[][L3]=v17 + v1s, A[1][2][14]=v10, A[1][3][14]=v20, A[1][1][14]=v19 + v20,

[
A[1][0][15]=v21, A[1][2][15]=va2, A[1][3][15])=va3, A[1][1][15]=va1 + vaz + vas3, A[1][2][16]=vaa,
A[1][3][16]=va5, A[1][1][16]=v24 + vos,A[1][1][17]=A[1][2][17]=v26, A[1][1][18]=A[1][2][18]=v27,
AfLo][201=vas, Al1][2[20]=v20, A[1][3][20]=v2s + va0, A[3]0)[6]=A[3][1][6]=vz0,

]
]
]
]
]
]
%
A[3][1])[9]=A[3][2][9]=vs1, A[1][0][22]=v32, A[1][3][22]=vs3, A[1][1][22]=vs2 + vs3,
A[l][2%
]
]
]
]
]
]
]

[

[

|

[23]=vs5, A[L)[1][23]=vs4 + vs5, A[1][0][24]=vse, A[1][2][24]=vs7, A[1][3][24]=vss,
A[1][1][24]=wv36 + v37 + v38, A[1][0][25]=v39, A[1][2][25]=va0, A[1][3][25]=v39 + Va0,
A[1][0][26]=va1, A[1][3][26]=va2, A[L|[1][26]=va1 + vaz, A[3][0][7]=A[3][1][7]=vas.
A][0][27)=vas, AN][3][27]=vas, A[J[1][27]=vas + vas, A[L][0][28]=vag, A[1][2][28]=var,
A[L[1][28]=vs6 + vaz, A[LJ[2][29]=A[1][3][20]=vas, A[3][0][8]=A[3][2][8]=vao,
A[1][2][30]=A[1][3][30]=vs0, A[3][0][15]=vs1, A[3][1][15]=vs2, A[3][2][15]=vs1 + vs2,
AQ[][B1=A[][3][31]=vss, ABI[0][0]=vsa, A[3[1][0]=vs5, A[3][2][0]=vs + vss,
A[3][0][1]=vss, A[B][LI[1]=vs7, A[3][2][L]=vss + vs7, A[3][1][2]=A[3][2][2]=vss,
A[3)[1][3]=AL3][2][3]=vso, Al3)[0][4]=veo, ABBI[LJ[4]=ve1, A[3][2][4]=ve0 + ve1,

A[3][0][5]=ve2, A[3][1][5]=ves, A[3][2][5]=ve2 + ve3

Conditional Cube Variables
Alo][o][0]=A[1][0][31]=A[0][1][0]=A[2][1][30]=A[1][2][31]=A[2][2][30]=v0
Bit Condition

A[0][0][29]=A[2][0][28]+A[0][1][29]+A[1][1][29]+A[2][1] 28]+ A [0] [2][29]

+ A[2][2][28]+A[0][3][29]+ k1 [28]+k4[29]+ke [28]+1,
A[2][0][20]=A[4][0][19]+A [2][1][20]+ A[4][1][19]+ A [2][2][20]+A[4] [2][19]

+ k1[20]+k2 [20]+k3[19]+k6 [20]+k8[19],
A[0][0][17]=A[3][0][18]+A[0][1] 17)+ A [3][1][18]-+A[0][2) [17]+A[3] 2] 18]

+ A[0][3][17]+k2[18]+ka[17]+E7 [18]+ks[18]+1,

A[0][0][20]=A[2][0][19]+A[0] 1] [20]+A1][1] [20]+A[21[1] 19]+ A [0] 2] 20]

+ A[2][2][19]4+A[0][3][20]+ k1 [19]+k4[20]+ K6 [19],
A[2][0][11]=A[4][0][10]+A[2][1][11]+A[4][1][10]+A[2][2][11]+A[3][2] [11]

+ A[4][2][10]+k1[11]+k3[10]+ ke [11]+Es[10],
A[4][0][14]=A[1][0][13]+A[4][1][14]+A[4][2][14]+ k3[14]+ka[14]+ks5[13]+Es[14]+1,
A[2][1][26]=F1 [26],

Afo][0][3]=A[1][0][3]+A[2][0][2] +A[0] [1][3]+A[2][1][2]+A[0] 2] [3]

+ A[2][2][2]4+A[0][3][3]+K1[2] +Fa[3]+ke[2]+1,
A[0][0][26]=A[2][0][25]+A[0][1][26]+ A [2][1] [25]+A0][2)[26]+A[1] 2] 26]

+ A[2][2][25]4+A[0][3][26]+k1[25]+k4 [26]+k6 [25],

Al4][0][5]=A[1][0] [4]+A[0] [1][5]+-A[4][1] [5]+ A[1] [2][4] + A[4][2] [5]+ k3 [5]+ks [4]+ks[5]+1
A[3][0][25]=A[3][1][25]+A[1][2][26]+A[3][2][25]+ k1[26]+k2[25]+ks[26]+k7([25],
A[0][0][8]=A[3][0][9]+A[4] [0][9]+A[0][1][8]+ A[0] [2][8] + A[0][3][8]+k2[9]+F4[8]+k7[9]+1
Guessed Key Bits

k1[28]+k4[29]+ke[28]+1, k1[20]+k2[20]+k3[19]+ke[20]+ks[19],
ko[18]+ka[17]+k7[18]+ks[18]+1,  k1[19]+k4[20]+ke[19],
Fa[11]-+k3 10+ [11]+ks[10],  ka[14]+ka[L4]+hs[13]-+ks[14]4+1, ka[26],
k1[2]+ka[3]+ke[2]+1, k1[25]+k4[26]+ke[25], ks[5]+ks[4]+ks[5]+1,

k1 [26]+k2 [25]+k5 [26]+k7 [25], ko [9]+k4 [8]+k7 [9} +1
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