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Abstract. Characterization of the fault space of a cipher to filter out
a set of faults potentially exploitable for fault attacks (FA), is a prob-
lem with immense practical value. A quantitative knowledge of the ex-
ploitable fault space is desirable in several applications, like security
evaluation, cipher construction and implementation, design, and test-
ing of countermeasures etc. In this work, we investigate this problem in
the context of block ciphers. The formidable size of the fault space of
a block cipher mandates the use of an automation to solve this prob-
lem, which should be able to characterize each individual fault instance
quickly. On the other hand, the automation is expected to be applicable
to most of the block cipher constructions. Existing techniques for au-
tomated fault attacks do not satisfy both of these goals simultaneously
and hence are not directly applicable in the context of exploitable fault
characterization. In this paper, we present a supervised machine learning
(ML) assisted automated framework, which successfully addresses both
of the criteria mentioned. The key idea is to extrapolate the knowledge of
some existing FAs on a cipher to rapidly figure out new attack instances
on the same. Experimental validation of the proposed framework on two
state-of-the-art block ciphers – PRESENT and LED, establishes that our
approach is able to provide fairly good accuracy in identifying exploitable
fault instances at a reasonable cost. Finally, the effect of different S-Boxes
on the fault space of a cipher is evaluated utilizing the framework.

1 Introduction

The advent of Internet of Things (IoT) and Cyber-Physical-Systems (CPS) have
laid the foundations for designing smarter albeit complex applications involving
embedded computing platforms. Most modern embedded devices use in-built
cryptographic cores, often tailored for resource-constrained environments, as
root-of-trust for authentication and information processing tasks. Block ciphers
are one of the most common cryptographic primitives deployed on such devices,
for being the basic constituent of virtually every symmetric key cryptosystem of
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today. However, it has been shown on several occasions that albeit being mathe-
matically secure, unless properly implemented and protected, such cryptographic
cores may lead to catastrophic security vulnerabilities by leaking secrets to ma-
licious parties. In particular, one must ensure the cryptographic security of the
primitives against implementation specific attacks like passive side channel anal-
ysis and active fault attacks, which have recently gained a lot of attention from
both industry and academia, due to their practicality and diversity.

Fault-based cryptanalysis or Fault Attacks (FA) is a class of active imple-
mentation based attacks, which typically exploit transient faults in the data
and/or control paths of a cipher during its execution to extract the secret key.
Among different sub-classes of FA, Differential Fault Analysis (DFA) attacks
are particularly interesting in the context of block ciphers, due to their low
data/fault complexity and easy-to-mount nature. In DFA, the adversary injects
faults with certain known spatiotemporal characteristics and then analyzes the
pairs of faulty and the corresponding fault-free ciphertexts to recover the secret
key. It is well established that even a single properly placed malicious fault is
able to compromise the security of mathematically strong block ciphers in cer-
tain cases. One prominent example of this fact is the AES [1], where a random
byte fault at the 8th round of the cipher can compromise the 128-bit secret
key [2].

Given a block cipher, the discovery of a DFA attack is, however, nontrivial,
as not all possible faults may lead to successful attacks. Traditional approaches
for DFAs are mostly manual and demand special expertise on cryptanalysis. Till
date, numerous block ciphers have been designed and deployed in-field for vari-
ous applications [1,3]. Moreover, there is a growing trend of designing application
and platform-specific lightweight ciphers, tailored for resource-constrained envi-
ronments [4, 5]. Recently, NIST has launched an international competition to
standardize lightweight cryptographic primitives. It is quite apparent that thor-
ough analysis of such a large number of ciphers is impractical with manual DFA
techniques and therefore automated DFA tools must be devised for this purpose.
Further, such automated tools should work with minimal manual intervention
and must be applicable to a large class of block ciphers and fault models.

Recently, there have been significant advances in designing such tools [6–
11]. The most prominent among these automated frameworks is the so-called
Algebraic Fault Attack (AFA), which encodes a given cipher and an injected
fault as a system of multivariate polynomial equations on the finite field GF (2)
in Algebraic Normal Form (ANF) [6–10]. The ANF system is then converted to
an equivalent system in Conjunctive Normal Form (CNF) and fed to a Boolean
Satisfiability (SAT) solver with the aim of extracting the key by solving the
system.

In this paper, we address the problem of characterizing the fault space of a
block cipher to filter out the potentially exploitable fault instances. While finding
a single exploitable fault instance is sufficient from the perspective of an attacker,
certifying a cipher or its implementation for fault attack resilience would not be
complete without some quantitative knowledge about the space of exploitable
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faults. The knowledge of the exploitable fault space might also be desired for
designing ciphers with some inherent fault attack resilience, testing of counter-
measures, and guided synthesis of countermeasures for resource-constrained en-
vironments. However, the formidable size of the fault spaces usually encountered
in block ciphers makes the problem of exploitable fault space characterization
much more difficult than finding individual DFAs. Typically, a fault instance
in a cryptographic primitive depends on different aspects (e.g. the location, the
width of the fault, the mathematical structure of the cipher, and the number
of times a fault is injected) and consideration of each of these aspects results
in a fault space of prohibitive size, which may be hard to enumerate. Even a
statistical characterization of this fault space is difficult and one must obtain a
sufficiently large number of samples, as the distribution of the fault space may
be unknown, even for well-studied ciphers.

The very nature of the exploitable fault characterization problem demands
an automated solution for this purpose. From the perspective of a cipher designer
or system architect, the characterization process for each individual fault should
be fast enough so that significant fraction of the fault space can be covered
within a reasonable time. Another desirable requirement for such automation is
that it must be generic enough for the large class of existing and future cipher
designs. Unfortunately, none of the automated fault attack frameworks proposed
till date satisfy both these criteria, simultaneously. In particular, the AFA, which
is fairly generic in nature, involves solving a SAT problem for each individual
fault instance. Although SAT solvers are remarkably good at finding solutions
to a large class of NP-Complete problem instances, the time taken for solving is
often prohibitively high. In fact, in the context of AFA attacks, the solver may
not stop within a reasonable time for many fault instances. Although, setting
a proper timeout seems to be a reasonable fix for such cases, the variation of
solving times is often very high and as a result, the timeout threshold must be
reasonably high as well, to guarantee the capture of every possible attack. It is
thus quite evident that exhaustive analysis of the fault space by means of AFA
is impractical as far as the time is concerned.

1.1 Our Contributions

The contributions of this paper are as follows:

– We present a generic, fast, and fully automated framework for exploitable
fault space characterization in block ciphers. The fault attack instances are
usually represented as mathematical constraints, which reduces the size of
key-space by a significant extent, so that exhaustive key search becomes triv-
ial. Based on the intuition that the constrained search spaces for different
exploitable fault instances on a cipher may have certain structural similari-
ties, we propose a machine learning (ML) framework, which, if trained with
some already known exploitable fault instances on a cipher, can predict new
attacks on the same. To the best of our knowledge, this is the first concrete
demonstration of ML in the context of DFA.
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– The proposed framework is experimentally evaluated on two state-of-the-art
lightweight block ciphers – PRESENT [4] and LED [5]. In particular, we
show that ML models can predict new attack instances for a block cipher
with significantly high accuracy, while being trained with a reasonably small
number of known attack instances on the same. Specifically, we obtain
training accuracies of 85 - 93% in our experiments. Further, we pro-
pose a simple strategy to nullify the risk of misclassifying exploitable faults
as benign ones, which is found to work fairly well for our case studies. Our
experiments establish that the false negatives can be nullified by
exhaustively testing roughly 20% of the total fault samples, which
is quite reasonable. Further, it is found that the ML models can
predict difficult attack instances while trained on a set of relatively
easier attack instances, which is indeed a remarkable result, so far
the capability of the tool is concerned.

– In order to establish the importance of exploitable fault characterization,
we present an application scenario, which sheds light on a previously unex-
plored effect of non-linear layers on the exploitable fault space of a block
cipher. We study the effect of 3 structurally similar S-Boxes in the context
of DFA attacks on bit-permutation based SPN ciphers. The experiments
were performed for PRESENT, which is the most prominent member of this
class. It is found that the statistical characterization of exploitable fault
space provides interesting information about the effect of non-linear layers
in the context of DFAs. In particular, we observe that the S-Box of
SKINNY [43] is relatively more resistant to DFAs than the S-Boxes
of PRESENT and SERPENT [3].

The rest of the paper is organized as follows. In the next section, we present a
brief overview of fault-based cryptanalysis with an emphasis on automated fault
analysis techniques. Some necessary preliminaries are presented in Section 3.
We elaborate the proposed framework in Section 4, along with supporting case
studies and a potential application scenario in Section. 5. Concluding remarks
are presented in Section 6.

2 Background

In this section, we outline the necessary backgrounds on fault attacks with an
emphasis towards automated fault analysis. We begin with a brief introduction to
fault analysis attacks on block ciphers. The AFA and some other approaches for
automated fault attacks will be summarized next with emphasis on the concepts
relevant for this work.

2.1 Fault Attacks on Block Ciphers: A Brief Survey

Exploitation of faults to attack cryptographic devices dates back to 1997 by
Boneh et.al., who demonstrated the attack on RSA public key cryptosystem [13].
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The concept of Differential Fault Analysis (DFA) was introduced by Biham et.
al. [14] on the Data Encryption Standard (DES), and was readily adapted for
other ciphers like AES [1], PRESENT [4], LED [5] etc. In particular, AES is the
most extensively studied cipher in the context of fault attacks [2,15–19]. The ba-
sic principle of any fault attack is to cause a malicious aberration in the normal
execution of the target cryptographic algorithm and to exploit the corresponding
leakage to try and recover the secret key within reasonable computational com-
plexity. Till date, DFAs are the most widely studied class of fault attacks. DFAs,
in general, exploit computationally efficient key distinguishers resulting from the
fault injection and recover the secret key by solving a system of equations con-
structed with the distinguishers. The existence of practically achievable fault
models such as bit faults, nibble faults, byte faults, and diagonal faults makes
DFA a potent threat for modern block ciphers.

Although DFA constitutes the most prominent class of fault attacks, there
exist other variants which have recently gained significant attention mainly due
to their simplicity. Differential Fault Intensity Analysis (DFIA) is a non-DFA
technique [20, 21]. DFIA combines the concept of side-channel analysis with
fault attack to recover the secret key by exploiting the faulty ciphertexts only.
However, the number of required ciphertexts are significantly higher than in
DFA. The Safe-Error Attacks (SEA), Differential Behaviour Analysis (DBA)
and Fault Sensitivity Analysis (FSA) constitute the other major categories of
fault attacks. The main crux of these attacks lies in the fact that depending on a
particular sub-part of the secret key (such as a bit or a byte), a fault may or may
not lead to a faulty computation. The very presence of a fault in a computation
thus leaks critical information which leads to the extraction of the key [19, 22].
It should be noted that all these attacks including DFIA are statistical in nature
and their success critically depends on the physical characteristics of the target
implementation.

2.2 Automated Fault Analysis

In 2010, Courtois et. al. presented the concept of Algebraic Fault Analysis (AFA)
combining the concepts of algebraic cryptanalysis and DFA [6]. Just like DFA,
AFA also exploits the difference in values generated from the fault-free calcu-
lation and faulty calculation (due to the injection of fault at any intermediate
round) to recover the secret. However, the representation and the analysis of
AFA is significantly different from that of classical DFA. AFA is the reminiscent
of algebraic cryptanalysis which represents a cipher as a large system of multi-
variate polynomial equations of low degree and high sparsity. Such polynomial
systems, which are usually defined on the finite field GF (2) in ANF form, are
then fed to generic algebraic solvers with the aim of extracting the secret keys
by solving [23]. Although algebraic cryptanalysis alone, so far, have not been
able to break state-of-the-art block ciphers, with the addition of extra equations
due to fault injection, they are found to break most of the well-known ciphers of
present days [6–10]. The most popular method for solving AFA instances is to
convert the equations to an equivalent representation in CNF form and then use
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off-the-shelf SAT solvers for solving. Perhaps the most attractive feature of AFA
is its genericness. In [10], Zhang et. al. have shown that the algebraic framework
can encode most of the DFA like attacks including the attacks on key schedule
and round counters. Moreover, it has been anticipated that AFA are powerful
than conventional DFA in certain situations as they can exploit many equations
which are otherwise beyond the perception of a human attacker [10]. All such
features of AFA make it the perfect candidate for automated fault analysis.

Recently, Khanna et. al. [11] has proposed a novel approach for automated
fault analysis called XFC, which is significantly different from the AFA approach.
Through a coloring based abstraction, XFC first enumerates the fault propaga-
tion path of a cipher and then calculates the complexity of the key space which
is expected to be reduced significantly, if a fault is exploitable. The computation
procedure of XFC is fairly simple and fast compared to the AFA approaches,
which makes it a potential candidate for exploitable fault characterization. How-
ever, the framework is found to be restricted to a very specific class of DFA and
also lacks proper automation. Barthe et. al. [12] has proposed another alternative
approach for public key algorithms where, the vulnerable locations in a software
implementation are identified for a given attack condition using program syn-
thesis techniques. However, it requires prior knowledge of the fault conditions.
Also the program synthesis is not known to be a very fast approach in general.

3 Preliminaries

3.1 General Model for Block Cipher and Faults

Table 1: List of Notations
Symbol Definition

“+” Bitwise XOR

Ek A block cipher

oij ith sub-operation in the jth round

Fh A fault instance

R Number of cipher rounds

l Number of sub-operation in each round

r round of fault injection

N fault multiplicity

w fault width

T fault position

λ bit-width of a sub-operation

{f}Nn=1 set of fault values for a fault injection

{p}Nn=1 set of plaintext values for a fault injection

MF set of exploitable faults

τ timeout for SAT solvers

S Sensitivity threshold
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Let Ek be a block cipher defined as a tuple Ek = 〈Enc,Dec〉, where Enc
and Dec denote the encryption and decryption functions, respectively. Further,
the Enc function (and similarly the Dec function) is defined as Enc(p) = AR ◦
AR−1 ◦ ... ◦ A1(p) = c, for a plaintext p ∈ P, ciphertext c ∈ C, and a key
k ∈ K. Each Aj denotes a round function in a R round cipher. Further, each
Aj = olj ◦ o

l−1
j ◦ ... ◦ o1

j is a composition of certain functions of the form oij ,
generally denoted as sub-operations in this work. Each Aj is thus assumed to
have l sub-operations. A sub-operation may belong to the key schedule or the
datapath of the cipher. In other words, oij denotes either a key schedule sub-

operation or a datapath sub-operation at any round j. We shall use the term oij
throughout this work to denote a sub-operation, without mentioning whether it
belongs to key schedule or datapath. Table. 1 lists the notations used throughout
this paper.

An injected fault in DFA usually corrupts the input of some specific sub-
operation during the encryption or decryption operation of the cipher. Given
the cipher model, we denote the set of faults as F = {F1, F2, ..., FH}, where
each individual fault Fh ∈ F is specified as follows:

Fh = 〈oir, λ, w, T,N, {f}Nn=1, {p}Nn=1〉 (1)

Here r < R is the round of injection, and oir denotes the sub-operation, in-
put of which is altered with the fault. The parameter λ denotes the data-width
of the sub-operation (more specifically, the bit-length of the input of the sub-
operation). The parameter w is the width of the fault which quantifies the max-
imum number of bits affected by a fault. In general, bit-based, nibble-based, and
byte-based fault models are considered which corresponds to w =1, 4, and 8,
respectively. The position of the fault at the input of a sub-operation is denoted
by T with t ∈ {0, 1, ... λw}. For practical reasons, w and T are usually defined in a
way so that the injected faults always remain localized within some pre-specified
block-operations of the corresponding sub-operation oir. The parameter N rep-
resents the number of times, a fault is injected at a specific location to obtain a
successful attack within a reasonable time. N is called the Fault Multiplicity.

The sets {f}Nn=1, and {p}Nn=1 denote the values of the injected faults and the
plaintexts processed during each fault injection, respectively. In the most general
case, the diffusion characteristics (and thus the exploitability) of an injected fault
critically depends upon the value of the fault and the corresponding plaintext
on which the fault is injected. A typical example is PRESENT cipher, where,
the number of active S-Boxes due to the fault diffusion depends on the plaintext
and the fault value and as a result, many faults injected at a specific position
with the same multiplicity may become exploitable, whereas some of them at
the same position may become unexploitable. According to the fault model in
Equation 1, the total number of possible faults for a specific position T in sub-
operation oir is 2N(w+λ), for a given fault width w. The total number of possible
faults for a sub-operation oir is

(
2N(w+λ) × λ

w

)
, and that for the whole cipher is

oir is
(
2N(w+λ) × λ

w ×R× l
)
.
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In certain cases the fault space can be pruned significantly utilizing the fact
that a large number of faults may be actually equivalent. A prominent example is
the AES where every byte fault at some specific position is equivalent irrespective
of its value. However, there exists no automatic procedure to figure out such
equivalences, till date, and the only way is to manually analyze the cipher. As
a result, it is reasonable to adapt the above calculation of the size of the fault
space while analyzing a general construction.

3.2 Algebraic Representation of Ciphers

Multivariate polynomial representation, which is quite well-known in the context
of AFA [10], is considered one of the most generic and informative representations
for block ciphers. In this work, we utilize the polynomial representations to
encode both the ciphers and the faults. The usual way of representing block
ciphers algebraically is to assign a set of symbolic variables for each iterative
round, where each variable represents a bit from some intermediate state of the
cipher. Each cipher sub-operation is then represented as a set of multivariate
polynomial equations over the polynomial ring constructed on these variables,
with GF (2) being the base ring. The equation system should be sparse and
low-degree in addition, to make the cipher representation easy to solve.

In order to elaborate the process of polynomial encoding, we consider the
example of the PRESENT block cipher. PRESENT is a lightweight block ci-
pher proposed by Bogdanov et. al. in CHES 2007 [4]. It has a Substitution-
Permutation Network (SPN) based round function which is iterated 31 times
to generate the ciphertext. The basic version PRESENT-80 has a block size of
64-bits and a master key of size 80 bits, which is utilized to generate 64-bit round
keys for each round function by means of an iterated key-schedule. Each round of
PRESENT consists of three sub-operations, namely, addRoundKey, sBoxlayer,
and pLayer. The addRoundKey sub-operation, computing bitwise XOR between
the state bits and round key bits is represented as:

yi = xi + ki, for 1 ≤ i ≤ 64 (2)

where, xi, ki represents the input state bits and round key bits, respectively, and
yi represents the output bits of the addRoundKey sub-operation. Similarly, the
pLayer operation, which is a 64-bit permutation can be expressed as:

yπ(i) = xi, for 1 ≤ i ≤ 64 (3)

where π(i) is the permutation table. The non-linear substitution operation sBoxlayer
of PRESENT consists of 16 identical 4× 4 bijective S-Boxes, each of which can
be represented by a system of non-linear polynomials. The solvability of a typical
cipher polynomial system critically depends on the S-Box representation, which
is expected to be sufficiently sparse and consisting of low-degree polynomials.
One way of representing the PRESENT S-Boxes is the following:

y1 = x1x2x4 + x1x3x4

+ x1 + x2x3x4 + x2x3 + x3 + x4 + 1
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y2 = x1x2x4 + x1x3x4 + x1x3 + x1x4+

x1 + x2 + x3x4 + 1
(4)

y3 = x1x2x4 + x1x2 + x1x3x4 + x1x3+

x1 + x2x3x4 + x3

y4 = x1 + x2x3 + x2 + x4

Here xis (1 ≤ i ≤ 4) and yis (1 ≤ i ≤ 4) represent the input and output bits of
a 4× 4 S-Box, respectively.

Each injected fault instance can be added in the cipher equation system in
terms of new equations. Let us assume that the fault is injected at the input state
of the ith sub-operation oir at the rth round of the cipher. For convenience, we
denote the input of oir as Xi = x1||x2||...||xλ, where λ is the bit-length of Xi. In
the case of PRESENT λ = 64. Let, after the injection of the fault, the input state
changes to Y i = y1||y2||...||yλ. Then the state differential can be represented as
Di = d1||d2...||dλ, where dz = xz + yz with 1 ≤ z < λ. Further, depending on
the width of the fault w, there can be m = λ

w possible locations in Xi, which
might have got altered. Let us partition the state differential Di in m, w-bit
chunks as Di = Di

1||Di
2||...||Di

m, where Di
t = dw×(t−1)+1||dw×(t−1)+2||...||dw×t

for 1 ≤ t ≤ m. Assuming T be the location of the fault, the fault effect can be
modelled with the following equations:

Di
t = 0, for 1 ≤ t ≤ m, t 6= T (5)

(1 + dw×(t−1)+1)(1 + dw×(t−1)+2)...(1+dw×t) = 0,

for t = T
(6)

It is notable that the location T of a fault can be unknown in certain cases, and
this can also be modeled with equations of slightly complex form [10]. However,
for exploitable fault characterization, it is reasonable to assume that the locations
are known as we are working in the evaluator mode.

4 Proposed Methodology

4.1 Motivation

The goal of the present work is to efficiently filter out the exploitable faults
for a given cryptosystem. It is apparent that the ANF polynomials provide a
reasonable way for modeling the ciphers and the faults [10]. Although, the ANF
description and its corresponding CNF is easy to construct, solving them is non-
trivial as the decision problem associated with the solvability of an ANF system
is NP-Complete. In practice, SAT solvers are used for solving the associated CNF
systems and it is observed that the solving times vary significantly depending
on the instance.

One key observation regarding the cipher equation systems is that they are
never unsatisfiable, which is due to the fact that for a given plaintext-ciphertext



10

pair there always exists a key. However, it is not practically feasible to figure out
the key without fault injections, as the size of the key search space is prohibitively
large. The search space complexity reduces with the injection of faults. The size of
the search space is expected to reach below some certain limit which is possible
to search exhaustively with modern SAT solvers within reasonable time, if a
sufficient number of faults are injected at proper locations.

The above-mentioned observation clearly specifies the condition for distin-
guishing the exploitable faults from the non-exploitable ones. To be precise, if
a SAT solver terminates with the solution within a prespecified time limit, the
fault instance is considered to be exploitable. Otherwise, the fault is considered
non-malicious. Setting a proper time-limit for the SAT solver is, however, a crit-
ical task. A relatively low time-limit is unreliable as it may fail to capture some
potential attack instances. As an example, for the PRESENT cipher we observed
that most of the 1-bit fault instances with fault multiplicity 2, injected at the
inputs of 28-th round S-Box operation, are solvable within 3 minutes. This ob-
servation is similar to that mentioned in [10]. However, we observed that when
nibble faults are considered at the 28th round, the variation of solving time is sig-
nificantly high; in fact, there are cases with solving times around 16− 24 hours.
These performance figures are obtained with Intel Core i5 machines running
CryptominiSAT-5 [33] as the SAT solver in a single threaded manner. Moreover,
such cases comprise nearly 12% of the total number of samples considered. This
is not insignificant in a statistical sense, where failure in detecting some attack
instances cannot be tolerated. Such instances do not follow any specific pattern
through which one can visually characterize them without solving them. This
observation necessarily implies that one has to be more careful while setting
solver timeouts and a high value of timeout is preferable. However, setting high
timeout limits the number of instances one can acquire through exhaustive SAT
solving within a practically feasible time span.

According to the fault model described at Section 3.1, the size of the fault
space in a cipher is prohibitively large. As a concrete example, there are total
2(64+4) = 268 possible nibble fault instances, with fault multiplicity N = 1,
for any specific position T , on any sub-operation oir in the PRESENT cipher.
The number is even larger if one considers other positions, sub-operations, fault-
multiplicity, and fault-models. Moreover, the ratio of exploitable faults to the
total number of faults is unknown apriori. The whole situation suggests that in
order to obtain a reliable understanding of the exploitable fault space even in
a statistical sense, one must test a significantly large sample from fault space.
Also, to obtain a sufficiently large set of exploitable faults for testing purpose, a
large number of fault instances must be examined. With a high timeout required
for SAT solvers, exhaustive SAT solving is clearly impractical for fault space
characterization and a fast mechanism is required. Our aim in this paper is
to prepare an efficient alternative to the exhaustive enumeration of
the fault space via SAT solving.
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4.2 Empirical Hardness Prediction of Satisfiability Problems

NP-Complete problems are ubiquitous in computer science, especially in AI.
While they are hard-to-solve on worst case inputs, there exists numerous “easy”
instances which are of great practical value. In general, the algorithms for solving
NP-Complete problems exhibit extreme runtime variations even across the solv-
able instances and there is no describable relationship between the instance size
and the algorithm runtime as such. Over the past decade, a considerable body of
work has shown how to use supervised ML models to answer questions regard-
ing solvability or runtime using features of the problem instances and algorithm
performance data [24–28]. Such ML models are popularly known as Empirical
Hardness Models (EHM). Some applications of EHMs include proper algorithm
portfolio selection for a problem instance [28], algorithm parameter tuning [25],
hard benchmark construction [29], and analysis of algorithm performance and
instance hardness [29].

In the context of the present work, we are interested in EHMs which pre-
dict the hardness of SAT instances. The most prominent result in the context
of empirical runtime estimation of SAT problems is due to Xu et. al., who con-
structed a portfolio based SAT solver SATzilla [28] based on EHMs. The aim of
SATzilla was to select the best solver for a given SAT instance, depending upon
the runtime predictions of different EHMs constructed for a set of representative
SAT solvers. The SATzilla project also provided a large set of 138 features for
the model construction depending on various structural properties of the CNF
descriptions of the problem instance as well as some typical features obtained
from runtime probing of some basic SAT solvers. In this work, we utilize some of
these features for constructing EHMs which will predict the exploitability of a
given fault instance without solving it explicitly. Brief description of our feature
set will be provided later in this section.

4.3 ML Model for Exploitable Fault Identifier

In this subsection, we shall describe the ML-based framework in detail. In nut-
shell, our aim is to construct a binary classifier, which, if trained with certain
number of exploitable and unexploitable fault instances, can predict the ex-
ploitability of any fault instance queried to it. Before going to further details,
we formally describe the exploitable fault space for a given block cipher and an
exploitable fault in the context of SAT solvability.

Definition 1 (Exploitable Fault Space) Given a cipher Ek and a correspond-
ing fault space F , the exploitable fault space MF ⊂ F for Ek is defined as a set
of faults such that ∀Fh ∈MF , it is possible to extract ne bits of the secret key k,
where 0 < ne ≤ |k| .

In other words, exploitable fault space denotes the set of faults for which the
combination of the injected fault and a plaintext results in the extraction of ne
bits of the secret key. From the perspective of a cipher evaluator, two distinct
scenarios can be considered at this point. In the first one, it is assumed that none
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Fig. 1: The Exploitable Fault Characterization Framework: Basic Idea

of the key bits are known apriori and faults are inserted to extract the complete
master key of the cipher. Indeed, one may increase the number of injections
to reduce the complexity of the search space in this scenario. However, it is
practically reasonable to assume some upper bound on the number of injections.
In other words, the fault multiplicity N in the fault model is always ≤ some
pre-specified threshold. The second scenario in this context occurs when some
specific key bits are assumed to be known. This model is extremely useful when
only a subset of the key can be extracted by the fault injection due to incomplete
diffusion of the faults. In a typical AFA framework, it is not possible to obtain
a unique solution for the incompletely defused faults unless some of the key bits
are known. However, in this work, we mainly elaborate the first scenario. It is
worth mentioning that, the second scenario can be dealt with the framework we
are going to propose, without any significant changes.

The framework for exploitable fault space characterization is depicted in
Figure. 1. Referring to the figure, let EFh

k indicate the cipher Ek, with a fault
Fh from its fault space F injected in it. This can be easily modelled as an
ANF equation system denoted as ANF (EFh

k ). The very next step is to convert

ANF (EFh

k ) to the corresponding CNF model denoted by CNF (EFh

k ). At this
point, we specify the exploitable faults in terms of solvability of SAT problems,
with the following definition:

Definition 2 (Exploitable Fault) A fault Fh ∈ F for the cipher Ek is called
exploitable if the CNF (EFh

k ) is solvable by a SAT solver within a pre-specified
time bound τ .

Given fault instances from the fault space of a cipher, we construct CNF
encoding for each of them. A small fraction Itr of these CNFs are solved ex-
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haustively with SAT solver and labeled accordingly depending on whether they
are solvable or not within the threshold τ . Next, a binary classifierM is trained
with these labeled instances, which is the EHM in this case. The ML model is
defined as:

M : T (CNF (EFh

k )) 7→ {0, 1} (7)

Here, T is an abstract function which represents the features extracted from the
CNFs. In the present context, T outputs the feature vectors from the SATzilla
feature set [28]. For convenience, we use the following nomenclature:

Class 0 : Denotes the class of exploitable faults.
Class 1 : Denotes the class of benign/unexploitable faults.

One important difference of our EHM model with the conventional EHM
models is that we do not predict the runtime of an instance but use the labels 0
and 1 to classify the faults into two classes. In other words, we solve a classifi-
cation rather than a regression problem solved in conventional EHMs [27]. The
reason is that we just do not exploit the runtime information in our framework.
The main motive of ours is to distinguish instances whose search space size is
within the practical search capability of a solver, from those instances which are
beyond the practical limit. It is apparent that our classifier based construction
is sufficient for this purpose. In the next section, we describe the feature set
utilized for the classification.

4.4 Feature Set Description

In this work, we use the features suggested by the SATzilla – a portfolio based
SAT solving tool [28]. The SATzilla project proposed a rich set of 138 features to
be extracted from the CNF description of a SAT instances for the construction
of runtime predicting EHMs. The feature set of SATzilla is a compilation of sev-
eral algorithm-independent properties of SAT instances made by the Artificial
Intelligence (AI) community on various occations [29]. A widely known exam-
ple of such algorithm-independent properties is the so-called phase-transition
of random 3-SAT instances. In short, SAT instances, generated randomly on a
fixed number of variables, and containing only 3-variable clauses, tend to become
unsatisfiable as the clause-to-variable ratio crosses a specific value of 4.26 [24].
Intuitively, the reason for such a behavior is that instances with fewer clauses
are underconstrained and thus almost always satisfiable, while those with many
clauses are overconstrained and unsatisfiable for most of the cases. The SATzilla
feature set is divided into 12 groups. Some of the feature groups consist of struc-
tural features like the one described in the example, whereas the others include
features extracted from runtime behaviors of the SAT instances on solvers from
different genre – like Davis-Putnam-Logemann-Loveland (DPLL) solvers, or lo-
cal search solvers [27,28].

The structural features of SATzilla are divided into five feature groups,
which include simple features like various variable-clause statistics as well as
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features based on complex clause-variable interactions in the CNF formula ob-
tained through different graph-based abstractions. Intuitively, these statistical
measurements somewhat quantify the difficulty of an instance. The so-called run-
time features in SATzilla, also known as “probing” features, are computed with
short-time runs of the instances on different genres of candidate solvers. The
computation times for these 12 groups of features are not uniform and there
exist both structural and runtime features which are computationally expen-
sive. The computation time of the features also provide significant information
regarding the instance hardness and as a result, they are included as the final
feature group. Further details on the feature set can be found in [26,27].

4.5 Handling the False Negatives:

Class 0Class 1 Sensitive Region

Fig. 2: Sensitive Region: Conceptual Illustration

The ML model proposed in this work provides quick answers regarding the
exploitability of the fault instances queried to it. Such a quick answering system
has an enormous impact on the exploitable characterization problem as it makes
the problem tractable from a practical sense. However, the efficiency comes at
the cost of accuracy. Being a ML-based approach, there will always be some false
positives (a benign fault instance classified as exploitable) and false negatives (an
exploitable instance classified as benign). While a small number of false positives
can still be tolerated, false negatives can be crucial for some applications, for
example, generating a test set of exploitable faults for testing countermeasures.
If some typical exploitable faults are missed, they may lead to successful attacks
on the countermeasure.

In this work, we provide a potential solution for the misclassification issue.
More precisely, we try to statistically eliminate the chances of false negative
cases – that is the chances of an attack getting misclassified. The main idea is
to first determine the cases for which the classification confidence of the clas-
sifier is not very high. We denote such cases as sensitive instances. Note that,
sensitive instances are determined on the validation data-set once the classifier
is trained and deployed for use. Intuitively, such sensitive instances are prone to
misclassification (we have also validated this claim experimentally.). Each sensi-
tive instance is exhaustively tested with SAT solver. Fig. 2 presents a conceptual
schematic of what we mean by sensitive instances. Typically, we assume that the
two classes defined in terms of the feature vectors can be overlapping, and the
region of overlap constitute the set of sensitive instances.
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Determination of the sensitive instances or this region of overlap is, however,
not straightforward and could be dealt in many ways. In this paper, we take a
very simple albeit effective strategy. We use Random Forest (RF) of decision trees
as our classification algorithm [38]. Random forest is constructed with several
decision trees, each of which is a weak learner. Usually, such ensemble methods
of learning performs majority voting among the decisions of the constituent
weak learners (decision trees in the present context) to determine the class of
the instance. Here, we propose a simple methodology for eliminating the false
negatives using the properties of the RF algorithm. The proposed approach
is reminiscent of classification with reject – a well-studied area in ML, where
a classifier can reject some instances if the classification confidence is low for
them [32]. Let Cl be the random variable denoting the predicted class of a
given instance x in the two-class classification problem we are dealing with.
For any instance x, we try to figure out the quantities Pr[Cl = 0 | x] and
Pr[Cl = 1 | x], which are basically the probabilities of x lying in any of the two
classes. Evidently, the sum of these two quantities is 1. Note that the probabilities
are calculated purely based on the decisions made by the classifier. In other
words, it is calculated exploiting the properties of the classification algorithm.
Next, we calculate the following quantity:

δ = (Pr[Cl = 0 | x]− Pr[Cl = 1 | x]) (8)

It is easy to observe that having a large value for δ implies the classifier is
reasonably confident about the class of the instance x. In that case, we consider
the decision of the classifier as the correct decision. For the other case, where δ
is less than some predefined threshold S, we invoke the SAT solver to determine
the actual class of the instance. The overall flow for false negative removal is
summarized in Algorithm 1.

Algorithm 1 Procedure CLASSIFY FAULTS

Input: A random fault instance Fh

Output: Exploitability status of Fh

1: Construct ANF (EFh
k ) and then CNF (EFh

k )

2: Compute x = T (CNF (EFh
k ))

3: Compute 〈Pr[Cl = 0 | x], Pr[Cl = 1 | x]〉 = M(x)
4: Compute δ using Equation (8)
5: if (|δ|< S) then . S is a predefined threshold

6: Query the SAT engine with CNF (EFh
k )

7: if (CNF (EFh
k ) is solvable within τ) then

8: Return Fh ∈MF
9: else
10: Return Fh 6∈MF
11: end if
12: else
13: if (δ > 0) then
14: Return 0 . Fh ∈MF
15: else
16: Return 1 . Fh 6∈MF
17: end if
18: end if
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Each tree in an RF returns the class probabilities for a given instance. The
class probability of a single tree is the fraction of samples of the same class in a
leaf node of the tree. Let the total number of trees in the forest be tr. The class
probability a random instance x is defined as:

Pr[Cl = c | x] =
1

tr

tr∑
h=1

Prh[Cl = c | x] (9)

where, Prh[Cl = c | x] denotes the probability of x being a member of a class c
according to the tree h in the forest.

The success of this mechanism, however, critically depends on the threshold
S, which is somewhat specific to the cipher under consideration, and is deter-
mined experimentally utilizing the validation data. Ideally, one would expect
to nullify the false negatives without doing too many exhaustive validations.
Although no theoretical guarantee can be provided by our mechanism for this,
experimentally we found that for typical block ciphers, such as PRESENT and
LED, one can reasonably fulfill this criterion. Detailed results supporting this
claim will be provided in Sec. 5.

5 Case Studies

This section presents the experimental validation of the proposed framework by
means of case studies. Two state-of-the-art block ciphers – PRESENT and LED
are selected for this purpose. The motivation behind selecting these two specific
ciphers is that they utilize the same non-linear, but significantly distinct lin-
ear layers. One main application of the proposed framework is to quantitatively
examine the effect of different cipher sub-operations in the context of fault at-
tacks, and in this paper, we mainly elaborate this application. The structural
features of PRESENT and LED allow us to make a fair comparison between
their diffusion layers. In order to evaluate the effect of the nonlinear S-Box layer,
we further perform a series of experiments on the PRESENT block cipher by
replacing its S-Box with three alternative S-Boxes of similar mathematical prop-
erties. In the following two subsections, we present the detailed study of the
PRESENT and LED ciphers with the proposed framework. The study involving
the S-Box replacement will be presented after that.

5.1 Learning Exploitable Faults for PRESENT

Table 2: Setup for the ML on PRESENT and LED
Cipher PRESENT LED

Target Rounds 27− 30 29− 32

Maximum number of times a fault is injected (N) 2 2

Timeout for the SAT solver (τ) 24 hrs 48 hrs
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Fig. 3: Machine learning results for PRESENT. (a) Feature importance; (b) ROC
curve; and (b) Variation of accuracy with the size of training set.

The basics of PRESENT block cipher has already been described in Sec. 3.2.
Several fault attack examples have been proposed on PRESENT, mostly tar-
geting the 29-th and 28-th round of the cipher as well as the key schedule of
PRESENT [10, 21, 34–37]. Zhang et.al. [10] presented an AFA on PRESENT,
requiring 2 bit-fault instances on average, at the 28-th round of the cipher in
the best case. The solving times of the corresponding CNFs are mostly around
3 minutes.

Experimental Setup In order to validate the proposed framework, we create
random AFA instances following different fault models. In order to make the ML
classifier generic, we decided to train it on instances from different fault models.
Two competitive fault models for PRESENT are the bit and nibble fault mod-
els, both of which can generate plenty of exploitable fault instances. In any case,
we end up getting a CNF, the solvability of which determines the exploitability
of an instance. So the ML classifier is supposed to learn to estimate the search
complexity of an instance in some way. Hence, there is no harm in combining in-
stances from two fault models as such. Table 2, presents the basic setup we used
for the experiments on PRESENT and LED. Experiments on any given cipher
begins with an initial profiling phase, where the parameters mentioned in Table 2
are determined and attack samples for training are gathered. For PRESENT,
we mainly targeted the rounds 27 − 30 in our experiments as one can hardly
find any exploitable fault beyond these rounds. Further, the fault multiplicity
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(N) was restricted to 2, (that is, N can assume values 1 and 2) considering low
fault-complexities of DFAs. Interestingly, it was observed that the nibble fault
instances (injected 2 times in succession) at 28-th round do not result in suc-
cessful attacks, even after 2 days. Further, many of these instances (almost 12%)
take 16−24 hrs of solving time. No, successful attack instances were found taking
time beyond 24 hours in our experiments, which were conducted on a machine
with Intel Core i5 running CryptominiSAT-5 [33] as the SAT solver in a single
threaded manner. We thus set the SAT timeout τ = 24 hours for PRESENT. For
the sake of experimentation, we exhaustively characterized a set of 1000 samples
from the fault space of PRESENT and LED, individually. However, one should
note that such exhaustive characterization was only required to prove the appli-
cability of the proposed methodology, and in practice, a much smaller number
of instances are required for training the ML classifier, as well shall show later.
For every new cipher, such profiling should be performed only once just to build
the ML classifier.

Feature Selection The first step in our experiments is to evaluate the feature
set. Although we started with a well-accepted feature set, it is always interesting
to know how these features impact the learning process and which are the most
important features in the present context. Identification of the main contributing
features for a given problem may also lead to significant reduction of the feature
space dimensionality by the selection of actually useful features, which also re-
duces the chances of overfitting. We therefore perform a quantitative assessment
of the importance of various features using the RF algorithm. Before proceed-
ing further, it is worth mentioning that some of the SATzilla features might be
computationally expensive depending on problem instances. It was found that
the unit propagation features (which belong to the group of DPLL probing fea-
tures) and the linear programming features in our case takes even more than 15
minutes of computing time for certain instances. As a result, we did not consider
them in our experiments which left us with 123 features in total.

In this work, we evaluate the feature importance based on the mean decrease
of gini-impurity of each feature during the construction of the decision trees [38].
Every node ζ, in a given decision tree γ, of an RF Γ imposes a partition on the
dataset by putting some threshold condition on a single feature, so that similar
samples end up in the same partition. The optimal split at a node is calculated
based on a statistical measure which quantifies how well a potential split is
separating the samples of different classes at this particular node. The gini-
impurity is one of the most popular measure for such purposes and is actually
used in random forests [38]. Let us assume that a node ζ in some decision tree
γ ∈ Γ has total |ζ| samples among which the subset ζq consists of samples from
class q ∈ {0, 1}. Then the gini-impurity of ζ is calculated as:

G(ζ) = 1− (p0
ζ)

2 − (p1
ζ)

2 (10)

where, pqζ = |ζq|
|ζ| for q ∈ {0, 1}. Let the node ζ partitions the dataset into

two nodes (subsets) ζleft and ζright, using some threshold condition tθ on some
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feature θ, and the gini-impurity of these two nodes are G(ζleft) and G(ζright),
respectively. Then the decrease in impurity at the node ζ, due to this specific
split is calculated as:

∆G(ζ) = G(ζ)− pleftG(ζleft)− prightG(ζright) (11)

where, pleft =
|ζleft|
|ζ| , and pright =

|ζright|
|ζ| . In an exhaustive search over all vari-

ables θ available at ζ and the space of corresponding tθs, the optimal split at ζ,
for a particular tree γ can be determined which is quantified as ∆θG(ζ, γ). In the
calculation of feature importance, decrease in gini-impurities are accumulated in
a per-variable basis and the importance value of the feature θ, is calculated as
follows:

IG(θ) =
∑
γ∈Γ

∑
ζ∈γ

∆θG(ζ, γ) (12)

The result of the feature importance assessment experiment is presented in
Figure 3a, where the X-axis represents the index of a feature and the Y-axis
represents its importance scaled within an interval of [0, 1]. It is interesting to
observe that, there are almost 66 features, for which the importance value is 0.
Further investigation reveals that these features obtain constant values for all
the instances. As a result, they can be safely ignored for the further experiments.

It can be observed from Figure 3a, that the feature no. 42 is the most impor-
tant one for our experiments. This feature corresponds to the aggregated com-
putation time for the Variable-Clause Graph (VCG) and Variable-Graph (VG)
graph-based features. A VCG is a bipartite graph, with nodes corresponding to
each variable and clause. The edges in this graph represent the occurrence of a
variable in a clause. The VG has a node for each variable and an edge between
variables that occur together in at least one clause. Intuitively, the computation
time is a crude representative for the dense-nature of these graphs, which is usu-
ally high if the search space is very large and complex. However, it is difficult to
directly relate this feature with quick solvability of an instance as other selected
features also play a significant role. In fact, it was observed that every structural
feature group have some contribution in the classification, which is somewhat
expected (feature no. 0−59 in Figure 3a). In contrast, the contributions from the
runtime features were not so regular. In particular, only the survey propagation
features (based on estimates of variable bias in a SAT formula obtained using
probabilistic inference [30].) were found to play some role in the classification
(feature no. 79-96 in Figure 3a). Interestingly, the features 98−100, which corre-
sponds to the approximate search-space size (estimated with the average depth
of contradictions in DPLL search trees [31]), were found to play some role in the
classification. This is indeed expected, as the classification margin in this work
is defined based on the search space size.

Classification We next measured the classification accuracy of the RF clas-
sifier with the reduced set of features. In order to check the robustness of the
learning, we ran each of our experiments several times. For each repetition, new
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Table 3: Misclassification Handling for PRESENT
S Value 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

% Sensitive Instances 6.0 6.0 10.0 13.2 17.2 20.4 20.4 22.0 22.8 24.8 27.6

% False Negatives beyond S 4.1 4.1 3.0 1.8 0.6 0.2 0.0 0.0 0.0 0.0 0.0

training and validation sets were chosen from a set of 640 labeled samples (the
remaining 360 samples collected at the profiling phase were utilized for further
validation and false negative removal experiments), where the sizes of them are in
the ratio 7 : 3. The sample set consists of 320 exploitable and 320 unexploitable
fault instances in order to achieve an unbiased training. The average accuracy
obtained in our experiment was 85%. We also provide the Receiver Operating
Characteristics (ROC) curve for the RF classifier, which is considered to be a
good representative for the quality of a classifier. The Area Under Curve (AUC)
represents the goodness of a classifier, which ranges between 0 to 1 with higher
values representing a better classifier. The ROC curve for the PRESENT exam-
ple is provided in Fig. 3c, which shows that the classifier performs reasonably
well in this case. Fig. 3b presents the variation of accuracy with the size of train-
ing dataset as a box plot. It can be observed that reasonable accuracy can be
reached within 450 training instances (which is around 70% of our dataset size)
and accuracy does not improve much after that.

Handling False Negatives Although our classifier reaches a reasonable good
accuracy of 85%, there are almost 15% instances which get misclassified in this
process, which contains both false positives and false negatives. As pointed out
in Sec. 4.5, false negatives are not acceptable in certain scenarios. The approach
presented in Sec. 4.5 critically depends on the threshold parameter S, which
must be set in a way so that the percentage of false negatives become 0 or
at least negligibly small. If the percentage of instances below S is too high, it
would be costly to estimate all of them via exhaustive SAT solving. However,
the reasonably good accuracy of our classifier suggests that the percentage of
such sensitive instances may not be very high. We tested our proposed fix from
Section. 4.5 on a new set of 250 test instances with different S values. Table 3
presents the outcome of the experiment. The percentage of instances to be justi-
fied via SAT solving and the percentage of false negatives beyond S is presented
in the table for each choice of S. It can be observed from Table 3 that a thresh-
old of 0.22 nullifies the number of false negatives and keeps the percentage of
sensitive instances (see Section. 4.5) to 20%, which is indeed reasonable.

Gain over Exhaustive SAT Solving It would be interesting to estimate the
overall gain of our ML assisted methodology compared to exhaustive character-
ization via SAT solving. For the sake of elaboration, let us consider a scenario
where only nibble faults are injected at the 28th round of PRESENT. Further,
each fault is assumed to be of multiplicity 2. The size of the resulting fault space
is 22×(64+4) = 2136, which is impossible to enumerate. Even if one considers a
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reasonable-sized sample of 10000 fault instances, the exhaustive characterization
with SAT solving only would be impractical. Considering a timeout threshold of
24 hrs (τ = 24 hrs), characterization of these many instances even with a parallel
machine with a reasonable number of cores would take an impractical amount
of time. For example, if one considers a 24 core system, the characterization
would require 416 days, in the worst case. Even with an optimistic consider-
ation of roughly 50% of the instances hitting the timeout threshold, the time
requirement is still high. In contrast, the proposed framework can provide a fairly
reasonable solution. Firstly, the size of the training set is extremely small, and
also saturates after reaching a reasonable accuracy. One can rapidly characterize
any number of fault instances after training with a reasonable error probability
and the time requirement for that is insignificant. For a statistical understand-
ing of the exploitable fault space, such error bounds can be reasonably tolerated.
For even more security-critical applications, like evaluating a countermeasure or
quantification of security bounds, the misclassified attack instances can be cru-
cial. The proposed method works fine even in those cases with a reasonable
overhead of characterizing 22% of the instances exhaustively. For a set of 10000
fault instances, it would require 83 days, even in the worst case which is much
better than the figures obtained with exhaustive characterization.

Discussion One of the goals of the ML framework is to discover new attacks
while trained on a set of known attack instances. It was found that the proposed
framework is able to do that with reasonably high accuracy. More specifically,
we found that if the training set contains only of fault instances injected at even-
numbered nibbles at the 28th round, it can successfully predict all attacks from
odd-numbered nibbles. This clearly indicates the capability of discovering new
attacks. The proposed framework also successfully validated the claim that with
the bit permutation based linear layer of PRESENT, the fault diffusion (and thus
the attack) strongly depends on the plaintext and the value of the injected fault.
Although this might not be a totally new observation, our framework figures it
out, automatically, and can quantify this claim statistically within reasonable
amount of time.

5.2 Exploitable Fault Space Characterization for LED

LED is a 64-bit block cipher proposed in CHES 2011 [5]. LED utilizes a round
function which is similar to that of AES; more specifically it has the following
sub-operations in sequence – SubByte ShiftRow, MixColumn and addRoundKey.
In contrast to AES, the 64-bit key is added once in each 4 rounds. All the
diffusion layer operations have identifiable nibble-wise structures. The 4 × 4 S-
Box of PRESENT is used as the confusion layer. Interestingly LED has no key
schedule and the same key is used in all rounds. Like PRESENT, LED has also
been subjected to DFA and DFIA [21, 39, 40]. Most of the DFA attempts on
LED targeted the last 3 rounds of LED [7,9,39,40]. Recently, Li et. al. [41] have
proposed an Impossible Differential Fault Analysis attack on the 29-th round of
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Fig. 4: Machine learning results for LED. (a) ROC Curve; and (b) Variation of
accuracy with the size of training set.

the cipher which requires 43 nibble faults to be injected at a particular nibble.
Jovanovic et. al. [7] and Zhao et. al. [9] independently presented AFA attacks
on LED, where they show that it is possible to attack the cipher at 30th round
with a single fault instance.

ML Experiments In this work, we mainly focus on the last 5 rounds of the
LED cipher. However, unlike the previous experiment on PRESENT, a slightly
different strategy was adopted. In order to examine the proper potential of the
ML model in discovering newer attack instances across different rounds, we in-
tentionally trained it with samples from the 30 and the 31st rounds and tested
it on instances from rounds 29 and 32. The RF model is trained with a total of
450 instances from the 30 and the 31st rounds and tested on 190 instances from
rounds 29 and 32. The setup for the data acquisition is given in Table 2. The ac-
curacy box plot and ROC curve for the classifier are provided in Fig. 4a and 4b,
respectively. It can be observed that the accuracy is almost 93%. The features
used were similar to the PRESENT experiments. Handling of misclassification
was also performed and the result is presented in Table. 4.

Discovery of New Attacks We observed a quite interesting phenomenon
in this experiment which clearly establishes the capability of the ML tool in
discovering newer attack instances. More specifically, we found that the ML tool
can identify attacks on 29th round of the cipher, even if it not trained with
any instances from the 29th round. The attack instances observed at the 29th
round of LED are mainly bit-fault instances with 2 fault injections. Attacks
on the 29th round of LED are usually difficult than the 30th round
attacks [41, 42], and it is quite remarkable that the ML model can
figure out difficult attacks just by learning easier attack instances.

Discussion So far we have discussed two ciphers with same S-Box and different
diffusion layers. A comparative study of these two experiments establishes that
compared to PRESENT, the fault space of LED is quite regular in nature. For
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example, almost all of the 30 round nibble faults in LED resulted in a successful
attack, whereas for PRESENT there was a significant number of unexploitable
instances at 28th round. Form the perspective of an adversary, targeting a ci-
pher having bit-permutation based diffusion layers thus become a little more
challenging as he/she must attack it with more number of fault injections in
order to obtain a successful attack.

5.3 Analyzing the Effect of S-Boxes on Fault Attacks

Table 4: Misclassification Handling for LED
S Value 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

% Sensitive Instances 4.2 6.0 6.0 11.6 13.2 15.2 17.6 17.6 21.2 23.8 23.8

% False Negatives beyond S 2.4 1.6 0.9 0.3 0.18 0.0 0.0 0.0 0.0 0.0 0.0

Table 5: Mathematical Properties of PRESENT, SERPENT, and SKINNY S-
Boxes

Property PRESENT SERPENT SKINNY

Size 4× 4 4× 4 4× 4

Differential Branch Number 3 3 2

Differential Uniformity 4 4 4

Max. Degree of Component Functions 3 3 3

Min. Degree of Component Functions 2 2 2

Linearity 8 8 8

Nonlinearity 4 4 4

Max. Differential Probability 0.25 0.25 0.25

Max. Degree of Polynomial Representation
(with Lexicographic Variable Ordering)

3 3 3

The S-Boxes are one of the most important resources in a block cipher con-
struction. However, till date, no quantitative analysis was performed to evaluate
the effect of S-Boxes on the fault attacks as such. In classical DFA, the attack
complexity is related with the average number of solutions of the S-Box differ-
ence equations having the form S(x) ⊕ S(x ⊕ α) = β. However, S-Boxes were
never characterized in the context of fault attacks considering the cipher as a
whole. The characterization of the exploitable fault space in this work gives us
the opportunity to perform such analysis.

In this experiment, we study the effect of 3 different S-Boxes on the PRESENT
cipher, with respect to fault attack. More specifically, we replace the original S-
Box of PRESENT with the S-Box of SKINNY [43], and the S0 S-Box of the
SERPENT [3], and study their effect on the exploitable fault space. The alge-
braic characteristics of these 3 S-Boxes are almost identical and presented in
Table. 5. The exploitable fault space in each case was characterized with our
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Fig. 5: Exploitable Fault Spaces with. (a) PRESENT S-Box; (b) SERPENT S-
Box; and, (c) SKINNY S-Box.

ML-based framework. For the sake of simplicity, we only tested with nibble
faults injected with N = 2 (that is two times for each fault instances) at the
28th round. The obtained test accuracies were similar to that of the PRESENT
experiment and so we do not repeat them here. Further, for each of the S-Box
case, we consider 1000 fault instances for each nibble location (there are total 16
nibble locations.). The characterized fault spaces of the three S-Box test cases
are depicted in Fig. 5a, 5b and 5c , respectively. It is interesting to observe
that although the PRESENT and SERPENT S-Box results in almost similar
behavior, the SKINNY S-Box results in a significantly different fault distribu-
tion. More specifically, whereas most of the fault instances for the PRESENT
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Fig. 6: Relation between the HW of SBox output differential and Fault Diffusion
in PRESENT. (a) 4 S-boxes activated (b) 3 S-boxes activated (c) 2 S-boxes
activated and (d) 1 S-box activated at the ith level. (e) Fault propagation up to
30th round.
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and SERPENT are exploitable (60% exploitable faults on average), the situation
is reverse in the case of SKINNY (23% exploitable faults on average).

Analysis of the Observations In order to explain the observations made in
this experiment, we had an in-depth look in the 3 S-Boxes as well as the diffusion
layer of PRESENT. The fault diffusion in PRESENT linear layer depends on the
number of active S-Boxes (S-Boxes whose inputs are affected by the faults.). For
a multi-round fault propagation, the number of active S-Boxes in the ith round
depends on the Hamming Weights (HW) of the output S-Box differential in the
(i−1)th round. Fig. 6 emphasizes this claim with a very simple example. The lines
colored red indicate non-zero differential value and the red S-Boxes are the active
S-Boxes. Now let us consider the fault diffusion tree for the 28th round nibble
fault injection in the PRESENT structure, shown in Fig. 6e up to 30th round,
for convenience. It can be observed that most of the S-Boxes obtain an input
difference of 1 bit. In other words, the inputs of the S-Boxes will have a single
bit flipped. With this observation, the investigation boils down to the following
question – If the HW of the input difference of an S-Box is 1, what is the HW of
the output difference? For all three S-Boxes considered, the average HW of the
output difference should be 2 when the average is considered over all possible
input differences (this is due to the Strict Avalanche Criteria (SAC)). However,
for the typical case, where the HW of the input difference is restricted to 1, the
average HW of the output differences vary significantly. More specifically, the
average is quite low for the SKINNY S-Box where it attains a value of 2.2. For
the PRESENT S-Box, the value is 2.45 and for SERPENT it is 2.5. This stems
from the fact that, for the SKINNY S-Box, there exists input difference values,
for which the HW of the output differences become 1. Whereas for PRESENT
and SERPENT S-Boxes, the minimum HW of the output differences is 2 for
any given input difference. In essence, the fault diffusion with PRESENT and
SERPENT S-Box is more rapid on average, than the SKINNY S-Box, which got
reflected in the profile observed for exploitable fault spaces.

The result presented in this subsection is unique from several aspects. Firstly,
it shows empirically that even if the S-Boxes are mathematically equivalent, they
may have different effects in the context of fault attacks. Secondly, the proposed
framework of ours can identify such interesting phenomenon for different cipher
sub-blocks, which are otherwise not exposed from standard characterization.
This clearly establishes the efficacy of the proposed approach.

6 Conclusion

Exploitable fault space characterization is an extremely relevant but relatively
less explored topic in the fault attack research. We address this problem in the
context of block ciphers, in this paper, and eventually, come up with a reasonable
solution. The proposed solution is able to efficiently handle the prohibitively large
fault space of a cipher with reasonable computational overhead. The ML-based
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framework proposed here is not limited to block ciphers only. It is quite well-
known that even stream ciphers, public key algorithms [44] and hash functions
can be mapped to algebraic systems [45]. From that perspective, the framework
can be easily extended to handle those cases.

In this paper, we have elaborated an application of exploitable fault char-
acterization for the evaluation of cipher sub-operations in the context of fault
attacks. However, several other applications are possible as already anticipated
in the introduction section. One of the potential applications could be the guided
synthesis of countermeasures for resource-constrained environments. Through a
statistical characterization of the exploitable fault space in a per-round man-
ner, one can potentially identify locations which are the most sensitive to the
fault attacks. One can then implement costly countermeasures for those posi-
tions only, whereas less sophisticated countermeasures would work well for the
rest of the cipher. Another important application scenario could be the testing of
implementations and countermeasures with a large number of exploitable fault
instances, rather than with random faults. Such testings are highly desired to
correctly evaluate fault attack threats, or to certify a system against such attacks
and can be realized quite efficiently with the proposed framework.
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