
Tightly-Secure Key-Encapsulation Mechanism
in the Quantum Random Oracle Model ★

Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa

NTT Secure Platform Laboratories
3-9-11, Midori-cho Musashino-shi, Tokyo 180-8585 Japan

{saito.tsunekazu, xagawa.keita, yamakawa.takashi}@lab.ntt.co.jp
August 25, 2021

Abstract. Key-encapsulation mechanisms secure against chosen ciphertext attacks (IND-CCA-secure KEMs)
in the quantum random oracle model have been proposed by Boneh, Dagdelen, Fischlin, Lehmann, Schafner,
and Zhandry (CRYPTO 2012), Targhi and Unruh (TCC 2016-B), and Hofheinz, Hövelmanns, and Kiltz (TCC
2017). However, all are non-tight and, in particular, security levels of the schemes obtained by these construc-
tions are less than half of original security levels of their building blocks.
In this paper, we give a conversion that tightly converts a weakly secure public-key encryption scheme into
an IND-CCA-secure KEM in the quantum random oracle model. More precisely, we de�ne a new security
notion for deterministic public key encryption (DPKE) called the disjoint simulatability, and we propose a
way to convert a disjoint simulatable DPKE scheme into an IND-CCA-secure key-encapsulation mechanism
scheme without incurring a signi�cant security degradation. In addition, we give DPKE schemes whose dis-
joint simulatability is tightly reduced to post-quantum assumptions. As a result, we obtain IND-CCA-secure
KEMs tightly reduced to various post-quantum assumptions in the quantum random oracle model.
keywords: Tight security, chosen-ciphertext security, post-quantum cryptography, KEM.

1 Introduction

1.1 Background

Indistinguishability against chosen ciphertext attacks (IND-CCA-security) is considered to be a de facto standard
security notion of a public key encryption (PKE) and a key encapsulation mechanism (KEM). For constructing
e�cient IND-CCA-secure PKEs and KEMs, an idealized model called the random oracle model (ROM) [BR93]
is often used. In the ROM, a hash function is idealized to be a publicly accessible oracle that simulates a truly
random function. There are many known generic constructions of e�cient IND-CCA-secure PKE/KEM in the
ROM; Bellare-Rogaway (BR) [BR93], OAEP [BR95, FOPS04], REACT [OP01], GEM [CHJ+02], Fujisaki-Okamoto
(FO) [FO99, FO13], etc. KEM variants of these constructions were studied by Dent [Den03], which is summarized
in Figure 12 in section B.

Quantum Random Oracle Model. Though the ROM has been widely used to heuristically analyze security of
cryptographic primitives, Boneh et al. [BDF+11] pointed out that the ROM is rather problematic when considering
a quantum adversary. The problem is that in the ROM, an adversary is only given a classical access to a random
oracle. Since a random oracle is an idealization of a real hash function, a quantum adversary should be able
to quantumly compute it. On the basis of this observation, they proposed a new model called the quantum
random oracle model (QROM) where an adversary can quantumly access a random oracle. Since many techniques
used in the ROM including adaptive programmability or extractability cannot be directly translated into the
ones in the QROM, proving security in the QROM often requires di�erent techniques from proofs in the ROM
(see [BDF+11] for more details). Nonetheless, some above mentioned IND-CCA-secure PKE/KEMs in the ROM
(and their variants) can be shown to also be secure in the QROM: Boneh et al. [BDF+11] proved that a variant of
Bellare-Rogaway is IND-CCA-secure in the QROM. Targhi and Unruh [TU16] proposed variants of the Fujisaki-
Okamoto and OAEP and proved that they are IND-CCA-secure in the QROM.

★ This article is based on an earlier article: Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa: Tightly-Secure Key-
Encapsulation Mechanism in the Quantum Random Oracle Model, EUROCRYPT 2018, ©IACR 2018.

Tight Security. When proving the security of a primitive % under the hardness of a problem (, we usually
construct a reduction algorithm R that uses an adversaryA against the security of % as a subroutine and solves
the problem (. Let (), n) and () ′, n ′) denote running times and success probabilities ofA andR, respectively. We
say that a reduction is tight if we have) ′ ≈) and n ′ ≈ n . Tight security is desirable since it ensures that breaking
the security of % is as hard as solving an underlying hard problem (. Conversely, if a security reduction is non-
tight, we cannot immediately conclude that breaking the security of a primitive % is hard even if an underlying
problem (is hard. For example, Menezes [Men12] shows an example of a provably secure primitive with non-
tight security that is insecure with a realistic parameter setting. Therefore, tight security is important to ensure
the real security of a primitive.

From that perspective, the above mentioned IND-CCA-secure PKE/KEMs in the QROM do not serve as sat-
isfactory solutions for constructing post-quantum IND-CCA-secure PKE/KEMs because they are non-tight. To
clarify this, we give more details on these results below, where (), n) and () ′, n ′) denote running times and
success probabilities of an adversary and a reduction algorithm, respectively, @H denotes the number of ran-
dom oracle queries, and CRO denotes the time needed to simulate one evaluation of a random oracle (for further
explanation of CRO, see subsection 2.2).

– Boneh et al. [BDF+11] proved that a KEM variant of Bellare-Rogaway based on a one-way trapdoor function
is IND-CCA-secure in the QROM. 1 According to their security proof, we have) ′ ≈)+@H ·C�+(@H+@Dec) ·CRO
and n ′ ≈ n2/@2

H where C� denotes the time needed for evaluating an underlying one-way trapdoor function
and @Dec denotes the number of decryption queries.

– Targhi and Unruh [TU16] proposed a variant of Fujisaki-Okamoto and proved that their construction is
secure in the QROM assuming OW-CPA security of an underlying PKE scheme. According to their security
proof, we have) ′ ≥) +$ (@2

H) and n ′ ≈ n4/@6
H. We note that Hofheinz et al. [HHK17] subsequently gave a

modular analysis for the conversion but did not improve the tightness.
– Targhi and Unruh [TU16] proposed a variant of OAEP and proved that their construction is secure in the

QROM assuming a partial domain one-way function. According to their security proof, we have) ′ ≥) +
$ (@2

H) and n ′ ≈ n8/poly(@H).

As seen above, known constructions of IND-CCA-secure PKE/KEMs in the QROM incur at least quadratic
security loss, and their security degrades rapidly as @H grows. For example, in the Bellare-Rogaway KEM, if we
start from a trapdoor function with 128-bit security (i.e., n ′ = 2−128) and set @H = 260, then the bound given by
Boneh et al. [BDF+11] only ensures 4-bit security (i.e., n = 2−4) for a resulting KEM. Conversely, if we want to
ensure 128-bit security (i.e., n = 2−128) for a resulting KEM, we have to start from a trapdoor function with 376-
bit security (n ′ = 2−376) which incurs signi�cant blowup of parameters. The other two constructions are even
worse in regard to tightness. Therefore, to obtain an e�cient construction of post-quantum IND-CCA-secure
PKE/KEM, we need a construction with tighter security reduction that does not incur a quadratic security loss.

1.2 Our Contributions

In this paper, we give a construction of an IND-CCA-secure KEM based on a deterministic PKE (DPKE) scheme
that satis�es a newly introduced security notion that we call the disjoint simulatability. Our security reduction is
much tighter than those of existing constructions of IND-CCA-secure PKE schemes and does not incur quadratic
security loss. By using the same notations as in the previous subsection, we have) ′ ≈)+@H ·CEnc+(@H+@Dec) ·CRO
and n ′ ≈ n where CEnc denotes a time needed for encryption of an underlying DPKE scheme. We note that CEnc is
a �xed polynomial of the security parameter, and thus we believe that this blowup is much less signi�cant than
the quadratic (or quartic/octic) blowup for n as in the previous constructions.

Moreover, we construct some DPKE schemes whose disjoint simulatabilities are tightly reduced to some
post-quantum assumptions like learning with errors (LWE) and some other assumptions related to NTRU, the
McEliece PKE, and the Niederreiter PKE. As a result, we obtain the �rst IND-CCA-secure KEMs that do not incur
a quadratic security loss in the QROM based on these assumptions. We also construct a disjoint simulatable DPKE
scheme from any IND-CPA-secure PKE scheme on an exponentially large message space or any OW-CPA-secure
DPKE scheme with quadratic security loss. This gives a construction of an IND-CCA-secure KEM based on an

1 More precisely, they proved that a hybrid encryption variant of the Bellare-Rogaway PKE scheme based on a one-way
trapdoor function plus a CCA-secure symmetric-key encryption scheme is IND-CCA-secure in the QROM. Their proof is
easily turned into the proof for the KEM variant of the Bellare-Rogaway conversion.

2

IND-CCA

KEM

decisional assumptions

D-LWE

P-LWE+DSPR

LPN+McEliece KI

LPN+Niederreiter KI

search assumptions

S-LWE

NTRU OW

McEliece OW

Niederreiter OW

OW-CPA

IND-CPA

probabilistic PKE

OW-CPA

deterministic PKE

OW-CPA

OW-PCA

OW-qPCA

OW-VA

OW-PCVA

OW-qPCVA

DS

SPR

deterministic PKE1

OW-qPCA

OW-qPCVA

probabilistic PKE1

QU6⊥, QU 6⊥<
T

TPunc

PC
SXY ≈ U 6⊥<

FO6⊥,FO6⊥<

T

U 6⊥<

U⊥<

U 6⊥ U⊥

Fig. 1: Transformations among PKE, DPKE and KEM in the QROM: D-LWE and S-LWE denote the decisional and
search learning-with-errors assumptions; P-LWE denotes the polynomial-LWE assumption; DSPR denotes the
decisional small polynomial ratio assumption; LPN denotes the learning-parity-with-noise assumption; McEliece
KI and Niederreiter KI denote the McEliece-key-indistinguishability and Niederreiter-key-indistinguishability
assumptions, respectively; NTRU OW, McEliece OW, and Niederreiter OW denote onewayness of the NTRU,
McEliece encryption, and Niederreiter encryption, respectively; OW-CPA, OW-PCA, OW-qPCA, OW-VA,
OW-PCVA, OW-qPCVA, IND-CPA, and IND-CCA denote onewayness under chosen-plaintext attacks, oneway-
ness under plaintext-checking attacks, onewayness under quantum-plaintext-checking attacks, onewayness un-
der validity-checking attacks, onewayness under plaintext-checking and validity-checking attacks, onewayness
under quantum-plaintext-checking and validity-checking attacks, indistinguishability under chosen-plaintext
attacks, and indistinguishability under chosen-ciphertext attacks, respectively; SPR denotes the sparse pseudo-
randomness; and DS denotes the disjoint simulatability. Solid arrows indicate quantum tight reductions, dashed
arrows indicate quantum non-tight reductions. thick blue arrows indicate our new reductions, thick red arrows
indicate reductions in [HHK17], thick green arrows indicate reductions in [JZC+17], and gray arrows indicate
trivial implications.

3

IND-CPA-secure PKE scheme on an exponentially large message space or a OW-CPA-secure DPKE scheme with
quadratic (rather than quartic as in previous works) security loss. Our results are summarized in Figure 1.

We implement an instantiation based on NTRU-HRSS [HRSS17] on a desktop PC and a RasPi. Assuming that
NTRU-HRSS is disjoint simulatable, the obtained KEM is CCA secure in the QROM. See section 5.

1.3 Technical Overview

We give a technical overview of our results.

Disjoint Simulatability and Sparse Pseudorandomness. LetDM be a distribution over a message spaceM. We
say that a DPKE scheme is DM-disjoint simulatable if a ciphertext of a message that is distributed according to
DM can be simulated by a simulator that does not know a message, and simulated ciphertext is invalid (i.e., out
of the range of an encryption algorithm) with overwhelming probability. For an intermediate step to construct a
disjoint simulatable DPKE scheme, we consider another security notion that we call sparse pseudorandomness
and show that this is a su�cient condition for disjoint simulatability. We say that a DPKE scheme isDM-sparse
pseudorandom if a ciphertext of a message that is distributed according to DM is pseudorandom and the range
of an encryption algorithm is sparse in a ciphertext space. The DM-sparse pseudorandomness implies the DM-
disjoint simulatability because if the sparse pseudorandomness is satis�ed, then a simulator that simply outputs
a random element of a ciphertext space su�ces for the disjoint simulatability 2.

Instantiations of Disjoint Simulatable DPKE. We give three ways to instantiate disjoint simulatable DPKEs in
this paper.

– We construct DPKE schemes based on the concepts of the Gentry–Peikert–Vaikuntanathan (GPV) trapdoor
function for LWE [GPV08], NTRU [HPS98], the McEliece PKE [McE78], and the Niederreiter PKE [Nie86]
and prove that they are sparse pseudorandom (and thus disjoint simulatable) w.r.t. a certain message distri-
bution under the LWE assumption, or other related assumptions to an underlying PKE scheme. Moreover,
the reductions are tight. See subsection 3.3 for details of instantiations from concrete assumptions

– We also construct a disjoint simulatable DPKE scheme based on any perfectly-correct IND-CPA-secure PKE
scheme with an exponentially large message space in the QROM. We dub this conversion TPunc (T with
Puncturing). Unfortunately, this reduction is not tight and incurs a square security loss. See subsection 3.4
for details.

– In addition, we also construct a disjoint simulatable DPKE scheme based on any perfectly-correct OW-CPA-
secure DPKE scheme in the QROM by putting additional hash value of a plaintext into a ciphertext. We call
this conversion PC (Plaintext Con�rmation). Again, unfortunately, this reduction is not tight and incurs a
square security loss. See subsection 3.5 for details.

Previous Construction: BR-KEM. Before describing our construction, we review the construction and se-
curity proof of the Bellare-Rogaway KEM (BR-KEM), which was proven IND-CCA-secure in the QROM by
Boneh et al. [BDF+11] because our construction is based on their idea. BR-KEM is a construction of an IND-CCA-
secure KEM based on a one-way trapdoor function with an e�ciently recognizable range 3. For compatibility
with ours, we treat a one-way trapdoor function as a perfectly correct OW-CPA-secure DPKE scheme by consid-
ering a function and an inversion to be an encryption and a decryption, respectively. Let (Gen, Enc,Dec) denote
algorithms of an underlying DPKE scheme. Then BR-KEM = (GenBR, EncBR,DecBR) is described as follows:

– GenBR is exactly the same as Gen.
– EncBR, given a public key ek as an input, chooses a randomness< from a message space uniformly at random,

computes a ciphertext� := Enc(ek, <) and a key := H(<) where H is a hash function modeled as a random
oracle, and outputs (�,).

– DecBR, given a ciphertext � and a decryption key dk as an input, checks if � is in the valid ciphertext space
and returns ⊥ if not. Otherwise it computes := H(Dec(dk, �)) and returns .

2 In Fact, we have to additionally assume that a ciphertext space is e�ciently sampleable.
3 The e�cient recognizability of a range was not explicitly assumed in [BDF+11] but is actually needed for their proof.

4

In the security proof in the QROM, we �rst replace a random oracle H with H@ ◦ Enc(ek,) where H@ is
another random oracle that is not given to an adversary. Since Enc(ek, ·) is injective due to its perfect correctness,
H@ ◦ Enc(ek, ·) still works as a random oracle from the view of an adversary. After this replacement, we notice
that a decryption oracle can be simulated by using H@ without the help of a decryption key because we have
H(Dec(dk, 2)) = H@ ◦ Enc(ek,Dec(dk, 2)) = H@ (2). For proving IND-CCA security, we have to prove that
H@ (2∗) is pseudorandom from the view of an adversary. If we were in a classical world, then this could be
proven quite easily: the only way for an adversary to obtain any information of H@ (2∗) is to query <∗ such that
2∗ = Enc(ek, <∗), in which case the adversary breaks the OW-CPA security of an underlying DPKE scheme. In a
quantum world, things do not go as easily because even if an adversary queries a quantum state whose magnitude
on <∗ is large, a reduction algorithm cannot notice that immediately. Nonetheless, by using the One-Way to
Hiding (OW2H) lemma proven by Unruh [Unr15] (Lemma 2.1), we can show that the advantage for an adversary
to distinguish H@ (2∗) from a truly random string is at most a square root of the probability that measurement
of a randomly chosen adversary’s query to H is equal to <∗. Hence, we can reduce the IND-CCA security of
BR-KEM to the OW-CPA security of the underlying DPKE scheme with a quadratic security loss. On the other
hand, to avoid the quadratic security loss, it seems that we have to avoid the usage of the OW2H lemma because
the lemma inherently incurs a quadratic security loss.

Our Conversion, SXY. In the above proof, we used the fact that the only way for an adversary to obtain any
information of H@ (2∗) is to query <∗ to H such that 2∗ = Enc(ek, <∗). Our key idea is based on the observation
that if such <∗ does not exist, i.e., 2∗ is out of the range of Enc(ek, ·), then it is information-theoretically impos-
sible for an adversary to obtain any information of H@ (2∗). Indeed, though 2∗ is in the range of Enc(ek, ·) in the
real game, if we choose an encryption randomness < according to a distribution DM , then we can replace 2∗
with a simulated ciphertext that is out of the range of Enc(ek, ·) by using the DM-disjoint simulatability. After
replacing 2∗ with a simulated one, we can information-theoretically bound an adversary’s advantage and need
not use the OW2H lemma. This seems to simply resolve the problem, and we obtain an IND-CCA-secure KEM
without a quadratic security loss. However, another problem arises here: a valid ciphertext space of a disjoint
simulatable DPKE scheme is inherently not e�ciently recognizable (otherwise real and simulated ciphertexts
are easy to distinguish), whereas the simulation of decryption algorithm has to �rst verify if a given ciphertext
is valid or not. To resolve the problem, we modify the decryption algorithm so that if a ciphertext is invalid,
then it returns a random value rather than ⊥. In the security proof of BR-KEM, a decryption oracle is simulated
just by evaluating a random oracle H@ for a ciphertext, and this enables a reduction algorithm to simulate a
decryption oracle for both valid and invalid ciphertexts even though it cannot determine if a given ciphertext is
valid. Hence, we can reduce the IND-CCA security of the resulting KEM without using the OW2H lemma and
thus without a quadratic security loss.

Curiously, this conversion is essentially the same as the conversion in Persichetti’s thesis [Per12, Table 5.4]
and U6⊥< in [HHK17]. This means that we can remove an “additional hash” (or “plaintext con�rmation”) from
QU6⊥< assuming a stronger underlying DPKE in the QROM. In addition, this means that the obtained KEM is
tightly secure assuming that the underlying DPKE is OW-CPA secure in the ROM as shown in [HHK17].

1.4 Related Work

In a concurrent and independent work, Jiang, Zhang, Chen, Wang, and Ma [JZC+17] proposed two new con-
structions of an IND-CCA-secure KEM based on a OW-CPA-secure PKE scheme with quadratic security loss.
However, both constructions incur quadratic security loss.

1.5 Version Notes

We have revised our paper throughly so that some presentations in the current version are di�erent from the
previous versions. We summarize di�erences below.

– The 2017-Oct. version. This is the original version.
– The 2017-Dec. version.
• In the previous versions, we de�ned a security notion called PR-CPA for DPKE, and our conversion SXY

was presented as a conversion from a PR-CPA-secure DPKE scheme to an IND-CCA-secure KEM. In the
current version, instead of de�ning the PR-CPA-security, we de�ne the disjoint simulatability because
this notion is simpler and captures an essential property needed for our conversion. We note that the

5

disjoint simulatability implies the PR-CPA-security (see section E), and all instantiations of a PR-CPA-
secure DPKE scheme presented in the previous versions are actually also disjoint simulatable under the
same assumption.
• In the previous versions, a reduction algorithm was not given a random oracle, and it simulated a random

oracle by using a PRF, which made our proofs somehow involved. In the current version, we assume
that a reduction is given a random oracle access. We remark that this is not a modi�cation of the model
since a reduction can simulate a random oracle in several ways. (See subsection 2.2 for more details.)
• In the previous versions, we gave the conversion THalf that converts an IND-CPA-secure PKE scheme

to a PR-CPA-secure DPKE scheme. In the conversion THalf, the message space of the resulting scheme
is a half of a massage space of an underlying scheme. We notice that actually we need not make a
message space half, and puncturing by one message (say, 0) su�ces. Based on this idea, we give another
conversion TPunc instead of THalf, and prove that the resulting scheme is disjoint simulatable (which
also implies the PR-CPA-security).

– The 2018-Feb. version
• In the previous versions, we call our conversion XYZ. We re-name it SXY.
• In the previous versions, for warming up, we gave a somewhat loose classical reduction for SXY from

a PR-CPA-secure DPKE scheme to an IND-CCA-secure KEM scheme and did not state a tight classical
reduction for SXY from a OW-CPA-secure DPKE scheme to an IND-CCA-secure KEM scheme, which
immediately follows from [HHK17, Theorem 3.6]. In the current version, we explicitly give a statement
on the tight classical reduction as Theorem 4.1.

– The 2018-May version
• We refer the conversion in Persichetti’s thesis in Sec.1.3.
• We explicitly give the security proof for TPunc in the ROM.
• We propose a new conversion PC that converts a perfectly-correct OW-CPA-secure DPKE scheme into

a perfectly-correct disjoint-simulatable DPKE scheme with a quadratic loss in the QROM. In the ROM,
the security proof is tight.
• We report implementation results of NTRU-HRSS-SXY with AVX2.

– The 2021-Aug. version
• We put conversions in [JZC+17] into Figure 1.
• We correct Lemma 2.2 and its proof in section C. We would like to thank Mike Hamburg [Ham21] for

pointing out this mistake.
• We also correct the bound in Theorem 4.2 and its proof in section 4. (The gap stemmed from the de�ni-

tion of KEM’s IND-CCA security.

2 Preliminaries

2.1 Notation

A security parameter is denoted by ^. We use the standard $-notations: $, Θ, Ω, and l. DPT and PPT stand
for deterministic polynomial time and probabilistic polynomial time. A function 5 (^) is said to be negligible if
5 (^) = ^−l (1) . We denote a set of negligible functions by negl(^). For two �nite sets X and Y, Map(X,Y)
denote a set of all functions whose domain is X and codomain is Y.

For a distribution j, we often write “G ← j,” which indicates that we take a sample G from j. For a �nite set
(,* (() denotes the uniform distribution over (. We often write “G ← (” instead of “G ← * (().” For a set (and
a deterministic algorithm A, A(() denotes the set {A(G) | G ∈ (}.

If inp is a string, then “out ← A(inp)” denotes the output of algorithm A when run on input inp. If A is
deterministic, then out is a �xed value and we write “out := A(inp).” We also use the notation “out := A(inp; A)”
to make the randomness A explicit.

For the Boolean statement %, boole(%) denotes the bit that is 1 if % is true, and 0 otherwise. For example,
boole(1′ = 1) is 1 if and only if 1′ = 1.

2.2 Quantum Computation

We refer to [NC00] for basic of quantum computation.

6

Quantum RandomOracle Model. Roughly speaking, the quantum random oracle model (QROM) is an idealized
model where a hash function is modeled as a publicly and quantumly accessible random oracle. See [BDF+11] for
a more detailed description of the model.

Lemmas. We review some useful lemmas regarding the quantum random oracles. The �rst one is called the
oneway-to-hiding (OW2H) lemma, which is proven by Unruh [Unr15, Lemma 6.2]. Roughly speaking, the lemma
states that if any quantum adversary issuing at most @ queries to a quantum random oracle H can distinguish
(G,H(G)) from (G, H), where H is chosen uniformly at random, then we can �nd G by measuring one of the
adversary’s queries even it causes a quadratic security loss.

The lemma of the following form is a slightly generalized version of the OW2H lemma taken from [HHK17].

Lemma 2.1 (Algorithmic Oneway to Hiding [Unr15, HHK17]). Let H : X → Y be a quantum random oracle,
and letA be an adversary issuing at most @ queries to H that on input (G, H) ∈ X×Y outputs either 0/1. LetDX be
a some distribution over X. For all (probabilistic) algorithms F whose input space is X × Y and which do not make
any hash queries to H, we have����Pr[AH (inp) → 1 | G ← DX ; H ← H(G); inp← F(G, H)]

− Pr[AH (inp) → 1 | G ← DX ; H ← Y; inp← F(G, H)]

����
≤ 2@ ·

√
Pr[EXTA,H (inp) → G | G ← DX ; H ← Y; inp← F(G, H)],

where EXT picks 8 ← {1, . . . , @}, runsAH (inp) until 8-th query |Ĝ〉 to H, and returns G ′ := Measure(|Ĝ〉) (whenA
makes fewer than 8 queries, EXT outputs ⊥ ∉ X).
Unruh’s original statement is recovered by letting F be an identity function and letting DX be the uniform
distribution over X. Reading the proof in [Unr15] carefully, we found that G ← X can be replaced with any
distribution over X. We �nally note that Jiang et al. [JZC+17] generalized the OW2H lemma more.

The second one claims that a random oracle can be used as a pseudorandom function even in the quantum
setting.

Lemma 2.2. Let ℓ be an integer. Let H : {0, 1}ℓ × X → Y and H′ : X → Y be two independent random oracles. If
an unbounded time quantum adversary A makes a query to H at most @H times, then we have���Pr[AH,H(B, ·) () → 1 | B← {0, 1}ℓ] − Pr[AH,H′ () → 1]

��� ≤ 2@H · 2−ℓ/2,

where all oracle accesses of A can be quantum.4

Though this seems to be a folklore, we give a proof of this lemma in section C for completeness. 5

Simulation of RandomOracle. In the original quantum random oracle model introduced by Boneh et al. [BDF+11],
they do not allow a reduction algorithm to access a random oracle, so it has to simulate a random oracle by it-
self. In contrast, in this paper, we give a random oracle access to a reduction algorithm. We remark that this is
just a convention and not a modi�cation of the model since we can simulate a random oracle against quantum
adversaries in several ways.

1. The �rst way is a simulation by a 2@-wise independent hash function, where @ denotes the number of
random oracle queries by an adversary, as introduced by Zhandry [Zha12b]. The simulation is perfect, that
is, no adversary can distinguish the real QRO from the simulated one. A drawback of this simulation is a
$ (@2) blowup for a running time of a reduction algorithm since it has to compute a 2@-wise independent
hash function for each random oracle query.

2. The second way is a simulation by a quantumly secure PRF as used in [BDF+11]. If we use this simulation,
then the blowup of a running time of a reduction algorithm is $ (@ · CPRF) where CPRF is the time needed for
evaluating a PRF, which is usually much smaller than $ (@2). However, we have to additionally assume the
existence of a quantumly secure PRF, which is known to exist if a quantumly secure one-way function exists
[Zha12a].

4 20 Aug. 2021: In the previous versions, we use the upper bound @ · 2(−ℓ+1)/2 =
√

2@ · 2−ℓ/2 instead of 2@ · 2−ℓ/2. We thank
to Mike Hamburg [Ham21] for pointing out this mistake.

5 Jiang et al. [JZC+17] also gave a proof of an essentially identical lemma.

7

3. The third way is a simulation by a real hash function like SHA-2 and to think that this is a “random oracle.”
Since we adopt the QROM, we idealize a real hash function as a random oracle in the construction of primi-
tives. Thus, it may be natural to assume the same thing even in a reduction, that is, the reduction algorithm
implements the random oracle by a concrete hash function. If we use this simulation, then the blowup of a
running time of a reduction algorithm is $ (@ · Chash) where Chash denotes a time to evaluate a hash function.
This gives a tightest reduction at the expense of additional idealization of a hash function. We note that a
similar convention is also used by Kiltz et al. [KLS18].
We �nally note that this way strengthens the assumption, that is, we need to assume that some problem is
hard in the QROM.

We use CRO to denote a time needed to simulate a random oracle. We have CRO = $ (@), CPRF, or Chash, if we use the
�rst, second, or third way, respectively. We note that in the proof of quantum variants of Fujisaki-Okamoto and
OAEP [TU16, HHK17], we have to simulate a random oracle in the 1st way, because a simulator has to “invert”
a random oracle in a simulation.

2.3 Public-Key Encryption

The model for PKE schemes is summarized as follows:

De�nition 2.1. A PKE scheme PKE consists of the following triple of polynomial-time algorithms (Gen, Enc,Dec).

– Gen(1^ ; A6) → (ek, dk): a key-generation algorithm that on input 1^ , where ^ is the security parameter, outputs
a pair of keys (ek, dk). ek and dk are called the encryption key and decryption key, respectively.

– Enc(ek, <; A4) → 2: an encryption algorithm that takes as input encryption key ek and message < ∈ M and
outputs ciphertext 2 ∈ C.

– Dec(dk, 2) → </⊥: a decryption algorithm that takes as input decryption key dk and ciphertext 2 and outputs
message < ∈ M or a rejection symbol ⊥ ∉M.

De�nition 2.2. We say a PKE scheme PKE is deterministic if Enc is deterministic. DPKE stands for deterministic
public key encryption.

De�nition 2.3 (Correctness).We say PKE = (Gen, Enc,Dec) has perfect correctness if for any (ek, dk) generated
by Gen and for any < ∈ M ,we have that

Pr[Dec(dk, 2) = < | 2 ← Enc(ek, <)] = 1.

An additional property, W-spread, is de�ned in section A

Security: Here, we de�ne onewayness under chosen-plaintext attacks (OW-CPA), indistinguishability under
chosen-plaintext attacks (IND-CPA), and indistinguishability under chosen-ciphertext attacks (IND-CCA) for a
PKE.

De�nition 2.4 (Security notions for PKE). LetDM be a distribution over the message spaceM. For any adversary
A, we de�ne its OW-CPA, IND-CPA, and IND-CCA advantages against a PKE scheme PKE = (Gen, Enc,Dec) as
follows:

Advow-cpa
PKE,DM ,A (^) := Pr[Exptow-cpa

PKE,DM ,A (^) = 1],

Advind-cpa
PKE,A (^) :=

���2 Pr[Exptind-cpa
PKE,A (^) = 1] − 1

���,
Advind-cca

PKE,A (^) :=
���2 Pr[Exptind-cca

PKE,A (^) = 1] − 1
���,

where Exptow-cpa
PKE,DM ,A (^), Exptind-cpa

PKE,A (^), and Exptind-cca
PKE,A (^) are experiments described in Figure 2. For GOAL-ATK ∈

{OW-CPA, IND-CPA, IND-CCA}, we say that PKE is GOAL-ATK-secure if Advgoal-atk
PKE, [DM ,]A

(^) is negligible for any
PPT adversary A. We omit DM from OW-CPA security if DM is the uniform distribution overM.

Additional de�nitions are in section A

8

Exptow-cpa
PKE,DM ,A (^)

(ek, dk) ← Gen(1^)
<∗ ← DM
2∗ ← Enc(ek, <∗)
<′ ← A(ek, 2∗)
return boole(<′ = Dec(dk, 2∗))

Exptind-cpa
PKE,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^)
(<0, <1, BC) ← A1 (ek)
2∗ ← Enc(ek, <1)
1′ ← A2 (2∗, BC)
return boole(1′ = 1)

Exptind-cca
PKE,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^)

(<0, <1, BC) ← ADec⊥ (·)
1 (ek)

2∗ ← Enc(ek, <1)

1′ ← ADec2∗ (·)
2 (2∗, BC)

return boole(1′ = 1)

Dec0 (2)

if 2 = 0, return ⊥
< := Dec(dk, 2)
return <

Fig. 2: Games for PKE schemes

Exptind-cpa
KEM,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^)
(2∗, ∗0) ← Encaps(ek);
 ∗1 ← K
1′ ← A(ek, 2∗, ∗

1
)

return boole(1′ = 1)

Exptind-cca
KEM,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^)
(2∗, ∗0) ← Encaps(ek);
 ∗1 ← K

1′ ← ADec2∗ (·) (ek, 2∗, ∗
1
)

return boole(1′ = 1)

Dec2∗ (2)

if 2 = 2∗, return ⊥
 := Decaps(dk, 2)
return

Fig. 3: Games for KEM schemes

2.4 Key Encapsulation

The model for KEM schemes is summarized as follows:

De�nition 2.5. AKEM schemeKEM consists of the following triple of polynomial-time algorithms (Gen, Encaps,Decaps):

– Gen(1^ ; A6) → (ek, dk): a key-generation algorithm that on input 1^ , where ^ is the security parameter, outputs
a pair of keys (ek, dk). ek and dk are called the encapsulation key and decapsulation key, respectively.

– Encaps(ek; A4) → (2,): an encapsulation algorithm that takes as input encapsulation key ek and outputs
ciphertext 2 ∈ C and key ∈ K .

– Decaps(dk, 2) → /⊥: a decapsulation algorithm that takes as input decapsulation key dk and ciphertext 2
and outputs key or a rejection symbol ⊥ ∉ K .

De�nition 2.6 (Correctness). We say KEM = (Gen, Encaps,Decaps) has perfect correctness if for any (ek, dk)
generated by Gen, we have that

Pr[Decaps(dk, 2) = : (2,) ← Encaps(ek)] = 1.

Security: We de�ne indistinguishability under chosen-plaintext and chosen-ciphertext attacks (denoted by IND-CPA
and IND-CCA) for KEM, respectively.

De�nition 2.7. For any adversary A, we de�ne its IND-CPA and IND-CCA advantages against a KEM scheme
KEM = (Gen, Encaps,Decaps) as follows:

Advind-cpa
KEM,A (^) :=

���2 Pr[Exptind-cpa
KEM,A (^) = 1] − 1

���,
Advind-cca

KEM,A (^) :=
���2 Pr[Exptind-cca

KEM,A (^) = 1] − 1
���,

where Exptind-cpa
KEM,A (^) and Exptind-cca

KEM,A (^) are experiments described in Figure 3.

For ATK ∈ {CPA,CCA}, we say that KEM is IND-ATK-secure if Advind-atk
KEM,A (^) is negligible for any PPT adver-

sary A.

9

2.5 eXtendable-Output Functions

An eXtendable-Output Function (XOF) is a function on input bit strings in which the output can be extended
to an arbitrary desired length. An XOF is denoted by XOF(-, !), where - is the input bit string and ! is the
desired output length. We modeled the XOF as a quantumly-accessible random oracle. We employ SHAKE256,
standardized as an XOF by NIST [NIS15].

2.6 Assumptions

Preliminaries: Let dB (G) = exp(−c‖G‖2/B2) for G ∈ R= be a Gaussian function scaled by a factor B. For any real
B > 0 and lattice Λ, we de�ne the discrete Gaussian distribution �Λ,B over Λ with parameter B by

�Λ,B (G) = dB (G)/dB (Λ) for G ∈ Λ,

where dB (Λ) =
∑
G∈Λ dB (G). The following norm bound is useful.

Lemma 2.3 (Adapted version of [MR07, Lemma 4.4]). For f = l(
√

log(=)), it holds that

Pr
4←�Z=,f

[
‖4‖ > f

√
=

]
≤ 2−=+1.

LWE and its variants: We review the assumptions for lattice-based PKEs. The most basic one is the learning-
with-errors (LWE) assumption [Reg09], which is a generalized version of the learning-parity-with-noise as-
sumption [BFKL93, KSS10].

De�nition 2.8 (LWE assumption in matrix form). For all ^, let = = =(^) and @ = @(^) be integers and let j be a
distribution over Z.

The decisional learning-with-errors (LWE) assumption LWE=,@ states that, for any < = poly(^), the following
two distributions are computationally hard to distinguish:

– �, B� + 4, where �← Z=×<@ , B← Z=@ , and 4 ← j<

– �, D, where �← Z=×<@ and D ← Z<@ .

We also review its polynomial version [LPR10, BV11]. We here use the Hermite-normal form of the assump-
tion [ACPS09, LPR10, BV11], where secret B is chosen from the noise distribution.

De�nition 2.9 (Poly-LWE assumption – Hermite normal form). For all ^, let Φ(G) = Φ^ (G) ∈ Z[G] be a poly-
nomial of degree = = =(^), let @ = @(^) be an integer, let ' := Z[G]/(Φ(G)) and '@ := Z@ [G]/(Φ(G)), and let j
denote a distribution over the ring '.

The decisional polynomial learning-with-errors (Poly-LWE) assumption PolyLWEΦ,@,j states that, for any ℓ =
poly(^), the following two distributions are hard to distinguish:

– {(08 , 08B + 48)}8=1,...,ℓ , where 08 ← '@ , B, 48 ← j

– {(08 , D8)}8=1,...,ℓ , where 08 , D8 ← '@ .

Next, we recall the decisional small polynomial ratio (DSPR) assumption de�ned by López-Alt, Tromer, and
Vaikuntanathan [LTV12]. We here employ an adapted version of the DSPR assumption.

De�nition 2.10 (DSPR assumption). For all ^, let Φ(G) = Φ^ (G) ∈ Z[G] be a polynomial of degree = = =(^), let
@ = @(^) be a positive integer, let ' := Z[G]/(Φ(G)) and '@ := Z@ [G]/(Φ(G)), and let j denote a distribution over
the ring '.

The decisional small polynomial ratio (DSPR) assumption DSPRΦ,@,j6 ,j 5
says that the following two distribu-

tions are hard to distinguish:

– a polynomial ℎ := 6 · 5 −1 ∈ '@ , where 6 ← j6 and 5 ← j 5 .
– a polynomial D ← '@ .

Remark 2.1. Stehlé and Steinfeld [SS11] showed that DSPRΦ,@,j is statistically hard if = is a power of two,Φ(G) =
G= + 1, and j6 = j 5 = �Z= ,A for A > √@ · poly(^).

10

3 Disjoint Simulatability of Deterministic PKE

Here, we de�ne a new security notion, disjoint simulatability, for DPKE. We also de�ne another security notion
called sparse pseudorandomness and prove that it implies the disjoint simulatability. Then we give some instan-
tiations of sparse pseudorandom (and thus disjoint simulatable) deterministic PKE schemes based on the LWE
assumption or various assumptions related to NTRU, the McEliece PKE, and the Niederreiter PKE with tight
reductions. We also construct a disjoint simulatable DPKE scheme from any IND-CPA-secure PKE scheme with
a su�ciently large message space in the QROM, though the reduction is non-tight.

3.1 De�nition

We de�ne a new security notion, disjoint simulatability, for DPKE. Intuitively, a deterministic PKE scheme is
disjoint simulatable if there exists a simulator that is only given a public key and generates a “fake ciphertext”
that is indistinguishable from a real ciphertext of a random message. Moreover, we require that a fake ciphertext
falls in a valid ciphertext space with negligible probability. The formal de�nition is as follows.

De�nition 3.1 (Disjoint simulatability). Let DM denote an e�ciently sampleable distribution on a setM. A de-
terministic PKE scheme PKE = (Gen, Enc,Dec) with plaintext and ciphertext spaces M and C is DM-disjoint
simulatable if there exists a PPT algorithm S that satis�es the following.

– (Statistical disjointness:)

DisjPKE,S (^) := max
(ek,dk) ∈Gen(1^ ;R)

Pr[2 ∈ Enc(ek,M) | 2 ← S(ek)]

is negligible, where R denotes a randomness space for Gen.
– (Ciphertext-indistinguishability:) For any PPT adversary A,

Advds-ind
PKE,DM ,S,A (^) :=

����Pr [A(ek, 2∗) → 1 | (ek, dk) ← Gen(1^);<∗ ← DM ; 2∗ := Enc(ek, <∗)]
− Pr

[
A(ek, 2∗) → 1 | (ek, dk) ← Gen(1^); 2∗ ← S(ek)

] ����
is negligible.

3.2 Su�cient Condition: Sparse Pseudorandomness

Here, we de�ne another security notion for DPKE called sparse pseudorandomness, which is a su�cient condition
to be disjoint simulatable. Intuitively, a deterministic PKE scheme is sparse pseudorandom if valid ciphertexts
are sparse in a ciphertext sparse and pseudorandom when a message is randomly chosen. In other words, an
encryption algorithm can be seen as a pseudorandom generator (PRG). The formal de�nition is as follows.

De�nition 3.2 (Sparse pseudorandomness). Let DM denote an e�ciently sampleable distribution on a setM. A
deterministic PKE scheme PKE = (Gen, Enc,Dec) with plaintext and ciphertext spacesM and C is DM-sparse
pseudorandom if the following two properties are satis�ed.

– (Sparseness:)

SparsePKE (^) := max
(ek,dk) ∈Gen(1^ ;R)

|Enc(ek,M)|
|C|

is negligible where R denotes a randomness space for Gen.
– (Pseudorandomness:) For any PPT adversary A,

Advpr
PKE,DM ,A (^) :=

����Pr [A(ek, 2∗) → 1 | (ek, dk) ← Gen(1^);<∗ ← DM ; 2∗ := Enc(ek, <∗)]
− Pr

[
A(ek, 2∗) → 1 | (ek, dk) ← Gen(1^), 2∗ ← C

] ����
is negligible.

Then we prove that the sparse pseudorandomness implies the disjoint simulatability if a ciphertext space is
e�ciently sampleable.
Lemma 3.1. If a deterministic PKE scheme PKE = (Gen, Enc,Dec) with plaintext and ciphertext spacesM and C is
DM-sparse pseudorandom and C is e�ciently sampleable, then PKE is also DM-disjoint simulatable. In particular,
there exists a PPT simulator S such that DisjPKE,S (^) = SparsePKE (^) and Advds-ind

PKE,DM ,S,A (^) = Advpr
PKE,DM ,A (^).

Proof. LetS be an algorithm that outputs a random element ofC. Then we clearly have DisjPKE,S (^) = SparsePKE (^)
and Advds-ind

PKE,DM ,S,A (^) = Advpr
PKE,DM ,A (^). ut

11

3.3 Instantiations

Here, we give examples of a DPKE scheme that is disjoint simulatable. In particular, we construct a DPKE scheme
that has the sparse pseudorandomness based on the LWE assumption or some other assumptions related to
NTRU. (We further construct them based on the McEliece PKE and the Niederreiter PKE in section D.) We
remark that the reductions are tight. By combining those with Lemma 3.1, we obtain disjoint simulatable DPKE
schemes based on any of these assumptions with tight security.

LWE-based DPKE. We review the GPV trapdoor function for LWE [GPV08, Pei09, MP12]. The LWE assumption
(in matrix form) states that (�, B� + 4) and (�, D) are computationally indistinguishable, where � ← Z=×<@ ,
B ← Z=@ , 4 ← j<, and D ← Z<@ . The GPV trapdoor function for LWE exploited that if we have a “short” matrix
) satisfying �) ≡ $ mod @, we can retrieve B and 4 from 2 = B� + 4. The trapdoor) for � is generated by an
algorithm TrapGen:

Theorem 3.1 ([Ajt99, AP11]). For any positive integers = and @ ≥ 3, any X > 0 and < ≥ (2 + X)= lg @, there
is a probabilistic polynomial-time algorithm TrapGen that outputs a pair) ∈ Z<×< and � ∈ Z=×<@ such that:
the distribution of � is within a negligible statistical distance of uniform over Z=×<@ ,) is non-singular (over the
rationals), ‖C8 ‖ ≤ ! = $ (< lg<) for every column vector C8 of) , and �) ≡ $ (mod @).

Let us construct a DPKE scheme PKE = (Gen, Enc,Dec) as follows:

Parameters: We require several parameters: the dimension = = =(^), the modulus @ = @(^), and < = <(^). We
also employ ! = $ (< lg<), f = l(

√
lg =), V = f

√
=. We require that V! < @/2 and @< � @= · (2V + 1)<.

– The plaintext spaceM := Z=@ × �< (V), where �< (V) := {4 ∈ Z< | ‖4‖ ≤ V}.
– The sampler DM samples B← Z=@ and 4 ← �Z< ,f conditioned on ‖4‖ ≤ V.
– The ciphertext space C := Z<@

Key Generation: Gen(1^) invokes TrapGen(1=, 1<, @) and obtains � ∈ Z=×<@ and) ∈ Z<×<. It outputs ek = �
and dk = (�,)).

Encryption: Enc(ek, (B, 4)) outputs 2 = B� + 4 mod @.
Decryption: Dec(dk, 2) computes 4 = (2 ·) mod @) ·)−1 and B = (2−4) · �+ mod @, where �+ := �> · (� · �>) ∈
Z<×=@ , the left inverse of �.

The properties of PKE are summarized as follows:

Perfect Correctness: We know 2 ·) ≡ B�) + 4) ≡ 4) (mod @). If ‖4) ‖∞ < @/2, then 2 ·) mod @ = 4) ∈ Z<
holds and 4 is recovered by 4 = (2·) mod @)·)−1. Once correct 4 is obtained, B is recovered by (2−4)·�+ ∈ Z=@ .
The condition ‖4) ‖∞ < @/2 is satis�ed because ‖4) ‖∞ ≤ max8 ‖4‖ · ‖C8 ‖ ≤ V! < @/2, where C8 is the column
vectors of) .

Sparseness: |C| = @< and |Enc(ek,M)| ≤ M = |Z=@ × �< (V) | ≤ @= · (2V + 1)<. Sparseness follows from the
fact @< � @= · (2V + 1)<.

Pseudorandomness: We consider the following hybrid games:
– (Original game 1:) The adversary is given (�, 2∗), where (�,)) ← TrapGen(1=, 1<, @), (B, 4) ← DM ,

and 2∗ := B� + 4 mod @.
– (Hybrid game 1:) Let us replace the public key �. We consider (�, 2∗), where �← Z=×<@ , (B, 4) ← DM ,

and 2∗ := B� + 4 mod @. This change is justi�ed by Theorem 3.1.
– (Hybrid game 2:) Let us replace the sampler DM . We consider (�, 2∗), where � ← Z=×<@ , (B, 4) ←
* (Z=@) × �Z< ,f , and 2∗ := B� + 4 mod @. This replacement is justi�ed by Lemma 2.3.

– (Hybrid game 3:) We next replace the ciphertext 2∗. We consider (�, 2∗), where �← Z=×<@ and 2∗ ← Z<@ .
This game is computationally indistinguishable from the previous game under the LWE assumption
LWE=,@,�Z,f .

– (Original game 2:) We replace the public key �. We consider (�, 2∗), where (�,)) ← TrapGen(1=, 1<, @)
and 2∗ ← Z<@ . This change is justi�ed by Theorem 3.1.

Remark 3.1. For simplicity, we employ the simple version of the GPV trapdoor function for LWE. Further im-
provements are available, e.g., [MP12, Section 5].

12

NTRU-based DPKE. We next review the original version of NTRUEncrypt [HPS98]. Let Φ(G) = G= − 1 ∈ Z[G],
let ? < @ be positive integers with gcd(?, @) = 1, and let ' := Z[G]/(Φ(G)) and '@ := Z@ [G]/(Φ(G)). We often
set ? = 3 and @ = 2: for some : . Let T be a set of ternary-coe�cient polynomials in ', that is, T := {C =∑=−1
8=0 C8G

8 ∈ ' | C8 ∈ {−1, 0, +1}}. Let L 5 ,L6,LA ,L< ⊆ T . The public key is ℎ = 6/ 5 , where 5 ← L 5 , 6 ← L6
with 5 has inverses in '? and '@ . The the ciphertext of < ∈ L< with randomness A ∈ LA is 2 = ?Aℎ + <.
Roughly speaking, we can retrieve < if we know 5 ; 2 5 = ?A6 + < 5 ∈ '@ and it holds in '.

Parameters: We require that ‖?A6 + < 5 mod @‖∞ < @/2 for any 6, 5 , <, A in their domains, where, for C =∑=−1
8=0 C8G

8 ∈ ', we de�ne ‖C‖∞ := max8 |C8 |. For simplicity, we assume that L< = LA .
– The plaintext space isM := L< × LA .
– The sampler DM samples (<, A) ← L< × LA .
– The ciphertext space is C := '@ .

Key Generation: Gen() chooses 6 ← L6 and 5 ← L 5 until 5 is invertible in '@ and '? . It outputs ek = ℎ =
6/ 5 ∈ '@ and dk = (ℎ, 5).

Encryption: Enc(ek, (<, A)) outputs 2 = ?Aℎ + < ∈ '@ .
Decryption: Dec(sk, 2) computes < := (5 2 mod @) · 5 −1 mod ? and A := (2 − <) · (?ℎ)−1 mod @.

The properties of this DPKE are summarized as follows:

Perfect correctness: Note that 5 2 ≡ ?A6+< 5 (mod @). Since ‖?A6+< 5 mod @‖∞ < @/2 from our requirement,
we have (5 2 mod @) = ?A6 +< 5 ∈ '. Hence, we have (5 2 mod @) · 5 −1 ≡ (?A6 +< 5) · 5 −1 ≡ < (mod ?)
as we wanted. A is also recovered because (2 − <) · (?ℎ)−1 ≡ ?Aℎ · (?ℎ)−1 ≡ A (mod @).

Sparseness: Sparseness follows from |C| = @= � 32= = |T 2 | ≥ |L< × LA | = |Enc(ek,M)|.
Pseudorandomness: What we want to show is

(ℎ, 2 = ?Aℎ + <) ≈2 (ℎ, D),

where ℎ = 6/ 5 is a public key with 5 ← L 5 , 6 ← L6 with condition 5 has inverses '? and '@ , (<, A) ←
L< × LA , and D ← '@ . Let j6 := * (L6) and j 5 := * (L 5 ∩ '∗? ∩ '∗@), where '∗

:
for : ∈ {?, @} denotes

{ 5 ∈ ' | 5 has an inverse in ': }. Let j := * (L<) = * (LA).
– We �rst replace ℎ = 6/ 5 with random ℎ′, which is justi�ed by the DSPR assumption DSPRΦ,@,j 5 ,j6 .
– We next replace 2 = ?Aℎ′+<with random 2′, which is justi�ed by the Poly-LWE assumption PolyLWEΦ,@,j ;

Given ℎ̃ and 2 = A ℎ̃ + < or random, we convert them into ℎ′ = ?−1 ℎ̃ and 2. Since ? is co-prime to @, ℎ′
is truly random. If 2 = A ℎ̃ + 4, then 2 = ?A · ?−1 ℎ̃ + 4 = ?Aℎ′ + 4 as we wanted.

– We then go backward by replacing random ℎ′ with ℎ = 6/ 5 , which is justi�ed by the DSPR assumption
DSPRΦ,@,j 5 ,j6 again.

3.4 Conversion from IND-CPA-Secure PKE to DS-secure DPKE

Here, we show that any perfectly-correct IND-CPA-secure PKE whose plaintext space is su�ciently large can
be converted into a disjoint-simulatable DPKE scheme in the quantum random oracle model. We note that the
conversion is non-tight.

Intuitively, we replace randomness of an underlying IND-CPA-secure PKE scheme with a hash value of
a message similarly to the conversion T given in [HHK17] (which is in turn based on the Fujisaki-Okamoto
conversion). The di�erence from the conversion T is that we “puncture” a message space by 0 6. That is, if a
message space of the underlying IND-CPA-secure PKE scheme is M, then a message space of the resulting
scheme isM ′ := M \ {0}. In this meaning, we call our conversion TPunc. We give the concrete description of
the conversion TPunc below.

LetM and R be the message and randomness spaces of PKE, respectively, and letM ′ :=M \ {0}. Then the
resulting DPKE scheme PKE1 = TPunc[PKE,G] is described in Figure 4 where G : M → R denotes a random
oracle. Here, we remark that the message space of PKE1 is restricted toM ′ :=M \ {0}. The security of PKE1 is
stated as follows.

6 We assume that 0 ∈ M. In fact, we can replace 0 with an arbitrary message inM. We assume that 0 ∈ M for notational
simplicity.

13

Gen1 (1^)

(ek, dk) ← Gen(1^)
return (ek, dk)

Enc1 (ek, <), where < ∈ M ′

A := G(<)
2 := Enc(ek, <; A)
return 2

Dec1 (dk, 2)

< := Dec(dk, 2)
if < ∉M ′ return ⊥
else return <

S(ek)

A ← R
2 := Enc(ek, 0; A)
return 2

Fig. 4: PKE1 = (Gen1, Enc1,Dec1) = TPunc[PKE,G] with simulator S.

Theorem 3.2 (Security of TPunc in the ROM). Let S be the algorithm described in Figure 4. If PKE is perfectly
correct, then we have DisjPKE1 ,S (^) = 0. Moreover, for any classical adversary A against PKE1 issuing at most @G
queries to G, there exist a classical adversary B and C against IND-CPA security of PKE such that

Advds-ind
PKE1 ,UM′ ,S,A (^) ≤ Advind-cpa

PKE,B (^) + Advind-cpa
PKE,C (^) +

@G

|M ′ | ,

whereUM′ denotes the uniform distribution onM ′, and Time(B) ≈ Time(C) ≈ Time(A) + @G · CRO.

The security proof in the ROM is in subsection C.2.

Theorem 3.3 (Security of TPunc in the QROM). Let S be the algorithm described in Figure 4. If PKE is perfectly
correct, then we have DisjPKE1 ,S (^) = 0. Moreover, for any quantum adversary A against PKE1 issuing at most @G
quantum queries to G, there exist quantum adversaries B and C against IND-CPA security of PKE such that

Advds-ind
PKE1 ,UM′ ,A,S (^) ≤ 2@G

√
Advind-cpa

PKE,B (^) +
2
|M| + Advind-cpa

PKE,C (^)

whereUM′ denotes the uniform distribution onM ′, and Time(B) ≈ Time(C) ≈ Time(A) + @G · CRO.

Table 1: Summary of Games for the Security Proof of Theorem 3.3
Game <∗ A∗ 2∗ justi�cation

Game0 M ′ G(<∗) Enc(ek, <∗; A∗) = Enc1 (ek, <∗)
Game1 M ′ A∗ Enc(ek, <∗; A∗) OW-CPA security of PKE

and the OW2H lemma
Game2 0 A∗ Enc(ek, 0; A∗) = S(ek) IND-CPA security of PKE

Security Proof in the QROM. We obviously have DisjPKE1 ,S (^) = 0 since PKE is perfectly correct.
To prove the rest of the theorem, we consider the following sequence of games. See Table 1 for the summary

of games and justi�cations.

Game0: This game is de�ned as follows:

(ek, dk) ← Gen(1^);<∗ ←M ′; A∗ ← G(<∗); 2∗ := Enc(ek, <∗; A∗); 1′← AG(·) (ek, 2∗); return 1′.

Game1: This game is the same as Game0 except that a randomness to generate a challenge ciphertext is freshly
generated:

(ek, dk) ← Gen(1^);<∗ ←M ′; A∗ ← R; 2∗ := Enc(ek, <∗; A∗); 1′← AG(·) (ek, 2∗); return 1′.

14

F(<∗, A∗)

(ek, dk) ← Gen(1^)
2∗ := Enc(ek, <∗; A∗)
inp := (ek, 2∗)
return inp

BG (ek, 2∗) :

inp := (ek, 2∗)
8 ← [@H]
Run AG (inp) until 8-th query |Ĝ〉 to G

if 8 > number of queries to G, return ⊥
else return G′ := Measure(|Ĝ〉)

Fig. 5: Algorithm F and adversary B

Game2: This game is the same as Game1 except that a challenge ciphertext is generated by Enc(ek, <∗; A∗),
where <∗ := 0 rather than <∗ ←M ′:

(ek, dk) ← Gen(1^); A∗ ← R; 2∗ := Enc(ek, 0; A∗); 1′← AG(·) (ek, 2∗); return 1′.

This completes the descriptions of games. It is easy to see that we have

Advds-ind
PKE1 ,UM′ ,S,A (^) = |Pr[Game0 = 1] − Pr[Game2 = 1] |.

We give an upperbound for this by the following lemmas.

Lemma 3.2. There exists an adversary B such that

|Pr[Game0 = 1] − Pr[Game1 = 1] | ≤ 2@G

√
Advind-cpa

PKE,B (^) +
2
|M|

and Time(B) ≈ Time(A) + @G · CRO.

Proof. Let F be an algorithm described in Figure 5. It is easy to see that Game0 can be restated as

<∗ ←M ′; A∗ ← G(<∗); inp := F(ek, <∗; A∗); 1′← AG(·) (inp); return 1′.

and Game1 can be restated as

<∗ ←M ′; A∗ ← R; inp := F(ek, <∗; A∗); 1′← AG(·) (inp); return 1′.

Then applying the Algorithmic-OW2H lemma (Lemma 2.1) with X = M ′, Y = R, DX = UM′ , G = <∗,
H = A∗, and algorithms A and F, we have

|Pr[Game0 = 1] − Pr[Game1 = 1] | ≤ 2@G

√
Pr[<∗ ← BG (ek, 2∗)] .

whereBG is an algorithm described in Figure 5, (ek, dk) ← Gen(1^),<∗ ←M ′, A∗ ← R, and 2∗ := Enc(ek, <∗, A∗).
Since the statistical distance between uniform distributions onM andM ′ is 1

|M | , we have Pr[<∗ ← BG (ek, 2∗)] ≤
Advow-cpa

PKE,B (^) +
1
|M | where the probability in the left-hand side is taken as in the above. (Note that additional

1
|M | appears because <∗ is taken from M ′ = M \ {0} in the left-hand side probability.) Moreover, we have
Advow-cpa

PKE,B (^) ≤ Advind-cpa
PKE,B (^) +

1
|M | in general. By combining these inequalities, the lemma is proven. ut

Lemma 3.3. There exists an adversaryC such that |Pr[Game1 = 1] − Pr[Game2 = 1] | ≤ Advind-cpa
PKE,C (^) and Time(C) ≈

Time(A) + @G · CRO.

Proof. We construct an adversary C against the IND-CPA security of PKE as follows.

CG (ek): It chooses<0 ←M ′ and sets<1 := 0. Then it queries (<0, <1) to its challenge oracle and obtains 2∗ ←
Enc(ek, <∗; A∗), where <∗ is <1 for a random bit 1 chosen by the challenger. It invokes 1′ ← AG (ek, 2∗)
and outputs 1′.

15

This completes the description of C. It is obvious that C perfectly simulates Game1+1 depending on the challenge
bit 1 ∈ {0, 1}. Therefore, we have

Advind-cpa
PKE,C (^) = |2 Pr[1′ = 1] − 1|

= | (1 − Pr[1′ = 1 | 1 = 0]) + Pr[1′ = 1 | 1 = 1] − 1|
= |1 − Pr[Game1 = 1] + Pr[Game2 = 1] − 1|
= |Pr[Game2 = 1] − Pr[Game1 = 1] |

as we wanted. ut

3.5 Conversion from OW-CPA-Secure DPKE to DS-Secure DPKE

We show that any perfectly-correct OW-CPA-secure DPKE whose plaintext space is su�ciently large can be
converted into a sparse pseudorandom (and, thus, disjoint-simulatable) DPKE scheme in the QROM by attaching
so-called “plaintext con�rmation” or “additional hash.” In this meaning, we call this conversion PC. We note that
the conversion is non-tight because we invoke the OW2H lemma in the proof.

Adding a hash value of a message into a ciphertext makes the space of the valid ciphertext sparse. In addition,
intuitively speaking, the hash function H′(·) can be considered as the hard-core function in the QROM; that is,
given Enc(ek, <), H′(<) cannot be distinguished from a sample from the uniform distribution if the underlying
DPKE is OW-CPA-secure.

LetM be the message spaces of PKE. Then the resulting DPKE scheme PKE1 = PC[PKE,H′] is described in
Figure 6 where H′ : M → {0, 1}ℓH′ denotes a random oracle. The security of PKE1 is stated as follows.

Gen1 (1^)

(ek, dk) ← Gen(1^)
return (ek, dk)

Enc1 (ek, <)

2 := Enc(ek, <)
3 := H′(<)
return (2, 3)

Dec1 (dk, (2, 3))

< := Dec(dk, 2)
if < ∉M return ⊥
if H′(<) ≠ 3 return ⊥
else return <

S(ek)

< ← DM
2 := Enc(ek, <)

3 ← {0, 1}ℓH′

return (2, 3)

Fig. 6: PKE1 = (Gen1, Enc1,Dec1) = PC[PKE,H′] with simulator S.

Theorem 3.4 (Security of PC in the ROM). Let S be the algorithm described in Figure 6. If PKE is perfectly correct,
then we have DisjPKE1 ,S (^) = 2−ℓH′ . Moreover, for any classical adversary A against PKE1 issuing at most @H′

quantum queries to H′, there exists a classical adversary B against OW-CPA security of PKE such that

Advds-ind
PKE1 ,DM ,S,A (^) ≤ Advow-cpa

PKE,DM ,B (^),

where Time(B) ≈ Time(A) + @H′ · CRO.

The security proof in the ROM is in subsection C.3.

Theorem 3.5 (Security of PC in the QROM). Let S be the algorithm described in Figure 6. If PKE is perfectly
correct, then we have DisjPKE1 ,S (^) = 2−ℓH′ . Moreover, for any quantum adversaryA against PKE1 issuing at most
@H′ quantum queries to H′, there exists a quantum adversary B against OW-CPA security of PKE such that

Advds-ind
PKE1 ,DM ,S,A (^) ≤ 2@H′

√
Advow-cpa

PKE,DM ,B (^),

where Time(B) ≈ Time(A) + @H′ · CRO.

Security Proof. We obviously have DisjPKE1 ,S (^) = 2−ℓH′ since H′ is the random oracle.
To prove the rest of the theorem, we consider the following sequence of games. See Table 1 for the summary

of games and justi�cations.

16

Table 2: Summary of Games for the Security Proof of Theorem 3.5
Game <∗ 2∗ 3∗ justi�cation

Game0 M ′ Enc(ek, <∗) H′(<∗)
Game1 M ′ Enc(ek, <∗) random OW-CPA security of PKE

and the OW2H lemma

F(<∗, 3∗)

(ek, dk) ← Gen(1^)
2∗ := Enc(ek, <∗)
inp := (ek, 2∗, 3∗)
return inp

BH′ (ek, 2∗) :

3∗ ← {0, 1}ℓH′

inp := (ek, 2∗, 3∗)
8 ← [@H]

Run AH′ (inp) until 8-th query |Ĝ〉 to H′

if 8 > number of queries to H′, return ⊥
else return G′ := Measure(|Ĝ〉)

Fig. 7: Algorithm F and adversary B

Game0: This game is de�ned as follows:

(ek, dk) ← Gen(1^);<∗ ← DM ; 2∗ := Enc(ek, <∗); 3∗ := H′(<∗); 1′← AH′ (·) (ek, (2∗, 3∗)); return 1′.

Game1: This game is the same as Game0 except that a challenge ciphertext is generated by Enc(ek, <∗) and
3+ ← {0, 1}ℓH′ :

(ek, dk) ← Gen(1^);<∗ ← DM ; 2∗ := Enc(ek, <∗); 3∗ ← {0, 1}ℓH′ ; 1′← AH′ (·) (ek, (2∗, 3∗)); return 1′.

This completes the descriptions of games. It is easy to see that we have

Advds-ind
PKE1 ,DM ,S,A (^) = |Pr[Game0 = 1] − Pr[Game1 = 1] |.

We give an upperbound for this by the following lemmas.

Lemma 3.4. There exists an adversary B such that

|Pr[Game0 = 1] − Pr[Game1 = 1] | ≤ 2@H′

√
Advow-cpa

PKE,B (^)

and Time(B) ≈ Time(A) + @H′ · CRO.

Proof. Let F be an algorithm described in Figure 7. It is easy to see that Game0 can be restated as

<∗ ← DM ; 3∗ ← H′(<∗); inp := F(ek, <∗, 3∗); 1′← AH′ (·) (inp); return 1′.

and Game1 can be restated as

<∗ ← DM ; 3∗ ← {0, 1}ℓH′ ; inp := F(ek, <∗, 3∗); 1′← AH′ (·) (inp); return 1′.

Then applying the Algorithmic-OW2H lemma (Lemma 2.1) with X = M, Y = {0, 1}ℓH′ , G = <∗, H = 3∗, and
algorithms A and F, we have

|Pr[Game0 = 1] − Pr[Game1 = 1] | ≤ 2@H′
√

Pr[<∗ ← BH′ (ek, 2∗)] .

where BH′ is an algorithm described in Figure 7, (4:, 3:) ← Gen(1^), <∗ ← DM , and 2∗ := Enc(4:, <∗).
Obviously, we have Pr[<∗ ← BH′ (ek, 2∗)] ≤ Advow-cpa

PKE,B (^). By combining these inequalities, the lemma is proven.
ut

17

Gen(1^)

(ek′, dk′) ← Gen1 (1^)

B← {0, 1}ℓ

dk ← (dk′, ek′, B)
return (ek′, dk)

Enc(ek′)

< ← DM
2 := Enc1 (ek′, <)
 := H(<)
return (, 2)

Dec(dk, 2), where dk = (dk′, ek′, B)

< := Dec1 (dk′, 2)
if < = ⊥, return := H′(B, 2)
if 2 ≠ Enc1 (ek′, <), return := H′(B, 2)
else return := H(<)

Fig. 8: KEM := SXY[PKE1,H,H′].

Table 3: Summary of Games for the Proof of Theorem 4.2
Decryption of

Game H 2∗ ∗0 ∗1 valid 2 invalid 2 justi�cation

Game0 H(·) Enc1 (ek′, <∗) H(<∗) random H(<) H′(B, 2)
Game1 H(·) Enc1 (ek′, <∗) H(<∗) random H(<) H@ (2) Lemma 2.2
Game1.5 H′@ (Enc1 (ek′, ·)) Enc1 (ek′, <∗) H(<∗) random H(<) H@ (2) Perfect correctness
Game2 H@ (Enc1 (ek′, ·)) Enc1 (ek′, <∗) H(<∗) random H(<) H@ (2) Conceptual
Game3 H@ (Enc1 (ek′, ·)) Enc1 (ek′, <∗) H@ (2∗) random H@ (2) H@ (2) Perfect correctness
Game4 H@ (Enc1 (ek′, ·)) S(ek′) H@ (2∗) random H@ (2) H@ (2) DS-IND

4 Conversion from Disjoint Simulatability to IND-CCA

In this section, we convert a disjoint simulatable DPKE scheme into an IND-CCA-secure KEM. Let PKE1 =

(Gen1, Enc1,Dec1) be a deterministic PKE scheme and let H : M → K and H′ : {0, 1}ℓ × C → K be random
oracles. Our conversion SXY is described in Figure 8.

The securities of our conversion can be stated as follows.

Theorem 4.1 (Security of SXY in the ROM (an adapted version of [HHK17, Theorem 3.6])). Let PKE1 be a
perfectly correct DPKE scheme. For any IND-CCA adversary A against KEM issuing @H and @H′ quantum random
oracle queries to H and H′ and @Dec decryption queries, there exists an OW-CPA adversary B against PKE1, such
that

Advind-cca
KEM,A (^) ≤ Advow-cpa

PKE1 ,B (^) + @H′ · 2−ℓ

and Time(B) ≈ Time(A) + @H · Time(Enc1) + (@H + @H′ + @Dec) · CCRO, where CCRO is the running time to simulate
the classical random oracle.

Theorem 4.2 (Security of SXY in the QROM). Let PKE1 be a perfectly correct DPKE scheme that satis�es theDM-
disjoint simulatability with a simulator S. For any IND-CCA quantum adversary A against KEM issuing @H and
@H′ quantum random oracle queries to H and H′ and @Dec decryption queries, there exists an adversary B against
the disjoint simulatability of PKE1 such that

Advind-cca
KEM,A (^) ≤ 2Advds-ind

PKE1 ,DM ,S,B (^) + DisjPKE1 ,S (^) + 4@H′2−ℓ/2

and Time(B) ≈ Time(A) + @H · Time(Enc1) + (@H + @H′ + @Dec) · CRO.

The proof of Theorem 4.2 follows. 7

Security Proof. We use game-hopping proof. The overview of all games is given in Table 3.

Game0: This is the original game, Exptind-cca
KEM,A (^).

Game1: This game is the same as Game0 except that H′(B, 2) in the decryption oracle is replaced with H@ (2)
where H@ : C → K is another random oracle. We remark that A is not given direct access to H@ .

7 23 Aug. 2020: We correct the bound.

18

Game1.5: This game is the same as Game1 except that the random oracle H(·) is simulated by H′@ (Enc1 (ek, ·))
where H′@ is yet another random oracle. We remark that a decryption oracle and generation of ∗0 also use
H′@ (Enc1 (ek, ·)) as H(·) and that A is not given direct access to H′@ .

Game2: This game is the same as Game1.5 except that the random oracle H(·) is simulated by H@ (Enc1 (ek, ·))
instead of H′@ (Enc1 (ek, ·)). We remark that a decryption oracle and generation of ∗0 also use H@ (Enc1 (ek, ·)) as
H(·).

Game3: This game is the same as Game2 except that ∗0 is set as H@ (2∗) and the decryption oracle always returns
H@ (2) as long as 2 ≠ 2∗. We denote the modi�ed decryption oracle by Dec

′
.

Game4: This game is the same as Game3 except that 2∗ is set as S(ek′).

The above completes the descriptions of games. We clearly have

Advind-cca
KEM,A (^) = |2 Pr[Game0 = 1] − 1|

by the de�nition. We upperbound this by the following lemmas.

Lemma 4.1. We have

|Pr[Game0 = 1] − Pr[Game1 = 1] | ≤ 2@H′ · 2−ℓ/2.

Proof. This is obvious from Lemma 2.2. ut

Lemma 4.2. We have

Pr[Game1 = 1] = Pr[Game1.5 = 1] .

Proof. Since we assume that PKE1 has a perfect correctness, Enc1 (ek′, ·) is injective. Therefore, if H′@ (·) is a
random function, then H′@ (Enc1 (ek, ·)) is also a random function. Remarking that access to H′@ is not given to
A, it causes no di�erence from the view of A if we replace H(·) with H′@ (Enc1 (ek, ·)). ut

Lemma 4.3. We have

Pr[Game1.5 = 1] = Pr[Game2 = 1] .

Proof. We call a ciphertext 2 valid if we have Enc1 (ek′,Dec1 (3: ′, 2)) = 2 and invalid otherwise. We remark that
H@ is used only for decrypting an invalid ciphertext 2 as H@ (2) in Game1.5. This means that a value of H@ (2) for
a valid 2 is not used at all in Game1.5. On the other hand, any output of Enc1 (ek′, ·) is valid due to the perfect
correctness of PKE1. Since H′@ is only used for evaluating an output of Enc(ek′, ·), a value of H@ (2) for a valid 2
is not used at all in Game1.5. Hence, it causes no di�erence from the view ofA if we use the same random oracle
H@ instead of two independent random oracles H@ and H′@ . ut

Lemma 4.4. We have

Pr[Game2 = 1] = Pr[Game3 = 1] .

Proof. Since we set H(·) := H@ (Enc1 (ek′, ·)), for any valid 2 and< := Dec1 (3: ′, 2), we have H(<) = H@ (Enc1 (ek′, <)) =
H@ (2). Therefore, responses of the decryption oracle are unchanged. We also have H(<∗) = H@ (2∗) for a similar
reason. ut

Lemma 4.5. There exists an adversary B such that

|Pr[Game3 = 1] − Pr[Game4 = 1] | = Advds-ind
PKE1 ,DM ,S,B (^).

and Time(B) ≈ Time(A) + @H · Time(Enc1) + (@H + @H′ + @Dec) · CRO.

Proof. We construct an adversary B, which is allowed to access two random oracles H@ and H′, against the
disjoint simulatability as follows 8.

8 We allow a reduction algorithm to access the random oracles. See subsection 2.2 for details.

19

BH@ ,H′ (ek′, 2∗) : It picks 1 ← {0, 1}, sets ∗0 := H@ (2∗) and ∗1 ← K , and invokes 1′← AH,H′,Dec
′
(ek′, 2∗, ∗

1
)

where A ′B oracles are simulated as follows.
– H(·) is simulated by H@ (Enc1 (ek′, ·)).
– H′ can be simulated because B has access to an oracle H′.
– Dec

′(·) is simulated by forwarding to H@ (·).
Then B returns boole(1 ?

= 1′).

This completes the description of B. It is easy to see that B perfectly simulates Game3 if 2∗ = Enc1 (ek, <∗)
and Game4 if 2∗ = S(ek′). Hence, we have

Advds-ind
PKE1 ,DM ,S,B (^) =

����Pr[B(ek, 2∗) → 1 | (ek, dk) ← Gen1 (1^);<∗ ← DM ; 2∗ := Enc1 (ek, <∗)]
− Pr[B(ek, 2∗) → 1 | (ek, dk) ← Gen1 (1^); 2∗ ← S(ek)]

����
= |Pr[Game3 = 1] − Pr[Game4 = 1] |.

SinceB invokesA once, H is simulated by one evaluation of Enc1 plus one evaluation of a random oracle, and H′

and Dec
′

are simulated by one evaluation of random oracles, we have Time(B) ≈ Time(A) + @H · Time(Enc1) +
(@H + @H′ + @Dec) · CRO. ut

Lemma 4.6. We have

|2 Pr[Game4 = 1] − 1| ≤ DisjPKE1 ,S (^).

Proof. Let Bad denote an event in which 2∗ ∈ Enc1 (ek′,M) in Game4. It is easy to see that we have

Pr[Bad] ≤ DisjPKE1 ,S (^).

When Bad does not occur, i.e., 2∗ ∉ Enc1 (ek′,M),A obtains no information about ∗0 = H@ (2∗). This is because
queries to H only reveal H@ (2) for 2 ∈ Enc1 (ek′,M), and Dec

′(2) returns ⊥ if 2 = 2∗. Therefore, we have

Pr[Game4 = 1 | Bad] = 1/2.

Combining the above, we have

|2 Pr[Game4 = 1] − 1|

=

���Pr[Bad] · (2 Pr[Game4 = 1 | Bad] − 1) + Pr[Bad] · (2 Pr[Game4 = 1 | Bad] − 1)
���

≤ Pr[Bad] +
���2 Pr[Game4 = 1 | Bad] − 1

���
≤ DisjPKE1 ,S (^)

as we wanted. ut

Summary: By summarizing the above inequalities, we obtain the bound as follows:

Advind-cca
KEM,A (^) = |2 Pr[Game0 = 1] − 1|

≤ |2 Pr[Game1 = 1] − 1| + 4@H′2−ℓ/2

= |2 Pr[Game1.5 = 1] − 1| + 4@H′2−ℓ/2

= |2 Pr[Game2 = 1] − 1| + 4@H′2−ℓ/2

= |2 Pr[Game3 = 1] − 1| + 4@H′2−ℓ/2

= |2 Pr[Game4 = 1] − 1| + 2Advds-ind
PKE1 ,DM ,S,B (^) + 4@H′2−ℓ/2

≤ 2Advds-ind
PKE1 ,DM ,S,B (^) + 4@H′2−ℓ/2 + DisjPKE1 ,S (^).

5 Implementation

We report the implementation results on a desktop PC and on a RasPi, which are based on the previous imple-
mentation of a variant of NTRU [HRSS17].

20

Gen(1^)

6, 5 ← T+
5@ := [1/ 5] (@,Φ=)

ℎ := [Φ16 5@]q
return dk = 5 , ek = ℎ

Enc(ℎ, <), < ∈ T

A ← T
2 := [?Aℎ + Li�? (<)]q
return 2

Dec(5 , 2)

<′ :=
[
[2 5]q 5 −1]

p

return <′

Fig. 9: NTRUHRSS17

5.1 NTRU-HRSS

We review a variant of NTRU, which we call NTRUHRSS17, developed by Hülsing, Rijneveld, Schanck, and Schwabe [HRSS17].
Let Φ< (G) ∈ Z[G] be the <-th cyclotomic polynomial. We have Φ1 = G − 1. If < is prime, then we have

Φ< = 1 + G + · · · + G<−1. De�ne (= := Z[G]/(Φ=) and '= := Z[G]/(G= − 1). For prime =, we have G= − 1 = Φ1Φ=
and '= ' (1 × (=. We de�ne Li�? : (=/(?) → '= as

Li�? (E) :=
[
Φ1 [E/Φ1] (?,Φ=)

]
(G=−1) .

By de�nition, we have Li�? (E) ≡ 0 (mod Φ1) and Li�? (E) ≡ E (mod (?,Φ=)). Let p = (?,Φ=) and q =
(@, G= − 1). Let

T := {0 ∈ Z[G] : 0 = [0]p} = {0 ∈ Z[G] : 08 ∈ (?) and deg(0) < deg(Φ=)},
T+ := {0 ∈ T : 〈G0, 0〉 ≥ 0}.

The de�nition of NTRUHRSS17 is in Figure 9. Note that all ciphertexts are equivalent to 0 modulo (@,Φ1),
which prevents a trivial distinguishing attack.

Hülsing et al. choose (=, ?, @) = (701, 3, 8192): The scheme is perfectly correct, and they claimed 128-bit post-
quantum security of this parameter set. The implementation of NTRUHRSS17 and QFO⊥ [NTRUHRSS17,G,H,H′]
is reported in [HRSS17].

Our Modi�cation. We want PKE1 to be deterministic. Hence, we consider a pair of (<, A) as a plaintext and
make the decryption algorithm output (<, A) rather than <. The modi�cation NTRUHRSS17

′ is summarized in
Figure 10.

The properties of this DPKE are summarized as follows:

Perfect Correctness: This follows from the perfect correctness of the original PKE.
Sparseness: This follows from the parameter setting of the original PKE.
Pseudorandomness: We assume that the modi�ed PKE NTRUHRSS17

′ satis�es pseudorandomness.

We also implement SXY[NTRUHRSS17
′,H,H′], where H and H′ are implemented by SHAKE256. We de�ne

H(<, A) := XOF
(
(A, <, 0), 256

)
and H′(B, 2) := XOF

(
(2, (B‖00 · · · 00), 1), 256

)
,

where we treat A ∈ '=/(@) and the last bit is the context string.
To avoid the inversion of polynomials in decapsulation, we add 5 −1 modulo p to dk as Hüsling et al. did [HRSS17].

This requires 139 extra bytes. In addition, we put (?ℎ)−1 modulo q in dk, which requires 1140 extra bytes. Thus,
our decapsulation key is 2557 bytes long.

5.2 Experimental Results

We preform the experiment with

– one core of an Intel Core i7-6700 at 3.40GHz on a desktop PC with 8GB memory and Ubuntu16.04 and
– a RasPi3 with 32-bit Rasbian.

21

Gen′(1^) = Gen

6, 5 ← T+
5@ := [1/ 5] (@,Φ=)

ℎ := [Φ16 5@]q
return dk = 5 , ek = ℎ

Enc′(ℎ, (<, A)), (<, A) ∈ T 2

2 := [?Aℎ + Li�? (<)]q
return 2

Dec′(5 , 2)

<′ :=
[
[2 5]q 5 −1]

p

A ′ :=
[[
(2 − Li�? (<′)) · (?ℎ)−1]

q

]
p

return (<′, A ′)

Fig. 10: Our Modi�cation NTRUHRSS17
′

Table 4: Experimental Results: We have |ek | = 1140 bytes, |dk | = 2557 bytes, and |2 | = 1140 bytes. All times in
milliseconds.

(a) Our Experiments on a PC without AVX2

min. med. avg. max.

Gen1 1 754 1 772 1 807 2 620
Enc1 328 329 328 336
Dec1 958 959 959 1 002

min. med. avg. max.

Gen 2 553 2 572 2 576 2 669
Enc 334 335 335 478
Dec 1 281 1 282 1 284 1 452

(b) Our Experiments on a PC with AVX2

min. med. avg. max.

Gen1 78 84 85 116
Enc1 12 13 15 23
Dec1 17 18 17 23

min. med. avg. max.

Gen 107 109 110 188
Enc 19 19 19 25
Dec 24 25 25 38

(c) Our Experiments on a RasPi

min. med. avg. max.

Gen1 33 675 33 685 33 687 45 460
Enc1 3 085 3 089 3 091 3 121
Dec1 8 839 8 851 8 850 8 880

min. med. avg. max.

Gen 49 151 49 169 49 174 49 263
Enc 3 200 3 205 3 207 3 232
Dec 11 837 11 841 11 843 11 888

We use gcc to compile the programs with option -O3. We generate 200 keys and ciphertexts to estimate the
running time of key generation, encryption, and decryption.

The experimental results are summarized in Table 4. (Gen1, Enc1,Dec1) and (Gen, Enc,Dec) indicate NTRUHRSS17
′

and SXY[NTRUHRSS17
′]. The results re�ect Hüsling et al.’s constant-time implementation and ours. Our conver-

sion adds only small extra costs for hashing in encryption and adds about)Enc1 for re-encrypting in decryption.
Note that our implementations are for reference and we have started to optimize them. Further optimizations

will speed up the algorithms as Hüsling et al. did [HRSS17]. The source code is available at https://info.isl.ntt.co.
jp/crypt/eng/archive/contents.html#sxy.

Acknowledgments

We would like to thank anonymous reviewers of Eurocrypt 2018, Eike Kiltz, Daniel J. Bernstein, Edoardo Per-
sichetti, and Joost Rijneveld for their insightful comments. We also would like to thank Mike Hamburg for his
pointing out our incorrect bound in Lemma 2.2 (

√
2@ instead of 2@) and incorrect quote quotation in Lemma C.1.

References

ACPS09. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and circular-secure
encryption based on hard learning problems. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages

22

https://info.isl.ntt.co.jp/crypt/eng/archive/contents.html#sxy
https://info.isl.ntt.co.jp/crypt/eng/archive/contents.html#sxy

595–618. Springer, Heidelberg, 2009. 10
Ajt99. Miklós Ajtai. Generating hard instances of the short basis problem. In Jirí Wiedermann, Peter van Emde Boas,

and Mogens Nielsen, editors, ICALP ’99, volume 1644 of LNCS, pages 1–9, 1999. 12
AOP+17. Martin R. Albrecht, Emmanuela Orsini, Kenneth G. Paterson, Guy Peer, and Nigel P. Smart. Tightly secure

Ring-LWE based key encapsulation with short ciphertexts. In Simon N. Foley, Dieter Gollmann, and Einar
Snekkenes, editors, ESORICS 2017, Part I, volume 10492 of LNCS, pages 29–46. Springer, Heidelberg, 2017. See
also https://eprint.iacr.org/2017/354. 26

AP11. Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. Theory of Computing Systems,
48(3):535–553, April 2011. A preliminary versions appeared in STACS 2009, 2009. 12

BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Scha�ner, and Mark Zhandry. Random
oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of
LNCS, pages 41–69. Springer, Heidelberg, 2011. 1, 2, 4, 7

BFKL93. Avrim. Blum, Merrick L. Furst, Michale J. Kearns, and Richard J. Lipton. Cryptographic primitives based on hard
learning problems. In Douglas R. Stinson, editor, CRYPTO ’93, volume 773 of LNCS, pages 278–291. Springer,
Heidelberg, 1993. 10, 30

BR93. Mihir Bellare and Phillip Rogaway. Random oracle are practical: A paradigm for designing e�cient protocols.
In CCS ’93, pages 62–73. ACM, 1993. 1

BR95. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De Santis, editor, EUROCRYPT
’94, volume 950 of LNCS, pages 92–111. Springer, Heidelberg, 1995. 1

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for key
dependent messages. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 505–524. Springer,
Heidelberg, 2011. 10

CFS01. Nicolas Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to achieve a McEliece-based digital signature
scheme. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 157–174. Springer, Heidelberg,
2001. 30

CHJ+02. Jean-Sébastien Coron, Helena Handschuh, Marc Joye, Pascal Paillier, David Pointcheval, and Christophe Tymen.
GEM: A Generic chosen-ciphertext secure Encryption Method. In Bart Preneel, editor, CT-RSA 2002, volume
2271 of LNCS, pages 175–184. Springer, Heidelberg, 2002. 1

DDMQN12. Nico Döttling, Rafael Dowsley, Jörn Müller-Quade, and Anderson C. A. Nascimento. A CCA2 secure variant
of the McEliece cryptosystem. IEEE Transactions on Information Theory, 58(10):6672–6680, 2012. A preliminary
version appeared in CT-RSA 2008, 2008. 30

Den03. Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor, IMA 2003, volume 2898 of
LNCS, pages 133–151. Springer, Heidelberg, 2003. 1, 25, 26

FGK+13. David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and Gil Segev. More constructions of lossy and
correlation-secure trapdoor functions. Journal of Cryptology, 26(1):39–74, 2013. Preliminary versions appeared
in PKC 2010, 2010. 30

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes.
In Michael J. Wiener, editor, CRYPTO ’99, volume 1666 of LNCS, pages 537–554. Springer, Heidelberg, 1999. 1, 25,
26

FO00. Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of public-key encryption at minimum
cost. IEICE transactions on fundamentals of electronics, communications and computer sciences, 83(1):24–32, 2000.
A preliminary version appeared in PKC ’99, 1999. 25, 26

FO13. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes.
J. Cryptology, 26(1):80–101, 2013. 1, 25, 26

FOPS04. Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. RSA-OAEP is secure under the RSA
assumption. Journal of Cryptology, 17(2):81–104, 2004. 1

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In Cynthia Dwork, editor, STOC 2008, pages 197–206. ACM, 2008. see also https://eprint.iacr.
org/2007/432. 4, 12

Ham21. Mike Hamburg. Private communication, 8 2021. 6, 7, 27
HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-Okamoto transforma-

tion. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer,
Heidelberg, 2017. version, 20170808:094949. See also https://eprint.iacr.org/2017/604. 2, 3, 5, 6, 7, 8, 13, 18, 25, 26,
28

HPS98. Je�rey Ho�stein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosystem. In Joe
Buhler, editor, ANTS-III, volume 1423 of LNCS, pages 267–288. Springer, Heidelberg, 1998. 4, 13

HRSS17. Andreas Hülsing, Joost Rijneveld, John Schanck, and Peter Schwabe. High-speed key encapsulation from NTRU.
In Wieland Fischer and Naofumi Homma, editors, CHES 2018, volume 10529 of LNCS, pages 232–252. Springer,
Heidelberg, 2017. See also https://eprint.iacr.org/2017/667. 4, 20, 21, 22

JZC+17. Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. Post-quantum IND-CCA-secure KEM
without additional hash. IACR Cryptology ePrint Archive, 2017:1096, 2017. To appear in CRYPTO 2018. Available
at https://eprint.iacr.org/2017/1096. 3, 5, 6, 7, 25

23

https://eprint.iacr.org/2017/354
https://eprint.iacr.org/2007/432
https://eprint.iacr.org/2007/432
https://eprint.iacr.org/2017/604
https://eprint.iacr.org/2017/667
https://eprint.iacr.org/2017/1096

KLS18. Eike Kiltz, Vadim Lyubashevsky, and Christian Scha�ner. A concrete treatment of Fiat-Shamir signatures in the
quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III,
volume 10822 of LNCS, pages 552–586. Springer, Heidelberg, 2018. Available at https://eprint.iacr.org/2017/916.
8

KSS10. Jonathan Katz, Ji Sun Shin, and Adam Smith. Parallel and concurrent security of the HB and HB+ protocols.
Journal of Cryptology, 23(3):402–421, 2010. 10, 30

LDW94. Yuanxing Li, Robert H. Deng, and Xinmei Wang. On the equivalence of McEliece’s and Niederreiter’s public-key
cryptosystems. IEEE Trans. Information Theory, 40(1):271–273, 1994. 31

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In
Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Heidelberg, 2010. See also
https://eprint.iacr.org/2012/230. 10

LTV12. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-�y multiparty computation on the cloud
via multikey fully homomorphic encryption. In Howard J. Karlo� and Toniann Pitassi, editors, STOC 2012, pages
1219–1234. ACM, 2012. 10

McE78. Robert J. McEliece. A public key cryptosystem based on algebraic coding theory. Technical report, DSN progress
report, 1978. 4, 30

Men12. Alfred Menezes. Another look at provable security. Invited Talk at EUROCRYPT 2012, 2012. 2
MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David

Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer,
Heidelberg, 2012. See also https://eprint.iacr.org/2011/501. 12

MR07. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian measures. SIAM
Journal on Computing, 37(1):267–302, 2007. A preliminary version appeared in FOCS 2004, 2004. 10

NC00. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge Univer-
sity Press, 2000. 6

Nie86. Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Infor-
mation Theory, 15:159–166, 1986. 4

NIS15. FIPS 202: SHA-3 standard: Permutation-based hash and extendable-output functions, 2015. U.S.Department of
Commerce/National Institute of Standards and Technology. 10

OP01. Tatsuaki Okamoto and David Pointcheval. REACT: Rapid enhanced-security asymmetric cryptosystem trans-
form. In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS, pages 159–175. Springer, Heidelberg, 2001.
1

Pei09. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In
Michael Mitzenmacher, editor, STOC 2009, pages 333–342. ACM, 2009. 12

Per12. Edoardo Persichetti. Improving the E�ciency of Code-Based Cryptography. PhD thesis, 2012. Available at http:
//persichetti.webs.com/Thesis%20Final.pdf. 5

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM,
56(6):Article 34, 2009. A preliminary version appeared in STOC 2005, 2005. 10

SS11. Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. In Ken-
neth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 27–47. Springer, Heidelberg, 2011. 10

SY17. Fang Song and Aaram Yun. Quantum security of NMAC and related constructions — PRF domain extension
against quantum attacks. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of
LNCS, pages 283–309. Springer, Heidelberg, 2017. Available at https://eprint.iacr.org/2017/509. 27

TU16. Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the Fujisaki-Okamoto and OAEP
transforms. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 192–
216. Springer, Heidelberg, 2016. See also https://eprint.iacr.org/2015/1210. 1, 2, 8

Unr15. Dominique Unruh. Revocable quantum timed-release encryption. Journal of the ACM, 62(6):No.49, 2015. The
preliminary version appeared in EUROCRYPT 2014. See also https://eprint.iacr.org/2013/606. 5, 7

Zha12a. Mark Zhandry. How to construct quantum random functions. In FOCS 2012, pages 679–687. IEEE Computer
Society, 2012. Available at https://eprint.iacr.org/2012/182. 7

Zha12b. Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In Reihaneh Safavi-
Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 758–775. Springer, Heidelberg, 2012.
7

A Missing De�nitions

De�nition A.1 (W-spread). Let PKE = (Gen, Enc,Dec) be a PKE scheme. We say PKE is W-spread if for every
(ek, dk) generated by Gen(1^) and for any < ∈ M, we have that

− lg
(
max
2∈C

Pr
A←R
[2 = Enc(ek, <; A)]

)
≥ W.

24

https://eprint.iacr.org/2017/916
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2011/501
http://persichetti.webs.com/Thesis%20Final.pdf
http://persichetti.webs.com/Thesis%20Final.pdf
https://eprint.iacr.org/2017/509
https://eprint.iacr.org/2015/1210
https://eprint.iacr.org/2013/606
https://eprint.iacr.org/2012/182

(In other words, the min entropy of Enc(ek, <;* (R)) is at least W.) We say PKE is well-spread in ^ if W = W(^) =
l(lg ^).

We additionally review the de�nitions of onewayness under validity-checking attacks (OW-VA), onewayness
under plaintext-checking attacks (OW-PCA), and onewayness under plaintext-checking and validity-checking
attacks (OW-PCVA) for PKE.

De�nition A.2 (Security notions for PKE). Let PKE = (Gen, Enc,Dec) be a PKE scheme with message spaceM.
For any adversary A and for ATK ∈ {VA, PCA, PCVA}, we de�ne the experiments Exptow-va

PKE,A (^), Exptow-pca
PKE,A (^),

and Exptow-pcva
PKE,A (^) as in Figure 11, where

$ATK :=


Cvo(·) (ATK = VA)
Pco(·, ·) (ATK = PCA)
Cvo(·), Pco(·, ·) (ATK = PCVA).

For any adversary A, we de�ne its OW-VA, OW-PCA, and OW-PCVA advantages as follows:

Advow-va
PKE,A (^) := Pr[Exptow-va

PKE,A (^) = 1],
Advow-pca

PKE,A (^) := Pr[Exptow-pca
PKE,A (^) = 1],

Advow-pcva
PKE,A (^) := Pr[Exptow-pcva

PKE,A (^) = 1] .

For ATK ∈ {VA, PCA, PCVA}, we say that PKE is OW-ATK-secure if Advow-atk
PKE,A (^) is negligible for any PPT adver-

sary A.

Exptow-atk
PKE,A (^)

(ek, dk) ← Gen(1^)
<∗ ←M
2∗ ← Enc(ek, <∗)

<′ ← A$ATK (ek, 2∗)
return boole(<′ = Dec(dk, 2∗))

Pco(< ∈ M, 2)

return boole(< = Dec(dk, 2))

Cvo(2)

if 2 = 2∗, return ⊥
< := Dec(dk, 2)
return boole(< ∈ M)

Fig. 11: Games for PKE schemes

Remark A.1. In [JZC+17], Jiang et al. de�ned onewayness under quantum-plaintext-checking attacks (OW-qPCA)
and onewayness under quantum-plaintext-checking and validity-checking attacks (OW-qPCVA). In the game of
OW-qPCA and OW-qPCVA, the adversary is allowed to make quantum queries to Pco. If PKE is deterministic
and perfectly-correct, then OW-CPA = OW-PCA = OW-qPCA and OW-VA = OW-PCVA = OW-qPCVA, since
we can simulate the plaintext-checking oracle without decryption key by checking 2 = Enc(ek, <).

B Transformations in the Random Oracle Model

We summarize transformations among PKE, DPKE and KEM in the ROM in Figure 12.
GOAL-ATTACKg indicate the class of PKEs that is GOAL-ATTACK-secure and 2−l (lg ^) -uniformity [FO00,

FO99], or equivalently l(lg ^)-spreading [FO13]. Solid arrows indicate tight reductions, dashed arrows indicate
non-tight reductions, thin arrows indicate trivial reductions, thick black arrows indicate reductions in [FO00],
thick green arrows indicate reductions in [Den03], and thick blue arrows indicate reductions in [HHK17].

– The transformation R is in [FO00, Remark 5.5]; R converts PKE = (Gen, Enc,Dec) with randomness space R
into PKE′ = (Gen′, Enc′,Dec′)with randomness spaceR×R ′. They de�ned Gen′ := Gen, Enc′(ek, G; (A, A ′)) :=
(Enc(ek, G; A), A ′) and Dec′(dk, (2, A ′)) := Dec(dk, 2). This change ampli�es W-uniformity of PKE into (W/|R ′ |)-
uniformity.

25

probabilistic PKE deterministic PKE1

probabilistic PKE1

KEM

IND-CPAg

IND-CPAOW-CPAg

OW-CPA

OW-PCVA

OW-PCA OW-VA

OW-CPA

OW-PCVA

OW-PCA OW-VA

OW-CPA

IND-CCA

R

R Sℓ
T

T

T

T

U⊥<, Dent1

U6⊥<, Dent4, SXY

U⊥, Dent2

U 6⊥, QU⊥<, Dent3

Dent5

Fig. 12: Transformations in the ROM. GOAL-ATTACKg indicates the class of PKEs that is GOAL-ATTACK-secure
and 2−l (lg ^) -uniformity [FO00, FO99], or equivalently l(lg ^)-spreading [FO13]. Solid arrows indicate tight re-
ductions, dashed arrows indicate non-tight reductions, thin arrows indicate trivial reductions, thick black arrows
indicate reductions in [FO00], thick green arrows indicate reductions in [Den03], and thick blue arrows indi-
cate reductions in [HHK17]. The transformation R is in [FO00, Remark 5.5]. The transformations Dent1, Dent2,
Dent3, Dent4, and Dent5 are given in [Den03]. The transformations Sℓ , T, U⊥, U6⊥, U⊥<, U6⊥<, and QU⊥< are given
in [HHK17].

– The transformations Dent1, Dent2, Dent3, Dent4, and Dent5 are given in [Den03].
– The transformations Sℓ , T, U⊥, U6⊥, U⊥<, U6⊥<, and QU⊥< are given in [HHK17].

Note that Dent1 ≈ U⊥<, which is a KEM variant of BR93; Dent2 ≈ U⊥, which is a KEM variant of REACT/GEM;
Dent4 ≈ QU⊥<; Dent5 ≈ FO⊥< = U⊥< ◦ T, which is a KEM variant of FO.

Albrecht, Orsini, Paterson, Peer, and Smart [AOP+17] gave the tight security proof for Dent5 when the un-
derlying PKE is a certain Ring-LWE-based PKE scheme. We also observe that Dent5 is decomposed into U⊥< ◦ T.
Thus, starting from IND-CPAg-secure PKE, we obtain the similar proof by combining reductions in [HHK17].

26

C Omitted Proofs

C.1 Proof of Lemma 2.2

Here, we prove Lemma 2.2. Before proving the lemma, we introduce another lemma, which gives a lower bound
for a decisional variant of Grover’s search problem.

Lemma C.1 ([SY17, Lemma C.1]). Let 6B : {0, 1}ℓ → {0, 1} denotes a function de�ned as 6B (B) := 1 and 6B (B′) := 0
for all B′ ≠ B, and 6⊥ : {0, 1}ℓ → {0, 1} denotes a function that returns 0 for all inputs. Then for any unbounded
time adversary A that issues at most @ quantum queries to its oracle, we have

Pr[1← A6B () | B← {0, 1}ℓ] − Pr[1← A6⊥ ()] ≤ 2@ · 2−ℓ/2. 9

We prove Lemma 2.2 relying on the above lemma.

Proof. (of Lemma 2.2) To prove the theorem, we consider the following sequence of games for an algorithm A.

Game 0: This game returns as AH,H(B, ·) () outputs, where B ← {0, 1}ℓ and H : {0, 1}ℓ × X → Y are random
functions.

Game 1: This game returns as A$ [B,H0 ,H1],H1 (·) () outputs, where B ← {0, 1}ℓ , H0 : {0, 1}ℓ × X → Y and
H1 : X → Y are independent random functions, and $ [B,H0,H1] is a function de�ned as

$ [B,H0,H1] (B′, G) :=

{
H0 (B′, G) if B′ ≠ B,
H1 (G) if B′ = B.

(1)

Game 2: This game returns asAH0 ,H1 () outputs, where H0 : {0, 1}ℓ ×X → Y and H1 : X → Y are independent
random functions.

This completes the descriptions of games. We want to prove that |Pr[Game2 = 1]−Pr[Game0 = 1] | ≤ 2@H ·2−ℓ/2.
It is easy to see that we have Pr[Game0 = 1] = Pr[Game1 = 1]. What is left is to prove that |Pr[Game2 =

1] − Pr[Game1 = 1] | ≤ 2@H · 2−ℓ/2. We prove this by a reduction to Lemma C.1. We consider the following
algorithm B that has access to 6 that is 6B for randomly chosen B ← {0, 1}ℓ or 6⊥ where 6B and 6⊥ are as
de�ned in Lemma C.1.

B6: It picks two random functions H0 : {0, 1}ℓ × X → Y and H1 : X → Y, and runs A$,H1 where B simulates
$ as follows: If A queries (B′, G) to $, B queries B′ to its own oracle 6 to obtain a bit 1. If 1 = 0, then B
returns H0 (B′, G) to A and if 1 = 1, then B returns H1 (G ′) to A.

This completes the description of B. It is easy to see that if 6 = 6B for randomly chosen B ← {0, 1}ℓ , then B
perfectly simulates Game1, and if 6 = 6⊥, then B perfectly simulates Game2. Therefore, we have

|Pr[Game1 = 1] − Pr[Game2 = 1] | =
��Pr[1← B6B () | B← {0, 1}ℓ] − Pr[1← B6⊥ ()]

�� .
On the other hand, by Lemma C.1, we have��Pr[1← B6B () | B← {0, 1}ℓ] − Pr[1← B6⊥ ()]

�� ≤ 2@H · 2−ℓ/2,

since the number of B’s queries to its own oracle is exactly the same as the number of A’s queries to $, which
is equal to @H. This completes the proof of Lemma 2.2. ut

C.2 Proof of Theorem 3.2

Let us employ the same games as those in the security proof in the QROM. It is easy to see that we have

Advds-ind
PKE1 ,UM′ ,S,A (^) = |Pr[Game0 = 1] − Pr[Game2 = 1] |.

We give an upperbound for this by the following lemmas.

9 20 Aug. 2021: In the previous versions, we used the upper bound @ · 2(−ℓ+1)/2 =
√

2@ · 2−ℓ/2 instead of 2@ · 2−ℓ/2. We thank
to Mike Hamburg [Ham21] for pointing out this mistake.

27

Lemma C.2. There exists an adversary B such that

|Pr[Game0 = 1] − Pr[Game1 = 1] | ≤ Advind-cpa
PKE,B (^) +

@G

|M ′ |

and Time(B) ≈ Time(A) + @G · CRO.

This proof mainly follows that in [HHK17, Proof of Theorem 3.2].

Proof. We note that if the adversaryA does not access to <∗, then the value G(<∗) is not determined fromA’s
view. Therefore, A cannot distinguish two games and we have

|Pr[Game0 = 1] − Pr[Game1 = 1] | ≤ Pr[QUERY],

where QUERY denotes the event that A queries <∗ to G.
We de�ne an adversary B = (B1,B2) following [HHK17, Proof of Theorem 3.2]. On input ek, B1 picks

<∗0, <
∗
1 ←M ′ and outputs <∗0, <

∗
1, BC = (ek, <∗0, <∗1). B2 receives (2∗ := Enc(ek, <∗

1
; A∗), BC), runs A on (ek, 2∗)

and simulates the game. B2 outputs 1′ := 0 if <∗0 is queried to G but <∗1 is not queried; outputs 1′ := 1 if <∗1 is
queried to G but <∗0 is not queried; outputs random 1′ otherwise.

Let us denote by BadG the event thatA queries <∗1−1 to G. Since <∗1−1 is completely hidden fromA, we have
Pr[BadG] ≤ @G

|M′ | . In the following, we assume BadG never occurs.
If QUERY happens, then A queries <∗

1
to G and B outputs 1′ = 1. Otherwise, then A never queries <∗

1
to

G and B outputs a random 1′. Eliminating the case that the event BadG happens, we have

Advind-cpa
PKE,B (^) +

@G

|M ′ | ≥ |2 Pr[1′ = 1] − 1|

=

����2 · (1 · Pr[QUERY] + 1
2
· Pr[¬QUERY]

)
− 1

����
=

����2 · (1 · Pr[QUERY] + 1
2
· (1 − Pr[QUERY])

)
− 1

����
= Pr[QUERY]

as we wanted. ut

Lemma C.3. There exists an adversary C such that

|Pr[Game1 = 1] − Pr[Game2 = 1] | ≤ Advind-cpa
PKE,C (^)

and Time(C) ≈ Time(A) + @G · CRO.

Proof. Consider an adversary C that on input ek, outputs <0 = 0 and <1 ← M ′, receives 2∗ = Enc(ek, <1),
invokes A(ek, 2∗), and outputs 1′ as A. Apparently, if 1 = 0, then C perfectly simulates Game1 and, else if
1 = 1, then C perfectly simulates Game2. Thus, the lemma holds obviously. ut

C.3 Proof of Theorem 3.4

Let us employ the same games as those in the security proof in the QROM. It is easy to see that we have

Advds-ind
PKE1 ,UM′ ,S,A (^) = |Pr[Game0 = 1] − Pr[Game1 = 1] |.

We give an upperbound for this by the following lemmas.

Lemma C.4. There exists an adversary B such that

|Pr[Game0 = 1] − Pr[Game1 = 1] | ≤ Advow-cpa
PKE,DM ,B (^)

and Time(B) ≈ Time(A) + @H′ · CRO + @H′ · Time(Enc).

28

Proof. We note that if the adversaryA does not access to <∗, then the value H′(<∗) is not determined fromA’s
view. Therefore, A cannot distinguish two games and we have

|Pr[Game0 = 1] − Pr[Game1 = 1] | ≤ Pr[QUERY],

where QUERY denotes the event that A queries <∗ to H′.
We de�ne an adversary B as follows: On input ek and 2∗ := Enc(ek, <∗), where <∗ ← DM , B picks 3∗ ←

{0, 1}ℓH′ . It also initialize the table to simulate H′. It then runsA on (ek, 2∗, 3∗) and simulates the game. On each
query < to H′, if (<, 3) is in the table, then it returns 3; otherwise, B computes 2 := Enc(ek, <); if 2 = 2∗, then
B outputs < and halts; otherwise, it picks random 3 ← {0, 1}ℓH′ , returns 3 to A, and add (<, 3) to the table. If
A halts, then B outputs ⊥ and halts.

If QUERY happens, then A queries < satisfying Enc(ek, <) = 2∗ to H′. Since PKE is perfectly correct, 2∗ is
decrypted into < and, thus, < = <∗. Therefore, B outputs <∗ and wins the OW-CPA game. Otherwise, then A
never queries <∗ to H′ and B outputs an error symbol ⊥. We have

Advow-cpa
PKE,B (^) = Pr[QUERY]

as we wanted. ut

D Instantiations of DPKE from Codes

D.1 Preliminaries

F denotes GF(2). For a vector 4 ∈ F=, wt(4) denotes the Hamming weight of 4, that is, the number of 1s in 4. Let
((=, C) be the set of =-dimensional vectors of Hamming weight at most C, that is, ((=, C) := {4 ∈ F= | wt(4) ≤ C}.
Let GL(=, F) and Perm(=, F) denotes the general-linear group of degree = over F and the group of permutation
matrices of degree = over F.

We assume that, for appropriately chosen integers = = =(^), : = : (^), and C = C (^), there exist PPT algo-
rithms CodeGen and Decode satisfying the followings:

– CodeGen(1^ , =, :, C) outputs � ∈ F:×= and Γ, where � is a generator matrix of a [=, :]F linear code.
– Decode(Γ, <� + 4) outputs 4 if 4 ∈ ((=, C).

For a [=, :]F linear code with a generator matrix � ∈ F:×= of rank : , its parity-check matrix � ∈ F(=−:)×=
of rank = − : satis�es � · �> = $. We assume that there exist a deterministic algorithm G2H that, on input
� , outputs its parity-check matrix � and a deterministic algorithm H2G that, on input �, outputs its generator
matrix �. For example, the algorithm G2H computes a systematic form � ′ = [�: | �] · % of � , where � ∈ F:×=
and % ∈ Perm(=, F), and outputs � = [−�> | �=−:]%−>. 10

Let �g be the Bernoulli distribution with parameter g ∈ (0, 1/2), that is, PrG←�g
[G = 1] = g and PrG←�g

[G =
0] = 1 − g. Let g = C/= − n and U = n= for n > 0. Applying the Hoe�ding bound, we obtain

Pr
4←�=

g

[
wt(4) − � [wt(4)] ≥ U

]
≤ exp(−2=U2).

Since � [wt(4)] = g= = C −U, the statement wt(4) −� [wt(4)] ≥ U implies wt(4) ≥ � [wt(4)] +U = C −U+U = C.
The RHS exp(−2=(n=)2) is negligible. Thus, we obtain the following bound:

Lemma D.1. For g = C/= − n with n > 0, it holds that

Pr
4←�=

g

[wt(4) ≥ C] ≤ exp(−2n2=3).

10 Letting� = [� le� | �right]·%with� le� ∈ GL(:, F) and % ∈ Perm(=, F), we have� ′ = �−1
le��% = [�: | �

−1
le�·�right]% and

set � = �−1
le�·�right. We obtain� ·�> = � le��

′%·([−�> | �=−:]%−>)> = � le� [�: | �]·%·%−1 (−�
�=−:

)
= � le� (−�+�) = $.

29

Assumptions: Blum et al. [BFKL93] introduced the learning-parity-with-noise (LPN) problem. Its decisional ver-
sion is formalized by Katz, Shin and Smith [KSS10].

De�nition D.1 (LPN assumption in matrix form). For all ^, let : = : (^) and @ = @(^) be integers and let
g = g(^) be a real in (0, 1/2). The decisional learning-parity-with-noise (LPN) assumption LPN:,g states that for
any = = poly(^), it is computationally hard to distinguish the following two distributions:

– �, B� + 4, where �← F:×=, B← F: , and 4 ← �=g
– �, D, where �← F:×= and D ← F=.

The McEliece-key-indistinguishability assumption is introduced in [CFS01] for signature context. The state-
ments states the public key of the McEliece encryption scheme is pseudorandom. See e.g., [DDMQN12].

De�nition D.2 (McEliece-key-indistinguishability assumption with respect to CodeGen). For all ^, let : =
: (^), = = =(^), and C = C (^) be positive integers. The McEliece-key-indistinguishability assumption with respect
to CodeGen, denoted by McE:,=,C ,CodeGen, states that it is computationally hard to distinguish the following two
distributions:

– �̃ := (�%, where (�, Γ) ← CodeGen(:, =), (← GL(:, F), and %← Perm(=, F).
– �̃ ← F:×=

We additionally introduce the Niederreiter-key-indistinguishability assumption with respect to CodeGen,
in which we employ parity-check matrices instead of generator matrices. See e.g., [FGK+13]. We notice that the
Niederreiter-key-indistinguishability assumption with respect to CodeGen is equivalent to the McEliece-key-
indistinguishability assumption with respect to CodeGen.

De�nition D.3 (Niederreiter-key-indistinguishability assumption with respect to CodeGen). For all ^, let : =
: (^), = = =(^), and C = C (^) be positive integers. The Niederreiter-key-indistinguishability assumption with respect
to CodeGen, denoted by Nie:,=,C ,CodeGen, states that it is computationally hard to distinguish the following two
distributions:

– �̃ := "�%, where (�, Γ) ← CodeGen(:, =), � := G2H(�), " ← GL(= − :, F), and %← Perm(=, F).
– �̃ ← F(=−:)×=

D.2 Code-based DPKEs

MeEliece-based DPKE. We review the McEliece PKE [McE78]. Let =, : , and C be positive integers with = > : .
We consider [=, :]F-linear code with an e�cient decoder that can correct any patter of up to C errors.

The public key is �̃ = (�%, where (is a random non-singular : × : matrix, � is a generator matrix in F:×=
of [=, :]F-linear code, and % is a random = × = permutation matrix. The ciphertext of < ∈ F: with randomness
4 ∈ SC is 2 = <�̃ + 4 ∈ F<. We can retrieve < using a secret key because we compute H%−1 = <(� + 4%−1,
decode it into <(, and obtain <. Observe that we can retrieve 4 also by computing 4 := 2 − <�̃. Thus, we
interpret (<, 4) as plaintext and obtain DPKE.

Correctly speaking, Decode(Γ, H%−1) in our de�nition outputs 4%−1. Thus, we obtain 4 := 4%−1 · % and
<(� = H%−1 − 4%−1, and so on. Now, we describe the McEliece-based DPKE.

Parameters: Let =, :, C, g be parameters with g = C/= − n for n > 0.
– The plaintext space isM := F: × SC .
– The sampler DM samples < ← F: and A ← �=g until wt(A) ≤ C.
– The ciphertext space is C := F=.
– We require 2= � 2: ·∑C

8=0
(=
C

)
. E.g., 2=−: � C · =C ≥ ∑C

8=0
(=
C

)
.

Key Generation: Gen(1^) generates (�, Γ) ← CodeGen(1^ , =, :, C), a random non-singular : × : matrix (, and
a random = × = permutation matrix %. It outputs ek = �̃ = (�% ∈ F:×= and dk = ((, �, %, Γ).

Encryption: Enc(ek, (<, 4)) outputs 2 = <�̃ + 4 ∈ F=.
Decryption: Dec(sk, 2) computes H := 2%−1, our decoder outputs 4′ := Decode(Γ, H), computes 3 ′ := H − 4′,

computes <′ such that <′ · � = 3 ′, and computes < := <′(−1.

The properties of this DPKE are summarized as follows:

30

Perfect correctness: If 2 = <(�%+4, then H = 2%−1 = <(�+4%−1, which is a codeword of<(plus error vector
4%−1 of weight at most C. Thus, Decode on input Γ and H outputs 4′ = 4%−1. Now, we have 3 ′ = H−4′ = <(�
and <′ = <(. Hence, we get < = <′(−1 as we wanted.

Sparseness: Sparseness follows from |C| = 2= � 2: ·∑C
8=0

(=
C

)
= |M| = |Enc(ek,M)|.

Pseudorandomness: What we want to show is

(�̃, 2 = <�̃ + 4) ≈2 (�̃, D),

where (�̃, dk) ← Gen(1^), (<, 4) ← DM , and D ← F=.
– We �rst replace �̃ with random �̄. This is justi�ed by the McEliece assumption with respect to CodeGen.
– We next replace 4 with random 4′← �=g . This is justi�ed by Lemma D.1 with our parameter setting.
– We next replace 2 = <�̄ + 4′ with random D. This is justi�ed by the LPN assumption LPN:,g .
– We then go backward by replacing random �̄ with �̃. This is justi�ed by the McEliece assumption with

respect to CodeGen again.

Niederreiter-basedDPKE. It is well-known that the Niederreiter PKE is the dual of the McEliece PKE [LDW94].11
Let us consider (=, :)@-code � with error-decoder up to C errors. The public key is �̃ = "�%, where " is a
random non-singular (= − :) × (= − :) matrix, � is an (= − :) × = parity-check matrix of code �, and % is a
random = × = permutation matrix. The ciphertext of 4 ∈ SC is 2 = 4�̃> ∈ F=−: . We can retrieve 4 using a secret
key because we compute 2"−> (= 4�̃>"−> = 4%>�>), decode it into 4%>, and compute 4%−> = 4.

Parameters: Let =, :, C, g be parameters with g = C/= − n for n > 0.
– The plaintext space isM := SC .
– The sampler DM samples 4 ← �=g until wt(4) ≤ C.
– The ciphertext space is C := F=.
– We require 2= � 2: ·∑C

8=0
(=
C

)
. E.g., 2=−: � C · =C ≥ ∑C

8=0
(=
C

)
.

Key Generation: Gen(1^) generates (�, Γ) ← CodeGen(1^ , =, :, C), � := �∗, a random non-singular (=− :) ×
(= − :) matrix " , and a random = × = permutation matrix %. It outputs ek = �̃ = "�% ∈ F(=−:)×= and
dk = (", �, %, Γ).

Encryption: Enc(ek, 4) outputs 2 = 4�̃> ∈ F=−: .
Decryption: Dec(sk, 2) computes 2′ := 2"−>, decodes it into 4′ := Decode(Γ, 2′), and computes 4 := 4′%−>.

The properties of this DPKE are summarized as follows:

Perfect correctness: This is obvious.
Sparseness: Sparseness follows from |C| = 2=−: � ∑C

8=0
(=
C

)
= |M| = |Enc(ek,M)|.

Pseudorandomness: What we want to show is

(�̃, 2 = 4 · �̃>) ≈2 (�̃, D),

where (�̃, dk) ← Gen(1^), 4 ← DM , and D ← F=−: .
– We �rst replace �̃ with random �̄. This is justi�ed by the Niederreiter assumption with respect to

CodeGen.
– We next replace 4 with random 4′← �=g . This is justi�ed by Lemma D.1 with our parameter setting.
– We next replace 2 = 4 · �̄> with random D. This is justi�ed by the LPN assumption LPN:,g . (See

[LDW94].)
– We then go backward by replacing random �̄ with �̃. This is justi�ed by the Niederreiter assumption

with respect to CodeGen.

11 Li, Deng, and Wang showed that the onewayness of the Niederreiter PKE is equivalent to that of the McEliece
PKE [LDW94].

31

E PR-CPA security

Here, we recall the security notion of DPKE called PR-CPA de�ned in previous versions of this paper. Then we
prove that PR-CPA-security is implied by the disjoint simulatability. For PR-CPAsecurity, we require a DPKE
scheme to have two additional PPT algorithms G̃en and Ẽnc: G̃en is a PPT algorithm that takes the security
parameter as input and outputs a fake encryption key ẽk, which is indistinguishable from a real encryption key.
This means that the original encryption algorithm Enc should be able to encrypt a message even with a fake
encryption key. Ẽnc is a PPT algorithm that takes a fake encryption key as input and outputs a random fake
ciphertext, which is indistinguishable from a random real ciphertext with a fake encryption key. We further
require that the probability that a random fake ciphertext with a fake encryption key falls in the range of a
real ciphertext with a fake encryption key is negligible. For example, this condition is satis�ed if a set of real
ciphertexts is su�ciently sparser than a set of fake ciphertext or a set of real ciphertexts is disjoint with a set of
fake ciphertext. The formal de�nition follows:

De�nition E.1. Let DM be a distribution onM. A deterministic PKE scheme PKE = (Gen, Enc,Dec) with plain-
text and ciphertext spacesM and C is DM-PR-CPA secure if the following properties hold; There exist two PPT
algorithms G̃en and Ẽnc that satisfy the followings:

– (Statistical Disjointness:) for any ẽk generated by G̃en(1^), the probability that a fake ciphertext is in the range
of a real ciphertext generated by Enc(ẽk, ·) is negligible, that is,

Pr[2 ∈ Enc(ẽk,M) | 2 ← Ẽnc(ẽk)]

is negligible.
– (PR-Key Security:) for any PPT adversary A, its advantage to distinguish a real key from a fake key, denoted

by Advpr-key
PKE,A (^), is negligible;

Advpr-key
PKE,A (^) :=

���Pr
[
1← A(ek) | (ek, dk) ← Gen(1^)

]
− Pr

[
1← A(ẽk) | ẽk ← G̃en(1^)

] ���
is negligible.

– (PR-Ciphertexts Security:) for any PPT adversary A, its advantage to distinguish a real ciphertext from a fake
ciphertext with a fake key, denoted by Advpr-cipher

PKE,DM ,A (^), is negligible;

Advpr-cipher
PKE,DM ,A (^) :=

������Pr
[
1← A(ẽk, 2∗) | ẽk ← G̃en(1^);<∗ ← DM ; 2∗ := Enc(ẽk, <∗)

]
− Pr

[
1← A(ẽk, 2∗) | ẽk ← G̃en(1^); 2∗ ← Ẽnc(ẽk)

] ������
is negligible.

Remark E.1. Though the above de�nition is essentially the same as the one in previous versions, there are some
notational di�erences described below.

– In previous versions, we implicitly assumed that message spaceM is associated with a certain distribution,
and used < ←M to mean < is sampled according to this distribution. To clarify this, we explicitly denote
a distribution DM , and de�ne the PR-CPA-security respect to the distribution.

– In previous versions, we used a (), n)-type de�nition. For compatibility to the other part of the current
version, we quit it.

We prove that the disjoint simulatability implies the PR-CPA-security

Lemma E.1. If a DPKE scheme PKE = (Gen, Enc,Dec) is DM-disjoint simulatable, then PKE is DM-PR-CPA-
secure.

Proof. Let S be a simulator that satis�es the properties in De�nition 3.1. Then we construct G̃en and Ẽnc as
follows.

G̃en(1^): This algorithm runs (ek, dk) ← Gen(1^) and outputs ẽk := ek.
Ẽnc(ẽk): This algorithm runs 2 ← S(ẽk) and outputs 2.

32

It is easy to see that we have

– Pr[2 ∈ Enc(ẽk,M) | 2 ← Ẽnc(ẽk)] = DisjPKE,S (^),
– Advpr-key

PKE,A (^) = 0,
– Advpr-cipher

PKE,DM ,A (^) = Advds-ind
PKE,DM ,S,A (^).

Therefore the lemma follows.

33

	Tightly-Secure Key-Encapsulation Mechanism in the Quantum Random Oracle Model

