
Secure Multi-Party Computation in Large Networks∗

Varsha Dani1, Valerie King2, Mahnush Movahedi3†, Jared Saia1, Mahdi Zamani4†

1University of New Mexico, Albuquerque, NM
2University of New Victoria, Victoria, BC

3String Labs, Palo Alto, CA
4Visa Research, Palo Alto, CA

Abstract
We describe scalable protocols for solving the secure multi-party computation (MPC) problem among a significant

number of parties. We consider both the synchronous and the asynchronous communication models. In the synchronous
setting, our protocol is secure against a static malicious adversary corrupting less than a 1/3 fraction of the parties.
In the asynchronous environment, we allow the adversary to corrupt less than a 1/8 fraction of parties. For any
deterministic function that can be computed by an arithmetic circuit with m gates, both of our protocols require each
party to send a number of messages and perform an amount of computation that is Õ(m/n+

√
n). We also show that

our protocols provide statistical and universally-composable security.
To achieve our asynchronous MPC result, we define the threshold counting problem and present a distributed

protocol to solve it in the asynchronous setting. This protocol is load balanced, with computation, communication and
latency complexity of O(logn), and can also be used for designing other load-balanced applications in the asynchronous
communication model.

1 Introduction
In secure multi-party computation (MPC), a set of parties, each having a secret value, want to compute a common
function over their inputs, without revealing any information about their inputs other than what is revealed by the output
of the function. Recent years have seen a renaissance in MPC, but unfortunately, the distributed computing community
is in danger of missing out. In particular, while new MPC algorithms boast dramatic improvements in latency and
communication costs, none of these algorithms offer significant improvements in the highly distributed case, where the
number of parties is large.

This is unfortunate since MPC holds the promise of addressing many important problems in distributed computing.
How can peers in BitTorrent auction off resources without hiring an auctioneer? How can we design a decentralized
Twitter that enables provably anonymous broadcast of messages? How can we create deep learning algorithms over data
spread among large clusters of machines?

Most large-scale distributed systems are composed of nodes with limited resources. This makes it of extreme
importance to balance the protocol load across all parties involved. Also, large networks tend to have weak admission
control mechanisms, which makes them likely to contain malicious nodes. Thus, a key variant of the MPC problem that
we consider will be when a certain hidden fraction of the nodes are controlled by a malicious adversary.

1.1 Our Contribution
In this paper, we describe general MPC protocols for computing arithmetic circuits when the number of parties is large.
In terms of communication and computation costs per party, our protocols scale sublinearly with the number of parties

∗This research was partially supported by NSF CAREER Award 0644058 and NSF grants CCR-0313160 and CCF-1320994.
†The work was done when this author was a student at the University of New Mexico.

1

and linearly with the size of the circuit.
For achieving sublinear communication and computation costs, our protocols critically rely on the notion of quorums.

A quorum is a set of O(logn) parties, where the number of corrupted parties in each quorum is guaranteed not to exceed
a certain fraction. We describe an efficient protocol for creating a sufficient number of quorums in the asynchronous
setting.

To adapt to the asynchronous setting, we introduce the general problem of threshold counting. We show how this
problem relates to the issue of dealing with arbitrarily-delayed inputs in our asynchronous MPC protocol, and then
propose an efficient protocol for solving it.

When a protocol is concurrently executed alongside other protocols (or with other instances of the same protocol),
one must ensure this composition preserves the security of the protocol. We show that our protocols are secure under
such concurrent compositions by proving its security in the universal composability (UC) framework of Canetti [Can01].

1.2 Model
Consider n parties P1, ...,Pn in a fully-connected network with private and authenticated channels. In our asynchronous
protocol, we assume communication is via asynchronous message passing so that sent messages may be arbitrarily and
adversarially delayed. Latency (or running time) of a protocol in this model is defined as the maximum length of any
chain of messages sent/received throughout the protocol (see [CD89, AW04]).

We assume a malicious adversary who controls an unknown subset of parties. We refer to these parties as corrupted
and to the remaining as honest. The honest parties always follow our protocol, but the corrupted parties not only may
share information with other corrupted parties but also can deviate from the protocol in any arbitrary manner, e.g., by
sending invalid messages or remaining silent.

We assume the adversary is static meaning that it must select the set of corrupted parties at the start of the protocol.
We assume that the adversary is computationally unbounded; thus, we make no cryptographic hardness assumptions.

1.3 Problem Statement
Multi-Party Computation. In the MPC problem, n parties, each holding a private input, want to jointly evaluate a
deterministic n-ary function f over their inputs while ensuring:

1. Each party learns the correct output of f ; and

2. No party learns any information about other parties’ inputs other than what is revealed from the output.

Constraints for the Asynchronous Model. Consider a simple setting, where, the n parties send their inputs to a
trusted party P who then locally computes f and sends the result back to every party. In the asynchronous setting, the
MPC problem is challenging even with such a trusted party. In particular, since the t corrupted parties can refrain from
sending their inputs to P, it can only wait for n− t inputs rather than n inputs. Then, it can compute f over n inputs
consisting of n− t values received from the parties and t dummy (default) values for the missing inputs. Finally, the
trusted party sends the output back to the parties. The goal of asynchronous MPC is to achieve the same functionality as
the above scenario but without the trusted party P.

Quorum Building. Consider n parties connected pairwise via authenticated and private channels, where up to t of the
parties are controlled by a malicious adversary. In the quorum building problem, the parties want to agree on a set of n
quorums.

Definition 1 (Quorum). A quorum is a set of Θ(logn) parties, where the fraction of corrupted parties in this set is at
most t/n+ ε , for a small positive constant ε .

Threshold Counting. In this problem, there are n honest parties each with a flag bit initially set to 0. At least τ < n of
the parties will eventually set their bits to 1. The goal is for all the parties to learn when the number of bits set to 1
becomes greater than or equal to τ.

2

Definition 2 (Threshold Counting). Consider n honest parties connected to each other via an asynchronous network
with authenticated pairwise channels. Each party is holding a bit that is initially set to 0 and will be permanently set to
1 upon some external event independently observed by the party. In the threshold counting problem, all parties want to
learn eventually if the number of 1 bits has become greater than or equal to τ.

1.4 Our Results
The main results of this paper are summarized by the following theorems. We consider an n-ary function, f , represented
as an arithmetic circuit of depth d with m gates. We say an event occurs with high probability (w.h.p), if on problems of
size n, the event occurs with probability 1−O(1/nc), for any constant c > 0.

Theorem 1. There exists a universally-composable protocol that with high probability solves the synchronous MPC
problem and has the following properties:

• It is secure against t < (1/3− ε)n corrupted parties, for any fixed ε > 0;

• Each party sends Õ(m/n+
√

n) bits;

• Each party performs Õ(m/n+
√

n) computations;

• The latency is O(d polylog(n)).

We prove Theorem 1 in Section 5.3.

Theorem 2. There exists a universally-composable protocol that with high probability solves the asynchronous MPC
problem and has the following properties:

• It is secure against t < (1/8− ε)n corrupted parties, for any fixed ε > 0;

• Each party sends Õ(m/n+
√

n) bits;

• Each party performs Õ(m/n+
√

n) computations;

• The expected latency is O(d polylog(n)).

We prove Theorem 2 in Section 5.4.

Theorem 3. There exists a protocol that solves the threshold counting problem among n parties with probability 1− 1
7n

while ensuring:
1. Each party sends at most O(logn) messages of constant size;

2. Each party receives at most O(logn) messages;

3. Each party performs O(logn) computations;

4. Total latency is O(logn).

We prove Theorem 3 in Section 6.

Theorem 4. There exists a protocol that can solve the quorum building problem with probability 1−1/nc (for some
fixed c > 0) among n parties in the asynchronous communication model with the following properties:

1. The protocol is secure against t < (1/4− ε)n corrupted parties, for any fixed ε > 0;

2. The protocol builds n quorums each of size at most c logn;

3. Each party sends at most Õ(
√

n) bits;

4. Each party performs Õ(
√

n) computations; and

5. The latency is O(polylog(n)).

3

We prove Theorem 1 in Section 7.

Paper Organization. In Section 2, we discuss related work. In Section 3, we define our notation and discuss the
building blocks used in our protocols. We present our MPC protocols in Section 4. In Section 5, we prove the security
of our MPC protocols. Section 6 is a self-contained presentation of the threshold counting problem and our solution
to this problem. In Section 7, we describe an asynchronous protocol for the quorum building problem. Finally, we
conclude in Section 8 and discuss future directions.

2 Related Work
Due to the large body of work, we do not attempt a comprehensive review of the MPC literature here, but rather focus
on seminal work and, in particular, schemes that achieve sublinear per-party communication costs.

2.1 Traditional MPC
The MPC problem was first described by Yao [Yao82]. He described an algorithm for MPC with two parties in the
presence of a semi-honest adversary. Goldreich et al. [GMW87] propose the first MPC protocol that is secure against a
malicious adversary. This work along with [CDG88, GHY88] are all based on cryptographic hardness assumptions.
These were later followed by several cryptographic improvements [BMR90, GRR98, CFGN96].

In a seminal work, Ben-Or et al. [BGW88] show that every function can be computed with information-theoretic
security in the presence of a semi-honest adversary controlling less than half of the parties and in the presence of a
malicious adversary controlling less than a third of the parties. They describe a protocol for securely evaluating an
arithmetic circuit that represents the function.

This work was later improved in terms of both communication and computation costs in [CCD88, Bea91, GRR98].
Unfortunately, these methods all have poor communication scalability. In particular, if there are n parties involved in the
computation, and the function f is represented by a circuit with m gates, then these algorithms require each party to
send a number of messages and perform a number of computations that is Ω(nm).

These were followed by several improvements to the cost of MPC, when m (i.e., the circuit size) is much larger
than n [DI06, DN07, DIK+08]. For example, the protocol of Damgård et al. [DIK+08] incurs computation and
communication costs that are Õ(m) plus a polynomial in n. Unfortunately, the additive polynomial in these algorithms
is large (at least Ω(n6)) making them impractical for large n. One may argue that the circuit-dependent complexity
dominates the polynomial complexity for large circuits. However, we believe there are many useful circuits such as the
ones used in [MSZ15, HKI+12], which have relatively small number of gates.

2.2 Asynchronous MPC
Foundational work in asynchronous MPCwas presented by Ben-Or et al. [BCG93]. They adapt the protocol of [BGW88]
to the asynchronous setting and show that asynchronous MPC is possible for up to n/3 fail-stop faults and up to n/4
malicious faults. Improvements were made by Srinathan and Rangan [SR00] and Prabhu et al. [PSR02] with a final
communication cost of O(n3) per multiplication. Beerliová-Trubíniová and Hirt [BTH07] achieved perfectly-secure
asynchronous MPC with the optimal resiliency bound of up to n/4.

Damgård et al. [DGKN09] describe a perfectly secure MPC that guarantees termination only when the adversary
allows a preprocessing phase to terminate. However, their protocol is not entirely asynchronous, as they assume a few
synchronization points; hence, they can achieve a resiliency bound of up to n/3.

Choudhury et al. [CHP13] propose an amortized asynchronousMPC protocols with linear communication complexity
per multiplication gate meaning that the communication done by an individual party for each gate does not grow with
the number of parties. This protocol is unconditionally secure against up to n/4 corrupted parties with a small failure
probability. In our paper, we are directly addressing the third open problem of [CHP13] as we quote here:

“If one is willing to reduce the resilience t from the optimal resilience by a constant fraction, then by using additional
techniques like packed secret sharing, committee election and quorum forming, one can achieve further efficiency in the
synchronous MPC protocols, as shown in [...]. It would be interesting to see whether such techniques can be used in the
asynchronous settings to gain additional improvements.”

4

2.3 MPC with Sublinear Overhead
We first introduced the notion of using quorums to decrease message cost in MPC in a brief announcement [DKMS12].
In that paper, we described a synchronous protocol with bit complexity of Õ(m/n+

√
n) per party that can tolerate a

computationally unbounded adversary who controls up to (1/3− ε) fraction of the parties for any fixed positive ε .
In a later paper [DKMS14], we extended our synchronousMPC result [DKMS12] to the asynchronous communication

setting by requiring at most a (1/8− ε) fraction corrupted parties. A major challenge in the asynchronous model is to
ensure that at least n− t inputs are committed to before the circuit is evaluated. To address this issue, we introduce and
solve the threshold counting problem, where the parties jointly count the number of inputs submitted to protocol and
proceed to the circuit evaluation step once this number exceeds a certain threshold. We later describe the details of this
scheme and how it allows us to deal with the asynchrony of channels in MPC.

Boyle et al. [BGT13] also used the notion of quorums to design a synchronous MPC protocol with sublinear per-party
communication cost. Their protocol is secure against a static and computationally bounded adversary corrupting up
to (1/3− ε) fraction of parties, for any fixed positive ε . Interestingly, the communication cost of their protocol is
independent of circuit size. This is achieved by evaluating the circuit over encrypted values using a fully-homomorphic
encryption (FHE) scheme [Gen09]. Unfortunately, this protocol is not fully load-balanced as it evaluates the circuit
using only one quorum (called the supreme committee). The protocol requires each party to send polylog(n) messages
of size Õ(n) bits and requires polylog(n) rounds.

Chandran et al. [CCG+14] address two limitations of the protocol of [BGT13]: tolerating an adaptive adversary and
achieving optimal resiliency (i.e., t < n/2 malicious parties). They replace the common reference string assumption
of [BGT13] with a different setup assumption called symmetric-key infrastructure, where every pair of parties shares a
uniformly-random key that is unknown to other parties. The authors also show how to remove the SKI assumption at a
cost of increasing the communication locality by O(

√
n). Although this protocol provides small communication locality,

the bandwidth cost seems to be super-polynomial due to large message sizes.
Boyle et al. [BCP15] also used the notion of quorums to achieve a sublinear MPC protocol for computing

RAM programs [GO96] in large networks. For securely evaluating a RAM program Π, their protocol incurs a total
communication and computation of Õ(Comp(Π)+ n) while requiring Õ(|x |+Space(Π)/n) memory per party, where
Comp(Π) and Space(Π) are computational and space complexity of Π respectively, and |x | denotes the input size.
While evaluation of RAM programs can in principle allow for more efficient function evaluation than evaluation of
arithmetic circuits1, the construction of [BCP15] incurs a memory overhead on every party that depends on the memory
complexity of the program. Also, the protocol of [BCP15] only works in synchronous networks.

In Table 1, we review recent MPC results that provide sublinear communication locality. All of these results rely on
some quorum building technique for creating a set of quorums each with honest majority.

The current paper is the complete version of our previous papers on synchronous [DKMS12] and asyn-
chronous [DKMS14] MPC. We not only improve the presentation of our protocols but also provide techniques
for facilitating their implementation in practice (see Section 4.1.3). We also completely modify our proofs to show the
security of our protocols in the universal composability framework. We also describe a protocol for quorum building in
the asynchronous setting, which is an extension of our previous work on quorum building [KLST11] (see Section 7).

2.4 Counting Networks
The threshold counting problem can be solved in a load-balanced way using counting networks that were first introduced
by Aspnes et al. [AHS91]. Counting networks are constructed from simple two-input two-output computing elements
called balancers connected to one another by wires. A counting network can count any number of inputs even if
they arrive at arbitrary times, are distributed unevenly among the input wires, and propagate through the network
asynchronously.

Aspnes et al. [AHS91] establish an O(log2 n) upper bound on the depth complexity of counting networks. Since the
latency of counting is dependent on the depth of the network, minimizing this depth has been the goal of many papers in
this area. A simple explicit construction of an O(clog∗ n logn)-depth counting network (for some positive constant c),
and a randomized construction of an O(logn)-depth counting network that works with high probability are described by

1See [GKP+13] for a discussion about this.

5

Table 1: Recent MPC results with sublinear communication costs

Protocol Adversary Resiliency
Bound Async? Total Message

Complexity
Total Computation

Complexity Latency Msg Size LB?1

[BGT13]2 Bounded (1/3− ε)n No Õ(n) Ω̃(n)+ Ω̃(κmd3) Õ(1) O(n` ·
polylog(n))

No

[BCP15] Unbounded (1/3− ε)n No Õ
(
Comp(Π)+n

)
Õ

(
Comp(Π)+n

)
Õ (Time(Π)) O(`) Yes

[CCG+14] Bounded3 n/2 No
O(n log1+ε n)

or
O(n
√
n log1+ε n)

Ω(n log1+ε n)
or

Ω(n
√
n log1+ε n)

O(logε
′
n)

Ω
(
loglogn n

)
or

Ω
(√

n
logn) Yes

This paper
(sync)

Unbounded (1/3− ε)n No Õ
(
m+n

√
n
)

Õ
(
m+n

√
n
) O

(
d+

polylog(n)
) O(`) Yes

This paper
(async)

Unbounded (1/8− ε)n Yes Õ
(
m+n

√
n
)

Õ
(
m+n

√
n
) O

(
d+

polylog(n)
) O(`) Yes

Parameters: n is the number of parties; ` is the size of a field element; d is the depth of the circuit; κ is the the security parameter; ε, ε ′ are the
positive constants; Comp(Π) is the computational complexity of RAM program Π; Time(Π) is the worst-case (parallel) running time of RAM
program Π.

Notes:
1Is the protocol load-balanced?
2The total computation complexity is calculated based on the FHE scheme of [BGV12].
3Assumes a symmetric-key infrastructure. However, unlike the rest, this protocol is secure against an adaptive adversary.

Klugerman and Plaxton in [KP92, Klu95]. These constructions use the AKS sorting network [AKS83] as a building
block. While this sorting network and the resulting counting networks have O(logn) depth and require each party (or
gate in their setting) to send O(logn) messages, large hidden constants render them impractical.

3 Preliminaries
In this section, we define standard terms, notation, and known building blocks used throughout this paper.

Notation. We denote the set of integers {1, ...,n} by [n]. A protocol is called t-resilient if no set of t or fewer parties can
influence the correctness of the outputs of the remaining parties. We assume that all arithmetic operations in the circuit
are carried out over a finite field F. The size of F depends on the particular function to be computed and is always
Ω(logn). All of the messages transmitted by our protocol are logarithmic in F and n. We assume the inputs of each
party is exactly one element of F.

Let r be a value chosen uniformly at random from F and x̂ = x+ r , for any x ∈ F. In this case, we say x is masked
with r and we refer to r and x̂ as the mask and the masked value, respectively. We let Majority(x1, ..., xn) refer to a local
procedure that returns the most common element in the list x1, ..., xn.

Universal Composability Framework. When a protocol is executed several times possibly concurrently with other
protocols, one requires ensuring this composition preserves the security of the protocol. This is because an adversary
attacking several protocols that run concurrently can cause more harm than by attacking a stand-alone execution, where
only a single instance of one of the protocols is executed.

One way to ensure this is to show the security of the protocol under concurrent composition using the universal
composability (UC) framework of Canetti [Can01]. A protocol that is secure in the UC framework is called UC-secure.
We describe this framework in Section 5.

6

Verifiable Secret Sharing. An (n, t)-secret sharing scheme is a protocol in which a dealer who holds a secret value
shares it among n parties such that any set of t < n parties cannot gain any information about the secret, but any set of at
least t +1 parties can reconstruct it. An (n, t)-verifiable secret sharing (VSS) scheme is an (n, t)-secret sharing scheme
with the additional property that after the sharing stage, a dishonest dealer is either disqualified, or the honest parties can
reconstruct the secret, even if shares sent by dishonest parties are spurious. When we say a set of shares of a secret are
valid, we mean the secret can be uniquely reconstructed solely from the set of shares distributed among the parties.

In this paper, we use the VSS schemes of Ben-Or et al. in [BGW88] and [BCG93] for the synchronous and
asynchronous settings, respectively. A secret sharing scheme is linear if given two shares ai and bi of secrets a and b,
ci = ai + bi is a valid share of c = a+ b. The VSS protocols of [BGW88] and [BCG93] are based on Shamir’s linear
secret sharing [Sha79] scheme. In this scheme, the dealer shares a secret s among n parties by choosing a random
polynomial f (x) of degree t such that f (0) = s. For all i ∈ [n], the dealer sends f (i) to the i-th party. Since at least t +1
points are required to reconstruct f (x), no coalition of t or less parties can reconstruct s.

Theorem 5 ([BGW88]). There exists a linear (n,n/3)-VSS scheme that is perfectly-secure against a static adversary in
the synchronous communication model.

Theorem 6 ([BCG93]). There exists a linear (n,n/4)-VSS scheme that is perfectly-secure against a static adversary in
the asynchronous communication model.

We refer to the sharing stages of these VSS protocols as VSS and AVSS, respectively. The reconstruction algorithm
requires a Reed-Solomon decoding algorithm [RS60] to correct up to t invalid shares sent by corrupted users. In our
protocols, we use the error correcting algorithm of Berlekamp and Welch [BW86] described in the following. Let Fp
denote a finite field of prime order p, and S = {(x1, y1) | xi, yi ∈ Fp }

η
i=1 be a set of η points, where η − ε of them are on a

polynomial y = P(x) of degree τ, and the rest ε < (η − τ+1)/2 points are erroneous.
Given the set of points S, the goal is to find the polynomial P(x). The algorithm proceeds as follows. Consider two

polynomials E(x) = e0+ e1x+ ...+ eε xε of degree ε, and Q(x) = q0+ q1x+ ...+ qk xk of degree k ≤ ε+ τ−1 such that
yiE(xi) =Q(xi) for all i ∈ [η]. This defines a system of η linear equations with ε+ k < η variables e0, ..., eε,q0, ...,qk
that can be solved efficiently using Gaussian elimination technique to get the coefficients of E(x) and Q(x). Finally,
calculate P(x) =Q(x)/E(x).

Classic MPC. Our protocols rely on the classic MPC protocols of Ben-Or et al. [BGW88] and Ben-Or et al. [BCG93]
for the synchronous and asynchronous settings, respectively.

Theorem 7 ([BGW88, AL11]). There exists an MPC protocol that is perfectly secure under concurrent composition
against a static adversary corrupting t < n/3 of the parties in the synchronous communication model. The protocol
proceeds in O(d) rounds, and each party sends poly(m,n) bits, where d is the depth of the circuit to be computed and m
is the number of gates in the circuit.

Theorem 8 ([BCG93]). There exists an MPC protocol that is perfectly secure against a static adversary corrupting
t < n/4 of the parties in the asynchronous communication model. The expected running time of the protocol is O(d logn),
where d is the depth of the circuit to be computed. Each party sends poly(m,n) bits, where m is the number of gates in
the circuit.

When run among n parties to compute a circuit with m gates, both protocols send O(m poly(n)) bits and incur a
latency of O(m). We refer to the former protocol as CMPC and to the latter as ACMPC.

In this paper, we use the above VSS and classic MPC protocols only among logarithmic-size groups of parties and
only for computing logarithmic-size circuits. Thus, the communication overhead per invocation of these protocols will
be polylog(n).

Byzantine Agreement. In the Byzantine agreement problem, each party is initially given an input bit. All honest
parties must agree on a bit which coincides with at least one of their input bits.

When parties only have access to secure pairwise channels, a Byzantine agreement protocol is required to ensure
reliable broadcast. This guarantees all parties receive the same message even if the broadcaster (dealer) is dishonest and

7

sends different messages to different parties. Every time a broadcast is required in our protocols, we use the protocols of
Ben-Or and El-Yaniv [BE03].

Theorem 9 ([BE03]). There exist Byzantine agreement protocols that are perfectly secure under concurrent composition
against a static adversary corrupting t < n/3 of the parties in the synchronous and asynchronous communication models.
The protocol proceeds in constant rounds. Each party sends poly(n) bits.

When all parties participating in a run of the broadcast protocol receive the same message, we say the parties have
received consistent messages.

4 Our Protocols
We now describe our protocols for scalable MPC in large networks. Throughout this section, we consider the network
model defined in Section 1.2. We first describe our synchronous protocol and then adapt this protocol to the asynchronous
setting.

We assume that the parties have an arithmetic circuit C computing f ; the circuit consists of m addition and
multiplication gates. For convenience of presentation, we assume each gate has in-degree and out-degree 2.1 For any
two gates x and y in C, if the output of x is input to y, we say that x is a child of y and that y is a parent of x. We
assume the gates of C are numbered 1,2, . . .,m, where the gate numbered 1 is the output (root) gate.

4.1 Synchronous MPC
The high-level idea behind our protocols is first to create a sufficient number of quorums and assign to each gate in the
circuit one of these quorums. Then, for each party Pi holding an input xi ∈ F, Pi secret-shares xi among all parties in
the quorum associated with the i-th input gate. We refer to such a quorum as an input quorum.

Next, the protocol evaluates the circuit gate-by-gate starting from input gates. Each gate is jointly evaluated by
parties of the quorum associated with this gate over the secret-shared inputs provided by its children. In a similar way,
the result of the gate is then used as the input to the computation of the parent gate. Finally, the quorum associated with
the root gate constructs the final result and sends it to all parties via a binary tree of quorums.

This high-level idea relies on solutions to the following main problems.

Quorum Building. Creating a sufficient number of quorums. In Section 7, we describe a randomized protocol called
Build-Quorums that achieves this goal with high probability.

Circuit Evaluation. Securely evaluating each gate over secret-shared inputs by the parties inside a quorum. In
Section 4.1.2, we describe a protocol called Circuit-Eval that achieves this goal.

Share Renewal. Sending the result of one quorum to another without revealing any information to any individual party
or to any coalition of corrupted parties in both quorums. We solve this as part of our gate evaluation protocol described
in Section 4.1.2.

Protocol 1 is our main protocol. When we say a party VSS-shares (or secret-shares) a value s in a quorum Q (or
among a set of parties), we mean the party participates as the dealer with input s in the protocol VSS with all parties in
Q (or in the set of parties).

The protocol starts by running Build-Quorums to create n quorums Q1, ...,Qn. Then, it assigns the gates of C to
these quorums in the following way. The output gate of C is assigned to Q1; then, every gate in C numbered i (other
than the output gate) is assigned to Q(i mod n) . For each gate u ∈ C, we let Qu denote the quorum associated with u, yu
denote the output of u, ru be a random element from F, and ŷv denote the masked output of u, where ŷu = yu + ru .

1Our protocol works, with minor modifications, for gates with arbitrary constant fan-in and fan-out.

8

Protocol 1 MPC

1. Quorum Building. All parties run Build-Quorums to agree on n good quorums Q1, ...,Qn. The i-th gate of C is assigned to
Q(i mod n) , for all i ∈ [m].

2. Input Commitment. For all i ∈ [n], party Pi holding an input value xi ∈ F runs the following steps:

(a) Pick a uniformly random element ri ∈ F, set x̂ = xi + ri , and broadcast x̂ to Qi .

(b) Run VSS to secret-share ri in Qi .

3. Circuit Evaluation. All parties participate in a run of Circuit-Eval to securely evaluate C.

4. Output Reconstruction. For the output gate z, each party in Qz performs the following steps:

(a) Send his share of rz to all other parties in Qz .

(b) Upon receiving all the shares of rz , run the Reed-Solomon decoding procedure to correct invalid shares. Then,
reconstruct rz from the corrected shares.

(c) Set the circuit output message: y← ŷz − rz .

(d) Send y to all parties in the Q2 and Q3.

5. Output Propagation. For every i ∈ {2, ...,n}, each party in Qi performs the following steps:

(a) For each j ∈ [q], receive y(j) from Pj ∈ Q bi/2c , and calculate y← Majority
(
y(1), ..., y(q)

)
.

(b) If 2i ≤ n, then send y to all parties in Q2i . If 2i+1 ≤ n, then send y to all parties in Q2i+1.

4.1.1 Input Commitment

Let Qi be the quorum associated with party Pi who holds input xi . At the start of our protocol, Pi samples a value ri
uniformly at random from F, sets x̂ = xi + ri , and broadcasts x̂ to all parties in Qi . Next, Pi runs VSS to secret-share ri
among all parties in Qi .

4.1.2 Circuit Evaluation

The main idea for reducing the amount of communication required in evaluating the circuit is quorum-based gate
evaluation. If each party participates in the computation of the whole circuit, it must communicate with all other parties.
Instead, in quorum-based gate evaluation, each gate of the circuit is computed by a gate gadget. A gate gadget (see
Figure 1) consists of three quorums: two input quorums and one output quorum. Input quorums are associated with the
gate’s children who serve inputs to the gate. The output quorum is associated with the gate itself and is responsible for
creating a shared random mask and maintaining the output of the quorum for later use in the circuit. As depicted in
Figure 1, these gate gadgets connect to form the entire circuit. In particular, for any gate u, the output quorum of u’s
gate gadget is the input quorum of the gate gadget for all of u’s parents.

The parties in each gate gadget run CMPC among themselves to compute the gate operation. To ensure privacy
is preserved, each gate gadget maintains the invariant that the value computed by the gadget is the value that the
corresponding gate in the original circuit would compute, masked by a uniformly random element of the field. This
random element is not known to any individual party. Instead, shares of it are held by the members of the output quorum.
Thus, the output quorum can participate as an input quorum for the evaluation of any parent gate and provide both the
masked version of the inputs and shares of the mask. The gate gadget computation is performed in the same way for all
gates in the circuit until the final output of the whole circuit is computed. After the input commitment step, for each
input gate v, parties in Qv know the masked input ŷv , and each has a share of the mask rv .

Before proceeding to the circuit evaluation algorithm, let us discuss why we mask inputs/output of each quorum
rather than just holding them as secret-shared values inside the quorum. Once the computation of the gate associated

9

CMPC

Qv

CMPC

Qu

QwQv

CMPC

Qw

Same quorumsSame quorums

Figure 1: The gate gadgets for gate u and its left and right children

with Qv is finished over secret-shared inputs, assume the parties in Qv hold shares of yv . The parties in Qv need to
forward the shared result to the parties in the next quorum in the circuit to serve as an input to the next gate. Let Qu be
the next quorum as shown in Figure 2. Since at most a 1/3 fraction of the parties in each quorum are corrupted, if the
parties in Qv directly send their shares to the parties in Qu , then the adversary can learn more than a 1/3 fraction of the
shares of yv using a coalition of corrupted parties in Qv and Qu , and thus gain some information about yv . Therefore,
we need a fresh secret sharing of yv as the input to Qu that is independent of the sharing in Qv . This is done by masking
yv using a fresh random value rv to form the masked value ŷv = yv + rv , which serves as an input to the computation of
the next gate u. This random value is generated in Step 1 of Protocol 2. This mechanism prevents the adversary from
learning more than a 1/3 fraction of shares via a coalition of corrupted parties in two or more quorums.

The first step of the circuit evaluation is to generate shares of uniformly random field elements for all gates. If
a party is in a quorum at gate u, it generates shares of ru , a uniformly random field element, by participating in the
Gen-Rand protocol. These shares are needed as inputs to the subsequent run of CMPC.

Next, parties form the gadget for each gate u to evaluate the functionality of the gate using Circuit-Eval. Let v and w

be the left and right children of u respectively. The gate evaluation process is shown in Figure 2. The values yv and yw
are the inputs to u, and yu is its output as it would be computed by a trusted party. Each party in Qu has a share of the
random element ru via Gen-Rand. Every party in Qv has the masked value yv + rv and a share of rv (respectively for
Qw).

As shown in Part (b) of Figure 2, all parties in the three quorums participate in a run of CMPC, using their inputs,
in order to compute ŷu = yu + ru . Part (c) of the figure shows the output of the gate evaluation after participating in
CMPC. Each party in Qu now learns ŷu as well a share of ru . Therefore, parties in Qu now have the input required for
performing the computation of parents of u (if any). Note that both yu and ru remain unknown to any individual.

The gate evaluation is performed for all gates in C starting from the bottom to the top. The output of the quorum
associated with the output gate in C is the output of the entire algorithm. This quorum will unmask the output via the
output reconstruction step. The last step of the algorithm is to send this output to all parties. We do this via a complete
binary tree of quorums, rooted at the output quorum.

4.1.3 Implementing the Gate Circuit

For every gate u ∈ C, the Circuit-Eval protocol requires a circuit (as we denote by Cu) for unmasking the masked inputs
ŷv and ŷw , computing u’s functionality fu over the unmasked inputs, and masking the output with the gate’s random
value ru . This circuit is securely evaluated using the CMPC protocol by the quorum associated with u.

10

Protocol 2 Circuit-Eval

Goal. Given a circuit C and n input quorums Q1, ...,Qn holding inputs x1, ..., xn respectively in secret-shared format, this protocol
securely evaluates C. The protocol terminates with each party in the output quorum Qz holding ŷz and a share of rz .
For every level in C starting from level 1 and for every gate gadget rooted at u ∈ C at the current level with children v,w ∈ C, perform
the following steps:

1. Mask Generation. Parties in Qu run Gen-Rand to jointly generate a secret-shared random value ru ∈ F.

2. CMPC in Quorums. The following parties participate in a run of CMPC with their corresponding inputs to compute the
function defined below:

• Every party in Qu with his share of ru .

• Every party in Qv with his input(
ŷv, his share of rv

)
.

• Every party in Qw with his input(
ŷw, his share of rw

)
.

CMPC function (see Figure 3):

(a) Reconstruct ru,rv and rw .

(b) yv ← ŷv − rv

(c) yw ← ŷw − rw

(d) ŷu ← fu (yv, yw)+ ru

Protocol 3 Gen-Rand

Goal. A set of parties P1, ...,Pq in a quorum want to agree on a secret-shared value r chosen uniformly at random from F.

1. For all i ∈ [q], party Pi chooses ρi ∈ F uniformly at random and VSS-shares it among all q parties.

2. For every j ∈ [q], let q′ be the number of shares Pj receives from the previous step, and ρ1j, ..., ρq′ j be these shares. Pj

computes r j =
∑q′

k=1 ρk j .

11

(a) (b) (c)

CMPC

Qu

Qv Qw

Shares of ru

CMPC

Qu

Qv Qw

Shares of ru

Qv Qw

Shares of ru

yv + rv

Shares of rv

yw + rw

Shares of rw

yu + ru

Qu

yu = fu (yv + yw)

Figure 2: Evaluation of gate u: (a) generating ru , (b) providing inputs to CMPC, (c) receiving the masked outputs

For unmasking an input, Cu requires a reconstruction circuit, which given a set of shares, outputs the corresponding
secret. Since dishonest parties may send spurious shares, the circuit implements the error-correcting algorithm of
Berlekamp and Welch [BW86] to fix such corruptions. Then, the resulting shares are given to an interpolation circuit,
which implements a simple polynomial interpolation. Figure 3 depicts the circuit for gate u.

Following the decoding algorithm of [BW86], since the Gaussian elimination algorithm over finite fields has O(n3)
arithmetic complexity [Far88], the corresponding circuit has at most O(n3) levels. Since the interpolation circuit consists
of at most O(n2) arithmetic operations (using the Lagrange’s method [Abr74]), the overall depth of the reconstruction
circuit will be O(n3).

4.2 Asynchronous MPC
We now adapt our synchronous protocol to the asynchronous communication model. In the new model, we assume at
most a 1/8− ε fraction of the parties is corrupted. We do this by modifying the following parts in Protocol 1:

1. We replace the synchronous subprotocols VSS and CMPC with their corresponding asynchronous versions AVSS
and ACMPC respectively. In Section 7, we describe a technique for adapting Build-Quorums to the asynchronous
setting. The new quorum building algorithm generates a set of n quorums each with at most a 1/8 fraction of
corrupted parties.

2. At the end of the Input Commitment stage, the protocol should wait for at least n− t inputs before proceeding to
the Circuit Evaluation stage. To this end, we introduce a new subprotocol called Wait-For-Inputs and invoke it
right after step (b) of the Input Commitment stage. This protocol is described in Section 4.2.1.

3. Although the protocol ACMPC terminates with probability one, its actual running time (i.e., the number of
rounds until it terminates) is a random variable with expected value O(D logq), where q is the number of parties
participating in the MPC, and D is the circuit depth [BCG93]. Since we run m instances of ACMPC (one for
each gate of C), we need a method that allows us to bound the running time of each gate, and thus to bound the
expected running time of our asynchronous MPC protocol. We describe a simple method for achieving this in
Section 4.2.2.

4. The Gen-Rand protocol will be replaced with a run of ACMPC, where each party participates with a value chosen
uniformly at random from F to compute the sum of their inputs. The parties only execute the ACMPC protocol up
to the output reconstruction step so that each party at the end of this protocol will hold a share of the random
value. We call this asynchronous version of generating a shared random value Protocol Async-Gen-Rand.

12

Shares of 𝑟𝑢

Reconstruction

Circuit

Reconstruction

Circuit

Shares of 𝑟𝑣 𝑦 𝑣

−

Reconstruction

Circuit

Shares of 𝑟𝑤 𝑦 𝑤

−

𝑓𝑢

+

𝑦 𝑢

Berlekamp-Welch

Circuit

Interpolation

Circuit

R
ec

o
n

st
ru

ct
io

n
 C

ir
cu

it

Shares of 𝑥

𝑥 𝑦𝑣 𝑦𝑤

𝑟𝑣 𝑟𝑤

𝑟𝑢 𝑦𝑢

Figure 3: Circuit of gate u

4.2.1 Implementing Wait-For-Inputs

The protocol Wait-For-Inputs counts the number of inputs that are successfully received by their corresponding input
quorums. This can be achieved using a solution to the threshold counting problem: Count the number of inputs
successfully received by each input quorum and return once this number becomes greater than or equal to n− t. As a
result of returning from Wait-For-Inputs, the main protocol resumes and starts the circuit evaluation procedure.

In Section 6, we provide a solution to the threshold counting problem. We refer to this protocol as Thresh-Count.
This protocol creates a distributed tree structure called the count tree, which is known to all parties and determines how
the parties communicate with each other to count the number of inputs.

Protocol 4 implements Wait-For-Inputs using our Thresh-Count algorithm. In Wait-For-Inputs, the role of each party
in Thresh-Count (i.e., each node in the count tree) is played by a quorum of parties. Once Thresh-Count terminates, the
parties in each input quorum decide whether or not the corresponding inputs are part of the computation.

When running among quorums, Thresh-Count requires the quorums to communicate with each other. We say a
quorum Q sends a message M to quorum Q′, when every (honest) party in Q sends M to every party in Q′. A party
in Q′ is said to have received M from Q if it receives M from at least 7/8 of the parties in Q. When we say a party
broadcasts a message M to a quorum Q, we mean the party sends M to every party in Q, and then, all parties in Q run a
Byzantine agreement protocol over their messages to ensure they all hold the same message.

4.2.2 Bounding the Expected Running Time

For some γ > 0, let O(nγ) be the number of gates in the circuit C our MPC protocol wants to evaluate. Now, consider q
parties in a quorum who want to compute a circuit of depth D jointly using the protocol ACMPC. Let X denote the
random variable corresponding to the number of rounds until an instance of ACMPC terminates. From [BCG93], we
have

E[X] =O(D logq).

Instead of running only one instance of ACMPC, we run λ logn instances sequentially each for 2E[X] rounds, for any
λ > γ+1. The output corresponding to the first instance that terminates will be returned as the output of the gate. Note

13

Protocol 4 Wait-For-Inputs

Goal. For every input quorum Q, all parties in a quorum Q wait until n− t inputs are received by the input quorums. For each party
Pi ∈ Q, Pi is initially holding two values x̂ and ri , the i-th share of a random value r .

Each party Pi ∈ Q does the following:

1. Start Thresh-Count asynchronously.

2. bi ← 0.

3. If x̂ and ri’s are consistent and valid (based on the Byzantine agreement protocol and the verification stage of AVSS
respectively), set bi ← 1 and send an event 〈Ready〉 to Thresh-Count.

4. When Thresh-Count terminates, run ACMPC jointly with other parties P1, ...,Pq to compute
∑q
i=1 bi .

5. If the result is less than 5q/8, then x̂← Default and ri ← 0.

that since our MPC functionality is deterministic, it is secure to run multiple instances of ACMPC with the same inputs.1
Using the Markov’s inequality,

Pr(X ≥ 2E[X]) ≤ 1/2.

In each gate of C, each party also participates in a run of Gen-Rand, which invokes AVSS a total of q times. Similar
to ACMPC, for each instance of AVSS, we run λ logn instances sequentially each for 2E[X] rounds. The sharing
corresponding to the first instance that terminates will be accepted by the parties.

Since λ logn instances of ACMPC and λq logn instances of AVSS are executed in each gate, the computation of the
gate terminates after at most

2λE[X] logn =O(D logq logn)

rounds with error probability at most

(q+1)(1/2)λ logn =
q+1
nλ

.

Since C has O(nγ) gates, q =O(logn), and λ > γ+1, by union bound over all gates of C, the protocol terminates with
high probability. Finally, since C has depth d, the expected running time of our MPC protocol is O(dD logq logn). In
Section 4.1.2, we argued that the circuit computed by Circuit-Eval has depth D = polylog(n). Thus, the expected running
time of our asynchronous protocol is O(d polylog(n)).

4.3 Remarks
As described in the introduction, the goal of MPC is to simulate a trusted third party in the computation of the circuit,
and then send back the computation result to the parties. Let S denote the set of parties from whom input is received by
the (simulated) trusted party. Recall that |S | ≥ n− t.2 Thus, for an arbitrary S, a description of S requires Ω(n) bits, and
cannot be sent back to the parties using only a scalable amount of communication. Therefore, we relax the standard
requirement that S be sent back to the parties. Instead, we require that each honest party learns the output of f at the
end of the protocol; whether or not their own input was included in S; and the size of S.

Also note that although we have not explicitly included this in the input commitment step, it is very easy for the
parties to compute the size of the computation set S. Once each input quorum Qi has performed the third step of
Wait-For-Inputs and has agreed on the flag bi = 1, they can only use an addition circuit to add these bits together, and
then disperse the result. This is an MPC, all of whose inputs are held by honest parties since each input flag bi is jointly
owned by the entire quorum Qi , and all the quorums are good. Thus, the computation can afford to wait for all n inputs
and computes the correct sum.

1If the functionality was non-deterministic, the adversary could learn multiple samples from the secret input distributions when the MPC algorithm
runs multiple times over the same inputs.

2We allow |S | > n− t because the adversary is not limited to delivering one message at a time; two or more messages may be received
simultaneously.

14

In our both protocols, a party P may participate in more than one quorum that is running a single instance of the
classic MPC. In this case, we allow P to play the role of more than one different parties in CMPC and ACMPC, one for
each quorum to which P belongs. This ensures that the fraction of corrupted parties in any instance of the classic MPC
always remains less than 1/3 for the synchronous case and 1/4 for the asynchronous case. Also, note that CMPC and
ACMPC both maintain privacy guarantees when a constant number of parties collude. Thus, each party will learn no
information beyond the output and his own inputs when playing three different roles in each run of these protocols.

5 Security Proofs
We first describe the UC framework in Section 5.1 and then give a sketch of our proof in Section 5.2. We prove the
UC-security of Protocol 1 in Section 5.3. We then prove the UC-security of our asynchronous protocol in Section 5.4.
Finally, we calculate the resource costs of these protocols in Section 5.5.

5.1 The UC Framework
The UC framework is based on the simulation paradigm [Gol00], where the protocol is considered in two models: ideal
and real. In the ideal model, the parties send their inputs to a trusted party who computes the function and sends the
outputs to the parties. We refer to the algorithm run by the trusted party in the ideal model as the functionality of the
protocol. In the real model, parties run the actual protocol that assumes no trusted party. We refer to a run of the
protocol in one of these models as the execution of the protocol in that model.

A protocol P securely computes a functionality FP if for every adversary A in the real model, there exists an
adversary S in the ideal model, such that the result of a real execution of P with A is indistinguishable from the result
of an ideal execution with S. The adversary in the ideal model, S, is called the simulator.

The simulation paradigm provides security only in the stand-alone model. For proving security under composition,
the UC framework introduces an adversarial entity called the environment, denoted byZ, which generates the inputs to
all parties, reads all outputs, and interacts with the adversary in an arbitrary way throughout the computation. The
environment also chooses inputs for the honest parties and gets their outputs when the protocol is finished.

A protocol is said to UC-securely compute an ideal functionality if for any adversary A that interacts with the
protocol there exists a simulator S such that no environment Z can tell whether it is interacting with a run of the
protocol and A, or with a run of the ideal model and S.

Now, consider a protocol P that has calls to ` subprotocols P1, ...,P` already proved to be UC-secure. To facilitate
the security proof of P, we can make use of the hybrid model, where the subprotocols are assumed to be ideally
computed by a trusted third-party. In other words, we replace each call to a subprotocol with a call to its corresponding
functionality. This hybrid model is usually called the (FP1 ,...,FP`)-hybrid model. We say P is UC-secure in the
hybrid model if P in the hybrid model is indistinguishable by the adversary from P in the ideal model. The modular
composition theorem [Can00] states that if P1, ...,P` are all UC-secure, and P is UC-secure in the hybrid model, then P
is UC-secure in the real model.

5.2 Proof Sketch
Before proceeding to the proof, we remark that the error probabilities in Theorem 1 and Theorem 2 come entirely from
the possibility that Build-Quorums or Thresh-Count fail to output correct results. All other components of our protocol
are perfectly secure and always give correct results.1 We also assume that, at the beginning of our MPC protocol, the
parties have already agreed on n good quorums, and the threshold counting procedure is performed successfully.

As in [Gol04], we refer to the security in the presence of a malicious adversary controlling t parties t-security. For
every gate u ∈ C, let Iu denote the set of corrupted parties in the quorum associated with u. Also, let I denote the set of
all corrupted parties, where |I | < t.

Our goal is to prove the UC-security of our MPC protocols. To do this, we must show two steps. The first step is to
demonstrate that each of our subprotocols is UC-secure. The second step is to show that our protocols are UC-secure in

1The running times of the AVSS and ACMPC protocols are random variables. We bounded the expected running time of our asynchronous MPC
protocol in Section 4.2.2.

15

Table 2: Ideal functionalities for our synchronous (left) and asynchronous (right) MPC protocols

Functionality Realized by
FVSS Protocol VSS
FCMPC Protocol CMPC
FGen-Rand Protocol Gen-Rand
FInput Input Commitment stage
FCircuit-Eval Protocol Circuit-Eval
FOutput Output Propagation stage

Functionality Realized by
FAVSS Protocol AVSS
FACMPC Protocol ACMPC
FAsync-Gen-Rand Protocol Async-Gen-Rand
FAsync-Input Input Commitment stage
FAsync-Circuit-Eval Circuit Evaluation stage
FAsync-Output Output Propagation stage

the hybrid model. Once we show these two steps, then by the modular composition theorem, we conclude that our
protocols are UC-secure in the real model. In Lemma 11, we show the second step, that the adversary cannot distinguish
the execution within the hybrid model from the ideal model.

We next describe our approach to the first step which is more challenging. For this step, we make use of a theorem
that will help us show that our subprotocols are UC-secure. Kushilevitz et al. [KLR10] show Theorem 10. This theorem
targets perfectly-secure protocols that are shown secure using a straight-line black-box simulator. A black-box simulator
is a simulator that is given only oracle access to the adversary (see [Gol00] Section 4.5 for a detailed definition). Such a
simulator is straight-line if it interacts with the adversary in the same way as real parties, meaning that it proceeds round
by round without ever going back.

Theorem 10 ([KLR10]). Every protocol that is perfectly secure in the stand-alone model and has a straight-line
black-box simulator is UC-secure.

Wefirst define the ideal functionalities shown in Table 2 that correspond to the subprotocols used in ourMPCprotocols.
We then prove that our synchronous MPC protocol is t-secure in the (FVSS, FCMPC, FGen-Rand, FInput, FCircuit-Eval, FOutput)-
hybrid model and that our asynchronous MPC protocol is t-secure in the (FAVSS, FACMPC, FAsync-Gen-Rand, FAsync-Input,
FAsync-Circuit-Eval, FAsync-Output)-hybrid model. Finally, we use Theorem 10 to infer the UC-security of this protocol. We
first show that all of our subprotocols are UC-secure. Similar to the above approach, we first prove t-security of every
subprotocol in its corresponding hybrid model using a straight-line black-box simulator, and then use Theorem 10 to
infer its UC-security.

We stress that Theorem 10 holds only for perfectly-secure protocols, and in fact, is known not to hold for statistically-
secure protocols, i.e., protocols with negligible probability of error [KLR10]. Therefore, we must be careful in
addressing the error probability of our subprotocols when using Theorem 10.

The only components of our asynchronous protocol that have probabilities of error and thus make our protocols
statistically-secure are Build-Quorums and Thresh-Count. Both of these protocols do not receive any information about
parties’ inputs, and therefore only require proofs of correctness. If Build-Quorums fails, which happens with negligible
probability, then it may create quorums with more than a t/n+ ε corrupted parties, which can compromise user input
privacy later in MPC. If Build-Quorums is used to create quorums of size c logn, then the error probability is 1

nc (see
Theorem 4). If Thresh-Count fails, which happens with probability 1

7n (see Theorem 3), then the MPC protocol may
proceed to the circuit evaluation stage before or after n− t inputs have been counted. This failure, however, does not
compromise input privacy at all. If Build-Quorums and Thresh-Count do not fail, which happens in our asynchronous
case with probability 1− 1

nc −
1

7n , then the protocol is perfectly secure in the stand-alone model and by Theorem 10 is
UC-secure. By using a similar argument, our synchronous protocol is statistically secure with probability 1− 1

nc and is
UC-secure.

To prove the t-security of a protocol Π, we describe a simulator SΠ that simulates the real protocol execution by
running a copy of Π in the ideal model. For each call to a secure subprotocol π, the simulator calls the corresponding
ideal functionality Fπ . A view of a corrupted party from the execution of a protocol is defined as the set of all messages it
receives during the execution of that protocol plus the inputs and the outputs it receives. At every stage of the simulation
process, SΠ adds the messages received by every corrupted party in that stage to its view of the simulation. This is
achieved by running a copy of Π for each corrupted party with his actual input as well as by running a copy of Π for

16

each honest party with a dummy input.1 The view of the adversary is then defined as the combined view of all corrupted
parties.

5.3 Proof of Theorem 1
In this section, we first describe the functionalities FVSS and FCMPC. For each functionality, we refer the reader to an
existing protocol that implements the functionality and shows its security.

Security of VSS. We use the proof of Asharov and Lindell [AL11] for the VSS protocol of Ben-Or et al. [BGW88],
where the corresponding functionality is denoted by FVSS (see Functionality 5.5 and Protocol 5.6 of [AL11]). In FVSS,
the dealer provides a polynomial q(x) of degree t to the functionality, and each party Pi receives a share q(i). We
restate Theorem 5.7 of [AL11] here without its proof.

Theorem 11 (Theorem 5.7 of [AL11]). Let t < n/3. Protocol VSS is perfectly t-secure for FVSS in the presence of a
synchronous static malicious adversary.

Security of CMPC. We use the proof of Asharov and Lindell [AL11] for the CMPC protocol (see Protocol 7.1
of [AL11]) and denote the corresponding functionality by FCMPC as defined in Protocol 5.

Protocol 5 FCMPC
Goal. The functionality is parametrized by an arbitrary q-input function g : Fq → Fq . The functionality interacts with q parties and
the adversary.

Functionality:
1. For every input xi of g, the functionality receives xi from party Pi , for all i ∈ [q].

2. The functionality computes y = g(x1, x2, ..., xq) and sends y to all parties and adversary.

Theorem 12 (Corollary 7.3 of [AL11]). For every function g : Fq → Fq and T < q/3, CMPC is perfectly T-secure for
FCMPC parameterized by g over private synchronous channels and in the presence of a static malicious adversary.

5.3.1 Security of Input Commitment

This section defines the functionality of the input commitment stage of Protocol 1.

Protocol 6 FInput

Goal. The functionality guarantees valid inputs are received by all input quorums.

Functionality:
1. For every input xi , the functionality receives x̂i = xi + ri and ri from party Pi , for all i ∈ [n].

2. For each i ∈ [n], the functionality broadcast x̂i to Qi .

3. For each i ∈ [n], the functionality shares ri among q parties of Qi by choosing a random polynomial h(x) of degree T such
that h(0) = ri .

4. For all j ∈ [q], the functionality sends h(j) to the j-th party in Qi . This guarantees that honest parties in Qi can reconstruct
the correct ri later, but dishonest parties cannot.

Note that FInput is necessary to build the base case for starting the computation of the circuit. In Lemma 1, we show
that the input commitment stage securely implements FInput.

Lemma 1. If the quorum formation stage of Algorithm 1 finished successfully, the Input Commitment stage of Protocol 1
securely UC-realizes functionality FInput in the synchronous model with 1/3− ε malicious corruptions.

1SΠ learns neither the actual inputs nor the actual outputs of the honest parties.

17

Proof. We prove the t-security of the Input Commitment stage in the FVSS-hybrid model, which is similar to the Input
Commitment stage of Protocol 1 except that every call to its subprotocol VSS is replaced with a call to FVSS. We define
the corresponding simulator SInput in Protocol 7.

Protocol 7 SInput

For every i ∈ [n], party Pi holds an input xi ∈ F. Associated with this input, we consider a quorum Qi . Let Ii denote the set of
corrupted parties in Qi , and let I denote the set of all corrupted parties among P1, ...,Pn.

Inputs. {ri }i∈[n] and { x̂i }i∈[n] from parties in I (the set of all corrupted parties).

Simulation:
For every i ∈ [n],

1. If Pi ∈ I, obtain from the adversary xi and the polynomial that it instructs Pi to send to the FVSS as a dealer of ri .

2. Interaction with the trusted party: the simulator send the inputs of corrupted parties to the trusted party and receives the output
values x̂i and shares of ri for corrupted parties.

3. If Pi < I, choose ri and xi uniformly at random from F and with constraint that x̂i = xi + ri .

4. Broadcast x̂i to all parties in Qi .

5. Run FVSS to secret-share ri in Qi such that for each corrupted party, the share of ri is compatible with his output (FVSS
outputs evaluations of a polynomial).

6. For every party in Ii , add his share of ri (as it expects from the FVSS invocations) and x̂i to his view.

Before proceeding to the proof, note that we assume the quorum formation stage of Algorithm 1 finished successfully.
Based on Theorem 4, for each input gate i ∈ [n], at most 1/3 fraction of the parties in Qi are malicious.

Let V1 denote the view of the adversary from the hybrid execution, and V2 be its view from the simulation. We
first show that V2 is indistinguishable from the view that the adversary might get from running the simulator with real
inputs for honest parties. For each party Pi , V2 (and similarly V2 from actual inputs of honest parties) contains the
masked input, x̂i , and at most 1/3 fraction of the shares for its random mask ri received from FVSS, since Qi has only
1/3 fraction malicious parties (See Theorem 4). The masked inputs convey no information about the inputs since ri are
chosen randomly by the simulator or an honest party. Moreover, a 1/3 fraction of the shares is not enough to reconstruct
the random number ri based on the properties of VSS. Moreover, the values for x̂i and shares of ri for different, honest
parties are independent to each other. Thus, the adversary cannot distinguish the two views.

Next, we show that the hybrid execution of the Input Commitment stage correctly computes FInput and its output has
the desired properties as FInput while it is indistinguishable from the simulator execution with actual inputs for honest
parties. Since at least 2/3 of the parties in Qi are honest, they have the correct shares from Pi for ri and have the proper
value for x̂i . This is enough information to reconstruct ri and find xi = x̂i − ri later.

Based on the UC-security of VSS (Theorem 11), the modular composition theorem, and the fact that our simulator is
straight-line and black-box, and our protocol is perfectly secure, it follows from Theorem 10 that the Input Commitment
stage is UC-secure. � �

5.3.2 Security of Circuit Evaluation

We first prove the security of Gen-Rand. The ideal functionality FGen-Rand is given in Protocol 8. Based on Theorem 4,
at least 2q/3 of parties in each quorum are honest, thus 2q/3 of the inputs ρ1, ..., ρq are sent by honest parties and are
chosen uniformly and independently at random from F. Hence, r =

∑q
i=1 ρi is also a uniform and independent random

element of F. This is because the sum of elements of F is uniformly random if at least one of them is uniformly random.

Lemma 2. If the quorum formation stage of Algorithm 1 finished successfully, the protocol Gen-Rand securely
UC-realizes functionality FGen-Rand in the synchronous model, with 1/3− ε malicious corruptions.

Proof. We prove the t-security of Gen-Rand in the FVSS-hybrid model, which is similar to Protocol 3 except that every

18

Protocol 8 FGen-Rand
Goal. For a gate u ∈ C, generate a random value r ∈ F and secret share it among parties P1, ...,Pq in the quorum associated with u.

Functionality:
1. Receive inputs ρ1, ..., ρq ∈ F from P1, ...,Pq respectively. For every i ∈ [q], if Pi does not send an input, then define ρi = 0.

2. Calculate r =
∑q
i=1 ρi .The functionality shares r among q parties of Qu by choosing a random polynomial h(x) of degree T

such that h(0) = r . For all j ∈ [q], the functionality sends h(j) to the j-th party in Qu . .

call to VSS is replaced with a call to the ideal functionality FVSS. The corresponding simulator SGen-Rand is given in
Protocol 9.

Protocol 9 SGen-Rand
Inputs. For a gate u ∈ C, the inputs {ρ j }Pj ∈Iu of the corrupted parties P1, ...,Pq in the quorum associated with u.

Simulation:

1. For every Pi ∈ (Qu − Iu) (i.e., for every honest party Pi), call FVSS with dummy input 0. Let si1, ..., s
i
q denote the outputs.

2. For every Pj ∈ Iu ,

(a) Run FVSS with input ρ j . Let ρ
j
1, ..., ρ

j
q denote the outputs. For every k ∈ [q], add ρk

j
to the view of Pj .

(b) Compute r j =
∑q

k=1 ρ
k
j
and add r j to the view of Pj .

The views of the corrupted parties in the hybrid execution and the simulation are indistinguishable because the only
difference between the two views is that SGen-Rand generates the shares from dummy input 0 instead of actual inputs.
Since FVSS creates uniform and independent random shares from any input, the two views are identically distributed.
Based on the UC-security of VSS (Theorem 11) and since our simulator is straight-line and black-box, and our protocol
is perfectly-secure, Gen-Rand is UC-secure. � �

We now proceed to the security proof of Circuit-Eval. The ideal functionality FCircuit-Eval is given in Protocol 10.

Lemma 3. If the quorum formation stage of Algorithm 1 finished successfully, the protocol Circuit-Eval securely
UC-realizes functionality FCircuit-Eval in the synchronous model, with 1/3− ε malicious corruptions.

Proof. We now prove the t-security of Circuit-Eval in the (FGen-Rand,FCMPC)-hybrid model, which is similar to Protocol 2
except that every call to CMPC and Gen-Rand is replaced with a call to FCMPC and FGen-Rand respectively. The
corresponding simulator SCircuit-Eval is given in Protocol 11.

We now show that the views of the corrupted parties in the hybrid execution and the simulation are indistinguishable.
Let I4 = Iu ∪ Iv ∪ Iw . After the evaluation of u, the following information will be added to the view of every corrupted
party Pi ∈ I4: ŷu and {r (j)

u }Pj ∈Iu . Recall that ŷu is the output of FCMPC during the computation of u, which is equal
to yu + ru , and ru is a uniformly random element of F based on FGen-Rand, independent of all other randomness in the
algorithm.

First, if a corrupted party Pi is not in any of the quorums associated with u,v, and w, then no additional information
will be added to its view during the computation of u; thus, its view will be identically distributed in the hybrid execution
and the simulation.

Second, a corrupted party Pi ∈ I4 may add a share of ru as well as shares of the individual random elements whose
sum is ru to its view in the computation of FGen-Rand. Also, it adds yu + ru to its view. However, Pi cannot learn any
additional information about the shares of ru (and thus about ru) based on FCMPC and FGen-Rand. In other words, the
parties in I4 are unable to determine ru directly, since the only relevant inputs are the shares of ru , and they do not have
enough of those since they have fewer than half of them.

These parties also do not have enough shares of shares of ru to reconstruct it. However, they add to their view
shares of each of the other shares of ru multiple times: once during the input stage of FCMPC in which u is involved, and

19

Protocol 10 FCircuit-Eval
Goal. For every level in circuit C starting, and for every gate u ∈ C, the functionality evaluate the function of gate u denoted by fu .

Input. For every i ∈ [n], the functionality receives inputs from the parties in input quorum Qi as the based case for starting its
computation. For every gate u ∈ C with children v,w ∈ C, if v,w are input quorums Qu and Qv , the functionality receives ŷv and r (i)

v

from parties in Qu , and ŷw and r (i)
w from parties in Qv respectively.

Functionality:
For every level in circuit C starting from level 1, and for every gate u ∈ C with children v,w ∈ C perform the following:

1. For every i ∈ [q], receive ρi from Pi in Qu and calculate ru =
∑q
i=1 ρi .

2. The functionality shares ru among q parties of Qu by choosing a random polynomial h(x) of degree T such that h(0) = ru .
For all j ∈ [q], the functionality stores r (j)

u = h(j) and sends it to the j-th party in Qu .

3. The functionality Computes the following:

(a) ru ← The result of running a Reed-Solomon error-correcting algorithm to fix possible invalid shares of r (1)
u , ...,r (q)

u ,
and then reconstruct the secret using a polynomial interpolation technique.

(b) rv ← The result of running a Reed-Solomon error-correcting algorithm to fix possible invalid shares of r (1)
v , ...,r (q)

v ,
and then reconstructs the secret using a polynomial interpolation technique.

(c) rw ← The result of running a Reed-Solomon error-correcting algorithm to fix possible invalid shares of r (1)
w , ...,r (q)

w ,
and then reconstructs the secret using a polynomial interpolation technique.

(d) yv ← ŷv − rv

(e) yw ← ŷw − rw

(f) ŷu ← fu (yv, yw)+ ru

4. The functionality stores ŷu and sends it to all parties in Qu , Qv and Qw .

20

once during the computation of the parent of u. Each time, they do not get enough shares of shares ru to reconstruct
any shares of ru . But, can they combine the shares of shares from different runs for the same secret to gain some
information? Since fresh and independent randomness was used by the dealers creating these shares on each run, the
shares from each run are independent of the other runs, and so they do not collectively give any more information than
each of the runs give separately. Since each run does not give the parties in I4 enough shares to reconstruct anything, it
follows that they do not learn any information about ru .

Second, parties in I4 add shares of shares for rv and rw to their views. However, with a similar argument as ru , they
cannot reconstruct rv and rw as well even if these parties participate in one or more of the instances of FCMPC which
involve v or w: the computation of v or w themselves or the computations of u as their parents.

Moreover, ŷu is also a random element in the field since ru is uniformly random and ŷu = yu + ru . Thus, ŷu holds
no information about yu , and the corrupted parties cannot learn any information about yu except what is implicit in his
input and the circuit output. This means that the corrupted parties cannot distinguish if they are participating in a run of
the hybrid model or the simulation.

To prove the outputs added to the view of the adversary in real execution and simulation are equivalent, we show that
protocol Circuit-Eval correctly computes ŷu = yu + ru . Based on FInput and FGen-Rand, for each gate u ∈ C, the inputs of
the honest parties in Qu are enough to reconstruct ru . If u is an input gate not included in the computation from the Input
Commitment stage, then ru and its shares are 0. Thus, all three values of ru , rv , and rw can be correctly reconstructed
by running a Reed-Solomon error-correcting algorithm to fix possible invalid shares of r (1)

w , ...,r (q)
w , which can tolerate

up to a 1/3 fraction of the inputs being invalid, and then reconstructs the secret using a polynomial interpolation.
We prove ŷu = yu + ru by induction on the height of u, where yu is the correct output of the gate u. The base case is

correct because based on the correctness of FInput, for each input gate v′, we have ŷv′ = yv′ + rv′ and rv′ can correctly be
reconstructed from the inputs received from honest parties in Qv′ . Suppose that for all gates u′ whose height is less than
the height of u, the functionality can compute ŷu′ = yu′ + ru′ and ru′ . This induction hypothesis is valid for v and w.

We now describe the induction step. In the computation of u, the functionality runs FCMPC. We now argue based on
the definition of the function computed by FCMPC that the output of FCMPC is ŷu = ru + yu . By the induction hypothesis,
the functionality can reconstruct correct rv and rw and consequently it can correctly find yv and yw even if a 1/3 fraction
of the inputs are missing. It is because the majority of the parties in Qv and Qw hold correct values of ŷv and ŷw . Thus,
the functionality can correctly compute fu (yv, yw)+ ru .

Protocol 11 SCircuit-Eval
For every gate u ∈ C with children v,w ∈ C, consider three groups of parties Qu,Qv , and Qw , each of whom has q parties. In each
group, up to q/3 parties are corrupted.

Inputs. For each gate u, {ρi }Pi ∈Iu , and for each input gate v, values { ŷv,r (i)
v }Pi ∈Iv from parties in Iu and Iv respectively.

Simulation: For every level in circuit C starting from level 1, and for every gate u ∈ C with children v,w ∈ C perform the following:

1. Run FGen-Rand with the following inputs: ρi for every Pi ∈ Iu and a dummy input for every party in Qu − Iu . Let {r (i)
u }Pi ∈Qu

denote the outputs. For every Pi ∈ Iu , store r (i)
u and add it to the view of Pi .

2. Let Q4 =Qu ∪Qv ∪Qw and I4 = Iu ∪ Iv ∪ Iw . Run FCMPC to compute the functionality defined in Line 3 of FCircuit-Eval with
the following inputs: the input of every party in I4 (which is stored as the result of the computation for the child gate or input
stage) as described in FCircuit-Eval, and a dummy input for every party in Q4 − I4. Let ŷu denote the output. For every party in
I4, store ŷu and add it to the view of the adversary.

Finally, since SCircuit-Eval is straight-line and black-box, and the protocol is perfectly-secure, Circuit-Eval is UC-
secure. � �

5.3.3 Security of Output Propagation

The ideal functionality for the Output Propagation stages of Protocol 1 are given in Protocol 12.

Lemma 4. If the quorum formation stage of Algorithm 1 finished successfully, the Output Propagation stages of
Protocol 1 securely UC-realize functionality FOutput in the synchronous model, with 1/3− ε malicious corruptions.

21

Protocol 12 FOutput

Goal. For the output gate z, the functionality receives output yz , and sends it to all parties P1, ...,Pn.

Functionality:
1. Receive yz as the input to the functionality.

2. Send yz to all parties P1, ...,Pn.

Proof. We first show by induction that after output propagation stage of Protocol 1, all honest parties eventually learn
yz . Since Q1 is assigned to the output gate, it provides a base case. For i > 1, consider the parties in Qi , and for all j < i
assume the correct output is learned by all parties in Q j . During the Output Propagation stage, the parties in Qi receive
putative values for the output from the parties at Q bi/2c . Since Q bi/2c is good, and by induction hypothesis all honest
parties in it have learned the correct output, it follows that all honest parties in quorum Q bi/2c send the same message,
which is the correct output. By induction, all the parties learn the correct value.

To prove the t-security of the output propagation, the corresponding simulator SOutput is given in Protocol 13.

Protocol 13 SOutput

Inputs. For the output gate z and the corresponding quorum Qz , the inputs of the simulator is yz .

Simulation:

1. For every i ∈ {2, ...,n}, parties in Qi perform the following steps:

(a) Receive y from Q bi/2c and add it to the view of every parties in I bi/2c .

(b) If 2i ≤ n , then send y to all parties in Q2i . If 2i+1 ≤ n, then send y to all parties in Q2i+1.

The views of the corrupted parties in the hybrid execution and the simulation are indistinguishable since the only
message that is added to the view of the adversary is the output yz . Based on the security definition of MPC, the
adversary is allowed to learn the output. � �

5.3.4 Security of Protocol 1

We are now ready to put everything together and show that our main protocol can securely compute any n-ary function
f . As the first step of the proof, we refer to Theorem 4 that shows quorum building stage of our MPC protocol can
successfully build n quorums with high probability. For the remaining parts of the proof, we assume the quorum
formation stage of Algorithm 1 finished successfully, i.e. all our quorums have more than 2q/3 honest parties in them.
The idea functionality of Protocol 1, FMPC is described in Protocol 14.

Protocol 14 FMPC
Goal. The functionality is parametrized by an arbitrary n-input function f : Fn→ Fn. The functionality interacts with n parties and
the adversary.

Functionality:
1. For every input xi of f , the functionality receives xi from party Pi , where i ∈ [n].

2. The functionality computes y = f (x1, x2, ..., xn) and sends y to all parties and adversary.

Lemma 5. For every function f : Fn→ Fn and t < n/3− ε , Protocol 1 is statically t-secure for FMPC parameterized by
f over private synchronous channels and in the presence of a static malicious adversary.

Proof. We first prove the t-security of the Protocol 1 in the (FInput,FCircuit-Eval, FOutput)-hybrid model, which is similar
to Protocol 1 except that every subprotocols stages is replaced with a call to their functionalities respectively. The
corresponding simulator SMPC is given in Protocol 15.

22

Protocol 15 SMPC
For every i ∈ [n], party Pi holds an input xi ∈ F. For every quorum Qi Let Ii denote the set of corrupted parties in Qi , and let I
denote the set of all corrupted parties among P1, ...,Pn.

Inputs. {ri }i∈[n], and { x̂i }i∈[n] from parties in I (set of all corrupted parties).

Simulation:

1. Quorum Building. Run Build-Quorums.

2. Input Commitment. (Equivalent to running SInput)

Run FInput with the following inputs for each party i ∈ n,

(a) If Pi ∈ I, obtain from the adversary xi and the polynomial that it instructs Pi to send to the FInput as a dealer of ri .

(b) If Pi < I, choose ri and xi uniformly at random from F and x̂i ← xi + ri .

Receive the outputs as the adversary expects from FInput:

(a) Send x̂i and a share of ri to each party in Qi .

(b) For every party Pj ∈ Ii , add his share of ri and x̂i to his view.

(c) For each corrupted party pj ∈ Ii , store xi and his share of ri he receives as the output of FInput.

3. Interaction with trusted party. The simulator sends the trusted party computing f the inputs of the corrupted parties and
receives from him the outputs yz = f (x1, x2, ..., xn).

4. Circuit Evaluation. (Equivalent to running SCircuit-Eval)

Run FCircuit-Eval with the following inputs:

(a) For each input gate i and its corresponding quorum Qi , use the stored value from input stage for corrupted parties
Pj ∈ Ii . Use random values for other parties in Qi .

(b) For each gate u, obtain from the adversary the inputs of the corrupted party for generation of the random mask.

Receive the outputs as the adversary expects from FInput:

(a) For each gate u, receive ŷu and a share of ru . Add these values to the view of the adversary.

(b) Let z be the output gate and Qz its associated quorum, store ŷz and r (i)
z (a share of rz) for corrupted party Pi ∈ Iz .

5. Output reconstruction.

Let z be the output gate and Qz its associated quorum. For every i ∈ Iz , let ŷz and r (i)
z be the stored values from circuit

evaluation stage for corrupted party Pi ∈ Iz . Chooses a random polynomial for rz under the constraint that the shares of it be
compatible with r (i)

z and yz = ŷz −rz , where yz is the output of the evaluation received by the simulator from the trusted party
computing f . Send shares of rz to all parties in Qz .

6. Output Propagation
Run FOutput. to send yz to all the parties pi where i ∈ n.

23

The views of the corrupted parties in the hybrid execution and the simulation are indistinguishable for the input
stage, and Circuit-Eval stage since the simulator only runs the functionality of FInput, FCircuit-Eval. We now show that the
output stage correctly computes FOutput. Let z be the output gate of C. In real execution, by Lemma 3, all parties in the
output quorum Qz eventually agree on yz + rz and hold shares of rz . In the Output Reconstruction stage, these parties
reconstruct rz . Since at least a 2/3 fraction of them are honest, they correctly reconstruct rz . Since all honest parties in
Qz know yz + rz and subtract from it the reconstructed rz , they all eventually learn yz . Thus, all parties in Qz eventually
learn yz , which is equal to the simulation’s output. Finally, the simulator run FOutput so that all the parties can learn yz .
Thus, the only value that is added to the view of the adversary for both output stages are yz and rz . This completes the
proof of t-security of our main protocol in the (FInput,FCircuit-Eval, FOutput)-hybrid model.

In lemmas 1, 3, and 4 we proved that each stage is securely realize the functionality of that stage. Thus, our main
protocol can securely realize FMPC.

�
�

5.4 Proof of Theorem 2
We now show the security of our asynchronous MPC protocol. Recall that the asynchronous model, the adversary
controls up to t parties as well as the scheduling of the messages.

Security of AVSS. We use the definition, scheme and proof of Ben-Or, Canetti and Goldreich [BCG93] for the
asynchronous verifiable secret sharing and its reconstruction subprotocols (see Definition 8 and the AVSS scheme
follows it). The paper introduces two subprotocols (V-Share, V-Recon), which we refer to them as (AVSS, ARecon) in
our paper with functionalities FAVSS and FARecon. Each good party that completes subprotocol AVSS (which is similar
to the VSS scheme for sharing a secret but in the asynchronous model) subsequently invokes subprotocol ARecon with
its local output of subprotocol AVSS as local input to reconstruct the secret.

Definition 3 (Definition 8 of [BCG93]). (AVSS, ARecon) is a t-resilient AVSS scheme for n parties if the following
holds, for every coalition of up to t corrupted parties.

1. Termination:
(a) If the dealer is honest, then every honest party will eventually complete subprotocol AVSS.

(b) If some honest party has completed subprotocol AVSS, then all the honest parties will finally complete
subprotocol AVSS.

(c) If an honest party has finished subprotocol AVSS, then it will complete subprotocol ARecon.

2. Correctness: Once an honest party has completed subprotocol AVSS, then there exists a unique value, r , such that:
(a) All the honest parties output r . (Namely, r is the retrieved secret.)

(b) If the dealer is honest, sharing a secret s, then r = s.

3. Secrecy: If the dealer is honest and no honest party has begun executing subprotocol ARecon, then the corrupted
parties have no information about the shared secret.

We restate Theorem 2 of [BCG93] here without its proof.

Theorem 13 (Theorem 2 of [BCG93]). Let t < n/4. Then, the pair (AVSS, ARecon) is a t-resilient AVSS scheme in the
presence of a asynchronous malicious adversary.

Security of ACMPC. We use the protocol and proof of Ben-Or, Canetti and Goldreich [BCG93] for the ACMPC
protocol and denote the corresponding functionality by FACMPC as defined in Protocol 16.

Theorem 14 (Theorem 3 of [BCG93]). For every function g : Fq → Fq and T < q/4, ACMPC securely realize FACMPC
parameterized by g over private asynchronous channels and in the presence of a static malicious adversary that corrupt
up to T parties.

24

Protocol 16 FACMPC
Goal. The functionality is parametrized by an arbitrary q-input function g : Fq → Fq . The functionality interacts with q parties and
the adversary.

Functionality:
1. There exists a set S that contains q−T parties.

2. For every input xi of g where Pi ∈ S, the functionality receives xi from party Pi , for all i ∈ [q].

3. For every input xi of g where Pi < S, the functionality receives sets xi as a default value (0), for all i ∈ [q].

4. The functionality computes y = g(x1, x2, ..., xq) and sends y to all parties and adversary.

5.4.1 Security of Input Commitment

Before proceeding to the proof of security for Input Commitment stage, we show the following auxiliary lemma.

Lemma 6. If the quorum formation stage of our asynchronous MPC finished successfully, when a quorum Q sends to a
quorum Q′ a message M , it is eventually received by all honest parties in Q′.

Proof. Recall that when Q sends M to Q′, every honest party in Q sends M to all parties in Q′. A party in Q′ considers
itself to have received the message M from Q if it receives M from at least 7/8 of the parties in Q. Since n quorums
have successfully been formed, more than 7/8 of the parties in each quorum are honest. In particular, this is true for Q.
Thus, at least 7/8 of the members of Q send M to each member of Q′. Since the adversary must eventually deliver all
the messages that have been sent, albeit with arbitrary delays, it follows that eventually each honest party in Q′ receives
M from at least 7/8 of the members of Q. � �

We now proceed to the proof of the Input Commitment stage. The ideal functionality, FAsync-Input, is given in
Protocol 17. This functionality creates a set S containing the index of the parties whose inputs have been accepted (as
defined in Step 1 of Protocol 6) by the protocol to be used for the computation. If a party’s input is not in S, then the
functionality sets this input to the default value. Next, the functionality sends each masked input x̂i to quorum Qi and
secret-shares the mask ri in Qi . In Lemma 7, we show the Input Commitment stage in Protocol 1 correctly implements
this functionality. Thus, the parties in Qi eventually either have received consistent VSS-shares of xi and have agreed
on x̂i = xi + ri as well as on i being in S or they have agreed that i < S and have set these values to the predefined value
and rv and all its shares to 0. We say that a quorum has come to agreement on X if all honest parties in the quorum
agree on X .

Protocol 17 FAsync-Input

Goal. The functionality guarantees valid inputs are received from at least n− t parties. Then, the functionality notifies the parties in
all input quorums to proceed to the next stage of the protocol with either a valid input or a default input.

Functionality:
1. Wait to receive at least n− t valid inputs from the set of all n parties. Let S denote the set of parties whose inputs have been

accepted.

2. For each i ∈ [n], if Pi ∈ S, the functionality receives x̂i = xi + ri and ri from party Pi . If Pi < S, then define ŷi = 0 and ri = 0.

3. For each i ∈ [n], the functionality broadcasts 〈Done〉 and yi←xi + ri to all parties in Qi

4. For each i ∈ [n], the functionality shares ri among q parties of Qi by choosing a random polynomial h(x) of degree T such
that h(0) = ri . For all j ∈ [q], the functionality sends h(j) to the j-th party in Qi .

Lemma 7. If algorithms Build-Quorums and Thresh-Count finished successfully, the Input Commitment stage of our
asynchronous MPC securely UC-realizes functionality FAsync-Input with 1/8− ε malicious corruptions.

25

Proof. We prove the t-security of the Input Commitment stage in the (FAVSS,FACMPC)-hybrid model, which is similar to
the Input Commitment stage of asynchronous MPC protocol except that every call to its subprotocols is replaced with a
call to their corresponding functionality. We define the corresponding simulator SAsync-Input in Protocol 18.

Protocol 18 SAsync-Input

For every i ∈ [n], party Pi holds an input xi ∈ F. Associated with this input, we consider a quorum Qi . Let Ii denote the set of
corrupted parties in Qi , and let I denote the set of all corrupted parties among P1, ...,Pn.

Inputs. {ri }i∈[n], and { x̂i }i∈[n] from parties in I (set of all corrupted parties).

Simulation:
1. For every i ∈ [n],

(a) If Pi ∈ I, obtain from the adversary xi and the polynomial that it instructs Pi to send to the FVSS as a dealer of ri .

(b) If Pi < I, choose ri and xi uniformly at random from F and x̂i ← xi + ri .

(c) Broadcast x̂i to all parties in Qi and run FVSS to secret-share ri in Qi .

(d) For every party in Ii , add his share of ri (as it expects from the FVSS invocations) and x̂i to his view.

2. For every party in Qi , run Wait-For-Inputs to wait for at least n− t inputs.

(a) Run FThresh-Count with flag bi initially set to zero to count the number of received inputs.

(b) If xi and ri are valid and consistent (based on the broadcast protocol and the verification stage of Reconst respectively),
raise an event to set bi ← 1 in FThresh-Count.

(c) Upon receiving 〈Done〉 from the parent quorum, run FACMPC using bi as the input to count the number 1 inputs. If the
result of FACMPC is less than 5q/8, then x̂← Default and ri ← 0.

Let V1 denote the view of the adversary from the hybrid execution, and V2 be its view from the simulation. The
inputs to Thresh-Count and Line 5 of Protocol 4 are completely independent of the inputs of Protocol 1. Thus, V1
contains only the masked inputs, x̂i’s, and at most 1/8 fraction of the shares for each random mask, ri’s. The masked
inputs convey no information about the inputs. Moreover, a 1/8 fraction of the shares are not enough to reconstruct the
random number. Since V2 contains all random elements, the adversary cannot distinguish V1 from V2.

Now, we show that corrupted parties cannot do anything but choose their input as they wish; thus, the Input
Commitment stage correctly computes FAsync-Input and its output is as same as the simulation. This means that all honest
parties receive the 〈Done〉 message. Moreover, there exists a set S such that for every i ∈ [n], the following statements
hold:

1. All parties in Qi eventually agree whether i ∈ S or not.

2. At least n− t input quorums agree that their corresponding party’s index is in S.

3. All parties in Qi agree that party i ∈ S if and only if they collectively hold enough shares to reconstruct Pi’s input.
If all parties in Qi agree that i ∈ S, then party Pi’s input will be used in the computation. Otherwise, the default
value will be used instead.

First, since there are n− t honest parties, at least n− t valid inputs are eventually sent to Thresh-Count (property
(1-a) of t − resilience AVSS). Based on Theorem 3, all parties will be notified when n− t inputs are received.

Each party in Qi has set his flag bit to either 1 or 0 depending on whether it has received a valid input share from
Pi . Let q = |Qi |. Upon receiving the 〈Done〉 message, the parties in Qi run the third step of Wait-For-Inputs to decide
whether at least 5q

8 of them have set their flag bit to 1. If they have, they assume i ∈ S.
If i ∈ S, then at least 7q

8 of the parties in Qi have received input shares from Pi before they received the 〈Done〉
message. Of these, more than 3q

4 parties in Qi are honest and have set their flag bit to 1. Since ACMPC in Line 5 starts
even if as many as q/8 inputs are missing, the parties in Qi will correctly decide that at least 5q

8 flag bits among them

26

are set to 1. Thus, the parties in Qi all agree that i ∈ S. If i < S, then ACMPC in Line 5 has determined that less than 5q
8

flag bits are set to 1. Since Qi contains less than q/8 corrupted parties, more than q/2 parties set their flags to 0 and the
parties in Qi all agree that i < S. As a result, at least n− t input quorums agree that their corresponding inputs are in S,
and hence |S | ≥ n− t.

We now show that with T < q/8 corrupted parties in each quorum, the parties in each input quorum will hold
sufficient shares to keep the secret input uniquely reconstructible. Consider a single input quorum Q with q parties and
T corrupted parties. The quorum runs the Wait-for-Input protocol as stated in Section 4.2. Every party Pi in Q holds a
bit bi that is initially set to 0. We have two possibilities: (1) the quorum corresponds to a consistent input, or (2) the
quorum corresponds to an input that is going to be set to the default. We are only interested in the first case. In this case,
the parties in Q will eventually set their flag bits (i.e., bi’s) to 1 as in Line 3 of Wait-for-Input. Since messages may be
delayed indefinitely and T parties are corrupted, we can only guarantee that at most q−2T parties set their flag bit to 1.
Thus in the worst case, 2T parties participate in ACMPC with bit 0, where half of them have failed to set their bits to 1
due to asynchrony, and the other half are lying. In order to keep the secret reconstructible from its shares, we need at
least 3q/4 shares. Therefore, q−2T > 3q/4 and hence T < q/8.

Since our simulator is straight-line and black-box, and the protocol is perfectly secure, it follows from Theorem 10
that the Input Commitment stage is UC-secure. � �

5.4.2 Security of Circuit Evaluation

Similar to the synchronous case we start with security proof of Async-Gen-Rand. The ideal functionality FGen-Rand is
similar to the synchronous version as described in Protocol 8.

Lemma 8. If algorithm Build-Quorums finished successfully, the protocol Async-Gen-Rand is securely UC-realizes
functionality FGen-Rand in the asynchronous model, with 1/8− ε malicious corruptions.

Proof. We prove the t-security of Gen-Rand in the FACMPC-hybrid model, which is similar to Protocol Async-Gen-Rand
except that every call to ACMPC is replaced with a call to the ideal functionality FACMPC. The corresponding simulator
SAsync-Gen-Rand is given in Protocol 19.

Protocol 19 SAsync-Gen-Rand

Inputs. For a gate u ∈ C, the inputs {ρ j }Pj ∈Iu of the corrupted parties P1, ...,Pq in the quorum associated with u.

Simulation: For every Pi ∈ (Qu) run FACMPC to compute function ru =
∑q

k=1 ρ j up to the with the following inputs,
1. If Pi ∈ (Qu − Iu) (i.e., for every honest party Pi), call FACMPC with dummy input, set ρ j = 0.

2. For every Pj ∈ Iu , call FACMPC with input ρ j .

3. Add r (j)
u to the view of Pj .

The views of the corrupted parties in the hybrid execution and the simulation are indistinguishable because both
protocols simply call the FFCMPC functionality. Since FACMPC correctly computes the sum of the inputs as the output, the
two views are identically distributed. Since our simulator is straight-line and black-box, and the protocol is perfectly
secure, Gen-Rand is UC-secure. � �

We now proceed to the security proof of Async-Circuit-Eval in the asynchronous model. The ideal functionality
FAsync-Circuit-Eval is same as synchronous case that is given in Protocol 10.

Lemma 9. If algorithms Build-Quorums and Thresh-Count finished successfully, the protocol Async-Circuit-Eval
securely UC-realizes functionality FAsync-Circuit-Eval in the asynchronous model, with 1/8− ε malicious corruptions.

Proof. We prove the t-security of Async-Circuit-Eval in the (FAsync-Gen-Rand,FACMPC)-hybrid model, which is similar to
Protocol 2 except that every call to ACMPC and Async-Gen-Rand is replaced with a call to FACMPC and FAsync-Gen-Rand
respectively. This proof is completely similar to the synchronous case and we can use a simulator similar to SCircuit-Eval
that is given in Protocol 11. The only difference is that the simulator calls the asynchronous version of the functionalities.

27

Since the proof is similar, we do not repeat the whole proof here and only describe that the output of the honest
parties are identically distributed in the real execution and the simulation. We prove this by induction on the height of u.
The induction hypothesis is that ŷu = yu + ru where yu is the correct output of gate u. The base case is true based on
FAInput.

Suppose the induction hypothesis is valid for v and w that are children of u. In the computation of u, the hybrid
execution runs FACMPC. We now argue based on the definition of the function computed by FACMPC that the output of
FACMPC is ŷu = ru + yu . By the induction hypothesis, the functionality FACMPC can reconstruct correct rv and rw and
consequently it can correctly find yv and yw even if a 1/8 fraction of the inputs are missing. It is because the 7/8 fraction
of the parties in Qv and Qw hold correct values of ŷv and ŷw . Thus, even if another 1/8 fraction of the input shares set
to default value when running FAMPC due to the asynchronous nature of the communication, there is still enough shares
correct (6/8 fraction). In other words, the shared output will represent a valid Reed-Solomon codeword with at least a
2/3 fraction valid shares for decryption. Hence, ACMPC has enough redundancy needed for correctly reconstructing the
output. error correct the shares of corrupted parties Thus, FACMPC can correctly compute fu (yv, yw)+ ru .

The t-security of Async-Circuit-Eval is obtained by combining Lemma 8 (securely computing FAsync-Gen-Rand),
Theorem 14 (securely computing FACMPC) and the fact that we showed the t-security of Circuit-Eval in the
(FAsync-Gen-Rand,FACMPC)-hybrid model, and using the modular sequential composition theorem. � �

5.4.3 Security of Output Propagation

The ideal functionality for the Output Propagation stages of our asynchronous MPC protocol is similar to its synchronous
version, which is given in Protocol 12. Since its security proof and simulator are also similar to the synchronous case,
we omit the proof and only state the lemma.

Lemma 10. The Output Propagation stage of our asynchronous MPC protocol securely UC-realize functionality FOutput
in the asynchronous model, with 1/8− ε malicious corruptions.

5.4.4 Security of Protocol 1

We are now ready to put everything together and show that our asynchronous MPC protocol can securely compute any
n-ary function f . The idea functionality of Protocol 1, FAMPC is described in Protocol 20.

Protocol 20 FAMPC
Goal. The functionality is parametrized by an arbitrary n-input function f : Fn→ Fn. The functionality interacts with n parties and
the adversary.

Functionality:
1. There exists a set S that contains n− t parties.

2. For every input xi of f where Pi ∈ S, the functionality receives xi from party Pi , where i ∈ [n].

3. For every input xi of f where Pi < S, the functionality sets xi a default value.

4. The functionality computes y = f (x1, x2, ..., xn) and sends y to all parties and adversary.

Lemma 11. For every function f : Fn→ Fn and t < n/8− ε , our asynchronous MPC protocol is t-secure for FAMPC
parameterized by f over private synchronous channels and in the presence of a static malicious adversary.

Proof. We prove the t-security of our asynchronous MPC protocol in the (FAsync-Input, FAsync-Circuit-Eval, FAsync-Output)-
hybrid model, which is similar to Protocol 1 except that every subprotocols stages is replaced with a call to their
functionalities respectively. The corresponding simulator is similar to SMPC that is given in Protocol 15 The only
difference is that every call to a functionalities is replaced with its asynchronous version.

The views of the corrupted parties in the hybrid execution and the simulation are indistinguishable for the input
stage and Circuit-Eval stage since the simulator simply run the functionality of FAsync-Input, FAsync-Circuit-Eval. Note that

28

in the asynchronous version, the functionality FAsync-Input guarantees to generate the set S for n− t valid inputs before
FAsync-Circuit-Eval starts. We now show that the output stage correctly compute the output so that the output of hybrid
execution is similar to the simulation. Let z be the output gate of C. In hybrid execution, by Lemma 9, all parties in the
output quorum Qz eventually agree on yz + rz and hold shares of rz . In the Output Reconstruction stage, these parties
reconstruct rz . Since at least a 7/8 fraction of them are honest, they correctly reconstruct rz . Since all honest parties in
Qz know yz + rz and subtract from it the reconstructed rz , they all eventually learn yz . Thus, all parties in Qz eventually
learn yz , which is equal to the simulation’s output. Finally, the simulator run FAsync-Output so that all the parties can learn
yz . Thus, the only value that is added to the view of the adversary for both output stages are yz and rz . This completes
the proof of t-security of our main protocol in the (FAsync-Input,FAsync-Circuit-Eval, FAsync-Output)-hybrid model.

In lemmas 7, 9, and 10 we proved that each stage is securely realize the functionality of that stage. Thus, our main
protocol can securely realize FMPC. � �

5.5 Cost Analysis
In this section, we analyze the resource costs of our protocols.

Lemma 12. During the Input Commitment stage in our both MPC protocols, each quorum sends at most polylog(n)
messages and computes at most polylog(n) operations.

Proof. In our both protocols, since each quorum has O(logn) parties, polylog(n) messages are sent by each quorum
during VSS and Reconst to check whether the input is correctly secret-shared. In our asynchronous protocol, each
quorum is mapped to at most one of the input gates and hence one of the nodes in the count tree. Thus, from Theorem 3
it follows that the total number of messages sent by each quorum is O(logn). Therefore in our both protocols, each
quorums sends at most polylog(n) messages. Since the computation costs of VSS and Reconst are polynomial in their
input size, each quorums computes at most polylog(n) operations. � �

Lemma 13. If all honest parties follow our protocols, then with high probability, each party sends at most Õ(m/n+
√

n)
messages and computes at most Õ(m/n+

√
n) operations.

Proof. By Theorem 4, we need to send Õ(
√

n) messages per party to build the quorums. Subsequently, each party must
send messages for each quorum in which it is a member. Recall that each party is in Θ(logn) quorums.

By Lemma 12, each quorum sends at most polylog(n) messages during Input stage. Recall that each quorum is
mapped to Θ

(m+n
n

)
nodes of C. A quorum runs Gen-Rand and the gate evaluation step of Circuit-Eval once per node

it is mapped to in C. Since each gate has in-degree two and out-degree at most two, a quorum runs CMPC at most
three times for every node it is mapped to in C. Also, at most polylog(n) messages are sent per party per instance of
CMPC, Gen-Rand, and gate evaluation. Finally, each quorum sends/computes O(logn) messages/operations in the
dissemination of the output. Thus, each quorum sends/computes polylog(n) messages/operations per node it represents.
Using a similar argument for our asynchronous protocol, we conclude that in our both MPC protocols each party
sends/computes Õ(m/n+

√
n) messages/operations. � �

Lemma 14. The total latency of our synchronous MPC protocol is O(d polylog(n)), where d is depth of the circuit the
protocol computes.

Proof. Based on Theorem 4, the latency for creating quorums is polylog(n). Since the protocol evaluates the circuit
level by level and the circuit has d levels, the total latency is d times the latency of CMPC over logn parties, which is
O(d polylog(n)). � �

Lemma 15. The expected latency of our asynchronous MPC protocol is O(d polylog(n)), where d is depth of the circuit
the protocol computes.

Proof. We bounded the expected latency of our asynchronous MPC protocol in Section 4.2.2. � �

29

6 Asynchronous Threshold Counting
In this section, we prove Theorem 3 by constructing a protocol called Thresh-Count for solving the threshold counting
problem as defined in 2. In our asynchronous MPC protocol presented in Section 4, we run Thresh-Count among a set
of quorums, where each quorum represents an honest party.

Recall that in the threshold counting problem there are n honest parties in an asynchronous communication network
with private channels. Each party has an input flag, which is initially 0. At least τ of the parties’ bits will eventually be
set to 1 based on an external event. When this happens, we say the threshold is reached. The goal is for each of the
parties to terminate at some time after the threshold is reached.

Although in our application τ is linear in n, we address the more general case, where τ = O(n). Our algorithm
depends on prior knowledge of τ. As specified in Theorem 3, each party running the algorithm sends and receives
O(logn) messages of constant size and performs O(logn) computations; moreover the total latency is O(logn).

For ease of presentation, we first describe an algorithm which works when τ = Θ(n), in particular, when τ is at least
n/2. We then indicate why this fails when τ is smaller, and show how to modify it so that it works for all τ. The formal
algorithm is shown as Protocol 21.

Consider a complete binary tree, where each party sends his input to a unique leaf node when it is set to 1. Then, for
every node v, each child of v sends v a message giving the number of inputs it has received so far and it sends a new
message every time this number changes. The problem with this approach is that it is not load-balanced: each node at
depth i has n/2i descendants in the tree, and therefore, in the worst case, sends and receives n/2i messages. Thus, a
child of the root sends n/2 messages to the root and receives the same number of messages from its children.

One may argue why a simple modification to the above algorithm cannot solve the load-balancing issue. For example,
assume a single binary tree with τ leaves, where each node passes up to his parent only after receiving messages from
both children. Unfortunately, deterministic algorithms such as this cannot solve the threshold counting problem in a
load-balanced manner: The adversary can carefully but simply choose the nodes he wants to send his inputs in a way to
make sure the threshold is never met and the algorithm always fails. For the example mentioned above, it is enough for
the adversary to choose nodes with honest siblings. The adversary never sends his own inputs, but since the nodes
of the tree are waiting for both inputs, the algorithm always fails to identify the threshold. In our algorithm, we use
randomness in our favor to make sure the adversary cannot corrupt the counting process and the protocol succeeds with
high probability. However, there is a small probability of error in which the threshold will not be identified. We added
this discussion to the paper.

To solve the load-balancing problem, we use a randomized approach which ensures with high probability that each
leaf of the data structure receives at least 7logn messages and does not communicate with its parent until it has done so.
Subsequent messages it receives are not forwarded to its parent but rather to other randomly chosen leaves to ensure a
close to uniform distribution of the messages.

Our algorithm consists of up and down stages. For the up stage the parties are arranged in a predetermined tree data
structure, which we call the count tree. The count tree consists of a root node with O(logn) children, each of which is
itself the root of a complete binary tree; these subtrees have varying depths as depicted in Figure 4. In the up stage,
parties in the trees count the number of 1-inputs, i.e., the number of parties’ inputs that are set to 1. The root then
eventually decides when the threshold is reached. In the down stage, the root notifies all the parties of this event via a
complete binary tree of depth logn. Note that the tree used in the down stage has the same root as the count tree.

Let D = dlog τ
14logn e. Note that D =O(logn). The root of the count tree has degree D. Each of the D children of

the root is itself the root of a complete binary subtree, which we will call a collection subtree. For 1 ≤ j ≤ D, the jth
collection subtree has depth D+1− j. Party 1 is assigned to the root and parties 2 to D+1, are assigned to its children,
i.e., the roots of the collection subtrees, with party j +1 being assigned to the jth child. The remaining nodes of the
collection trees are assigned parties in order, starting with D+2, left to right and top to bottom. One can easily see
that the entire data structure has fewer than n nodes, (in fact it has fewer than τ

3logn nodes) so some parties will not
be assigned to any node. The leaves of each collection subtree are collection nodes, while the internal nodes of each
collection tree are adding nodes.

30

R

AA A

A A A A C C

A A A A C C C C

C C C C C C C C

Figure 4: The count tree for n = 2048 and τ = 1232. D = dlog 1232
14×11 e = 3. The node marked R is the root, nodes marked

A are adding nodes, and nodes marked C are collection nodes.

6.1 Up Stage
When a party’s input is set to 1, it sends a 〈Flag〉 message, which we will sometimes simply refer to as a flag, to a
uniformly random collection node from the first collection subtree. Intuitively, we want the flags to be distributed as
evenly as possible among the collection nodes. The parameters of the algorithm are set up so that with high probability
each collection node receives at least 7logn 〈Flag〉 messages.

Each collection node in the j-th collection tree waits until it has received 7logn flags. It then sends its parent a
〈Count〉 message. For each additional flag received, up to 14logn, it chooses a uniformly random collection node in the
(j +1)-st collection subtree and forwards a flag to it. If j = D, then it forwards these 14logn flags directly to the root.
Subsequent flags are ignored. Again, we use the randomness to ensure a close to even distribution of flags with high
probability.

Each adding node waits until it has received a 〈Count〉 message from each of its children. Then, it sends a 〈Count〉
message to its parent. We note that, with high probability, each adding node sends exactly one message during the
algorithm. The parameters of the algorithm are arranged so that all the 〈Count〉 messages that are sent in the the jth
collection subtree together account for τ/2j of the 1-inputs. Thus, all the 〈Count〉 messages in all the collection subtrees
together account for τ

(
1− 1

2D

)
of the 1-inputs. At least τ

2D 1-inputs remain unaccounted for. These 1-inputs and up to
O(logn) more are collected as flags at the root.

6.2 Down Stage
When party 1, at the root, has accounted for at least τ 1-inputs, it starts the down stage by sending the 〈Done〉 message
to parties 2 and 3. For j > 1, when party j receives the 〈Done〉 message, it forwards this message to parties 2 j and
2 j +1. Thus, eventually, the 〈Done〉 message reaches all the parties, who then learn that the threshold has been met.

Note that all three types of messages sent in this protocol, 〈Flag〉, 〈Count〉 and 〈Done〉, are notifications only; they
do not contain any numerical value. Since 2 bits are sufficient to distinguish three different kinds of messages, all the
messages sent in this protocol are 2-bit strings. Note that we distinguish between flags and 〈Count〉 messages since the
root receives both types. However, it is the only node for which this is a problem. We could add another node, as the
(D+1)st child of the root, (equivalently as a collection subtree of depth 0), which waits for 14logn messages, and sends
a 〈Count〉 message to the root. In so doing, we could eliminate the need to distinguish 〈Flag〉 and 〈Count〉 message
explicitly, since they would be automatically identified by the role of the receiving node. Thus, we could actually reduce
all message lengths to a single bit.

31

R

AA

A A A A

C C C C

F F F F

Figure 5: The count tree for n = 2048 and τ = 616. D = dlog 616
14×11 e = 2. The node marked R is the root, nodes marked

A are adding nodes and nodes marked C are collection nodes. The filters, marked F, are complete binary trees of depth
7, with 128 leaves each, for a total of 512 filter leaves.

6.3 Handling Sublinear Thresholds
Now, we consider the case where τ = o(n). It is easy to see that the worst load in terms of the number of received
messages is when all n inputs are 1. In this case, a collection node in the first collection subtree receives, on average,
14(n/τ) logn flags. When τ = Θ(n), this is still O(logn), but when τ = o(n) this is ω(logn). Before we describe how
to fix this, we note that the problem exists only in the leaves of the first collection subtree. Subsequent collection nodes
receive only O(logn) flags, because each node only forwards up to 14logn flags.

For the sake of having a definite cutoff and tractable constants, we will apply the following fix whenever τ < n/2.
Below each collection node in the first collection tree, we put in a filter, which is a complete binary tree of depth
logn−2−D with 7n logn

2τ leaves. This is equivalent to extending the first collection tree to depth logn−2 so that it has
n/4 leaves. The collection nodes will remain at depth D though. See Figure 5.

When a party’s input is set to 1, it selects a random collection node in the first collection tree, but rather than sending
a flag directly to it, it sends the flag to a random leaf of the collection node’s filter. The nodes in the filter simply forward
any flags they receive, up to 21logn, to their parent in the filter. Subsequent flags are ignored. Apparently, this means
that the collection node at the root of the filter cannot receive more than 42logn flags, which solves the load problem.
Moreover, we have not only transferred the problem to the leaves of the filter. Since there are so many more of them,
each one actually receives fewer flags on average and the parameters are adjusted to make their maximum load O(logn)
with high probability. As we will also see in the analysis, these filters do not filter out too many flags; when there are
only τ 1-inputs among the parties, with high probability all the flags get through.

6.4 Proof of Theorem 3
In this section, we prove the correctness and resource costs of Protocol 21. The process of each party independently
selecting a random collection node to notify after his input has been set to 1 can be modeled as a balls and bins problem
and hence be approximated by the Poisson distribution.

6.4.1 Preliminaries

We first recall the following Chernoff bound for a Poisson random variable from Mitzenmacher and Upfal [MU05].

Theorem 15 (Theorem 5.4 of [MU05]). Let Y ∼ Poisson(µ). Then,

32

Protocol 21 Thresh-Count

Goal. n is the number of parties, τ is the threshold, b is a flag bit initially set to zero, which may be set to one by an external event
throughout the protocol and D = dlog(τ

14logn)e. The algorithm notifies all the parties upon receiving τ flag bits set to one.

1. Setup. No messages sent in this stage:

(a) Build the count tree and set party 1 as the root:
For 1 ≤ j ≤ D, party j +1 is a child of the root (and the root of the jth collection subtree with depth D+1− j). Starting
with party D+2, the remainder of the nodes are assigned to parties, left to right and top to bottom. If τ < n/2 the
remaining parties are assigned to filters, left to right and top to bottom.

(b) Let sum = 0 for the root.

2. Up Stage.

(a) Upon receiving event 〈Ready〉, choose a uniformly random collection node v from collection subtree 1,

• If τ > n/2, then send a 〈Flag〉 to v.
• Otherwise, choose a uniformly random leaf in v’s filter and send a 〈Flag〉 to it.

(b) Upon receiving a 〈Flag〉, if previously forwarded fewer than 21logn flags, forward the flag to parent. Otherwise, ignore
it.

(c) Perform the following steps to collect nodes in the collection subtree j:

• Upon receiving 7logn 〈Flag〉s, send parent a 〈Count〉 message.
• Upon subsequently receiving a 〈Flag〉, if j < D, send it to a uniformly random collection node in collection subtree

j +1. If j = D, then send it directly to the root. Do this for up to 14logn flags. Then, ignore all subsequent 〈Flag〉
messages.

(d) Upon receiving 〈Count〉 from both children, send 〈Count〉 to the parent.

(e) If sum < τ, then

• Upon receiving a 〈Count〉 from party j +1, set sum← sum+ τ/2j .
• Upon receiving a 〈Flag〉, sum← sum+1.

3. Down Stage. If sum ≥ τ, then

(a) Party 1 (the root): Send 〈Done〉 to parties 2 and 3, and then terminate.

(b) Party j for j > 1: Upon receiving 〈Done〉 from party b j/2c, forward it to parties 2 j and 2 j +1 (if they exist), and then
terminate.

33

1. for x < µ, Prob(Y ≤ x) ≤ e−µ (eµ/x)x , and

2. for x > µ, Prob(Y ≥ x) ≤ e−µ (eµ/x)x .

Lemma 16. Assume αk balls are thrown independently and uniformly at random into k bins. Let E1 denote the event
that the minimum load is less than α/2, and let E2 denote the event that the maximum load exceeds 3α/2. Then,

Prob(E1) ≤ ek
√
αk

(
2
e

)α/2
(1)

and

Prob(E2) ≤ ek
√
αk

(
8e
27

)α/2
. (2)

Proof. For 1 ≤ i ≤ k, let Xi denote the number of balls in the ith bin, and let Yi ∼ Poisson(α) be an independent Poisson
random variable with mean α. It is well known that the distribution of each Xi is close to that of Yi , and moreover that
the joint distribution of the Xi’s is well approximated by the joint (i.e., product) distribution of the Yi’s (see Chapter 5 in
Mitzenmacher and Upfal [MU05]). Indeed, Corollary 5.11 from [MU05] states that for any event E that is monotone in
the number of balls, if E occurs with probability at most p in the Poisson approximation, then E occurs with probability
at most 2p in the exact case. Since maximum and minimum load are both clearly monotone increasing in the number of
balls, applying this corollary we have:

Prob(E1) = Prob (∃i s.t. Xi ≤ α/2)
≤ 2Prob (∃i s.t. Yi ≤ α/2)

≤ 2
k∑
i=1

Prob
(
Yi ≤

α

2

)
≤ 2k

(
2
e

)α/2
,

where the last inequality follows from Theorem 15 with µ = α and x = α/2. Similarly,

Prob(E2) = Prob (∃i s.t. Xi > 3α/2)
≤ 2Prob (∃i s.t. Yi > 3α/2)

≤ 2
k∑
i=1

Prob
(
Yi ≥

3α
2

)

≤ 2k
(
8e
27

)α/2
,

where the last inequality follows from Theorem 15 with µ = α and x = 3α/2. � �

6.4.2 Protocol Analysis

Let σ be the number of 1-inputs. We know that τ ≤ σ ≤ n. Let s = σ/τ. For simplicity of the analysis, we will assume
that the first τ flags to be sent are marked while the remaining σ− τ are unmarked. As we track the progress of the flags
through our data structure, we pay particular attention to the marked flags. Due to asynchrony, the marked flags need
not be the first τ to arrive at their destinations.

Lemma 17. Suppose τ ≥ n/2. In the Thresh-Count algorithm, with probability at least 1− 1
7n logn , the first collection

subtree satisfies all of the following:
1. Each collection node receives between 7s logn and 21s logn flags.

2. The 〈Count〉 messages generated in this tree, when they reach the root, account for τ/2 1-inputs.

34

3. At least τ/2 and at most τ flags are forwarded to the second collection tree.

Proof. The process of sending σ 〈Flag〉 messages to the collection nodes in the first collection tree can be modeled as a
balls and bins problem as in Lemma 16 with α = 14s logn and k = τ/14logn. E1 and E2 are, respectively, the events
that some collection node fails to receive 7s logn flags and that some collection node receives more than 21s logn flags.
By applying the lemma, we get

Prob(E1) ≤
2τ

14logn

(
2
e

)7s logn

≤
2n

14logn
2−0.4426×7s logn

≤
1

7n2s logn

and

Prob(E2) ≤
2τ

14logn

(
8e
27

)7s logn

≤
2n

14logn
2−0.3121×7s logn

≤
1

7n1.1s logn

Thus, the probability that (a) fails is at most 1+n0.9s

7n2s logn .
To see (b), we note that there are τ/(14logn) collection nodes in the first collection subtree, each of whom generates

a 〈Count〉 message when it has received 7logn flags. The flags correspond to distinct 1-inputs, and hence together
they account for τ/2 1-inputs. Thus, (b) fails only if some node fails to receive at least 7logn flags, which is already
accounted for in the failure of (a).

To prove (c), we need to track the progress of the marked flags. Let E ′1 and E ′2 denote respectively, the events that
some node fails to receive at least 7logn marked flags and that some node receives more than 21logn marked flags.
Then, since there are τ marked flags, applying Lemma 16 with α = 14logn and k = τ/14logn we see that

Prob(E ′1) ≤
2τ

14logn

(
2
e

)7logn

≤
2n

14logn
2−0.4426×7logn

≤
1

7n2 logn

and

Prob(E ′2) ≤
2τ

14logn

(
8e
27

)7logn

≤
2n

14logn
2−0.3121×7logn

≤
1

7n1.1 logn
.

Within each collection node, by transferring the marks from some marked flags to some unmarked flags, we may
assume that the marked flags are the first to arrive. We can do this transfer because it does not change the distribution of
marked and unmarked flags between the nodes, nor does it change the total number of marked flags across all collection

35

nodes. The advantage of this change is that in following the algorithm, each node will first use all its marked flags
before using unmarked flags.

In particular, as long as E ′1 and E ′2 do not occur, each node will use 7logn flags to generate a 〈Count〉 message, after
which it will be left with between 0 and 14logn marked flags. Since it forwards up to 14logn flags to the next collection
subtree, it follows that it will forward all of its marked flags and possibly some unmarked flags to the next subtree. Since
there are τ marked flags across all the collection nodes, and the 〈Count〉 messages account for τ/2 of them, it follows
that the remaining τ/2 marked flags are forwarded. Hence, at least τ/2 flags are forwarded. Moreover, since there are
τ/(14logn) nodes and each forwards at up to 14logn flags, at most τ flags are forwarded, which establishes (c).

Now, let E = E1∪E2∪E ′1∪E ′2 be the union of all the bad events we’ve encountered. For large enough n,

Prob(E) ≤
1

7n2s logn
+

1
7n1.1s logn

+
1

7n2 logn

+
1

7n1.1 logn

≤
1

7n logn

Thus, with probability at least 1− 1
7n logn , (a), (b), and (c) are all true, as desired. � �

We will also need to prove a similar lemma when τ < n/2. Note that when τ ≥ n/2, we have σ ≤ 2τ, or s = σ/τ ≤ 2.
When τ < n/2, σ may be much bigger than τ. Let M =min{σ/τ,2}.

Lemma 18. Suppose τ < n/2. In the Thresh-Count algorithm, with probability at least 1− 1
7n logn , the first collection

subtree satisfies all of the following:
1. Each collection node receives between 7logn and 21M logn flags.

2. Each filter node receives at most 21M logn flags.

3. The 〈Count〉 messages generated in this tree, when they reach the root, account for τ/2 1-inputs.

4. At least τ/2 and at most τ flags are forwarded to the second collection tree.

Proof. When τ < n/2, the flags are not sent directly to the collection nodes, but rather to leaf nodes of the filters below
the collection nodes. We will say that a filter receives a flag if the flag is received by any of its leaf nodes.

We first note that each party’s process of selecting a random collection node, and then choosing a random leaf
in its filter, is equivalent to choosing a uniformly random leaf node from among all the leaf nodes for all the filters.
We’ve already remarked that adding the filters is equivalent to extending the first collection subtree to depth logn−2
while keeping the collection layer the same. Thus, there are n/4 filter leaf nodes to choose from. Using the Poisson
approximation and an argument similar to the one in Lemma 16, it is easy to see that when σ ≤ n parties each
independently send a flag to a uniformly random filter leaf node out of n/4 choices, the probability of the event E0, that
there is a leaf node that receives more than 21logn flags is less than n− log logn.

Once the flags have been sent to the leaf nodes of the filters, they are forwarded up the filter from nodes to their
parents, all the way to the collection node, with the only caveat that nodes do not forward more than 21logn flags. Since
each node has two children, it follows that each node in the filter receives at most 42logn flags, and the same applies to
the collection nodes. At the same time, viewing the process as first selecting a collection node, and then a filter leaf
node below it, we see as in Lemma 17 that the probability of the event E2, that there is a filter that receives more than
21s logn flags is at most 1

7n1.1s logn . Since no node in the filter can get more flags than the filter as a whole, it follows
that the filter nodes and the collection nodes all receive no more than 21M logn =min{21s logn,42logn} flags. This
shows (b) and the upper bound in (a).

To show that the collection nodes each receives at least 7logn flags with high probability and that together the
collection nodes receive at least τ flags, we will once again track the marked flags. As we have remarked previously,
although the marked flags are the first τ to be sent, by asynchrony, they need not be the first τ to arrive at the filters.
Thus, it need not be the case that all these marked flags are forwarded through to the collection nodes. Nevertheless, we

36

will argue that for every marked flag that fails to be forwarded, at least one unmarked flag was forwarded instead. To see
this, note that as in Lemma 17, all the filters receive between 7logn and 21logn marked flags, except with probability
1+n0.9

7n2 logn . Thus, each node in a filter can have at most 21logn marked flags arrive at it.
Now, suppose a filter node fails to forward one or more marked flags. It can only do this if it has previously forwarded

21logn flags, and since it can receive at most 21logn marked flags, it follows that it has already forwarded at least as
many unmarked flags as it is choosing to ignore marked ones. Once again, by transferring marks from the marked flags
that are dropped to the unmarked flags that have been sent in their place, we can ensure that except with probability
1+n0.9

7n2 logn , between 7logn and 21logn marked flags get through each filter to the corresponding collection node, and at
least τ marked flags get through all the filters together, to the collection layer of the first collection subtree. This shows
the lower bound in (a) and sets us up to show (c) and (d).

For (c), we will once again pretend, by transferring marks that at each node the marked flags are the first to arrive and
be used. As before, we do this without altering the distribution of marked and unmarked flags between collection nodes.
Note that each newly marked flag at the collection node corresponds to a distinct 1-input, so the 7logn of them used by
each of τ/(14logn) collection nodes to generate a 〈Count〉 message accounts for τ/2 1-inputs at the root. This leaves
between 0 and 14logn marked flags at each collection node, which adds up to τ/2 of them across all the collection
nodes. Since each collection node forwards up to 14logn flags, all the marked flags are forwarded, so that at least τ/2
flags are forwarded to the next collection subtree. Since each of τ/(14logn) collection nodes forwards up to 14logn
flags, at most τ flags are forwarded to the next collection tree, proving (d).

Finally, adding up the probabilities of all the bad events we’ve encountered, we see that for large enough n,
1+n0.9

7n2 logn +
1

7n1.1 logn + n− log logn < 1
7n logn . It follows that with probability at least 1− 1

7n logn , (a), (b), (c), and (d) are all
true, as desired. � �

We are now ready to study what happens further up in the data structure. We will say that the algorithm succeeds up
to level j if for all i ≤ j the following are true:

1. All the collection nodes in the ith collection subtree receive between 7logn and 42logn flags.

2. The 〈Count〉 messages generated in the ith subtree account for τ/2i 1-inputs at the root.

3. Between τ/2i and τ/2i−1 flags are forwarded from the ith collection subtree to the (i+1)st collection subtree

Lemma 19. Let j ≤ D. In the Thresh-Count algorithm, with probability at least 1− j
7n logn , the algorithm succeeds up

to level j.

Proof. We proceed by induction on j. We have already established the base case j = 1 in Lemmas 17 and 18. Now
suppose j ≥ 2, and for an induction hypothesis we assume that the algorithm succeeds to level j −1 with probability at
least 1− j−1

7n logn . Let us condition on this event. This means that between τ/2j−1 and τ/2j−2 flags are forwarded to the
jth collection subtree, which has τ

2 j−114logn collection nodes.
Thus, we can apply Lemma 16 with α between 14logn and 28logn. The proof that conditioned on the algorithm

having succeeded up to level j −1, it succeeds to level j, except with probability 1
7n logn , is identical to the proof of

Lemma 17. By Bayes’ law and the induction hypothesis, the unconditional probability that the algorithm succeeds to
level j (

1−
j −1

7n logn

) (
1−

1
7n logn

)
≥ 1−

j
7n logn

,

as desired. � �

Corollary 1. With probability at least 1− 1
7n , the root node successfully accounts for at least τ 1-inputs.

Proof. The last collection subtree is the one corresponding to j = D, and by Lemma 19, with probability at least
1− D

7logn the root has accounted for
∑D

j=1 τ/2
j = τ(1−2−D) 1-inputs, and moreover, between τ/2D and τ/2D−1 flags

have been forwarded directly to the root, by the collection nodes in the last collection subtree. Since no randomness is
involved, the root eventually receives all of these flags. Thus, conditioned on the algorithm succeeding up to level D, the
root eventually accounts for at least τ 1-inputs. Since D < logτ < logn, the success probability is at least 1− 1

7n . � �

37

We now prove the Theorem 3. Lemmas 17 to 19 and Corollary 1 show that with probability at least 1− 1
7n , the root

accounts for at least τ 1-inputs while ensuring the following:
1. Filter nodes receive no more than 42logn messages and send no more than 21logn messages.

2. Collection nodes receive no more than 42logn messages and send no more than 14logn+1 messages. (The extra
1 is for the 〈Count〉 message.)

3. The root receives no more than τ/2D−1 = 28logn 〈Flag〉 messages.
Additionally, the adding nodes each receive two 〈Count〉 messages and send one 〈Count〉 message, and the root receives
D ≤ logn 〈Count〉 messages, one from each of the collection subtrees. Individual parties send at most one message each
when their input is set to 1. We have already remarked that the messages used in this algorithm can be encoded using
two bits. Thus, in the Up stage of the algorithm, each party sends and receives O(logn) messages of constant size. In
the Down stage, 〈Done〉 messages are sent via a canonical complete binary tree, so each party except the root receives
exactly one 〈Done〉 message, and each party that is not a leaf in the tree sends (at most) two 〈Done〉 messages. Since
all messages that are sent are eventually received, eventually all the parties receive the 〈Done〉 message and terminate.
Since the depths of the data structure used in the Up stage and the binary tree used in the Down stage are both logn, the
longest chain of messages is of length 2logn, and hence the total latency is O(logn). Finally, since the computations
done by each node during the algorithm amount to counting the number of messages it receives and generating up to
14logn random numbers, each node performs O(logn) computations. �

6.5 Using Quorums as Nodes in the Count Tree
So far in this section, we have assumed that all of the nodes in the count tree follow the protocol honestly. However, this
is not the case in our MPC model, where some of the parties can play maliciously. To fix this, we assign a quorum to
each node in the tree and let the quorums perform the roles of the parties. In our MPC protocol described in Section 4,
we introduce Protocol 4 that allows us to run the threshold counting algorithm in a malicious setting.

Lemma 6 shows that a quorum Q can securely send a message M to another quorum Q′. However, there is some
subtlety involved in using this fact. Every party in a quorum communicates with its parent when it has received at least
half as many inputs as the parents’ threshold. However, due to asynchrony, multiple messages may arrive simultaneously;
when the threshold is set, not all parties in the quorum may be in the same state. Some may already have more inputs
than the threshold, while others may still be waiting because messages from their children have been delayed. Lemma 6
tells us that if all parties in the quorum send the same message to the parent quorum, then the parent quorum can resolve
that message. Thus, in order to ensure that all parties in the quorum send the same message to the parent quorum, we
have required that even if a party’s received inputs exceed his threshold, it should only inform the parent of having met
the threshold, not of having exceeded it. The remaining inputs are held to be sent later.

7 Asynchronous Quorum Formation
In this section, we describe the quorum building algorithm of King et al. [KSSV06b, KLST11], and then adapt it to the
asynchronous communication model to prove Theorem 4.

Dealing with asynchronous communication, particularly in conjunction with malicious faults, is notoriously tricky.
To exercise particular care in this challenging domain, we include complete algorithms and proofs. Also, we believe our
result on asynchronous quorum formation may be of independent interest, and so for the sake of completeness, we
include the full result in this paper.

One may alternatively use the asynchronous Byzantine agreement protocol of Braud-Santoni et al. [BGH13] to
build a set of n quorums. Similar to [KLST11], [BGH13] provides an almost everywhere to everywhere agreement
protocol, which enables all parties to agree on a global string that is random enough to be used as an input to a sampler
to generate a collection of n quorums. This protocol requires each party on average to send polylog(n) field elements,
and perform polylog(n) computations. However, it is not load-balanced as some parties may send a linear number of
field elements. Using this result, our MPC protocols will cost only polylogarithmic bits and computations.

38

We start the description of our protocol by defining the semi-random-string agreement problem, where the goal is to
agree on a single string of length O(logn) with a constant fraction of random bits, where for any positive constant ε , a
1/2+ ε fraction of the parties are honest. King et al. [KLST11] present an asynchronous algorithm as an additional
result that we call SRS-to-Quorum. The SRS-to-Quorum algorithm can go from a solution for semi-random-string
agreement problem to a solution for the quorum building problem. Thus, their techniques can be extended to the
asynchronous model assuming a scalable asynchronous solution for the semi-random-string agreement problem. We
describe the Build-Quorums algorithm based on SRS-to-Quorum and an algorithm, which we call SRS-Agreement, that
solves the semi-random-string agreement problem in the asynchronous model with pairwise channels.

Protocol 22 Build-Quorums

Goal. Generate n quorums.

1. All parties run SRS-Agreement.

2. All parties run SRS-to-Quorum.

King et al. [KSSV06b] present a synchronous algorithm, where a set of parties, up to (1/3− ε)n of which are
controlled by an adversary, can reach almost-everywhere1 agreement with probability 1−o(1). Their primary technique
is to divide the parties into groups of polylogarithmic size; each party is assigned to multiple groups. In parallel, each
group uses the bin election algorithm of [Fei99] to elect a small number of parties from within their group to move on.
This step is recursively repeated on the set of elected parties until the number of remaining parties in this set becomes
polylogarithmic. At this point, the remaining parties can solve the semi-random-string agreement problem. Provided the
fraction of corrupted parties in the set of remaining parties is less than 1/3 with high probability, these parties succeed
in agreeing on a semi-random string. Then, these parties send the result to the rest of the parties.

Bringing the parties to an agreement on a semi-random string is trickier in the asynchronous model. The major
difficulty is that the bin election algorithm cannot be used in the asynchronous model since the adversary can prevent a
fraction of the honest parties from being part of the election. We present a similar algorithm to [KSSV06b] that solves
this issue in the asynchronous model with private channels. The main result of this section is as follows.

Theorem 16. Suppose there are n parties, for any fix positive ε constant fraction 1/4− ε of which are corrupted. There
is a polylogarithmic (in n) bounded degree network and a protocol such that:

1. With high probability, a 1−O(1/ logn) fraction of the honest parties agree on the same value (bit or string).

2. Every honest party sends and processes only a polylogarithmic (in n) number of bits.

3. The number of rounds required is polylogarithmic in n.

The important novelty of our method when compared to the result of King et al. [KSSV06b] is that instead of the
bin election algorithm, we run the classic asynchronous MPC protocol to determine which parties can proceed to the
next level. The simple version of our election method is presented as Simple-Elect-Subcommittee in Protocol 23 that
has the properties described in Lemma 20. The complete protocol and its proof of correctness are given in Section 7.5

Lemma 20. Let W be a committee of Θ(log8 n) parties, where the fraction, fW , of honest parties is greater than 3/4.
There exists any constant c such that with probability at least 1− n−3c/4, the Elect-Subcommittee protocol elects a
subset WB of W such that |WB | = c log3 n and the fraction of honest parties in WB is greater than (1−1/ logn) fW . The
Elect-Subcommittee protocol uses a polylogarithmic number of bits and polylogarithmic number of rounds in a fully
connected network.

Proof. The proof follows from a straightforward application of the union and Chernoff bounds. Let X be the number
of honest parties in WB. By the correctness of the ACMPC algorithm, each party in WB is randomly chosen from

1This is done by relaxing the requirement that all honest parties come to an agreement at the end of the protocol to instead require that a 1−o(1)
fraction of honest parties reach agreement. This relaxation is called almost-everywhere agreement and was first introduced by Dwork et al. [DPPU86].

39

Protocol 23 Simple-Elect-Subcommittee

Goal. Θ(log8 n) parties agree on a subcommittee of size Θ(log3 n). The protocol is performed by parties P1, ...,Pk ∈ W with
k = Θ(log8 n).

1. Party Pi generates a vector of c log3 n random numbers chosen uniformly and independently at random from 1 to k, where
each random number maps to one party. The value of c is calculated in Lemma 20.

2. Run ACMPC to compute the component-wise sum modulo k of all the vectors.

3. Let WB be the set of winning parties, which are those associated with the components of the sum vector.

4. Return WB as the elected subcommittee.

W . Let Yi be an indicator random variable, that equals 1 if the i-th member of WB is honest. Then, E[Yi] = fW and
E[X] = fW c log3 n. Using the Chernoff bound, we have

Pr[X < (1−1/ logn) fW c log3 n]
= Pr[X < (1−1/ logn)E[X]]

≤ e−
E [X]/ log2 n

2

< n−3c/4.

� �

We establish a polylogarithmic bound on the number of bits used in Elect-Subcommittee protocol since the bit cost
of Elect-Subcommittee is polynomial in the number of parties participating in the algorithm.

7.1 The Election Graph
Our algorithms use of an election graph to determine which parties will participate in which elections. This graph was
described in [KSSV06a, KSSV06b] and is repeated here.

Before describing the election graph, we first present a result similar to that used in [CL95]. Let X be a set of parties.
For a collection F of subsets of X , a parameter δ, and a subset X ′ of X , let F (X ′, δ) be the sub-collection of all F ′ ∈ F
for which

|F ′
⋂

X ′ |
|F ′ |

>
|X ′ |
|X |
+ δ.

In other words, F (X ′, δ) is the set of all subsets of F whose overlap with X ′ is larger than the “expected” size by
more than a δ fraction. Let Γ(r) denote the neighbors of node r in a graph.

Lemma 21. Let l,r,n be positive integers such that l and r are all no more than n and r/l ≥ ln1−zn for some real
number z. Then, there is a bipartite graph G(L,R) such that |L | = l and |R| = r and

1. Each node in R has degree logz n.

2. Each node in L has degree O((r/l) logz n).

3. Let F be the collection of sets Γ(r) for each r ∈ R. Then, for any subset L′ of L,
|F (L′,1/ logn) | < max(l,r)/ logz−2 n.

The proof of Lemma 21 follows from a counting argument using the probabilistic method and is omitted. The
following corollaries follow immediately by repeated application of the above lemma.

Corollary 2. Let `∗ be the smallest integer such that n/ log`
∗

n ≤ log10 n. There is a family of bipartite graphs
G(Li,Ri), i = 0,1, . . ., `∗, and constants c1 and c2 such that |Li | = n/ logi n, |Ri | = n/ logi+1 n, and

40

1. Each node in Ri has degree logc1 n.

2. Each node in Li has degree O(logc2 n).

3. Let F be the collection of sets Γ(r) for each r ∈ R. Then, for any subset L′i of Li ,
|F (L′i,1/ logn) | < |Ri |/ log6 n.

4. Let F ′ be the collection of sets Γ(l) for each l ∈ L. Then, for any subset R′i of Ri ,
|F ′(R′i,1/ logn) | < |Li |/ log6 n.

Corollary 3. Let `∗ be the smallest integer such that n/ log`
∗

n ≤ log10 n. There is a family of bipartite graphs
G(Li,Ri), i = 0,1, . . ., `∗, such that |Li | = n/ logi n, |Ri | = n/ logi+1 n, and

1. Each node in Ri has degree log5 n.

2. Each node in Li has degree O(log4 n).

3. Let F be the collection of sets Γ(r) for each r ∈ R. Then, for any subset L′i of Li ,
|F (L′i,1/ logn) | < |Li |/ log3 n.

Lemma 21 and its corollaries show there exists a family of bipartite graphs with strong expansion properties, which
allow the formation of subsets of parties, where all but a small fraction contain a majority that is honest.

We are now ready to describe the election graph. Throughout, we refer to nodes of the election graph as e-nodes to
distinguish them from nodes of the static network. Let `∗ be the minimum integer ` such that n/ log` n ≤ log10 n; note
that `∗ =O(logn/ log logn). The topmost layer `∗ has a single e-node, which is adjacent to every e-node in layer `∗−1.
For the remaining layers ` = 0,1, ..., `∗−1, there are n/ log`+1 n e-nodes. There is an edge between the ith e-node, A, in
layer ` and the jth e-node, B, in layer `+1 if and only if there is an edge between the ith node in L`+1 and the jth node
in R`+1 from Corollary 3. In such a case, we say that B is the parent of A, and A is the child of B. Note that e-nodes
have many parents.

Each e-node will contain a set of parties known as a committee. All e-nodes, except for the one on the top layer and
those in layer 0, will contain c log3 n parties. Initially, we assign the n parties to e-nodes on layer 0 using the bipartite
graph G(L0,R0) described in Corollary 3. The ith party is a member of the committee contained in the j th e-node of
layer 0 if and only if there is an edge in G between the ith node of L0 and the j th node of R0. Note every e-node on
layer 0 has log5 n parties in it.

The e-nodes on higher layers have committees assigned to them during the course of the protocol. Let A be an
e-node on layer ` > 0, let B1, . . .,Bs be the children of A on layer `−1, and suppose that we have already assigned
committees to e-nodes on layers lower than `. If ` < `∗, we assign a committee to A by running Elect-Subcommittee on
the parties assigned to B1, . . .,Bs, and assigning the winning subcommittee to A (note that we can run each of these
elections in parallel). If A is at layer `∗, the parties in A, B1, . . .,Bs , run byzantine agreement for Byzantine agreement.

7.2 Static Network with Polylog-Bounded Degree
We now repeat the description of the bounded degree static network [KSSV06b] and show how it can be used to hold
elections specified by the election graph. For each e-node A, we form a collection of parties, which we call its s-node:
s(A). Intuitively, the s-node s(A) serves as a central communication point for an election occurring at e-node A. Our
goal is to bound the fraction of s-nodes controlled by the adversary by a decreasing function in n, namely 1/ log10 n, for
each layer. As the number of s-nodes grows much smaller with each layer, we need to make each s-node more robust.
To do this, the number of parties contained in the s-node increases with the layer. Specifically, the s-nodes for layer i are
sets of logi+12 n parties. We determine these s-nodes using the bipartite graph from Lemma 21, where L is a collection
of n nodes, one for each party, R is the set of s-nodes for layer i and the degree of each node in R is set to logi+12 n. The
neighbors of each node in R constitute a set of parties in an s-node on layer i.

We use the term link to denote a direct connection in the static network. The communications for an election A will
all be routed through s(A): a message from a party x to s(A) on layer i will pass from the party to a layer 0 s-node,
whose parties will forward the message to a layer 1 s-node and so on, the goal being to reliably transmit the message

41

via increasingly larger s-nodes up to s(A). Similarly, communications with an individual party x from s(A) will be
transmitted down to a layer 0 s-node whose parties will send the message to x. We describe the connections in the static
network.

Connections in the static network. Consider the following:

• Let A be an e-node on layer 0 in the election graph. Every party in A has a link to every party in s(A).

• Let A and B be e-nodes in the election graph at levels i and i−1 respectively such that A is a parent of B. Thus,
s(A) has logi+12 n parties in it and s(B) has logi+11 n parties in it. Let G be a bipartite graph as in Lemma 21 where
L is the set of parties in s(A), R is the set of parties in s(B) and the degree of R is set to logc1 n and the degree of
L is set to O(logc2 n). If there is an edge between two nodes in L and R respectively, then the corresponding party
in s(A) has a link to the corresponding party in s(B). We will sometimes say that s(A) is adjacent to s(B) in the
static network.

The following lemma follows quickly from the application of Lemma 21 and its corollaries. Item (1) follows from
Lemma 3.1; items (2) and (4) from Corollary 3.2; and item (3) from Corollary 3.1. Although item (2) only makes a
guarantee about layer 0 e-nodes, we will see eventually that with high probability, the fraction of corrupted e-nodes on
every layer is small.

Lemma 22. With high probability, the election graph and the static network have the following properties:

1. (Bad s-nodes) Any s-node whose fraction of corrupt parties exceeds b+1/ logn will be called bad. Else, we will
call the s-node good. No more than a 1/ log10 n fraction of s-nodes on any given layer are bad.

2. (Bad e-nodes) Any e-node whose fraction of corrupt parties exceeds b+1/ logn will be called bad. Else we call
the e-node good. No more than a 1/ log2 n fraction of e-nodes on layer 0 are bad.

3. (Bad s-node to s-node connection) For any pair of e-nodes A and B joined in the election graph, the parties in
s-nodes s(A) and s(B) are linked such that the following holds. For any subset WA of parties in s(A), at most a
1/ log6 n fraction of parties in s(B) have more than a |WA |/|s(A) |+1/ logn fraction of their links to s(A) with
parties in WA.

4. (Bad e-node to e-node connection) Let |I | represent the total number of e-nodes on layer i in the election graph.
For any set W of e-nodes on any layer i, at most a 1/ log2 n fraction of e-nodes on layer i+1 have more than
|W |/|I |+1/ logn fraction of their neighbors in W .

The degree of the static network is polylogarithmic.

7.3 Communication Protocols
A permissible path is a path of the form P = x, s(A0), s(A1), ..., .s(Ai) where x is a party in A0, i is the current layer
of elections being held, each Aj is an e-node on layer j, and there is an edge in the election graph between Aj and
Aj+1 for j = 0, ..., i. Each party y in an s-node s(A) on each layer j keeps a List of permissible paths that determine
which parties’ messages it will forward. The List (for y ∈ s(A)) represents y’s view of which parties are elected (to the
subcommittee) at A that are still participating in elections on higher layers. If y’s List indicates that x is such a party,
then the List will also have the entire path for x, which stretches from x to the elections on layer i in which x is currently
participating in. We have the following definitions.

• We say a s-node knows a message [resp., knows a permissible path, or resp., knows a List of permissible paths] if
1− b−2/ logn parties in the s-node are honest and receive the same message [resp., have the same path on their
Lists, or resp., all have the same List.]

• A permissible path P is good if every s-node on the path knows P. Else the path is bad. We will show our
construction of the static network ensures at most a 1/ logn fraction of the permissible paths are bad.

42

We now describe three primitive communication subroutines: Sendhop, Send, and MessagePass. The subroutine
Sendhop describes how s-nodes (with direct links) communicate with each other, Send describes how a party
communicates with an s-node, and MessagePass describes how two parties communicate with each other.

Sendhop(s,r,m,P). A message m can be passed from s (the sender) to r (the receiver) from a level i to a level i−1 or
from a level i to a level i+1, where s and r are s-nodes on these layers or one of s,r is a 0-layer s-node and the other
is a party. If a party x sends a message to a layer 0 s-node s(A) it sends the message to every party in s(A) (note by
construction it will have a direct link with every party in s(A)). Similarly if a message is sent from a layer 0 s-node
s(A) to a party x, every party in s(A) sends the message to x.

When an s-node s(A) sends a message to s-node s(B), every party in s(A) sends the message to those parties of
s(B) to which it has a direct link. When each party in s(B) receives such a set of messages, it waits until it receives the
same messages from the majority to determine the message. If there is no majority value, the party ignores the message.
Along with sending the message the parties also send information that specifies along which path P the message is
being sent. Each time a message is received by a party of an s-node s(B) on layer j ≤ i, it checks that:

1. The message came from the s-node previous to it in the path P; if not the message is dropped.

2. The path P (or its reverse) is on its List of permissible paths. If not, the message is dropped.

3. Only messages that conform to the protocol in size and number are forwarded up and down the permissible paths.
If more or longer messages are received from a party, messages from that party are dropped.

Send(s,r,m,P). Of the first two parameters, one must be a party (“x”) and one must be an s-node (“s(A)”). The path P
contains the first parameter s as its start and the second parameter r as its endpoint. Send(s,r,m,P) sends the message
m from s to r along the path P via repeated application of Sendhop.

MessagePass(x ∈ A, y ∈ B,m,Px,Py). Both A and B are adjacent e-nodes. Hence, s(A) and s(B) are adjacent in
the static network. A message from party x in e-node A sends message m to party y in e-node B by first calling
Send(x, s(A),m,Px). Then, s(A) sends m to s(B) by calling Sendhop(s(A), s(B),m,P), where P is the path consisting
of two s-nodes s(A), s(B). Finally, the message is transmitted from s(B) to y by calling Send(s(B), y,m,Pr

y), where Pr
y

is the reversal of path Py .

7.4 SRS-Agreement Protocol
Before describing the SRS-Agreement protocol, we first adapt the Elect-Subcommittee protocol for the static network.
Let A be an e-node with children B1, . . .,Bs, and let X be the set of all parties from B1, . . .,Bs. For each i ∈ [s] and
x ∈ Bi , let Px denote a good path of s-nodes from x to s(Bi) concatenated with s(A). At the start of the election for A,
we assume that each node in Px knows Px and s(A) knows {Px | x ∈ X }.

We now describe the implementation of the Elect-Subcommittee algorithm. Every party x ∈ X generate a vector
of random numbers chosen uniformly and independently at random where each random number maps to one party.
The parties use the ACMPC protocol to determine the winners (recall that the number of parties in e-nodes is always
polylogarithmic, so this can be done sending only polylogarithmic messages). The list of winners is sent up to s(A),
where each party in s(A) takes a majority to determine the winners. Then, s(A) sends down the list of winners along
all the permissible paths to each party x ∈ X . Parties on the path (i.e., in s-nodes along the path) update their Lists of
permissible paths to remove those party-paths who lost as well as those party-pairs who won too many elections (we
will quantify this shortly), and make log4 n copies of each of the winners’ paths and concatenate a different layer i+1
s-node parent onto each one. There is a condition in Step 5 that requires parties who have won more than 8 elections to
be eliminated. This is a technical condition that ensures the protocol is load-balanced, and parties in an s-node do not
communicate more than a polylogarithmic number of bits. We present a detailed description of Elect-Subcommittee in
Protocol 24.

We describe the SRS-Agreement in protocol 25. Since every party is a member of s(A∗), steps 5 and 6 will ensure
the final result of the protocol is communicated to every party.

43

Protocol 24 Elect-Subcommittee

Goal. Adapted version of Simple-Elect-Subcommittee for static networks.

1. Let A be an e-node with children B1, . . .,Bs , and let X be the set of all parties from B1, . . .,Bs . For each x ∈ X : // This stage
done in parallel

2. Party x randomly selects one of k/(c1 log3 n) random numbers chosen uniformly and independently at random from zero
to k where each random number maps to one party.

3. Parties in X run ACMPC to compute the component-wise sum modulo k of all the vector. Arbitrarily, add enough additional
numbers to the vector to ensure it has c log3 n unique numbers.

4. Let M be the set of winning parties, which are those associated with some component of the vector sum.

5. Each y ∈ X sends M to s(A) by calling Send(y, s(A),M,Py).

6. Parties in s(A) determine M by waiting until they receive the majority of same messages. These become the elected
parties.

7. For each party x ∈ X that is elected, the parties in s(A) use Send(s(A), x,m,Pr
x) to tell x, along with each s-node in Px , that x

was elected.

8. Each party in each s-node revises its list of permissible paths to:

Retain only the winners. Eliminate parties who have won more than 8 elections. Make log4 n copies of remaining
permissive paths, concatenating each with a different s-node neighbor on layer i+1.

9. s(A) sends its list to every adjacent s-node s(B) on layer i+1 using Sendhop(s(A), s(B),m,P), where P is the path consisting
only of s(A), s(B).

Protocol 25 Scalable-SRS-Agreement

Goal. Parties agree on a semi-random string.
1. For l = 1 to l∗:

2. For each e-node A in layer l, let B1, ...,Bs be the children of A in layer l −1 of the election graph, and

3. If l < l∗, run Elect-Subcommittee on the parties in nodes B1, ...,Bs . Assign winning parties to node A.

4. Else parties in nodes B1, ...,Bs solve semi-random-string agreement problem by communicating via the protocol Send
through the s-node s(A).

5. Let A∗ be the e-node on layer l∗, every party x assigned to A∗ communicates the result of Step 4 to s(A∗) using
Send(x, s(A∗),m,Px).

6. Every party in s(A∗) waits for the majority of same message to determine the result of Step 4.

44

7.5 Proof of Build-Quorums
To establish the correctness of the protocol presented in Section 7.4, we first state some claims regarding the primitive
communication protocols. Their proofs follow by straightforward probabilistic arguments and are omitted in the interest
of space. Recall the fraction of corrupted parties is b, where b < 1/4− ε for any fix positive ε .

Claim 1. Let s(A) and s(B) be s-nodes on consecutive layers. Assume the following conditions hold:
1. Both s(A) and s(B) are good.

2. s(A) is on a permissible path known by s(B).

3. There exists a set W of parties from s(A) such that for every message m, all parties in W are honest and agree on
a message m. Further W consists of at least a 1− b−2/ logn fraction of the parties in s(A).

Then, there is a set W ′ of parties from s(B) such that for every message m, every party in W ′ is honest and agrees
on the message m after Sendhop(s(A), s(B),m,P) is called. (Here, P is the path s(A), s(B).) Further, W ′ consists of
all but a 1/ log6 n fraction of the honest parties in s(B).

Proof. Every party in W is honest and sends the same message to its connected parties in s(B). The parties in s(B) can
afford to wait for the majority of same messages, since s(A) is good and W consists of at least 1− b−2/ logn fraction of
parties, which is more than 1/2 and for majority we need to receive a fraction of 1/2 same messages from the parties in
s(A). Thus, all honest party but a 1/ log6 n fraction of parties in s(B) will eventually receive the message based on
corollary 2. � �

Claim 2. Let x be an honest party. Assume Px is a good path. Then, after Send(x, s(A),m,Px) is executed, there is a
fixed set W of honest parties, which contains all but a 1/ log6 n fraction of the honest parties in s(A) and every party
z ∈W agrees on m.

An election at e-node A is legitimate if the following two conditions hold simultaneously for more than a 3/4
fraction of parties x participating in the election at A: (1) party x is honest; (2) The path Px is good.

Lemma 23. For a legitimate election at node A, let X be a set of honest parties with good permissible paths. (Note
|X | > 3log8 n/4.) Let W be the set of honest parties in s(A) that know X . Then, after the execution of Elect-
subcommittee, the parties in W know the winners of the election in A, as do the s-nodes that belong to good paths
Px .

Proof. From Claim 2, we have that every message m sent by MessagePass(y ∈ Bi, z ∈ Bj,m,Py,Pz) from y ∈ X to
z ∈ X is received by some fixed set W of honest parties in s(Bi), such that W contains at least 1− b−2/ logn fraction of
the parties in s(Bi). By Claim 1, every message sent by y is received by z. Since X contains more than 3/4 of the total
parties participating in the election, (after running ACMPC) all the parties in X will all agree on the same set of for
random parties. Thus, after the parties in X send these values to s(A), s(A) will know the winners. When s(A) sends
these winners to X , by repeated application of Claim 1, we have every x ∈ X and every s-node in Px will know these
winners. � �

We have shown that in a legitimate election at node A, s(A) knows the list of winners. We next consider when paths
are dropped from the permissible path Lists.

7.5.1 Permissible Paths Removal

Let y be a party in some s-node on layer i. A permissible path Px is removed from a party y’s List on layer i if y
receives a message from an s-node above it in Px , indicating either x has won more than 8 elections or x lost in the
election held at the last node of Px . Here, we consider when Px is removed for the former reason, i.e., we give an upper
bound on the fraction of parties that are reported to have won too many elections on layer i.

First, we consider the effect of legitimate elections. The following lemma, a version of which appears in
[KSSV06a, KSSV06b], shows that a slight fraction of honest parties wins more than 8 times in legitimate elections on a
given layer.

45

Lemma 24. With high probability, the parties that win more than 8 elections, counting multiplicities, account for no
more than a 16/ log3 n fraction of the honest parties that are winners of legitimate elections.

Next, we bound the effect of elections that are not legitimate. We first consider the case where s(A) is good, yet the
fraction of honest parties participating in A with good paths is less than 3/4. For the remainder of the proof, we shall
treat such an e-node A as a bad e-node.

Claim 3. Suppose less than a 1/7 fraction of the honest parties of a good s(A) agree on a message m. Then, after
Sendhop(p(A), p(B),m,P) is executed, all but a 1/ log6 n fraction of the honest parties in s(B) will ignore m.

Proof. Even if the corrupted parties agree on m, since b < 1/4, the total fraction of parties in s(A) sending the message
m is less than 11/28. Thus, at most a 1/ log6 n fraction of the parties in s(B) will receive m from a majority of parties in
s(A). � �

Hence, a good s(A) can only communicate with seven different sets of winners to the s-nodes below it. Since each
honest party will send log3 n winners, the total number of winners sent is at most 7log3 n. Therefore, a bad e-node can
cause at most 7log3 n parties to have their permissible paths removed.

Next, we consider the effect of a bad s-node. We will assume one bad s-node s(A) on layer i can cause the removal
of all the permissible paths for every party participating in the election at A. Since log8 n parties participate in an
election, and fewer than a 1/ log10 n fraction of the s-nodes are bad on a layer, the fraction of honest winners affected is
less than 1/ log2 n. Thus, we can bound the fraction of the honest winners on any layer i that have their permissible
paths removed by 1/ log2 n+1/ log3 n+7βi; where βi represents the fraction of bad e-nodes on layer i. Thus, we have
the following lemma.

Lemma 25. Assume the fraction of bad e-nodes on layer i is bounded by c/ log2 n, for some constant c. Then, the
fraction of honest winners that have their permissible paths removed on layer i is bounded by 8c/ log2 n.

7.5.2 Proof of Theorems 16

We now complete the proof of Theorem 16, which follows from the following lemma.

Lemma 26. On layer i, with high probability, at least a 1− 4/ log2 n fraction of s-nodes s(Aj) have the following
properties:

1. s(Aj) is good.

2. At least a 1− b−4i/ logn fraction of the parties in node Aj are honest and have good paths to s(Aj) (note this
implies s(Aj) knows this path). That is, Aj is a good e-node.

Proof. We prove the lemma by induction. On all layers and particularly layer 0, only a 1/ log10 n fraction of the s-nodes
are bad. If s(A) is good, then every party in A has a good path to s(A). Further by construction all but a 1/ log2 n
fraction of the e-nodes on layer 0 consist of at least a 1− b−1/ logn fraction of honest parties. So the lemma is true on
layer 0.

Assume the lemma is true for layer i. Then, a 1−4/ log2 n fraction of e-nodes are good, more specifically these
e-nodes have at least a 1− b−4i/ logn fraction of honest parties that have a good path to their corresponding s-node.
Since the election is legitimate by Lemmas 20 and 23, with high probability, after Elect-Subcommittee at least a
1−b−4i/ logn−1/ logn fraction of the parties elected are honest and have a good path to any good parent of their s-node.
Thus, at least a 1−b− (4i+1)/ logn fraction of the parties elected at layer i are honest and have good paths to good parent
s-nodes on layer i+1. By Lemma 25 this fraction is reduced by at most 32/ log2 n. Thus, at least a 1− b− (4i+2)/ logn
fraction of the parties elected at layer i are honest and have good paths to good parent s-nodes on layer i+1. Since the
fraction of bad s-nodes on layer i+1 is at most 1/ log10 n, by Corollary 3 at least a 1−1/ log2 n−1/ log10 n fraction of
the e-nodes (and their corresponding s-nodes) are good on layer i+1, and have at least a 1− b− (4i+2)/ logn−1/ logn
fraction of honest parties that have good paths to their corresponding s-nodes. � �

46

By Lemma 26, with high probability the layer `∗ e-node is good. Thus, the parties in this e-node succeed in solving
the semi-random-string agreement problem (Step 4 of algorithm SRS-Agreement). Since all the parties are in the
s-node (though they may appear multiple times) corresponding to A on `∗, by Claim 2 all but a O(1/ logn) fraction of
the honest parties learn the final result. To prove the number of bits sent by each party is polylogarithmic we note each
party is in a polylogarithmic number of e-nodes and s-nodes on each layer i and participates in at most a polylogarithmic
number of elections on layer i. Since the number of layers is O(logn) Theorem 16 follows. Finally, the correctness of
Theorem 4 follows from Theorem 16 and the correctness of SRS-to-Quorum protocol.

8 Conclusion
We described a Monte Carlo algorithm to perform asynchronous MPC in a scalable manner. Our protocols are scalable
in the sense that they require each party to send Õ(m/n+

√
n) messages and perform Õ(m/n+

√
n) computations. They

tolerate a static adversary that controls up to a 1/8− ε fraction of the parties, for ε any positive constant. We showed
that our protocol is secure in the universal composability framework. We also described efficient algorithms for two
important building blocks of our protocol: threshold counting and quorum building. These algorithms can be used
separately in other distributed protocols.

The following problems remain open. Can we prove lower bounds for the communication and computation costs for
Monte Carlo MPC? Can we implement and adapt our algorithm to make it practical for an MPC problem such as the
beet auction problem described in [BCD+09]? Finally, can we prove upper and lower bounds for resource costs to solve
MPC in the case where the adversary is adaptive, able to take over parties at any point during the algorithm?

9 Acknowledgments
The authors would like to acknowledge supports from NSF under grants CCF-1320994, CCR-0313160, and CAREER
Award 644058. We are also grateful for valuable comments from Ran Canetti (Boston University), Shafi Goldwasser
(MIT), Aniket Kate (Saarland), Yehuda Lindell (Bar-Ilan), and Seth Pettie (UMich).

References
[Abr74] Milton Abramowitz. Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical

Tables,. Dover Publications, Incorporated, 1974.

[AHS91] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks and multi-processor coordination. In
Proceedings of STOC’91, pages 348–358. ACM, 1991.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n logn) sorting network. In Proceedings of STOC’83, pages
1–9, New York, NY, USA, 1983. ACM.

[AL11] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly-secure multiparty
computation. Cryptology ePrint Archive, Report 2011/136, 2011.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and Advanced
Topics (2nd edition), page 14. John Wiley Interscience, March 2004.

[BCD+09] P. Bogetoft, D. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard, J. Nielsen, J. Nielsen,
K. Nielsen, J. Pagter, et al. Secure multiparty computation goes live. Financial Cryptography and Data
Security, pages 325–343, 2009.

[BCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In Proceedings of
the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ’93, pages 52–61, New York,
NY, USA, 1993. ACM.

47

[BCP15] Elette Boyle, Kai-Min Chung, and Rafael Pass. Advances in Cryptology – CRYPTO 2015: 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, chapter
Large-Scale Secure Computation: Multi-party Computation for (Parallel) RAM Programs, pages 742–762.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[BE03] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in constant time. Distributed
Computing, 16(4):249–262, 2003.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances in Cryptology
– CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 420–432. Springer Berlin
Heidelberg, 1991.

[BGH13] Nicolas Braud-Santoni, Rachid Guerraoui, and Florian Huc. Fast Byzantine agreement. In Proceedings of
the 2013 ACM Symposium on Principles of Distributed Computing, PODC ’13, pages 57–64, New York,
NY, USA, 2013. ACM.

[BGT13] Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication locality in secure multi-party
computation: how to run sublinear algorithms in a distributed setting. In Proceedings of the 10th theory of
cryptography conference on Theory of Cryptography, TCC’13, pages 356–376, Berlin, Heidelberg, 2013.
Springer-Verlag.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption without
bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS
’12, pages 309–325, New York, NY, USA, 2012. ACM.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computing. In Proceedings of the Twentieth ACM Symposium on the Theory of
Computing (STOC), pages 1–10, 1988.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In Proceedings of the
Twenty-second Annual ACM Symposium on Theory of Computing, STOC ’90, pages 503–513, New York,
NY, USA, 1990. ACM.

[BTH07] Zuzana Beerliová-Trubíniová and Martin Hirt. Simple and efficient perfectly-secure asynchronous MPC.
In Proceedings of the Advances in Crypotology 13th International Conference on Theory and Application
of Cryptology and Information Security, ASIACRYPT’07, pages 376–392, Berlin, Heidelberg, 2007.
Springer-Verlag.

[BW86] E Berlekamp and L Welch. Error correction for algebraic block codes, US Patent 4,633,470, December
1986.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: a new paradigm for cryptographic protocols. In Proceedings
of the 42nd Annual Symposium on Foundations of Computer Science, FOCS ’01, pages 136–145, Oct 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols. In
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC), pages 11–19,
1988.

[CCG+14] Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser, Rafail Ostrovsky, and
Vassilis Zikas. Optimally resilient and adaptively secure multi-party computation with low communication
locality. Cryptology ePrint Archive, Report 2014/615, 2014.

[CD89] B. Chor and C. Dwork. Randomization in Byzantine agreement. Advances in Computing Research,
5:443–498, 1989.

48

[CDG88] David Chaum, Ivan Damgård, and Jeroen van de Graaf. Multiparty computations ensuring privacy of
each party’s input and correctness of the result. In A Conference on the Theory and Applications of
Cryptographic Techniques on Advances in Cryptology, CRYPTO ’87, pages 87–119, London, UK, UK,
1988. Springer-Verlag.

[CFGN96] R. Canetti, U. Friege, O. Goldreich, and M. Naor. Adaptively secure multi-party computation. Technical
report, Cambridge, MA, USA, 1996.

[CHP13] Ashish Choudhury, Martin Hirt, and Arpita Patra. Asynchronous multiparty computation with linear
communication complexity. In Yehuda Afek, editor, Distributed Computing, volume 8205 of Lecture Notes
in Computer Science, pages 388–402. Springer Berlin Heidelberg, 2013.

[CL95] Jason Cooper and Nathan Linial. Fast perfect-information leader-election protocol with linear immunity.
Combinatorica, 15:319–332, 1995.

[DGKN09] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asynchronous multiparty
computation: Theory and implementation. In Proceedings of the 12th International Conference on Practice
and Theory in Public Key Cryptography: PKC ’09, Irvine, pages 160–179, Berlin, Heidelberg, 2009.
Springer-Verlag.

[DI06] I. Damgård and Y. Ishai. Scalable secure multiparty computation. Advances in Cryptology - CRYPTO
2006, pages 501–520, 2006.

[DIK+08] I. Damgård, Y. Ishai, M. Krøigaard, J. Nielsen, and A. Smith. Scalable multiparty computation with nearly
optimal work and resilience. Advances in Cryptology – CRYPTO ’08, pages 241–261, 2008.

[DKMS12] Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Brief announcement: breaking the
o(nm) bit barrier, secure multiparty computation with a static adversary. In Proceedings of the 2012 ACM
symposium on Principles of distributed computing, PODC ’12, pages 227–228, New York, NY, USA, 2012.
ACM.

[DKMS14] Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Quorums quicken queries: Efficient
asynchronous secure multiparty computation. In Distributed Computing and Networking, volume 8314 of
Lecture Notes in Computer Science, pages 242–256. Springer Berlin Heidelberg, 2014.

[DN07] I. Damgård and J.B. Nielsen. Scalable and unconditionally secure multiparty computation. In Proceedings
of the 27th annual international cryptology conference on Advances in cryptology, pages 572–590.
Springer-Verlag, 2007.

[DPPU86] C Dwork, D Peleg, N Pippenger, and E Upfal. Fault tolerance in networks of bounded degree. In
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, pages
370–379, New York, NY, USA, 1986. ACM.

[Far88] R.W. Farebrother. Linear Least Squares Computations. Statistics: A Series of Textbooks and Monographs.
Taylor & Francis, 1988.

[Fei99] Uriel Feige. Noncryptographic selection protocols. In FOCS, pages 142–153, 1999.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st annual ACM
symposium on Theory of computing, STOC ’09, pages 169–178, New York, NY, USA, 2009. ACM.

[GHY88] Zvi Galil, Stuart Haber, and Moti Yung. Cryptographic computation: Secure faut-tolerant protocols and
the public-key model. In A Conference on the Theory and Applications of Cryptographic Techniques on
Advances in Cryptology, CRYPTO ’87, pages 135–155, London, UK, UK, 1988. Springer-Verlag.

[GKP+13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich. How to
run Turing machines on encrypted data. In Advances in Cryptology – CRYPTO 2013, volume 8043 of
Lecture Notes in Computer Science, pages 536–553. Springer Berlin Heidelberg, 2013.

49

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In Proceedings of the
nineteenth annual ACM symposium on Theory of computing, STOC ’87, pages 218–229, New York, NY,
USA, 1987. ACM.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs. J. ACM,
43(3):431–473, May 1996.

[Gol00] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, New York, NY,
USA, 2000.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University
Press, New York, NY, USA, 2004.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track multiparty computations
with applications to threshold cryptography. In Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’98, pages 101–111, New York, NY, USA, 1998. ACM.

[HKI+12] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Practically efficient
multi-party sorting protocols from comparison sort algorithms. In Information Security and Cryptology
– ICISC 2012, volume 7839 of Lecture Notes in Computer Science, pages 202–216. Springer Berlin
Heidelberg, 2012.

[KLR10] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure protocols and security
under composition. SIAM Journal on Computing, 39(5):2090–2112, March 2010.

[KLST11] Valerie King, Steven Lonargan, Jared Saia, and Amitabh Trehan. Load balanced scalable Byzantine
agreement through quorum building with full information. In Distributed Computing and Networking,
volume 6522 of Lecture Notes in Computer Science, pages 203–214. Springer Berlin Heidelberg, 2011.

[Klu95] Michael Richard Klugerman. Small-depth Counting Networks and Related Topics. PhD thesis, Cambridge,
MA, USA, 1995. Not available from Univ. Microfilms Int.

[KP92] Michael Klugerman and C. Greg Plaxton. Small-depth counting networks. In Proceedings of STOC’92,
pages 417–428, 1992.

[KSSV06a] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA ’06, pages 990–999,
Philadelphia, PA, USA, 2006.

[KSSV06b] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards secure and scalable computation in
peer-to-peer networks. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’06, pages 87–98, Washington, DC, USA, 2006. IEEE Computer Society.

[MSZ15] Mahnush Movahedi, Jared Saia, and Mahdi Zamani. Scalable multi-party shuffling. In International
Colloquium on Structural Information and Communication Complexity (SIROCCO 2015), Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2015.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and computing: randomized algorithms and probabilistic
analysis. Cambridge University Press, New York, 2005.

[PSR02] B. Prabhu, K. Srinathan, and C. Pandu Rangan. Asynchronous unconditionally secure computation: An
efficiency improvement. In INDOCRYPT 2002, Lecture Notes in Computer Science, volume 2551, pages
93–107. Springer-Verlag, 2002.

[RS60] Irving Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the Society for
Industrial and Applied Mathematics (SIAM), pages 300–304, 1960.

50

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[SR00] K. Srinathan and C. Pandu Rangan. Efficient asynchronous secure multiparty distributed computation. In
INDOCRYPT 2000, Lecture Notes in Computer Science, volume 1977, pages 117–129. Springer-Verlag,
2000.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science, SFCS ’82, pages 160–164, Washington, DC, USA, 1982. IEEE
Computer Society.

51

	1 Introduction
	1.1 Our Contribution
	1.2 Model
	1.3 Problem Statement
	1.4 Our Results

	2 Related Work
	2.1 Traditional MPC
	2.2 Asynchronous MPC
	2.3 MPC with Sublinear Overhead
	2.4 Counting Networks

	3 Preliminaries
	4 Our Protocols
	4.1 Synchronous MPC
	4.1.1 Input Commitment
	4.1.2 Circuit Evaluation
	4.1.3 Implementing the Gate Circuit

	4.2 Asynchronous MPC
	4.2.1 Implementing Wait-For-Inputs
	4.2.2 Bounding the Expected Running Time

	4.3 Remarks

	5 Security Proofs
	5.1 The UC Framework
	5.2 Proof Sketch
	5.3 Proof of Theorem 1
	5.3.1 Security of Input Commitment
	5.3.2 Security of Circuit Evaluation
	5.3.3 Security of Output Propagation
	5.3.4 Security of Protocol 1

	5.4 Proof of Theorem 2
	5.4.1 Security of Input Commitment
	5.4.2 Security of Circuit Evaluation
	5.4.3 Security of Output Propagation
	5.4.4 Security of Protocol 1

	5.5 Cost Analysis

	6 Asynchronous Threshold Counting
	6.1 Up Stage
	6.2 Down Stage
	6.3 Handling Sublinear Thresholds
	6.4 Proof of Theorem 3
	6.4.1 Preliminaries
	6.4.2 Protocol Analysis

	6.5 Using Quorums as Nodes in the Count Tree

	7 Asynchronous Quorum Formation
	7.1 The Election Graph
	7.2 Static Network with Polylog-Bounded Degree
	7.3 Communication Protocols
	7.4 SRS-Agreement Protocol
	7.5 Proof of Build-Quorums
	7.5.1 Permissible Paths Removal
	7.5.2 Proof of Theorems 16

	8 Conclusion
	9 Acknowledgments

