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Abstract. An Order-Revealing Encryption (ORE) scheme gives a pub-
lic procedure by which two ciphertexts can be compared to reveal the
order of their underlying plaintexts. The ideal security notion for ORE
is that only the order is revealed — anything else, such as the distance
between plaintexts, is hidden. The only known constructions of ORE
achieving such ideal security are based on cryptographic multilinear maps
and are currently too impractical for real-world applications.

In this work, we give evidence that building ORE from weaker tools may
be hard. Indeed, we show black-box separations between ORE and most
symmetric-key primitives, as well as public key encryption and anything
else implied by generic groups in a black-box way. Thus, any construction
of ORE must either (1) achieve weaker notions of security, (2) be based
on more complicated cryptographic tools, or (3) require non-black-box
techniques. This suggests that any ORE achieving ideal security will
likely be somewhat inefficient.

Central to our proof is a proof of impossibility for something we call in-
formation theoretic ORE, which has connections to tournament graphs
and a theorem by Erdds. This impossibility proof will be useful for prov-
ing other black box separations for ORE.

Keywords. Black-box separations, Order-revealing encryption, Random
oracle model, Generic group model

1 Introduction

Order preserving encryption (OPE) [1, 3, 4] and order revealing encryption (ORE)
[5] have been proposed as useful tools to facilitate fast operations on encrypted
databases, such as lookup and range queries.

Order Preserving Encryption (OPE). In OPE, plaintexts and ciphertexts are
both integers, and encryption is monotonic: if mg < ms, then Enc(k,mp) <
Enc(k,m1). Such a scheme allows, e.g., for binary search and range queries to
be easily performed over encrypted data by replacing the plaintext comparisons
with ciphertext comparisons. Boldyreva et al. [3] give an efficient construction
using pseudorandom functions.

While clearly, such a scheme will reveal the order of the underlying plain-
texts, one may hope that nothing else is revealed; for example, the distance
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between plaintexts should not be learnable from the ciphertexts without the
secret key. However, Boldyreva et al. also show that some additional leakage
is necessary in OPE: any such scheme with polynomially-large ciphertexts will
reveal some information beyond just the order of the plaintexts; in essence, their
proof shows that the approximate distance of two plaintexts will be revealed.
For their scheme, they instead prove a different notion of security, namely that
encryption is indistinguishable from a random monotone function. Characteriz-
ing the kind of information revealed by such a scheme is non-trivial, and has
only been analyzed in certain cases such as uniformly random plaintexts [4].
Despite being limited to non-ideal security notions, OPE has been deployed in
real products® and been studied in applied research [21,27,25].

Order Revealing Encryption (ORE). In order to circumvent Boldyreva et al.’s [3]
impossibility result, Boneh et al. [5] define a relaxation called order revealing
encryption. Here, ciphertexts are no longer necessarily integers. Instead, integer
comparison for ciphertexts is replaced by a more general comparison procedure
Comp. The correctness requirement is, roughly, that

“<” ifmg <my
Comp( Enc(k,mo), Enc(k,mq) ) =< “=" if myg=my

“57 if mg < my

Boneh et al. give a construction using multilinear maps [7,16, 13], and argue
that their scheme reveals no information beyond the ordering of the plaintexts.
We will call such an ORE scheme ideal. Alternate constructions achieving ideal
leakage have since been proposed using multi-input functional encryption [5] or
even single input functional encryption [9]. Unfortunately, as all known instan-
tiations of functional encryption rely on multilinear maps anyway, all known
constructions of ORE require multilinear maps as well.

Attacks on ORE. By considering more general comparison procedures for ci-
phertexts, ideal ORE provably leaks less information than OPE. Nevertheless, a
series of works starting with Naveed et al. [23, 18, 14] have shown that when the
adversary has a good estimate of the distribution of the data, even ideal ORE
provides little protection. The problem is that the definition of ideal ORE, while
precise, does not immediately provide any “semantically meaningful” guarantees
for the privacy of the underlying data.

Despite these attacks, we still believe ORE is an interesting object to study
for several reasons:

— ORE can still provide meaningful notions of security in some settings. For one
example, suppose that each data point is sampled i.i.d. from some underlying
secret distribution D with large min-entropy (so all samples are distinct),

3 e.g. https://wuw.skyhighnetworks.com, https://www.ciphercloud.com/, https:
//www.bluecoat.com/ and Cipherbase [2].
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and suppose the adversary has no side information about the data. Then
ideal ORE provably hides the distribution D, since all the adversary will see
is a random ordering. Note that in contrast, since OPE reveals approximate
differences, it will also reveal the approximate scale of D.

— ORE represents one of the simplest functionalities for functional encryption
that we do not know how to construct from traditional tools. As such, ORE
represents a potential stepping stone toward more advanced functionalities

— Finally, the comparison structure of ORE is shared with several other con-
cepts in cryptography. For example, most collusion-resistant traitor tracing
systems are built on top of private linear broadcast encryption [6], which is a
form of encryption where there are IV secret keys sky, . .., sky, and messages
are encrypted to numbers j. Any sk; for i« > j can decrypt, but any sk; for
i < j cannot. For another example, positional witness encryption [17] also
has a similar comparison structure, and is currently the best way to prove
security of witness encryption under “instance-independent” assumptions.

However, all known ideal ORE schemes are built on heavy tools, such as multilin-
ear maps, and current multilinear map candidates are quite inefficient, meaning
the resulting constructions of order-revealing encryption are far from practical
use. Therefore, a natural question is:

Is it possible to build ideal ORE from efficient tools so that it can be practical?

1.1 Our Work

We make a first attempt toward answering the above question by showing that
natural constructions of ORE from several simple tools are impossible. Specifi-
cally, we give black box impossibility results for building ORE from symmetric
key cryptography or public key encryption.

Theorem 1 (Informal). There is no fully black box construction of an ORE
scheme for a super-polynomial plaintext space from random oracles, or any object
that can be constructed from random oracles in a black box way, including one-
way functions, collision resistant hashing, PRGs, PRFs, and block ciphers.

Theorem 2 (Informal). There is no fully black box construction of an ORE
scheme for a super-polynomial plaintext space from generic groups, or any object
that can be constructed from cryptographic groups in a black box way, including
public key encryption and non-interactive key agreement.*

4 There is some overlap in the implications of Theorems 1 and 2, as generic groups
can also be used to build much of symmetric key cryptography. However, we still
separate our black-box separations into these two theorems for a couple reasons.
First, Theorem 1 is simpler, and serves to highlight the ideas that will be needed
for Theorem 2. Second, the random oracle model is a very natural way to model
hash functions, and may capture many security properties desired of hash functions
in addition to one-wayness and collision resistance (such as universal computational
extractors). Our random oracle proof shows that any property that follows from
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Thus, any black-box construction of order-revealing encryption will require
tools with more involved structure, such as bilinear maps, multilinear maps, or
lattice assumptions. Such tools tend to be less efficient than those needed to
build symmetric cryptography or public key encryption. While we do not rule
out non-black-box constructions, such constructions tend to be very inefficient.
We, therefore, take our separations as evidence that some inefficiency is required
to achieve order revealing encryption with ideal leakage.

In addition to proving Theorems 1 and 2, we also give a framework for proving
black box separations for ORE from other cryptographic tools, which may be
useful for extending our results.

1.2 Our Techniques

To prove our separation results, we start with an idealized model M capturing
the primitive that we want to separate ORE from: in this work, we take M to
be a random oracle or the generic group model [26].

We now imagine a very relaxed notion of order-revealing encryption using
the model (relaxing the notion of ORE we consider only makes our separations
stronger):

— There is no explicit decryption procedure®

The scheme is only partially correct, in that Comp may result in an incorrect

answer, but is noticeably biased towards the correct answer.5

The scheme (Gen, Enc, Comp) may make queries to the model M

— The algorithms are allowed to run arbitrary computations; the only restric-
tions are that (1) the number of queries to M is polynomially bounded, and
(2) that the length of ciphertexts is polynomially bounded. Running times
and key sizes can be unbounded.

— For simplicity in the following discussion, we will also assume the algo-
rithms are deterministic, although our analysis readily applies to randomized
schemes as well.

— The adversary can only make polynomially-many queries to M and can
only see a polynomial number of ciphertexts, but we do not consider its
computational power.

We next give a general recipe for proving that such a relaxed order-revealing
encryption scheme does not exist. To prove impossibility, we proceed in three
steps:

a random oracle is insufficient for constructing ORE in a black-box way. In addi-
tion, to the best of our knowledge the random oracle and generic group models are
incomparable, so providing both proofs gives the most complete separations.

5 Though note that this is actually without loss of generality, since decryption can be
derived from encryption and comparison by using a binary search.

5 This is also essentially without loss of generality, as correctness can be boosted by
running multiple instances of the scheme in parallel.
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1. Compile any scheme satisfying the above requirements into one where Comp
does not make any queries to M.

2. Compile the resulting scheme into one where the entire scheme completely
ignores M. We call such ORE scheme information-theoretic ORE. This step
may lose some level of correctness, so even starting from a perfectly correct
scheme, the information-theoretic scheme will no longer be perfectly correct.

3. Finally, show that (even partially correct) information-theoretic ORE does
not exist.

We now expand on the three steps above in reverse order:

Impossibility of information-theoretic ORE. In information-theoretic ORE,
the public/secret key are allowed to be arbitrarily (e.g. exponentially) large, the
running times of Gen, Enc, Comp are allowed to be arbitrary, while security must
hold for arbitrary adversaries. There is no mention of a model M; the only
constraints are that ciphertexts must be polynomially bounded, and that the
adversary sees only a polynomial number of ciphertexts.

First, since the scheme is deterministic, we can assume that Comp(u,v) only
outputs “ =" if u and v are actually the same. Indeed, if Comp(u,v) = “ =" for
u # v, it means that u,v could not simultaneously be valid encryptions of two
messages under the same secret key (since then Comp would report “ =" when
the plaintexts are in fact not equal). Therefore, for u # v, if Comp(u,v) = “ =",
we can simply change the answer arbitrarily without affecting correctness. Hence,
we will choose arbitrarily Comp(u,v) = “ < ” or Comp(u,v) = “ > 7. By a
similar argument, we can also assume that Comp(u,v) = “ < 7 if and only if
Comp(v,u) = “>".

Now, for such a scheme, we can construct an (exponentially large) graph G
associated with the public key where nodes are all possible ciphertexts. There is
a directed edge from node u to node v if Comp(u,v) = “ < ”. Notice that any
two distinct nodes have exactly one edge between them. G is therefore what is
known as a tournament graph.

Let s be the number of nodes in G, equivalently the number of ciphertexts.
Let [1,1] be plaintext space, which is assumed to be superpolynomial”. We show
that logs — the bit length of ciphertexts — must be superpolynomial, a con-
tradiction.

This graph must have a significant amount of structure. In our setting, every
key k corresponds to a set S of ¢t nodes in G, the encryptions of each of the
plaintext elements. Assuming the scheme is perfectly correct, these nodes form
a complete DAG, with the encryption of 1 at the beginning and the encryption
of t at the end. Therefore, G must contain many complete DAGs on ¢ nodes.

Moreover, security imparts additional structure on G. Security says, roughly,
that the encryptions of any two polynomial-length sequences of ordered messages

" In reality, we would want the number of plaintexts to be exponential, but our im-
possibility rules out even superpolynomial message spaces.
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must be indistinguishable. If we insist on perfect security, we have the follow-
ing. For a given key k, consider the set T' of encryptions of 1,...,p for some
polynomial p. Then by security, there must be some key &’ such that T are the
encryptions under k' of 2, ..., p+ 1. Therefore, the encryption of 1 under &’ will
have an edge to each of the nodes in T'. Notice that this property must hold for
any set T that can be represented as the encryptions of 1,...,p for some key k.

The situation above is reminiscent of a problem studied by Erdés [15]. He
asked the question: suppose every set of p nodes is dominated by another node;
that is, for every set T of p nodes, there is a node u such that u has an edge to
each node in 7. He showed that the number of nodes in any tournament graph
satisfying this property must be exponential in p. The proof is by induction: for
any graph G satisfying the property for p, there is a graph on half as many nodes
that satisfies the property for p — 1. Continuing until the base case p = 1, we see
that there must be a graph G’ that is exponentially smaller than G, meaning G
must be exponentially-large.

We prove an analog of Erdos’s proof in our setting. Namely, we show that for
any polynomial p, the number of nodes s in G must be exponential in p. Since
s is exponential in any polynomial, then log s must larger than any polynomial,
a contradiction. Our proof is inspired by Erdds’s proof, except complicated in
several ways:

— Our structure, while superficially similar, has several key differences. For
example, there will be sets T that do not correspond to encryptionsof 1,...,p
under one key. For example, T may be formed by encrypting 1,...,p/2 under
ky and 1,...,p/2 under ks.

— We do not insist on perfect security, but instead on statistical security. This
means, for example, that the dominating property may not hold for all sets
T that are encryptions of 1,...,p.

Nonetheless, we show an inductive argument that resolves these difficulties, and
proves that s must be exponential in p for any polynomial p. Hence, log s must
be larger than any polynomial, as desired.

The above discussion assumed that the scheme was perfectly correct. How-
ever, looking ahead, we would like to prove the impossibility for even partially
correct schemes, where the output of Comp may be incorrect, but is biased to-
ward the right answer. We show how to compile such a partially correct scheme
into one that is perfectly correct. Then invoking the impossibility above, we see
that even a partially correct scheme is impossible. The compilation is simple:
first we run multiple instances of the scheme in parallel to boost correctness
arbitrarily high, but still not necessarily perfect. However, we argue that we can
boost correctness high enough so that, with high probability over the key, Comp
will produce the right answer for all ciphertexts. Then we just change the scheme
so that the key is chosen randomly from the set of “good” keys. This only neg-
ligibly affects security (since the key is “good” with high probability anyway).
Verifying that a key is “good” will of course take exponential time since one
must verify that it outputs the right answer for any possible pair of messages;
however, this is fine since we do not place any computational restrictions.
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Comparison to Boldyreva et al. [3]. Order preserving encryption is the spe-
cial case of ORE where the entire ciphertext graph is actually one large DAG.
Boldyreva et al.’s impossibility can be interpreted as a special case of our proof
above where the graph is restricted to DAG. Our proof is much stronger, as it
applies to much less structured graphs — any structure we use is solely a func-
tion of the correctness and security requirements, and no additional structure is
assumed.

Compiling schemes where Comp does not make queries to M. We
show that if Comp does not make queries to M, then it can be compiled into an
information-theoretic scheme, and then we can apply the above impossibility to
rule out the original scheme. Our compilation process works even if the start-
ing scheme was only partially correct; since the impossibility above works with
partially-correct schemes, we can still rule out partially correct schemes where
Comp makes no oracle queries.

The process is simple. Since Comp does not make any queries to M, the
model is not needed outside of encryption. This means, in particular, that it
makes sense to restrict the adversary from querying M. Doing so only enhances
security.

Next, we can simply have the secret key holder construct the oracle M for
himself, and include it as part of the secret key. The description of the oracle
might be exponential in size, but this is acceptable since we do not place any
bounds on the key size or running time of the honest users. The result is a scheme
which makes no reference to an idealized model.

Removing oracle queries from Comp. The final step is to remove oracle
queries from Comp. This is the only part that is specific to the model M be-
ing considered. This step can be seen as an ORE analog of several recent re-
sults showing black box impossibilities for constructing obfuscation from simple
objects. We note however, as expanded on below, that there are some crucial
differences from obfuscation that make our proofs significantly different.

The Random Oracle Model. This first model M we consider is the random
oracle model. Here, M just implements a random function O. At a very high
level, our compilation is conceptually similar to Canetti et al.’s [10] analogous
compilation for program obfuscation. They show how to compile out a random
oracle from the evaluation of an obfuscation scheme. Roughly, the idea is that
evaluation of the obfuscated program will be “sensitive” only to the query points
that were queried during the obfuscation; all other points will be independent
of the obfuscated code, and hence can be answered randomly. Therefore, the
obfuscator can just give the (polynomially-many) sensitive query answers out as
part of the obfuscated code, and now the evaluator can answer any oracle query
without actually making a call to the oracle.

In more detail, the sensitive queries can be split into two classes: “heavy”
queries that are somewhat likely to be queried when evaluating the program on a
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random input, and “light” queries that are unlikely to be queried. Canetti et al.
first run the obfuscated code on a handful of random “test” points, and collect
the random oracle queries and responses. By setting the number of test queries
to be sufficiently large, they guarantee that all heavy queries will make it into
the list of query/response pairs. Then they just output this list as part of the
obfuscated code. Since an adversary could always run the code on random inputs
and make the oracle queries, this cannot impact the security of the obfuscator.
However now the evaluator, on a random input, will usually not need to make
any oracle queries. Indeed, on a random input, the evaluator will likely only
need to query on heavy inputs (or non-sensitive inputs, which can be answered
randomly), which it already has included as a part of the obfuscated code.

The straightforward attempt at translating this approach to our setting is to
first encrypt a handful of random test plaintexts, run the comparison procedure
between each pair of test ciphertexts, and collect all of the oracle queries made.
Then hand out the list of query/response pairs as part of the public key.

Unfortuantely, this strategy does not work, for at least three reasons:

— First, the test ciphertexts will allow one to learn the approximate differ-
ence between points, violating ORE security. In particular, using the ORE
comparison procedure, one can compute the fraction of test ciphertexts ly-
ing between any two given ciphertexts. This fraction, scaled up by the size
of the plaintext space, will approximately equal the difference between the
plaintexts.

— Second, the notion of “sensitive” and “heavy” queries are specific to each
individual plaintext, and not a global property of the encryption scheme.
For example, it could be that to encrypt a message m, the oracle is queried
on m. m will be a sensitive and heavy query point only for the message m.
Therefore, as we increase the number of test ciphertexts, we also increase
the number of sensitive and heavy queries, making it more difficult to ensure
that we eventually capture all heavy queries for each ciphertext in question.

— Third, correctness will only hold for a plaintext drawn from the same distri-
bution as the test points — namely random plaintexts — whereas our steps
above require correctness to hold for any plaintexts

To overcome the first limitation, we will simply set our test ciphertexts to be
the smallest and largest several elements of the plaintext space. Now for any two
ciphertexts not at the extremes of the domain, there will be no test ciphertexts
between; we can therefore restrict the domain of actual ciphertexts to a smaller
interval so as to not collide with the test ciphertexts. This change unfortunately
makes the third limitation even worse: the test elements now are the extreme
elements in the plaintext space, but we need correctness to hold for all possible
points in between.

To remedy the second limitation, we further modify the compiled scheme so
that in addition to comparing all pairs of test ciphertexts, any new ciphertext
is also compared to all of the test ciphertexts. If we set the number of test
ciphertexts to be much larger than the number of heavy queries for a ciphertext,
then hopefully these comparisons will generate all heavy queries. Indeed, each
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comparison will generate heavy queries for one of the two ciphertexts being
compared. Note, however, that at this point in the discussion, it could be the
case that the comparisons only generate heavy queries for the test ciphertexts,
which would be useless for establishing the correctness of the scheme.

To overcome this issue, as well as the third limitation above, we will invoke
ORE security to switch back and forth between points in the middle of the
plaintext space and the extreme points at the ends of the plaintext space. Using
security (as opposed to an information-theoretic argument) means that the proof
has to be phrased as a reduction, which requires a delicate analysis. For example,
an adversary cannot necessarily test whether a query is sensitive or heavy, so our
reduction cannot know if it learned all of the important queries for a particular
ciphertext. We give the full details in Section 5.

The Generic Group Model. Next, we consider the generic group model. Here,
there is a cyclic group G. We will consider the group represented additively. Each
group element is associated with a handle (that is, a bit string), and only the
model M has access to the mapping. Everyone can query M on a group element
g to get a handle h, and can also query M on two handles hq, ho, receiving the
handle for the sum of corresponding group elements. However, it is not possible
to query M on a handle h and recover the original group element g.

An equivalent formulation is the following. Instead of being able to query on
two handles hq, ho to get the handle for the sum, only the following is possible:
query on a vector h = (hq,...,h;) of handles corresponding to group elements
g =1(g1,-..,9i), and a vector v = (v1,...,v;) of integers. The response will be
a single bit: 0 if Zj v;g9; = 0, and 1 otherwise. We call these queries zero test
queries.

Our high-level proof strategy will be conceptually similar to Pass and She-
lat [24], which show how to remove generic groups from obfuscation construc-
tions®. However, our setting faces similar complications as to the random oracle
setting above, requiring a much more delicate proof.

During encryption of a message m, Enc will query the generic group on several
new group elements g%m), ey ggm), obtaining handles. Now, when comparing two
ciphertexts, Comp will make several zero test queries on various handles coming
from mg, m1. Whenever Comp gets a 0 in response, it learns a linear constraint on
the unknown g elements. Suppose the probability of getting a 0 in comparison
is pu. We will assume that p is noticeably large, since otherwise the zero test
queries would be useless, as one could simulate them reasonably accurately just
by always answering 1.

If the adversary sees g ciphertexts, the total number of constraints she can
find will be O(uq?). And yet, the total number of unknown variables is only gt.
For large enough ¢, this is much smaller than the number of constraints. The
constraints are then necessarily linearly dependent. This means that, analogous

& We note that Mahmoody et al. [22] extend the Pass and Shelat result to any
(even non-commutative) finite ring; we leave extending our impossibility to the non-
commutative setting as an interesting open problem.



10 Mark Zhandry and Cong Zhang

to the random oracle case above, the adversary will be able to answer zero test
queries for herself based on the results of previous queries. We show using a
similar strategy to the random oracle setting how to compile the ORE scheme in
a way that preserves security and correctness, while removing the generic group
oracle queries from Comp. Of course, formalizing this intuition is non-trivial, and
we give the details in Section 6.

Difficulties for extending to bilinear and multilinear maps. Pass and Shelat’s [24]
proof naturally extends to bilinear maps and more generally constant-degree
multilinear maps. A natural question is whether or not our techniques can be
extended to these settings as well. Roughly, a bilinear map allows for zero-test
queries that are degree 2 polynomials, and a multilinear map allows for even
higher degree.

Pass and Shelat’s proof, as well as ours, inherently relies on linear algebra, so
does not immediately extend to non-linear settings. Indeed, their proofs and ours
cannot possibly work for general multilinear maps, as there do exist black box
constructions of obfuscation [8] and ORE [5] from polynomial-degree multilinear
maps.

Nonetheless, Pass and Shelat show how to extend their result to constant
degree multilinear maps. Essentially, the idea is to linearize the constant-degree
polynomials by describing them as linear combinations of monomials. Then using
similar arguments as in the generic group case, they show how to remove oracle
queries from obfuscation.

Unfortunately, such linearization will not work in our setting, even in the bi-
linear map case. Once we linearize, the total number of variables grows O((qt)?),
while the number of constraints is still only O(ug?). Since both grow with ¢2, the
number of variables always remains large than the number of constraints, so there
is no linear dependence amongst the constraints. Without this linear dependence
the proof falls apart. Another perspective for why the linearization does not
work: in the bilinear group model, Enc(m) will query the generic group on new

group elements g%m), . ,gt(m)7 while the comparison on Enc(mg), Enc(mq) learns

a degree-2 constraint on the variables, containing monomials such as g§m°) . ggml).
However, note that this monomial only appears in constraints obtained when
compairing encryptions of mgy and mi; any other pair of messages will give dif-
ferent monomials. Hence, the constraints for different pairs of ciphertexts are
linearly independent, making it difficult (if not impossible) to argue that the
results of certain comparisons will help us answer other comparisons. We leave
it as an interesting open question whether our impossibility can be extended to,
say, the bilinear map setting, and if not, giving a black-box construction of ORE
from bilinear maps.

1.3 Discussion

In light of our impossibility, it is natural to ask: now what? Here, we briefly
discuss possible other directions.
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Weaker notions of security. One possibility is to consider weaker notions of
security, where more than just the order is revealed. For example, [12] give a
construction of ORE where the position of the most significant differing bit of
two plaintexts is revealed, but nothing else (put another way, the difference is
revealed, rounded to a power of two). Their construction is efficient, using only
PRFs (which can in turn be built from one-way functions). [11] give a still-
practical construction using bilinear maps which reveals even less, though still
more than the ideal security notion. [19] give a notion of functional revealing
encryption and build an efficient ORE under the standard DLIN assumption,
while it leaks no less than [11].

An interesting direction is to extend our impossibility result to other leakage
profiles, perhaps showing that the leakage profile of [12] is optimal for construc-
tions based on one-way functions. Such an impossibility would require reworking
several parts of our proof, since we use the ideal ORE leakage in several parts,
including the impossibility of information-theoretic ORE, as well as the step
removing random oracle queries from Comp.

Non-black-box constructions. Another option is to resort to non-black-box con-
struction. We do not know if such a construction is possible. However, non-black-
box techniques tend to result in inefficient schemes, as such a non-black-box
construction is likely to be inefficient.

Other cryptographic tools. We only rule out black-box constructions from certain
building blocks; other building blocks are still possible. For example, it may be
possible to build ORE from the Learning With Errors (LWE) assumption, RSA
or integer factorization, or bilinear/multilinear maps. Indeed, using multilinear
maps of polynomial degree, it is possible to build ORE with ideal leakage, as
shown by Boneh et al. [5]. However, many of the tools not covered by our impos-
sibility, including polynomial-degree multilinear maps or learning with errors,
involve large parameter sizes, likely resulting in somewhat impractical schemes.
Nonetheless, we believe that constructing ideal ORE from weaker tools includ-
ing LWE or bilinear maps, or providing black-box separations for these tools by
building on our techniques, are fascinating open questions.

2 Background

NoTATION. For n,ni,ne € N, let [n] := {1,...,n},[n1,n2] = {n1,...,n2}.
Throughout this paper, A € N denote the security parameter. For a finite set S,
we denote s < S the process of sampling s uniformly from S. For a probabilistic
algorithm A, we denote y < A(z; R) the process of running A on input z and
randomness R, and assigning y the result. We let R 4 denote the randomness
space of A; we require R4 to be the form R4 = {0,1}". We write y < A(z) for
y + A(z, R) with uniformly chosen R € R4, and we write y1,...,ym < A(x)
for y1 «+ A(z),...,ym < A(x) with fresh randomness in each execution. If A’s
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running time is polynomial in A, then A is called probabilistic polynomial-time
(PPT).

We say a function u(n) is negligible if ;1 € o(n=“™), and is non-negligible
otherwise. We let negl(n) denote an arbitrary negligible function. If we say some
p(n) is poly, we mean that there is some polynomial ¢ such that for all suf-
ficiently large n, p(n) < q(n). We say a function p(n) is noticeable if the in-
verse 1/p(n) is poly. We use boldface to denote vector, i.e. m; we denote m;
as the i-th component of m and |m| as the length of m. The statistical dis-
tance of two random variables X and Y over some countable domain S is de-
fined as SD(X;Y) = 13" o |Pr[X = s] — Pr[Y’ = s]|. We write X & Y for
SD(X;Y) <d, and X = Y for SD(X;Y) < 2.

ORE. The following definition of syntax for order-revealing encryption makes
explicit that comparison may use helper information (e.g. a description of a
particular group) by incorporating a public key, denote pk.

Definition 3. ([ORE]). An ORE scheme with message space [N]| is a tuple of
algorithms II = Gen, Enc, Comp with the following syntaz.

— The key generation algorithm Gen is randomized, takes inputs (1, N), and
always emits two outputs (pk,sk). We refer to the first output pk as the
public key and the second output sk as the secret key.

— The encryption algorithm Enc takes inputs (sk,m) where m € [N], and al-
ways emits a single output c, that we refer to as a ciphertext.

— The comparison algorithm Comp takes inputs (pk, c1,c2), and emits 7, “="

W

or “;”, which indicates the order of the underlying plaintexts.

If Comp is simple integer comparison (i.e., if Comp(pk,c1,c2) is a canonical
algorithm that treats its the ciphertexts and binary representations of integers
and tests which is greater) then the scheme is said to be an order-preserving
encryption (OPE) scheme.

Correctness for ORE. Intuitively, an ORE scheme is correct if the comparison
algorithm can output the order of the underlying plaintexts. For any two message
pair (mq,mq), let Comp(mg,my) be the order of (mg, m1), where:

“<nm0<m1

“ »

Comp(mg, my) = =" my=my

“ mo > my
we consider four notions of correctness:
— Perfect Correctness. For any message pair (mq,m1), we have

Pr[Comp(pk, Cy, C1) = Comp(mg,m1) : (pk,sk) < Gen(), Cy, = Enc(sk,msp)] =1
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— Almost Perfect Correctness. There is a negligible function x4 = negl(\)
such that

Pr[3(mg, m1), Comp(pk, Cpgs Crmy ) # Comp(mg, my) : Cyp = Enc(sk,mp)] < p

where the probability is taken over the choice of (pk,sk) < Gen().
— Statistical Correctness. There is a negligible function y = negl(\) such
that for any (mq,ms)

Pr[Comp(pk, Cp, C1) = Comp(mg,my) : Cp = Enc(sk,mp)] > 1—

where the probability is taken over the choice of (pk,sk) < Gen().
— Partial Correctness. There is a noticeable function p(\) such that, for any
(M1, ma),

1
Px{Comp(pk, Co, C1) = Comp(rmo, ms) : (pk,sk)  Gen()] > - + p

In this work, we also consider ORE in idealized models, where the scheme’s
algorithms have access to an oracle.

Definition 4. ([Idealized Model].) An idealized model is a deterministic func-
tion M. M takes two inputs: a string k which is the seed for the model, and a
query q. Unless otherwise stated, we allow all players — the honest parties, the
protocol algorithms, and the adversary — to query M. In a query to M:

— Any player sends q to M;
— The player receives M(k,q) in return.

We will denote an ORE scheme IT in an idealized model M as IT'™M = (Gen™,
EncM, CompM). This notation means that key generation, encryption, and com-
parison have access to M and the outputs also depend on M’s response. Our
definitions of security and correctness for ORE easily extend to the idealized
model, where the probabilities are over the random seed k that generates M.

Efficiency for ORE. Typically in the literature, ORE is defined as having
computationally efficient algorithms:

Definition 5. Let IT = (Gen, Enc, Comp) be an ORE scheme with respect to the
message space [N]. We say IT is computationally efficient if Gen, Enc, Comp run
in time polynomial in (log N, A). If II is a scheme in an idealized model M,
we additionally require that the algorithms only make a polynomial number of
queries to M.

Here, we will generally not impose any such restrictions, and allow for com-
putationally inefficient algorithms. We only impose two efficiency constraints.
First, if the scheme is an ideal-model scheme, we still require the number of
queries to be polynomial.

Definition 6. Let IT'™ = (Gen™ Enc™, Comp™) be an ORE scheme in an
idealized model M. We say II is query efficient if Gen, Enc, Comp only make a
number of queries that is polynomial in (log N, \).
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The second efficiency requirement (for both idealized model schemes and
standard model schemes) is that the ciphertexts produced by the scheme are
polynomial sized.

Definition 7. Let II (resp. II’™) be an ORE with respect to the message space
[N](resp. in idealized model). We say II(IT™) has succinct ciphertexts if the
ciphertext length is polynomial in (log N, \).

We call a scheme for which there is no idealized model but which still has
succinct ciphertexts an information-theoretic scheme.

Security for ORE. An ORE scheme leaks the order of the underlying plain-
texts, so the ideal security notion for ORE is that only the order is revealed.
Roughly speaking, given two sequences of message m, m’ such that Comp(m,,
m;) = Comp(m;,m}),Vi,j € |m|, the distribution of Enc(m) and Enc(m’)
are statistically indistinguishable. We firstly consider a weak version, which we
call t-time secure, with the restriction that |m| = |m/| < t, then we define an
interactive game with an unbounded adversary in the following:

t-SIND(A):
(pk,sk) < Gen(N,1%); m1 < ... <ms,my < ... <m} < A(pk, N, 1%);
Co = (pk, Enc(sk,m1), ..., Enc(sk,m;)); C1 = (pk, Enc(sk,m}), ..., Enc(sk,m}));

b+ A(Cy); Return (b < b')

Fig. 1: t-time Static Indistinguishable Game

Definition 8. Let IT = (Gen, Enc, Comp) be an ORE scheme with respect to the
message space [N]. For any PPT (resp. unbounded) adversary A we define the
game t-SIND(A) in figure 1. The advantage of A for the t-time static indistin-
guishable game is defined to be:

AdV_t;‘SIND(l/\) — 2P7‘[1‘_-S|ND(~A)] -1

We say that II is t-time computationally (resp. statistically) secure if for any
PPT (resp. unbounded) adversary A, Advi™P (1) is negligible. And we say
IT is fully (computationally/statistically) secure if II is t-time (computation-
ally/statistically) secure for any polynomial t = poly(logN, \).

If IT is an ORE scheme in the idealized model M, we extend the security
notions above by allowing A to make a polynomial number of queries to M, and
all probabilities are taken over the seed for M.

3 Impossibility of information-theoretic ORE

In this section, we show that for information-theoretic ORE, full statistical se-
curity is impossible if the message space is super-polynomial. Note that this is
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qualitatively tight, as [20] “shows how to construct information-theoretic ORE
where the ciphertext size is polynomial in the size of the message space.

Note that our impossibility applies to schemes where the public/secret key
are allowed to be arbitrarily (e.g., exponentially) large, the running time of
Enc, Comp are allowed to be arbitrary. However, the following restrictions must
hold: 1) the size of ciphertexts must be polynomially bounded, 2) the security
must hold for arbitrary adversaries (even for unbound adversary), 3) the adver-
sary sees only a polynomial number of ciphertexts. Now, we prove our theorem.

Theorem 9. In standard model, there does not exist a fully statistically secure
ORE II such that

— IT is partially correct;
— II'’s message space is super-polynomial;
— IT has succinct ciphertexts.

Roughly speaking, our proof strategy is: (1) prove the result in the simpler
setting where we insist on perfect correctness, and then (2) show how to convert
any partially correct information-theoretic ORE into a perfectly correct one.

3.1 Impossibility for perfect correct ORE
In this part, we consider the ORE scheme in the perfectly correct setting.

Theorem 10. In standard model, there does not exist a statistically secure ORE
II such that

— II is perfectly correct;
— IT’s message space is super-polynomial;
— IT has succinct ciphertexts.

Firstly, we give a brief description of our proof strategy. Let IT be an ORE
scheme on message space [t + 1], where ¢t = poly(\), such that IT is perfectly
correct and statistically secure. We immediately observe that I is t-time secure,
next we show, for any such an ORE, there exists an exponential lower bound
on the size of the ciphertext space (roughly O(2!/2)), which means the size of
ciphertext is at least poly(¢). Based on that, it’s trivial to note that, for any ORE
with super-polynomial message space, the ciphertext size is at least poly(t)(for
arbitrary ¢ = poly(\)). Then we set ¢ to be sufficiently large to contradict the
theorem statement.

The core technique we use is inspired by Erdos [15]. Roughly, for any IT with
plaintext space [t 4+ 1], we interpret its ciphertext space as a graph Gy;1, which
has a similar structure to the graphs studied in [15].Then we sample a sequence
of sub-graphs such that Gyy1 2 Gy 2 ...G1'0 in a specific way (based on
our ORE). After that, we prove for any adjacent pair, we have E[log|G;|]
Ellog |G;—2|] + log(1.6),¥i € {t + 1,¢t — 1,...,3}, which means E[log |G¢41]]
L%J log 1.6. More precisely:

>
>

9 here we treat the PRFs and PRPs in [20] as real random functions and permutations,
which achieving statistical security, rather than only computational security.
10 here we assume t is even.
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Lemma 11. In standard model, let II be a perfectly correct t-time secure ORE
on message space [t+ 1], then II requires ciphertexts of size at least L%J log 1.6

Proof. This proof applies a similar spirit to a proof technique used by Erdos [15].
Let IT;+1 = (Gen, Enc, Comp) be a perfect correct t-time secure ORE, with
respect to message space [t + 1] and ciphertext space C. We construct a new
ORE I}, as follows. The public key for II; defines a graph G, where the
nodes of Gyt represent the ciphertexts in C. We set the edges for G¢11 as:

— If Comp(Cy,Cy) = “ <7, then there is a directed edge from Cy to Cy
— Otherwise, we arbitrarily assign a single directed edge between the two nodes.

By perfect correctness of 1141, we note that there is at most one directed edge
between any two nodes, and if Cy and C are not simultaneously valid ciphertexts
under the same secret key (we can view this as Cy = Enc(sko, ), C1 = Enc(sky, j),
and in such a case they are the ciphertexts encrypted under distinct secret keys),
we set an arbitrary edge for these two nodes. Hence Gy is a “tournament”
graph. Now we define IT}, | = (Gen;,Enc;,;,Comp;,,):

— Gen™() Runs (pk, sk) < Gen(), computes Gy41 as above, and outputs pk* =
(pk, Gt+1), sk* = Sk;

— Enc*(sk*,m) It runs C' = Enc(sk*, m), and outputs C* = C}

— Comp™(pk*,Cg, Cy) If C§ = CF, outputs “=", else outputs “ < 7 if there is
directed edge from C§ to Cf in G4 , and “ > 7 otherwise.

The only difference between II;; and II}, ; is adding Gy, to the public key,
which only affects the efficiency of Gen and Comp, while perfect correctness and
t-time security are preserved.

Then, we sample the sub-graphs G;—1 2 ... D G1(assume ¢ is even). For any
Jj€42,4,...,t}, graph Gy41—; is sampled as:

— Run (pk*, sk*) < Gen;,, compute C} = Enc(sk™,7),C% = Enc(sk™,t+1—1)
for i € [j/2];

— Set G41—; be the sub-graph of Gy consisting of all nodes v dominated by
{cL,..., C’i/2} (that is, there is an edge from C% to v for all i) and dominate

{Chy- s Cf%/2} (that is, there is an edge from v to C% for all 4)
Clearly, |G| > 1, therefore it’s sufficient to prove that for j € {2,4...,t},
E(log |Gi43-5]) = E(log |Giy1-|) + log 1.6

First, recall that IT* is t-time secure, implying the distribution of the encryp-
tions for My and M are statistically close, over the probability (pk*,sk*) <
Gen;, |, where,

[\

Mo=(1,2,...,5/2,§/2+1,t+1—75/2,...,t+1)
M= (1,2,...,j/2.t—j/2,t+1—j/2,... t+1)
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Then, let f, fr be the expected fraction of nodes in Gy43_; that are domi-
nated by Enc(j/2 + 1), Enc(t — j/2), respectively. Due to security, we have

stat
~

(pk™,Enc(My)) = (pk™,Enc(M1)) = |fr — fr| < negl < 1/4

Besides, Giy3—; is also tournament, which indicates the expected fraction of
nodes in Gyy3—; that dominate Enc(t — j/2) is

1—fr<l—fr+1/4

Moreover, Gy1—; is the intersection of the nodes in Gt43_; which dominate
Enc(t—;/2) and which are dominated by Enc(j/2+1), the ratio |Giy1—;|/|Giy3—;]
is at most the minimum of:

— The fraction of nodes in Gy43—; which dominate Enc(t — j/2)
— The fraction of nodes in G43—; dominated by Enc(j/2 + 1)

Now, we can upper bound E[log |G+1—,|] as:

Geg1—s
Ellog |Gyy1-4|] = Ellog |Gy 43—, + E[log M]

|Gt+37j|
|Gi1-4] . .
< Ellog |Gt43—j|] + log E[-——=] Jensen’s inequality
|Gyl
< Eflog |Gi13—;]] + logmin(fz,1— fr +1/4)
14+1/4
< E[log|G¢43—;]] + log 5 / = E[log |G¢43—;]] —log 1.6

For the last line, we used the fact that for any fr, min(fz,c— fr) < §. Putting
everything together, we have

t—1
Eflog |Guy]) 2 Ellog |Ga ) + | log 1.6

In addition, applying exactly the same technique, the theorem also holds when
t is odd. a

Now, we complete the entire proof for Theorem 10. Suppose IT is an ORE
such that: 1) IT is perfect correct and statistically secure; 2) IT’s message space
is [N], where N is super-polynomial; 3) IT has succinct ciphertexts, which is
bounded by r = poly(A,log N). Then, let t = 4r (¢ is still polynomial here), we

t—1

know that IT is ¢-time secure. According to Lemma 11, r > |*5=] -log 1.6 > r,

a contradiction. O

3.2 Boosting to perfect correctness

To strengthen our result, we also consider ORE scheme that is only partially
correct, and in this part, we show how to boost any partially correct scheme to
a perfectly correct one.
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Theorem 12. If there exists partially correct and statistically secure ORE in
the standard model that has succinct ciphertexts and super-polynomial message
space, then statistically secure ORE in standard model with succinct ciphertexts
and perfect correctness on the same message space exists.

Proof. Let IT = (Gen, Enc, Comp) be an ORE in the standard model such that

1. IT is % + p correct, where p is noticeable;
2. IT’s message space is [N], where N is super-polynomial;
3. IT* has succinct ciphertexts, which is bounded by r = poly(A, log N)

Then we construct a new ORE II’ = (Gen’, Enc’, Comp’) that is statistically
correct. More precisely, let s = p% log N2\, we define I’ as

— Gen'(p,log N, \) runs (pk;, sk;)5_, < Gen(), and outputs pk’ = (pk;)5_,;sk’ =
(ski)iz1;

— Enc'(sk’,m) runs C; = Enc(sk;,m),i € [s] Outputs C = (C4,...,Cs);

— Comp'(pk’,Cp,C1) let Cy = (C?,...,CY%),Cy = (C},...,CL), outputs the
majority of (Comp(pk;, CY,C1)):_,

7

We immediately observe that IT’ also has succinct ciphertexts, and by hybrid
argument, it’s easy to have that IT' is statistically secure. Now, applying Chernoff
Bound, we have
I) []1# . t] > 1 _ —-Tq%z;sp2 > 1 _ ALEA, —A
r is correct] > e > N2 ©

We note IT' is statistically correct such that: within overwhelming probability
over the choice of (pk’,sk’), the comparison is correct for all message pairs. Then
we construct the perfectly correct ORE IT* = (Gen™, Enc*, Comp™), same as I’

except we modify Gen™: it draws (pk®,sk™) , conditioned on correctness holding
stat

for all message pairs. As II’ =~ IT*, this only negligibly changes the distribution
of keys, IT* is also statistically secure. Notice that Gen® is no longer efficient
even if Gen was. Fortunately, our notion in standard model allows us to have
inefficient Gen. Thus, statistically secure ORE in standard model with succinct
ciphertexts and perfect correctness on the same message space exists.

O
Combing Theorem 10 and 12, we establish Theorem 9.

4 Impossibility of statistically secure ORE In idealized
models

In this section, we begin our investigation of ORE in idealized models, where
the algorithms of ORE have access to the model M (M is deterministic and
computable). We give a unified strategy to help answer prove statements of the
form:

For some particular idealized model M, there does not exist randomized, partially
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correct and statistically secure ORE that has succinct ciphertexts with super-poly
message space

Roughly speaking, our strategy is consist of four steps:

— Convert a randomized, partially correct and statistically secure ORE in an
idealized model into a deterministic, partially correct and statistically secure
ORE in the same model;

— Compile the scheme to remove the oracle queries from the comparison pro-
cedures;

— Remove the model from ORE completely.

— Invoke Theorem 9 to finish the impossibility

In this section, we show that step 1 and 3 is achievable for any deterministic and
computable model M, and we note that when achieving step 3, it indicates the
existence of partially correct and statistically secure ORE in standard model,
which conflicts our result in Theorem 9. Hence the only step that depends on
the exact model in question is step 2, removing the oracle query access from the
comparison while still preserving the partial correctness and statistical security.
In later sections, we will show how to do this for the random oracle model and
generic group model.

Theorem 13. If there exists a randomized partially correct and statistically se-
cure ORE in idealized model M that has succinct ciphertexts and super-polynomial
message space, then deterministic, partially correct and statistically secure ORE
in the same model M with succinct ciphertexts on the same message space exists.

Proof. ORE typically allows for randomized encryption. We may even allow for
randomized comparison. However, we will show how to convert such a scheme
into a deterministic one.

To handle a randomized comparison, we simply add a sequence of random
coins to the secret key and every individual ciphertext. These random coins will
be used for any run of Comp. While in the original scheme, each run of Comp
uses independent randomness, here we use the same randomness every time.
However, since the experiment defining correctness only considers a single run
of Comp, the correctness probability is not affected by this change.

To handle a randomized encryption, we just generate the random coins r,, for
every message m, and include r,, in the secret key. When encrypting a message
m, encrypt using the random coins r,,. Notice that this blows up the secret key
size. However, note that for this work we do not care about the size of the secret
key; it can be exponential in size, and still our impossibility will hold. We note
that another approach is to have r,, be the output of a PRF evaluated on m;
suitable PRFs can be built from most interesting models, including the random
oracle and generic group models we consider. This prevents the secret key length
from exploding. However, this is unnecessary for our purposes.

Suppose IT = (GenM7 Enc™, CompM) be a randomized ORE where encryp-
tion and comparison procedures are both randomized, then we construct IT*
as:
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— Gen™ runs (pk,sk) < Gen, samples N + 1 randomness (r,71,...,75), and
outputs pk* = pk,sk™ = (sk,r,r1,...,7N);

— Enc*(sk*,m) runs C = Enc™(sk,m, ) and outputs C* = (C||r);

— Comp™(pk*, Cg, C%) outputs Comp™ (pk, Co, C1,7)

We note that IT* is a deterministic ORE now, both in encryption and compari-
son. Moreover, ignoring r for ciphertexts, as long as we do not encrypt the same
message twice, the distribution of the ciphertext in IT* is exactly the same as
II’s. We note that the correctness is well preserved. In fact, according to the
partial correctness definition, the randomness used in Comp is uniform just as
in the original scheme.

For statistical security, we see that the adversary only additionally learns a
random string (r, used for Comp) after it submits the message sequence, and the
random string is independent of the message sequence, hence the adversary does
not gain more information than in I7. Thus, statistical security is also preserved.

From now on, we treat ORE scheme as deterministic encryption and the message
space is super-polynomial, unless otherwise specified.

Theorem 14. If there exists partially correct and statistically secure ORE in
idealized model that makes no query to M in comparison procedure and has suc-
cinct ciphertext, then partially correct and statistically secure ORE in standard
model exists that has succinct ciphertexts.

Proof. This proof is very straightforward. Since there is no access to M during
the comparison procedure, there is no need for the idealized model to be public.
Instead, we set M as part of the secret key and only the encrypter has access to
it. Not giving the adversary access to M only helps security. Of course, in such
a setting, the secret key is now exponentially large, and encryption is no longer
efficient. However, our notion of ORE in standard model allows such large key
and inefficiencies of encryption, which completes the proof.

The only remaining part is step 2, which is model-specific and non-trivial. We
need to remove M from comparison procedures, while the input of Comp only
includes the public key and ciphertext, and we cannot just absorb the model to
the public key as we did in Theorem 14. Otherwise, the adversary would have
the complete access to the oracle, indicating that it gains more information than
it has in t-time statistical security game, and might break the game. Hence,
we need to find ways to simulate the model while still preserving the statistical
security. In the next two sections, we present our methods on two specific models:
random oracle model and generic group model.

5 The Random Oracle Model

In this section, we finish the separation result in the case that M is a random
oracle, which we denote by O. Using the results of Sections 3 and 4, it remains
to show that the random oracle model can be removed from the comparison
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procedure of an ORE scheme. Our proof is inspired by [10], which shows how
to remove random oracles from obfuscation schemes. However, for reason’s out-
lined in the introduction, the technical details of our proof will be substantially
different.

We first observe the following. Consider running Comp? (Cy, C;) where Cy, Cy
encrypt mg, m; respectively. Consider an oracle query x made by Comp. If = was
not a query made during encryption (Enco (myp), Enc® (my)), then we claim Comp
must output the right answer, even if it is given the incorrect query response.
Indeed, for any possible response 3/, there is an oracle O’ that is consistent with
O on the points queried during encryption of mg, my, but where O'(z) = ¥/’
Therefore, any potentially incorrect query answer can be “explained” by an
oracle O, and correctness of the scheme says that Comp must still output the
right value in this case.

For a particular run of Comp on encryptions of mg,mi, we therefore call
the oracle queries made during encryption “sensitive” queries. Comp only needs
access to O on sensitive queries; for all others, it can answer randomly. The
difficulty, then, is (1) allowing Comp to figure out the sensitive queries, and (2)
giving it the right oracle answers in this case.

For simplicity, consider two extremes. On the one end, suppose none of
Comp’s queries are ever sensitive. In this case, Comp can just ignore its ora-
cle entirely, simulating the responses with random answers. In this case, we are
already done. In the other extreme, suppose all of Comp’s queries are always
sensitive. In this case, if the adversary sees ¢ ciphertexts, she expects to make at
least £2(¢?) oracle queries on sensitive queries. However, there are only g/ possi-
ble query values, where ¢ is the number of queries made during each encryption.
Therefore, heuristically, we may expect to eventually pick of all of the sensitive
queries made during encryption by setting ¢ large enough (namely, bigger than
q). Even so, security must hold. Therefore, we can construct a modified scheme
where Enc simply outputs all the queries it makes and the corresponding an-
swers along with the ciphertext. Then all the sensitive queries Comp needs are
provided as input, and it does not need to make any oracle queries.

To formalize the above sketch, we must show how to handle cases between
the two extremes, where some of Comp’s queries are sensitive, and others are
not, and we cannot necessarily tell which is the case. Moreover, we need to deal
with the fact that we may not actually get all of the sensitive queries if there
are sufficiently many collisions. In this case, handing out all of the queries made
during encryption could actually hurt security (for example, if a query is made
on the message itself). Nonetheless, we now prove the following theorem:

Theorem 15. If there exists partially correct and statistically secure ORE in
random oracle model that has succinct ciphertexts, then there exists partially
correct and statistically secure ORE with succinct ciphertexts such that the com-
parison procedures makes no queries to the random oracle.

Proof. Let IT° = (Geng, EncS’, CompS) be a statistically secure ORE in the ran-
dom oracle model with plaintext space [N]. Here, we assume Geny makes no
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queries to O. This is actually without loss of generality: since O is a determin-
istic oracle, we can always treat sk as the random coins inputted to Geng, and
run Geng every time we encrypt a message.

For convenience, we denote Pr[l1°] as the lower bound on the correctness
probability:

Pr[I1°] = min Pr[Comp (pk, Co, C1) = Comp(mg, my) : (pk,sk) < Geng(); C, < Enc§ (sk, my)]

mo,mi
We assume that Comp(pkg, Co, C1) does not query the same point twice;
since O is deterministic, Comp, can always store a table of query/response pairs

already seen, and use this table to answer subsequent queries on the same point.
Here we specify some parameters:

1. Pr[I1°] > % + 2p, where p is noticeable; ¢, u = poly(\) by query efficiency;

110u*-¢® . . . 110u-¢%-i .
o7 y S8 = o3 NAS [u]v

2. Encf)g makes ¢ queries to the oracle O. Let Qs be the set of query-answer
pairs made when encrypting m under key sk. Notice that the set Qs is
fully determined by sk and m since Enc and O are deterministic.

3. Comp(()j makes u queries to the oracle O. Let Spk,my,m, be the set of query-
answer pairs made when comparing the encryptions of (mg, m;) under key
pk. Again, Spk mg,m, is fully determined by pk, sk, mg, mq.

4. D:=[sJU[N —s+ 1,N|;D; :=[s;]U[N — s; + 1, N],i € [u]

5. T, =[i]U[N —i+1,N],i € [N];

S =

Next we construct a new ORE IT* = (Gen, Enc®, Com p) with plaintext space
[s+1,N — s] as:

— Gen() runs (pkg,sko) < Geng(), computes C; = Enc§ (sko,i),i € D and
outputs pk = pky, sk = (sko, {C: hiep);

— Enc9(sk,m) runs C « Enc{ (sko,m). Then it runs CompS (pky, Ci, C) for
all ¢ € D, recording all query-answer pairs Spkm = UiepSpk,m,i- Then it
outputs C* = (C, Spk,m);

— Comp(pk, Cg,C3) :let Cf = (Co, Sp), Cf = (C1, 81). Run Comp$ (pky, Co, C1),
except that when querying the oracle with input x, do the following:

1. If there is a pair (z,y) in Sp U S1, Comp responds to the query with y;
2. Otherwise, returns a random string.

We note that in the comparison procedure of IT*, we remove the oracle access,
so it remains to show that IT* is statistically secure and partially correct.

Lemma 16. If IT0 is t4+2s statically secure, then IT* is t-time statically secure.

Proof. The entire view of the the adversary A in the ¢-time experiment for IT*
can be simulated by a t + 2s-time adversary B for IT°: the lists of messages are
those produced by A, plus all the messages in D. Then, the lists S associated
with ciphertext C' can be constructed by comparing C to each of the C; for
1€ D. O
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It’s obvious that Lemma 16 holds for any ¢ = poly(log N, \), which means IT* is
statistically secure. And what’s more interesting is that I1*’s partial correctness.
In the following, we prove that IT* also preserves partial correctness, though
there is some loss in the concrete correctness parameter.

Lemma 17. Pr[IT*] > % +p

Proof. We establish our proof by hybrid argument, and define u alternative ORE
schemes IT; = (Genj, Enc?, Compg?),j € [u] on message space [s; + 1, N — s;]:

— Gen;() runs (pky, sko) < Geng(), computes C; = Enc§ (sko, ) for i € D; and
outputs pk; = pkg, sk; = (sko, {Ci}ien,);

— Enc?(skj,m) runs C <« Encég(sko,m) and Compg(pko,C’i,C’) for i € Dy,
records all query-answer pairs Spkm = UiEDjSpk,m,i and outputs C* =
(Cv Spk,m)?

- Comp?(pkj,C§7Ci‘) slet Cf = (Co, S0), Cf = (Cq, S1). It runs Comp(()g(pkj,
Cop, C1), except that when querying O with input z, it does the following:

1. If = is one of the first u — j queries, make a query to O as usual.

2. If x is one of the final j queries and there is a pair (z,y) € SoU .Sy, then
respond with y.

3. Otherwise, returns a random string,.

We observe that I, = IT*, hence it suffices to prove the following lemma,

Lemma 18.
Pr[I1;] > Pr[II;_4] — g,v]' € [u]

We here only prove the case j = 1, the rest can be handled analogously. Specif-
ically, we show Pr[II}] > 1 +2p— £ .

According to the definition, we see that Comp; works the same as Compy,
except for the final query = to O in which we use the list of oracle outputs
provided with the ciphertext to answer the oracle query. We prove that the
response made by II; for z does not significantly harm the ability of Comp; to
output the correct answer. To do so, we introduce yet another sequence of s;
ORE schemes II; ;, j € [s1] on message space [j + 1, N — j]. The only difference
between II; ; and II; is the number of test ciphertexts that are generated.

— Geny () runs (pkg, sko) < Geng(), computes C; = Enc§ (sko, i) for i € T and
outputs pk; ; = pk, sk = (sko, {Ci}ieT;);

— Enc?)j(skl)j,m) runs C' < Enc§ (sko,m) and Comp§ (pk,, C;,C) for i €
T}, records all query-answer pairs Séi)m

(C. S5
- Compfj(pku,Ca‘,Cf) let Cf = (Co, So), C7 = (C1,51). It runs Comp((?(pkl,j,
Cop, C1), except that when querying O with input x, it does the following:
1. If = is one of the first u — 1 queries, make a query to O as usual.
2. If z is the final query and there is a pair (z,y) € Sp U Sy, then respond

with y.

= U;Spk,m,i and outputs C* =
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3. Otherwise, returns a random string.

We note that II1 = II; 5,. We now claim that increasing j must improve the
correctness of the scheme:

; J< 1 _»r . , o’
Claim. If Pr[Il ;] < 5+ 2p — £, then Pr[Il1 j 1] > PrITy ;] + 1oz

Notice that this means as j increases, Pr[Il; ;] must increase by increments
of at least i = ﬁ until Pr[I7; ;] > L +2p— 2. Therefore, by setting j = s,
we get that Pr[II1] = Pr[II; j] > 1 4+ 2p — £ as desired. It remains to prove the
claim.

Assuming Pr[IT; ;] < % +2p — £, there are two messages mg, m] minimizing
the correctness probability; that is, the comparison procedure on encryptions of
mg, mj outputs the correct answer with probability less than % +2p — £. Since
comparison succeeding is a detectable event, we can invoke the security of ORE
to conclude that, for any mg, my, comparison must output the correct answer
with probability at most 3 +2p — £ + negl < 3 +2p — 22.

Fix two messages mg,m1 € [s; + 1, N — s;]. We denote SU) := SW -y

pk,mo
é{()ml ;1 Q 1= Qsk,mo UQsk,m, - Let x be the final query made when comparing the
encryptions of mg, my.
Define the event Bad; where the following happens:

— z€Q\ SY, so that = was queried during the encryption of mg or my, but
not during any of the comparisons to the test ciphertexts.

— Comp¢ outputs the correct answer on encryptions of mg, my.

— Compy ; outputs the incorrect answer on encryptions of mq, m;.

We consider four cases:

— x € SUY In this case, II; answers the same as Il ; since it has access to
O(x)

— x ¢ Q Then the ciphertexts components Cy, C; under Il are independent
of O(x), meaning that during the correctness experiment, O(x) in IIj is a
random string. Hence I1; answers the query with the correct distribution.

EAS Q\S(j), but Bad; does not occur. Here, we must have that Comp either
produced the incorrect answer, or Comp; ; produced the correct answer.

— Bad; occurs In this case, Cy,Cy will depend on O(x), while II; ; cannot
find it in S, Hence, 11, ; will answer randomly, but Comp may expect
an answer correlated with Cp, Cy. Moreover, we know that by answering
randomly, Comp; ; goes from outputting the correct answer to the incorrect
answer.

We note in the first three cases above, the expected correctness probability does
not decrease relative to II; ;. Indeed, in the first and third cases, II; ; is at
least as correct as Ily, and in the second case, II; ; in expectation has the same
correctness as Ily. Only in the final case might answering randomly decrease
the probability of correctness. Therefore, since comparison in II; ; outputs the
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correct answer with probability less than § +2p — g—z, we must have Pr[Bad,] >
2p
3u”

We consider two sub-events of Bad;, denoted Badgb), corresponding to = €
Qsk,m,, /S. Notice that Pr[Bad;] < Pr[Bad§0)] + Pr[Badg-l)]. By our assumption
above, we have max{Pr[Bad§O)], Pr[Bad;l)]} > £-. We will assume that Pr[BadE-O)]
#-, the other case handled analogously

Next we split the message space into two parts: [j+1, 5] and [§ +1, N —j],
and sample w + [j + 1, %] and z1,...,2¢ [% + 1, N — j], where ¢ = 6“—;)"1. Let
t; be the indicator as:

)Lt Bad;o) occurs for message pair (w, z;)
’ 0 Otherwise

and T be the event that Ele t; > ¢, we must have that:

14
Pr(T] - £+q- (1 - Pr[T]) 2 E( ;) > 2 = Pr[T] > Gﬁ

; u
i=1

as Pr[t; = 1] > £, which refers E {2521 tl} >0 £ > 2.

For three messages mg, m1, ma, mo < my < msg, we define the event Collision
as the following: the final queries x1,x2 when comparing encryptions of mg to
my and respectively mg to ms satisfy: (1) Badg»o) occurs simultaneously for both
(mg,m1) and (mg, m2), and (2) z1 = z5.

We observe that if T" occurs, there are at least ¢ + 1 index such that ¢; = 1.
Moreover, in Encfj(w), there are at most ¢ distinct queries. This means there is
some z;; < z;, such that Bad§-0) occurs for both (w, z;,) and (w, z;,) and moreover
the final query in both comparisons is identical. This in particular means that
Collision happens for (w, z;,, 2;, ).

Now we bound the probability of Collision for a random message w in [j+1, ]
and random distinct 27, 25 in [% +1, N —j]. One way to sample random w, 27, 25
is to sample w at random in [j + 1, %}, and sample ¢ random distinct z; in
[& +1,N — j]. Then we choose two random indices i1, 42, and set z; = z;,. The
above analysis shows that with probability at least p/6u, there some Collision
among the z;. Since z; are chosen as a random pair from this set, there is a
collision in 27, z5 with probability at least

3

108u3 - ¢2

—
hS)

Pr[ Collision for random (w, 27, 23)|} > —5 - Pr[T] >

(2)
Now, we would like to use security of ORE to show that Collision happens for
arbitrary fixed triples mg, mq, ms. Unfortunately, Collision is not necessarily de-

tectable by an adversary, since an adversary does not know Q. Instead, we define
a slightly different event Collision. Collision” is the same as Collision except that
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it removes the requirement that the common query z is in @ for either w, 2j or

w, z3. Since Collision implies Colision’, we must have that Collision’ happens with
3
probability at least 108’;73_(12 for a random w, 27, 25.
Now, Collision” is an event that can be detected by an adversary, thus by

statistical security, we have that for arbitrary (mg,mi,mq) € [j +1,N — j],

3 3

p
“negl > — 2
%8~ 11003 - ¢2

p

Pr[ Collision” for (mg,my,ma)] > 1088 &

Specifically, let mg = N — j, we see that for any (mg,m1) € [j +2,N —j — 1],
if we move to Iy j41, mo is included in the test queries for the scheme. Notice
that Collision” means that in IT; ;, comparing mg, m; would have been incorrect
(since the final query is answered randomly), but in IIy ;41 comparing mg, m;
would be correct due to the additional queries provided from comparing mg, ms
(since comparing mg, mo would add the missing query x to the list of queries
included in the encryption of mg). Thus:

P’ p
5 = PI‘[Hﬂ > Pr [Ho] — E

Pr(Ily j41] > PrIl ;] + 00?2

Now we have shown that Pr[II;] > Pr [IIy] — £. This handles the case of II;.
However, note that at this point, what use to be the second-to-last query is now
the last query (since the last query is no longer made). Therefore, we can apply
the exact same techniques as above to handle the general case of II;, giving

Prlll; ] = Pr [, - £
Combing together, we get
1
Pr[II"] > 5Tr
which completes the entire proof. a

6 The Generic Group Model

In this section, we finish the separation result in generic group model, which
we denote by G. It remains to show that the generic group oracle model can
be removed from the comparison procedure of any ORE scheme. Our strategy
is inspired by [24], which shows how to remove constant graded encoding from
obfuscation schemes. Before we illustrate the main idea of our proof, we recall
a simple variant of the generic group model, which is equivalent to the usual
generic group model [26]:

Definition 19. (Variant Generic Group Model) Let (G, ®) be any group of size
N and let S be any set of size at least N. The generic group oracle G : G — S.
At first an injective random function o : G — S is chosen, and two type of
queries are answered as:
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— Type 1: Labeling queries. Given g € G, oracle returns handle h = o(g);

— Type 2: Zero-test queries. Given h = (hy,...h,) € S, a vector v =
(vo, ..., vn) of integers, oracle returns a single bit: 0 if there exists g1, ..., gn €
G such that h; = 0(g;) and vo + @jv;g; = 0; 1 otherwise.

WLOG, we can assume that the ORE scheme IT = (Gen, Encg, Compg) satisfies
the following:

— Gen makes no queries to G.

— Enc has the access of both labeling and zero-test query, while Comp only
makes zero-test queries. This is because Comp gains no advantage by making
labeling queries; it can always keep track of any group element it would have
made a labeling query on, and adjust the vy term in a zero-test query to
compensate.

— Let h,, be the vector of handles returned by the labeling queries during
the encryption of m. We will assume the comparison procedure, when com-
paring encryptions of mg, m1, only makes zero-test queries using handles
derived during the encryption. In other words, it will always have the form
(B> By, v). We can assume this as Comp’s view only depends on those
labels; if it queried the zero-test on other labels, then it would somehow be
guessing labels it never saw before, which is statistically unlikely.

— For any m, |h.,| = |gm| = ¢, where ¢ = poly()) is a fixed integer.

Then we present a brief description of our strategy. Similar to our ran-
dom oracle proof, given an ORE scheme II = (Gen,Encg,Compg) on mes-
sage space [N] with partial correctness % + 2p, we construct an new ORE
IT* = (Gen*,Enc*, Comp™) on message space [s + 1, N —d|(s,d = poly(log N, \))
with correctness % + p, where we remove G from Comp*. In the key generation
procedure, IT* additionally outputs the encryption of i,7 € [s]U [N —d + 1, N].

Next, Enc(k, m) runs Enc(k, m), Comp(Enc(k, m), Enc(k,)), Comp(Enc(k, ),
Enc(k,5)),4,j € [s]U[N —d + 1, N]. Tt collects all of the zero test queries and
responses produced during the comparisons. It deletes all queries that outputted
1. Tt is left with a set of linear constraints on the g1,...,9s,9m,gN—d+1,--- 9N
terms. It therefore produces a set S, of linearly independent constrains over
these variables. It finally outputs (Enc(m), Sp,).

Meanwhile, Comp*(Cy,,,Ch, ), runs Comp on the two II-ciphertexts con-
tained in Cly,,, Cpny . Whenever Comp, ; tries to make a zero-test query, Compij
intercepts, and answers using the sets Sy, S, as follows. It determines if the
zero test query is linearly dependent on the constraints in S,,, U Sy,,. If so, it
knows that the answer to the zero test query is 0. Otherwise, it guesses that the
zero test query answer is non-zero.

We claim that this modified comparison procedure answers all zero test
queries right except with small probability. Roughly, the idea is that Comp only
needs to learn the constraint space when restricted to gy, gm,, and does so
using the constraints it obtains through the test ciphertexts. Notice that the
number of constraints we obtain grows quadratically with the number of test ci-
phertexts computed, while the dimension of the space of constraints only grows
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linearly. Therefore, by using enough test elements, we “should” exhaust all linear
constraints and recover the entire constraints space. Indeed, we show that with
sufficiently large s,d, Sy, U Sp, has either recovered the full basis of the space
(which allows one to correctly answer all remaining zero-test queries), or it’s very
unlikely that a new constraint appears, which in turn means that Comp™ sim-
ulates the oracle itself properly except with a small probability. We now prove
the following theorem:

Theorem 20. If there exists partially correct and statistically secure ORE in
generic group model that has succinct ciphertexts, then partially correct and sta-
tistically secure ORE with succinct ciphertexts that makes no query to gemeric
group oracle in comparison procedures exists.

Proof. In our proof, for simplicity we will assume all queries to the zero testing

oracle are homogeneous (there is no constant term wvy); it is straightforward to

extend our proof the full inhomogeneous setting. Let 1Ty = (Geny, Encg7 Compg)

be a statistical secure ORE in generic group model (we view sk is simply the

randomness fed into Gen, thus we do not have oracle access for Gen). For conve-

nience, we denote Pr[/ly] as the lower bound on the correctness probability:

Pr[Ily] = min Pr[Comp (pk, Co, C1) = Comp(mg, m1) : (pk,sk) < Geng(); Cy < Enc§ (sk, ms)]

mo,m1

Similar to the random oracle case, we specify some parameters:

1. Pr[Ilo] > 1 + 2p, where p is noticeable;

2. = poly(X) by query efficiency; ¢; = 209u? p, — 20l
q,u poly Y q Yy Ys €1 pZ 2 02 )

3. Encg (m) makes ¢ labeling queries to oracle when encrypting m under sk.

4. Compg makes u queries to the oracle, and let Spkm,.m, be the set of the
constraints in value g, gm, (with form of p = (v, R, by, )) that it stores;

5. S = UZQ . 262 . 7421;;.61 , 8 = ’ng . 262 . 7421;;‘51 s S* = %,

6. d="52,d; =52 i € [u];

7. D=[s]U[N —-d+1,N]|;D; =[s;] U[N —d; +1,NJ;

Next we construct a new ORE IT* = (Gen, Encg, Comp) with plaintext space
[s+1,N —d] as:

— Gen() runs (pkg,sko) + Geng(), computes C; = Encj (sko,i),i € D. And
outputs pk = pkg, sk = (sko, {C:})

— Encg(sk, m) runs C + Encg(sko,m) and Compg(pko, C;, C), Compg(pko, C;,
Cj),1,7 € D, stores the set of constraints on (g.m,, g )icp as Ssk,m and outputs
cr = (Cv Ssk,m)?

— Comp(pk, C, CF) : let C = (Co, So), C = (Ch, S1), runs Compd (pkg, Co, C1),
except that when querying a linear zero test p on unknown value (gmg, gm, )

, it responds as follows:
1. p is a linear combination of the constraints stored in Sy U Sy, then it
returns “07;
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2. Otherwise,returns “1”.

‘We note that in the comparison procedure of IT*, we remove the oracle access,
hence it remains to show that IT* is statistically secure and partially correct.
It’s trivial that IT* is statistically secure, due to the almost identical argument
as in random oracle case, and in the following we prove IT* is partially correct.

Lemma 21. Pr[II*] > 1 +p

Proof. We establish our proof by hybrid argument, and we define u ORE schemes
II; = (Gen;, Encjg,Comp]g),j € [u] with message space [s; + 1, N — d;]. There
are two difference between IT* and II;: 1) numbers of tested ciphertexts that are
generated; 2) II; only uses the constraint set to answer the last j queries (for

the first u — j queries, IT; answers as usual by accessing G).

— Gen;() runs (pky,sko) ¢« Geng(), computes C; = Encf (sko,i),i € D; and
outputs pk = pkg, sk = (sko, {Ci}iep;);

— Encjg(sk, m) runs C Encg(sko,m) and Compg(pko, C;, C), Compg(pko, C;,
Ck),i,k € Dj, stores the set of constraints on (gm,gi)iep; as Ss,m and
outputs C* = (C, Ssk,m );

— Comp,(pk, Cg, CY) :let G = (Co, So), C7 = (C1,51), runs Compg(pkO,Co,Cl),
except that when querying the oracle on zero test p, it does the following:

1. If p is one of the first u — i zero test queries, make a query to G as usual,

2. If p is one of the last i zero test queries and p is a linear combination of
the constraints stored in Sy U S7, then it returns “0”;

3. Otherwise, returns “17;

Similar to the proof in ROM, we here prove Pr[II1] > 3 +2p — £. According
to the definition, we see that Comp; works as the same as Comp,, except for the
final query in which we test whether p is a linear combination of the constraints
provided with the ciphertext to answer the oracle query. We prove that the
response made by II; for p does not significantly harm the ability of Comp,
to output the correct answer. To do so, we introduce yet another sequence of
s* ORE schemes II; ; = (Genyj, Encf,j, Compf,j),j € [s*] on message space
[7l2+1, N — jt1]. The only difference between II; ; and II; is the number of test
ciphertexts that are generated.

— Geny () runs (pkg,sko) < Geng(), computes C; = Encf (sko,i),i € T}, and
outputs pk = pkg,sk = (sko, {Ci}ieT;);

— Encf)j(sk, m) runs C < Enc (sko, m) and Comp (pkg, C;, C'), Comp§ (pkg, C:,
Cy), i,k € T}, stores the set of constraints on (gm,gi)ict; as Ss(lf)m
puts C* = (C, Sek,m);

— Comp{ ;(pk, C§, CF) :1et Cf = (Co, So), Cf = (C1, S1), runs Comp{ (pkg, Co, C1),
except that when querying the oracle on with the zero test p, it does the
following:

1. If p is one of the first u — 1 zero test queries, make a query to G as usual,

and out-
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2. If p is the last test query and is linearly dependent of the constraints
stored in Sy U S1, then it returns “0”;
3. Otherwise returns “1”;

Therefore, it remains to prove the following claim.

Claim. 1f Pr[I1 j] < 3 +2p — £, then Pr[Ily j41] > Pr[II; ;] + &

Assuming Pr[IT; ;] < % +2p — £, there is a message pair (mg, m}) minimizing
the correctness probability; that is the comparison procedure on encryptions of
(mg, m}) outputs the correct answer with probability less than §+2p—£. Due to
the statistical security, we have that for any (mg,m1), comparison must output

the correct answer with probability at most 3 + 2p — £ + negl < 14 29 —
Fix two message mq, my € [jlo+1, N—jl1]. We let SU) = Ss(d,)mo usy) (the

sk,m1
constraint set in Ency j(my)). Let p be the final zero test made when comparing

the encryptions of mg, m,. Define the event Bad) where the following happen:

— p is a constraint satisfied by gm,,gm,, but p is linearly independent of the
constraints stored SU );

Compg outputs the correct answer on encryption of mg, ms;

Comp%j outputs the incorrect answer on encryption of mg, m
We consider four cases:

— pis linearly dependent of the constraints of SU). In this case, 11, ; answers
the same as Il since it knows p is a valid constraint;

— p is not satisfied by gm,,gm, - In this case, p must be linearly independent
of U hence I, II, ; answer the same;

— p is a constraint satisfied by gm,,gm,, and independent of SU), but Bad?)

does not occur. Here we must have Comp,, either outputs the incorrect an-
swer, or Compl) ; outputs the correct answer;

— Bad") occurs. We know that by answering “17, Comp, ; goes from outputting
the correct answer to the incorrect one.

Similar to the random oracle setting, only the last case decreases the probability
of correctness, therefore, Pr[Bad"/)] > o

Next we split the message space into two parts [j-f2+ 1, %] and [% +1,N —
j -], and sample w + [j- o+ 1,520 < ... <z « [F+1,N—j-4]
Let Badl(-j) be the event that “Bad”)” occurs for (w, z),i € [¢1]. Then we claim

that Pr[Badgj) N Badgj)] > 18i2= and prove it by contradiction. In fact, we note
that unlike the case in ROM, the bad event here is detectable for unbounded
adversary, then invoking the security we must have that for any j, k € [t] where

t:%<£1

Pr[Bad; N Bady] < Pr[Bad; N Bad;] + negl
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2

If assuming that Pr[Bad; N Bad,] < 2, then Pr[Bad, N Bady] < £, which
means

M~

Pr[Bad1 U...u Badt] > Pr[Badi] — Z Pr[Badi n Badj]

1 i<j€lt]

.t ﬁ
2

-
Il

hS)

,02
— >2-8/9>1
9u2> /9 >

Y%
[\
¢

a contradiction.

Now we define t; to be the indicator,

)1 if BadinNBad; =1
10 Otherwise

and it’s apparent that

2 2} 2 2

p p p
Prlt; = 1] > E(S t) > (6 — 1) - 2 —
rlti ]_10u2§(;)>(1 ) Toa ~ %

Let T be the event that 251:2 t; > g, then

¢ 2

Pr(T] - 6y + g~ (1 - Pr[T]) > E(3_ t;) = Pr[T] > zgug
=1

We immediately observe that when 7" occurs, there must be a constraint p*
on(gz,-... ,gzh) such that

p*=aip1 + ...+ agpe,

where p; is the last query in Comp(Enc(w), Enc(z;))(if p; is not a constraint, we
set a; = 0). Parallelly, we define a hybrid event 7™, and we say T* happens if T
happens and a; # 0. Invoking the security, it’s trivial that

Pr[T*] > A . Pr[T]  negl > 7
I‘ —_— I‘ — S —
— 4 gl = 21u? - ¥4

and in such a case, we can write p; as:

1 *
p1 = ;(azpz +...+aype, —p)
1
where p* is a constraint on ( g.,,... 7gzll). We observe that, if p* is known,
then we can just move zg,...,z¢, to the right end, and applying exactly the

same technique as in ROM, we complete the proof. Hence it’s rest to show how
to extract p*.
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We note that p* is a constraint on ( g.,,...,gz,, ), and the cardinality of the
entire space is ¢f1, hence one trivial way to extract p* is to recover the whole
basis. To do so, we sample w = (w1 < ... < wy,) € [j- s+ 1, 5] and use every
element in w to recover it. Now we define a new indicator e; such that e; = 1 if
T* occurs for (w;, z),i € [¢2]. Based on e;, we introduce a new event G and say

G occurs if Zfil e; > qly,

2 2

p
Pr(G] - £+ gl - (1— Pr[G)) > E(;gi) > 20l = Pr{G] = 5 5

It’s obvious that when G occurs, either the whole basis is recovered or there
exists w; such that the corresponding p* can be extracted by (w1, ..., w;—1, 21, - -,
ze, ), and in either case we are done. Here we define a new event, called Collision,
to characterize it; for any message sequence (wy < ... < wg < 21 < ... < 2¢, ),
we say Collision happens if,

— the last query p in Comp(Enc(wyg), Enc(z1)) is a constraint in value (g, , gz, ),
and Bad") occurs for (wi, 21);
— pis alinear combination of the constraints collected in Comp(Enc(w;, 2;)), ¢ €

[k]hj € Ml]’ (Z’]) 7é (k71)11

By definition, it’s trivial that adding more samples would not decrease the
probability of Collision, namely, if Collision happens for (w; < ... < wg < 21 <
... < zp), then it also happens for (1 < ... < xp,w; < ... <wg <21 <...<
zp,) as long as xp < wy.

Note that when G occurs, there must exist a sub-sequence (w;, < ... <
w;, , z) such that Collision happens, which means for (w; < wg... < w;,,2)
Collision also happens, so we have

1
max Pr[Collision for (w; < ... <w; <21 <...<zp)] > — - Pr[G]
i€[l2] Uy
Then, due to security, we claim that for arbitrary (w1 < ... < wy, < 21 <

o< zg)Efla+1,N—j-t]
Pr[Collision] > 1 Pr[G] — negl > = Pr[G] = L
r 2 ' g_2f2 ' st

Specifically, let w; = jly+1i,i € [l —1],2; = N — jb; —i,i € [{; — 1], we see that
for any (we,, 1), if we move to Il jy1, (wi,...,We,—1,22,..., 2 ) are included
in the test queries for the scheme, hence,

1
Pr[Hl’jJ’»l] > Pr[ﬂl,j] + 87* = Pf[ﬂl] > Pr[ﬂo] — g

Now we have shown that Pr[/I;] > Pr [Il] — £. This handles the case of
1I,. However, note that at this point, what use to be the second-to-last query is

1 (i,5) # (k,1) means i #kNj#1
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now the last query (since the last query is no longer made). Therefore, we can
apply the exact same techniques as above to handle the general case of II;, give
Pr[II;;1] > Pr [II;] — £ Combing together, we get

1
Pr{II"] > 5 +p

which establishes the entire proof. a

Acknowledgments

Mark Zhandry is supported by NSF. Cong Zhang is partially supported by
DARPA and SSC Pacific under contract N66001-15-C-4070. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of NSF, DARPA or SSC
Pacific.

References

1. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for
numeric data. In Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’04, pages 563-574. ACM, 2004.

2. A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy, and
R. Venkatesan. Orthogonal security with cipherbase. In 6th Biennial Conference
on Innovative Data Systems Research (CIDR’18), January 2013.

3. A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric
encryption. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 224-241. Springer, 2009.

4. A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revis-
ited: Improved security analysis and alternative solutions. In Annual Cryptology
Conference, pages 578-595. Springer, 2011.

5. D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zimmerman. Se-
mantically secure order-revealing encryption: Multi-input functional encryption
without obfuscation. In Proceedings of EUROCRYPT 2015, 2015.

6. D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In S. Vaudenay, editor, Advances in Cryptology
- EUROCRYPT 2006, pages 573-592, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

7. D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324(1):71-90, 2003.

8. Z. Brakerski and G. N. Rothblum. Virtual Black-Box Obfuscation for All Circuits
via Generic Graded Encoding, pages 1-25. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

9. Z. Brakerski and G. Segev. Function-private functional encryption in the private-
key setting. In Theory of Cryptography Conference, pages 306-324. Springer, 2015.

10. R. Canetti, Y. T. Kalai, and O. Paneth. On obfuscation with random oracles. In
Theory of Cryptography Conference, pages 456—467. Springer, 2015.



34

11.

12.

13.

14.

15.
16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

Mark Zhandry and Cong Zhang

D. Cash, F.-H. Liu, A. O’Neill, and C. Zhang. Reducing the leakage in practical
order-revealing encryption. Technical report, Cryptology ePrint Archive, Report
2016/661, 2016.

N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu. Practical order-revealing encryp-
tion with limited leakage. In International Conference on Fast Software Encryp-
tion, pages 474-493. Springer, 2016.

J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the
integers. In Advances in Cryptology—-CRYPTO 2013, pages 476-493. Springer,
2013.

F. B. Durak, T. M. DuBuisson, and D. Cash. What else is revealed by order-
revealing encryption? In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1155-1166. ACM, 2016.

P. Erd6s and V. Sés. On a problem of graph theory.

S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices.
In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 1-17. Springer, 2013.

C. Gentry, A. Lewko, and B. Waters. Witness encryption from instance indepen-
dent assumptions. In J. A. Garay and R. Gennaro, editors, Advances in Cryptology
— CRYPTO 2014, pages 426443, Berlin, Heidelberg, 2014. Springer Berlin Heidel-
berg.

P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart. Leakage-
abuse attacks against order-revealing encryption. In Security and Privacy (SP),
2017 IEEE Symposium on, pages 655—672. IEEE, 2017.

M. Joye and A. Passelegue. Function-revealing encryption. 2016.

K. Lewi and D. J. Wu. Order-revealing encryption: New constructions, applica-
tions, and lower bounds. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS 16, pages 1167-1178, New York,
NY, USA, 2016. ACM.

W. Lu, A. L. Varna, and M. Wu. Security analysis for privacy preserving search of
multimedia. In 2010 IEEE International Conference on Image Processing, pages
2093-2096, Sept 2010.

M. Mahmoody, A. Mohammed, and S. Nematihaji. On the impossibility of virtual
black-box obfuscation in idealized models. In Theory of Cryptography Conference,
pages 18-48. Springer, 2016.

M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-preserving
encrypted databases. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 644—655. ACM, 2015.

R. Pass and A. Shelat. Impossibility of vbb obfuscation with ideal constant-degree
graded encodings. In Theory of Cryptography Conference, pages 3—17. Springer,
2016.

R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb:
protecting confidentiality with encrypted query processing. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles 2011, SOSP 2011, Cascais,
Portugal, October 23-26, 2011, pages 85—100, 2011.

V. Shoup. Lower bounds for discrete logarithms and related problems. In Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
pages 256—266. Springer, 1997.

C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure ranked keyword search over
encrypted cloud data. In Distributed Computing Systems (ICDCS), 2010 IEEE
30th International Conference on, pages 253-262, June 2010.



