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Abstract. Blind signatures are at the core of e-cash systems and have numerous other applications.
In this work we construct efficient blind and partially blind signature schemes over bilinear groups
in the standard model. Our schemes yield short signatures consisting of only a couple of elements
from the shorter source group and have very short communication overhead consisting of 1 group
element on the user side and 3 group elements on the signer side. At 80-bit security, our schemes
yield signatures consisting of only 40 bytes which is 67% shorter than the most efficient existing
scheme with the same security in the standard model. Verification in our schemes requires only
a couple of pairings. Our schemes compare favorably in every efficiency measure to all existing
counterparts offering the same security in the standard model. In fact, the efficiency of our signing
protocol as well as the signature size compare favorably even to many existing schemes in the
random oracle model. For instance, our signatures are shorter than those of Brands’ scheme which
is at the heart of the U-Prove anonymous credential system used in practice. The unforgeability of
our schemes is based on new intractability assumptions of a “one-more” type which we show are
intractable in the generic group model, whereas their blindness holds w.r.t. malicious signing keys
in the information-theoretic sense. We also give variants of our schemes for a vector of messages.
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1 Introduction

Blind signatures introduced by Chaum [23] are an interactive protocol that allows a user to ob-
tain signatures on messages of her choice without revealing the messages to the signer. Blindness
in these schemes ensures that it is infeasible for a malicious signer to link the final signatures
to their corresponding signing requests. Blindness can be either proven in the honest-key model
where the key pair is produced by the challenger and then revealed to the adversary or in the
stronger malicious-key model [1, 48] where the key pair is chosen by the adversary herself and
she is not required to reveal the signing key to the challenger. On the other hand, unforgeability
ensures that it is infeasible for a malicious user to obtain more valid signatures on distinct
messages than the number of completed interactions with the honest signer. Such a primitive
is at the core of e-cash systems [23] where the bank acts as the signer; the privacy requirement
comes from the non-traceability requirement of cash. It also finds applications in e-voting [34],
anonymous credentials [8] and direct anonymous attestation [20, 12]. The primitive is very rel-
evant to practice, besides its prominent role in realizing e-cash systems, blind signatures are
the backbone of some anonymous credential systems deployed in practice, which include the
U-Prove system [19].

Measures of importance when designing such schemes include their round complexity, i.e. the
number of moves between the parties before the user can derive a signature. Round-optimal
schemes [27] consisting of only two moves are known to imply security under concurrent execu-
tions.

∗The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 307937 and
EPSRC grant EP/J009520/1. The work was done while the author was at University College London.
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Related Work. After their introduction by Chaum [23], a long line of research on blind sig-
natures has evolved. Constructions of blind signatures relying on random oracles [26] include
[23, 53, 18, 51, 2, 15, 11, 52, 8]. Most of the early constructions relying on random oracles are es-
sentially Full-Domain-Hash (FDH) style signatures. The user sends a blinded message digest of
the message to the signer who in turn returns a signature on such a digest. Upon receiving the
signature, thanks to the homomorphic property of the underlying signature scheme, the user is
able to transform such a signature to one on the message. This is the underlying idea behind
the original (RSA based) scheme in [23] which was proven secure in [51]. The same applies to
the (DLog based) scheme in [15].

Constructions dispensing with relying on random oracles but at the expense of assuming
a trusted common reference string (CRS) include [21, 45, 6, 39]. Fischlin [27] gave a generic
construction of two-move schemes in the CRS model satisfying blindness in the malicious-key
model. His construction requires the user to send a commitment to her message which in turn
gets signed by the signer. The final signature is then merely a zero-knowledge proof of knowledge
of a signature on the (hidden) commitment to the message. Most subsequent constructions in
the CRS model are either direct instantiations of Fischlin’s construction, e.g. [5, 3], or variations
thereof, e.g. [30, 3]. The scheme in [30, 3] adopts a similar approach as Fischlin’s but instead
of hiding the signed commitment, it exploits a feature of the underlying signature scheme to
transform a signature on the commitment to a direct signature on the message itself. Other
round-optimal constructions is the CRS model include [47, 13, 14, 56].

Round-optimal constructions not relying on either of the aforementioned assumptions, i.e. in
the standard model, are preferable. However, it is well-known that such schemes are harder
to design. Lindell [46] showed that it is impossible to realize round-optimal schemes in the
standard model under simulation-based security definitions. However, Hazay et al. [43] showed
that concurrently-secure (non-round-optimal) realizations in the standard model are possible
under game-based definitions. Abe and Ohkubo [6] showed that universally composable blind
signatures even non-committing ones are impossible in the standard model. Okamoto [48] gave a
non-round-optimal construction in the standard model which satisfies blindness in the malicious-
key model. Fischlin and Schröder [29] proved that it is impossible to reduce the security of a
standard-model blind signature scheme in a blackbox manner to the intractability of a non-
interactive assumption if the scheme has any of the following properties: i) the signing protocol
has less than 4 moves. ii) its blindness holds statistically iii) the signing transcript allows one
to check if a valid signature can be derived from it.

Existing constructions in the standard model [37, 36] circumvent the impossibility result by
making use of a non-blackbox reduction to the underlying primitive. Garg et al. [37] gave the
first round-optimal construction in the standard model solving a long-standing open problem.
Their scheme combines fully homomorphic encryption with two-move witness-indistinguishable
proofs known otherwise as ZAPs [25]. Their scheme is inefficient and is only considered as a
feasibility result. Recently, Garg and Gupta [36] gave a more-efficient round-optimal construc-
tion which combines structure-preserving signature schemes [3] and Groth-Sahai NIZK proofs
[40]. To eliminate the need for a trusted party, they use two CRSs which are part of the signer’s
public key. The signer is forced to choose those honestly as otherwise she needs to solve an
exponential-time problem in order to cheat. The security of their scheme holds w.r.t. non-
uniform adversaries and relies on complexity leveraging. Consequently, it suffers from a large
communication overhead and a rather large computational cost.

Recently, Fuchsbauer et al. [33] gave a semi-generic construction of round-optimal schemes
in the standard model which combines the Pedersen commitment scheme [49] with structure-
preserving signatures on equivalence classes [41]. Their construction satisfies blindness against
malicious keys. They gave an efficient instantiation whose security relies on a couple of in-
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teractive assumptions where they used the optimal construction of signature on equivalence
classes from [32]. More recently, Fuchsbauer et al. [31] weakened the assumptions on which the
instantiation in [33] is based by eliminating one of the interactive assumptions on which the
blindness in [33] was relying. However, the unforgeability of the new variant still relies on an
interactive intractability assumption. Hanzlik and Kluczniak [42] gave a construction in the
standard model in the honest-key model. The downside of their construction is that it uses an
encryption scheme over composite-order groups which requires groups of a large order as well
as a strong non-standard “knowledge” assumption [9]. Very recently, Döttling et al. [24] showed
that blind signatures in the standard model can be constructed from maliciously circuit-private
homomorphic encryption for logarithmic depth circuits.

Baldimtsi and Lysyanskaya [8] showed that existing techniques fall short of proving the
security of some existing blind signatures lacking a security proof in the random oracle model.
Concerned constructions include Schnorr’s [53] and Brands’ [18] schemes. The latter is at the
core of the U-Prove system.

Abe and Fujisaki [4] put forward the notion of partially blind signatures which extends blind
signatures to allow some part of the message to be public. This makes it possible to attach some
public attributes, e.g. an expiration date, to the signatures. Recently, Fuchsbauer et al. [33, 31]
gave the first efficient round-optimal partially blind schemes in the standard model.

Our Contribution. We construct two efficient blind signature schemes in the standard model
satisfying blindness in the malicious-key model. Our schemes yield very short signatures con-
sisting of only 2 elements from the shorter source group. At 80-bit security, our signatures are
only 40 bytes long which means they are 67% shorter than the best existing scheme offering the
same security [33]. Verifying signatures in our schemes involves evaluating a couple of pairings.
The latter matches the verification overhead of the most efficient existing (non-blind) signature
schemes over bilinear groups [17, 16]. Such desirable efficiency means that our schemes can even
be deployed on devices with limited computational power if the evaluation of pairings required
for verification is outsourced to a third party, e.g. using techniques from [22]. Our schemes have
a very low communication overhead on both sides. The blindness of our schemes holds in the
information-theoretic sense whereas their unforgeability relies on new intractability assump-
tions which we show hold in the generic group model [57]. Note that it is well-known that blind
signature schemes in the standard model based solely on non-interactive assumptions, e.g. [37,
36], are much less efficient. Furthermore, all existing efficient round-optimal schemes in the
standard model offering the same security as ours [33, 31] also rely on interactive intractability
assumptions.

We also construct efficient partially blind signature schemes and efficient blind signature
schemes for a vector of messages. The techniques underlying our constructions are akin to the
blind-unblind paradigm which usually forms the basis of the efficient constructions in the random
oracle model. However, to obtain the desired efficiency in the standard model, we apply various
techniques. Similarly to [39, 33, 31], our constructions do not require expensive zero-knowledge
proofs.

Paper Organization. The rest of the paper is organized as follows. In Section 2, we give
some preliminary definitions. In Section 3, we introduce and prove intractability of some new
complexity assumptions. In Section 4, we recall the syntax and security of blind signatures.
In Section 5, we give our blind signature constructions. We show in Section 6 how to extend
our schemes to sign a vector of messages. In Section 7, we give our partially blind signature
constructions.

Notation. We write b = Alg(a; r) when algorithm Alg on input a and randomness r outputs b.
We write b← Alg(a) for the process of setting b = Alg(a; r) where r is sampled at random. For
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an algorithm Alg and an oracle O, AlgO
k(·) denotes that Alg can access O at most k times on

inputs of Alg’s choice. We write a ← S for sampling a uniformly at random from the set S. A
function ν(.) : N→ R+ is negligible (in λ) if for every polynomial ρ(·) and all sufficiently large
values of λ, it holds that ν(λ) < 1

ρ(λ) . PPT stands for running in probabilistic polynomial time

in the relevant security parameter. For ` ∈ N \ {0}, by [`] we denote the set {1, . . . , `}.

2 Preliminaries

In this section we provide some preliminary definitions.

2.1 Bilinear Groups

A bilinear group is a tuple P := (G, Ĝ,T, p,G, Ĝ, e) where G, Ĝ and T are groups of a prime
order p, and G and Ĝ generate G and Ĝ, respectively. The function e is a non-degenerate
bilinear map e : G × Ĝ −→ T. To distinguish between elements of G and Ĝ, the latter will be
accented with .̂ We use multiplicative notation for all the groups. We let G× := G \ {1G} and
Ĝ× := Ĝ \ {1Ĝ}. In this paper, we work in the efficient Type-III setting [35], where G 6= Ĝ
and there is no efficiently computable isomorphism between the groups in either direction. We
assume there is an algorithm BG that on input a security parameter λ, outputs a description
of bilinear groups. Without loss in generality and similarly to e.g. [33, 31] in this work we will
assume BG is deterministic, which as argued by [33, 31] is the case for instance in the most
widely used groups based on BN curves [10].

2.2 Pedersen Commitment Scheme

We use a generalized variant of the Pedersen commitment scheme [49] which allows committing
to a vector of messages at once. The scheme is information-theoretically hiding and computa-
tionally binding under the discrete logarithm assumption. The generalized variant is defined by
the following algorithms:

Setup(1λ, n) On input the security parameter λ and the size of the vector n, this algorithm
chooses a cyclic group G of prime order p where log p ∈ Θ(λ). It also samples the elements
G1, . . . , Gn, H ← G. It returns the commitment key ck := (G1, . . . , Gn, H) which we assume
is an implicit input to the rest of the algorithms.

Commit(m, r) On input a message vector m = (m1, . . . ,mn) ∈ Znp and a randomness r ∈ Zp,
this algorithm returns the commitment Co := Hr

∏n
i=1G

mi
i and the opening information

d := (m, r).
Open(Co, d = (m, r)) On input a commitment Co and its associated opening information d,

this algorithm verifies whether such opening information is valid by checking that Co =
Hr
∏n
i=1G

mi
i returning 1 or 0 accordingly.

Since the hiding property of the scheme holds in the information-theoretic sense, such a property
still holds even if we let the recipient runs the Setup algorithm which is otherwise usually run
by a trusted third party. The above argument holds as long as H 6= 1G which is easy to check.

3 New Intractability Assumptions

In this section we introduce some new assumptions of a “one-more” type where the adversary
interacts with an oracle k times and is tasked with outputting k + 1 valid tuples. They are
similar in nature to the E-LRSW assumption introduced by Ghadafi and Smart [39].
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3.1 The BSOM Assumption

Our first new assumption which we refer to as the BSOM (short for Blind Signature One More)
assumption will form the basis for the unforgeability of our first blind signature construction. It
is inspired in part by the assumption underlying the recent signature scheme by Ghadafi [38].

Definition 1 (BSOM Assumption). Let P = (G, Ĝ,T, G, Ĝ, e, p) be the description of Type-
III bilinear groups output by BG(1λ), and let H := Gh, Ĥ := Ĝh, X̂ := Ĝx, Ŷ := Ĝy for some
h, x, y ← Zp. Let OBSOMH,Ĥ,X̂,Ŷ (·) be an oracle that on input a message M = Gm (for some

possibly unknown m ∈ Zp) returns a triple
(
A := Ga, B := (GxM)

a
y , C := H

a
y
)
∈ G3 for

some a← Zp. We say the BSOM assumption holds if for all PPT adversaries A, the following
advantage is negligible (in λ):

Pr


P ← BG(1λ); h, x, y ← Zp; (H, Ĥ, X̂, Ŷ ) := (Gh, Ĝh, Ĝx, Ĝy);

{(Ai, Bi,mi)}k+1
i=1 ← A

OBSOMk
H,Ĥ,X̂,Ŷ

(·)
(
P, H, Ĥ, X̂, Ŷ

)
:∣∣∣{mi}k+1

i=1

∣∣∣ = k + 1 ∧ ∀i ∈ [k + 1] : Ai 6= 1G ∧ e(Bi, Ŷ ) = e(Ai, X̂Ĝ
mi)


We now show that the assumption is intractable in the generic group model [57]. Our proof

makes use of the Schwartz-Zippel lemma [55].

Theorem 1. For any generic adversary A against the BSOM assumption, if p is the (prime)
order of the bilinear group and A makes qG group operation queries, qP pairing queries and
qO ≤ k queries to the BSOM oracle OBSOMH,Ĥ,X̂,Ŷ , then the probability of A against the

BSOM assumption is O(
q2GqO+q2P qO+q3O

p ).

Proof. Adversary A interacts with the group operations, pairing and BSOM oracles via group
handles. The challenger keeps three lists L1,L2 and LT of pairs (τ, F ), where τ is a “random”
encoding of the group element chosen from some set S where |S| > 3p, and F is some Laurent
polynomial in Zp[A1, . . . , AqO , H,X, Y

±1].

To each list we associate an Update operation that takes as input the specific list Li and a
polynomial F . It then searches the list Li for an entry with a second component equal to F : if
it finds one, it returns the first component as a result. Otherwise, a new element τ (different
from all elements of S used so far) is selected from S, and the entry (τ, F ) is added to the list
Li. The encoding τ is then returned. The encodings τ are the handles used to represent group
elements.

At the start of the game, the challenger initializes the empty lists by executing Update(L1, 1),
Update(L1, H), Update(L2, 1), Update(L2, H), Update(L2, X), and Update(L2, Y ). The adver-
sary interacts with these lists via the following oracles:

• Group Operations Oracles: Adversary A can make up to qG such queries. The oracles
O1,O2 and OT allow A to perform group operations in groups G, Ĝ and T, respectively,
via addition/subtraction operations. On a call Oi(τ1, τ2,±), the challenger searches list Li
for pairs of the form (τ1, F1) and (τ2, F2). If both pairs exist, the result of the operation
Update(Li, F1 ± F2) is returned to the adversary. Otherwise, the symbol ⊥ is returned.

• Pairing Oracle: Adversary A can make up to qP such queries. On a call OP (τ1, τ2), the
challenger searches L1 for a pair (τ1, F1) and L2 for a pair (τ2, F2). If both pairs exist, the
result of Update(LT , F1F2) is returned to A. Otherwise, the symbol ⊥ is returned.

• BSOM Oracle: Adversary A can make up to qO queries to the oracle OBSOMH,Ĥ,X̂,Ŷ . To
answer the i-th such query OBSOMH,Ĥ,X̂,Ŷ (τi), the challenger searches L1 for a pair (τi, Fi).
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If no such pair exists, the challenger returns the symbol ⊥. Otherwise, the challenger returns
(τA, τB, τC) computed as follows to A where Ai, X,H and Y −1 are indeterminates as above.

τA ← Update(L1, Ai),
τB ← Update(L1, (X + Fi)AiY

−1),

τC ← Update(L1, AiHY −1)·

At the end of the game, the total number of (non-constant) Laurent polynomials contained
in the lists L1,L2 and LT is µ where µ ≤ 6 + qG + qP + 3qO.

Using the above oracles, we can simulate the entire run of A. We show that the probability
of A succeeding is negligibly small.

If A is successful, she outputs qO + 1 tuples
{
mi, τ

(i)
A , τ

(i)
B

}qO+1

i=1
where mi ∈ Zp are distinct

and τ
(i)
A , τ

(i)
B are handles on the list L1. Let F

(i)
A and F

(i)
B denote their associated (formal)

Laurent polynomials. Since A’s output must correspond to a solution to the BSOM problem,
we must have for all i ∈ [qO + 1]

F
(i)
B Y − F (i)

A (X +mi) ≡ 0 (1)

F
(i)
A 6≡ 0 (2)

We first argue that for all i ∈ [qO + 1], we have that F
(i)
B satisfies that degX(F

(i)
B ) = 1. First

of all note that at the start of the game, there is no polynomial F on the list L1 satisfying
degX(F ) 6= 0. Thus, on the first oracle call OBSOMH,Ĥ,X̂,Ŷ (τ1), it follows that degX(F1) = 0
where F1 is the polynomial corresponding to the encoding τ1. After the oracle has computed its
response to the first query, the only polynomial on the list L1 with a degree of X different from
0 is FB1 = (X + F1)A1Y

−1 corresponding to τB1 . It is clear that degX(FB1) = 1 since as we
argued degX(F1) = 0. Even if the encoding corresponding to FB1 has been used in a subsequent
query to the BSOM oracle, the resulting polynomial FBi corresponding to the encoding τBi
retuned to the adversary satisfy degX(FBi) = 1. From this it follows that the polynomials FBj

for all j > 1 satisfy degX(FBj ) = 1. In turn this means that for all i ∈ [qO + 1], for (F
(i)
A , F

(i)
B )

to satisfy the verification equation, we must have degX(F
(i)
B ) = 1 and degX(F

(i)
A ) = 0.

We now argue that we must have for all i ∈ [qO + 1] that degY (F
(i)
A ) = 0. First note that

at the start of the game there exists no polynomial F on the list L1 where degY (F ) 6= 0. The
only polynomials on the list L1 with a degree of Y different from 0 are those corresponding
to the encodings τB and τC resulting from the response of the BSOM oracle. Note that none
of the queries result in a polynomial on the list L1 with the monomial HXY j . Thus, if for

any i ∈ [qO + 1], the polynomial F
(i)
A has a term containing the monomial HY n, for the pair

(F
(i)
A , F

(i)
B ) to be a valid BSOM pair, we must have that F

(i)
B contains a term with the monomial

HXY n−1 which is a contradiction. Similarly, if for any i ∈ [qO + 1] the polynomial F
(i)
A has

a term containing the monomial Y n for some n 6= 0, we must also have that F
(i)
B contains

a term with the monomial XY n−1. Note that the only Laurent polynomials on the list L1
with a monomial Y n and a degree 0 of H are those corresponding to linear combinations of
the polynomials FBi (associated with the encodings τBi) returned by the BSOM oracle. This

implies that for (F
(i)
A , F

(i)
B ) to be a valid pair, we must have degX(F

(i)
B ) = 2 which as argued

earlier is impossible.

We now argue that for all i ∈ [qO + 1] we must have that degH(F
(i)
A ) = 0. Note that none

of the queries result in a polynomial with the monomial HjXn for j 6= 0 and n 6= 0. If for any
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i ∈ [qO + 1] we have degH(F
(i)
A ) = j 6= 0 then for the pair (F

(i)
A , F

(i)
B ) to be a valid BSOM pair,

the polynomial F
(i)
B must have a term with the monomial HjX which as argued is impossible.

Therefore, it is clear we must have for all i ∈ [qO + 1], that

F
(i)
A = αi +

qO∑
j=1

βi,jAj ·

If for any i ∈ [qO + 1] we have that αi 6= 0, then it must be the case that F
(i)
B has a term of the

form αiX which is not possible since no linear combination of the polynomials the adversary
obtains in the game can lead to a polynomial with such term on the list L1. Therefore, it is
clear we must have for all i ∈ [qO + 1] that

F
(i)
A =

qO∑
j=1

βi,jAj F
(i)
B = γi +

qO∑
j=1

δi,jFBj

Since by (2) we must have that F
(i)
A 6≡ 0, if for any i ∈ [qO + 1] we have γi 6= 0, then we must

have that F
(i)
A contains a term of the form γiY which is impossible. Thus, it follows that we

must have γi = 0 for all i ∈ [qO + 1] which implies

F
(i)
B =

qO∑
j=1

δi,jFBj =

qO∑
j=1

δi,j
(
AjXY

−1 + FjAjY
−1) ·

Equality (2) implies we must have for at least one value of j that βi,j 6= 0. Now for (1) to
hold, by the monomial AjX we must have that for all j ∈ [qO] that βi,j = δi,j , and by the
monomial Aj we must have that for all j ∈ [qO] that Fjδi,j = miβi,j . Since we must have for all
j ∈ [qO] that βi,j = δi,j , it follows that we have for all j ∈ [qO] that Fj = mi. Thus, if for more
than one value of j we have βi,j 6= 0 then it must be the case that the corresponding queries
to BSOM oracle used in the linear combination were on the same encoding corresponding to
the same polynomial F in which case it is obvious that it is impossible to output qO + 1 valid
BSOM tuples on qO + 1 distinct messages after only qO queries. So the best the adversary can
do is to only have for a single value of j ∈ [qO] that βi,j 6= 0. Even in this case it is clear that
the adversary can at most output qO valid BSOM tuples on qO distinct messages.

Thus far, we showed that the equalities (1) and (2) do not hold identically. We now bound
the probability of the simulation failing and show that such a probability is negligible (in the
security parameter λ). The simulation fails if for any two Laurent polynomials F and F ′ on the
list Li for i ∈ {1, 2, T} it holds that F 6= F ′ but F (a1, . . . , aqO , h, x, y) = F ′(a1, . . . , aqO , h, x, y)
for some a1, . . . , aqO , h, x, y ∈ Zp. In other words, the adversary wins if any of the following
happens:

F, F ′ ∈ L1 and F 6= F ′ but F (a1, . . . , aqO , h, x, y) = F ′(a1, . . . , aqO , h, x, y) (3)

F, F ′ ∈ L2 and F 6= F ′ but F (a1, . . . , aqO , h, x, y) = F ′(a1, . . . , aqO , h, x, y) (4)

F, F ′ ∈ LT and F 6= F ′ but F (a1, . . . , aqO , h, x, y) = F ′(a1, . . . , aqO , h, x, y) (5)

Note that the only indeterminate in those Laurent polynomials with a negative power is Y .
Thus, for all Laurent polynomials F on those lists we can view F as a fraction of polynomials
of the form F = R

S where R ∈ Zp[A1, . . . , AqO , H,X, Y ] and S ∈ Zp[Y ]. Note that Zp[Y ] ⊂
Zp[A1, . . . , AqO , H,X, Y ]. In fact in our case we are only working with simpler polynomials S
which are monic monomials of the form Y n for some n ≥ 0. We can thus substitute the check

F (a1, . . . , aqO , h, x, y) = F ′(a1, . . . , aqO , h, x, y)
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with the check

R(a1, . . . , aqO , h, x, y)S′(y) = R′(a1, . . . , aqO , h, x, y)S(y)·

We first give a bound on the degree of such polynomials. Note that before the first BSOM oracle
query, the only non-constant polynomial on the list L1 is the polynomial H. At the end of
the game, the Laurent polynomial F corresponding to polynomials R and S with the largest
degrees in the list L1 is the polynomial resulting from calling the BSOM oracle first time on
the encoding corresponding to the polynomial H and then repeatedly querying the oracle on
the polynomial corresponding to the encoding τB returned by the oracle. Such a polynomial
has the form F = α +

∑qO
i=1 βi

∏qO
j=iAjXY

−(qO−i+1) + γ
∏qO
i=1AiHY

−qQ . Thus, we have R =

αY qQ +
∑qO

i=1 βi
∏qO
j=iAjXY

i−1 + γ
∏qO
i=1AiH and S = Y qQ . This ensures that for any Laurent

polynomial on the list L1 it holds that deg(R) ≤ qO+1 and deg(S) ≤ qO. By the Schwartz-Zippel
lemma, the probability that (3) occurs is bounded from above by 2qO+1

p .

The polynomials that one can obtain on the list L2 at the end of the game have degrees
∈ {0, 1}, i.e. for any F = R

S on the list L2 we have that S = 1 and hence deg(S) = 0 and
deg(R) = 1. By the Schwartz-Zippel lemma, the probability that (4) occurs is bounded from
above by 1

p .

From the above two bounds on the degrees of polynomials in L1 and L2, it follows that we
have that all Laurent polynomials on the list LT correspond to polynomial fractions R

S where
deg(R) ≤ qO + 2 and deg(S) ≤ qO. By the Schwartz-Zippel lemma, the probability that (5)
occurs is bounded from above by 2qO+2

p .

Summing over all choices of F and F ′ in each case we have that the probability ε of the
simulation failing for this reason is

ε ≤
(
|L1|

2

)
2qO + 1

p
+

(
|L2|

2

)
1

p
+

(
|LT |

2

)
2qO + 2

p

≤ (6 + qG + 3qO + qP )2(2qO + 2)

p
·

An issue that arises when working with Laurent polynomials instead of standard polynomials
is that if we happen to sample the root of the polynomial in the denominator then such a value
is not defined and the simulation will fail. Therefore, we also need to bound the probability of
such an event happening. By the Schwartz-Zippel lemma we have that the probability of this
happening is bounded by (6+qG+3qO+qP )qO

p .

The probability of the simulation failing is thus ≤ (6+qG+3qO+qP )
2(2qO+2)+(6+qG+3qO+qP )qO

p ,

i.e. O(
q2GqO+q2P qO+q3O

p ). Since by definition we have that qO, qG and qP are all polynomial in λ
whereas log p ∈ Θ(λ), it follows that the adversary’s advantage is negligible.

ut

3.2 The BSOMI Assumption

Our second new assumption which we refer to as the BSOMI assumption will form the basis
for the unforgeability of our second blind signature construction. It is inspired in part by the
assumption underlying the recent signature scheme by Pointcheval and Sanders [50].

Definition 2 (BSOMI Assumption). Let P = (G, Ĝ,T, G, Ĝ, e, p) be the description of

Type-III bilinear groups output by BG(1λ), and let H := Gh, Ĥ ′ := Ĝ
1
h , X̂ := Ĝx, Ŷ := Ĝy for

some h, x, y ← Zp. Let OBSOMIH,Ĥ′,X̂,Ŷ (·) be an oracle that on input a message M := Gm (for

some possibly unknown m ∈ Zp) returns a triple
(
A := Ga, B := AxMay, C := Hay

)
∈ G3 for
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some a← Zp. We say the BSOMI assumption holds if for all PPT adversaries A, the following
advantage is negligible (in λ):

Pr


P ← BG(1λ); h, x, y ← Zp; (H, Ĥ ′, X̂, Ŷ ) := (Gh, Ĝ

1
h , Ĝx, Ĝy);

{(Ai, Bi,mi)}k+1
i=1 ← A

OBSOMIk
H,Ĥ′,X̂,Ŷ

(·)
(
P, H, Ĥ ′, X̂, Ŷ

)
:∣∣∣{mi}k+1

i=1

∣∣∣ = k + 1 ∧ ∀i ∈ [k + 1] : Ai 6= 1G ∧ e(Bi, Ĝ) = e(Ai, X̂Ŷ
mi)


We now show that the assumption is intractable in the generic group model [57].

Theorem 2. For any generic adversary A against the BSOMI assumption, if p is the (prime)
order of the bilinear group and A makes qG group operation queries, qP pairing queries and
qO ≤ k queries to the BSOMI oracle OBSOMIH,Ĥ′,X̂,Ŷ , then the probability of A against the

BSOMI assumption is O(
q2GqO+q2P qO+q3O

p ).

Proof. Adversary A interacts with the group operations, pairing and BSOMI oracles via group
handles. The challenger keeps three lists L1,L2 and LT of pairs (τ, F ), where τ is a “random”
encoding of the group element chosen from some set S where |S| > 3p, and F is some Laurent
polynomial in Zp[A1, . . . , AqO , X, Y,H

±1].
At the start of the game, the challenger initializes the empty lists by executing Update(L1, 1),

Update(L1, H), Update(L2, 1), Update(L2, H−1), Update(L2, X), and Update(L2, Y ). The group
operations and pairing oracles are dealt with in an identical manner to that in the proof of the
BSOM assumption whereas BSOMI oracle queries are dealt with as follows:

• BSOMI Oracle: A can make up to qO queries to this oracle. To answer the i-th such query
OBSOMIH,Ĥ′,X̂,Ŷ (τi), the challenger searches L1 for a pair (τi, Fi). If no such pair exists, the
challenger returns the symbol ⊥. Otherwise, the challenger returns (τA, τB, τC) computed as
follows to A where Ai, X, Y and H are indeterminates as above.

τA ← Update(L1, Ai),
τB ← Update(L1, (X + FiY )Ai),

τC ← Update(L1, AiHY )·

At the end of the game, the total number of (non-constant) Laurent polynomials contained
in the lists L1,L2 and LT is µ where µ ≤ 6 + qG + qP + 3qO.

Using the above oracles, we can simulate the entire run of A. We show that the probability
of A succeeding is negligibly small.

If A is successful, she outputs qO + 1 tuples
{
mi, τ

(i)
A , τ

(i)
B

}qO+1

i=1
where mi ∈ Zp are distinct

and τ
(i)
A , τ

(i)
B are handles on the list L1. Let F

(i)
A and F

(i)
B denote their associated (formal)

Laurent polynomials. Since A’s output must correspond to a solution to the BSOMI problem,
we must have for all i ∈ [qO + 1]

F
(i)
B − F

(i)
A (X +miY ) ≡ 0 (6)

F
(i)
A 6≡ 0 (7)

We first argue that for all i ∈ [qO + 1], we have that F
(i)
B satisfies that degX(F

(i)
B ) = 1. First

of all note that at the start of the game, there is no polynomial F on the list L1 satisfying
degX(F ) 6= 0. Thus, on the first oracle call OBSOMIH,Ĥ′,X̂,Ŷ (τ1), it follows that degX(F1) = 0
where F1 is the polynomial corresponding to the encoding τ1. After the oracle has computed
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its response to the first query, the only polynomial on the list L1 with a degree of X different
from 0 is FB1 = (X + F1Y )A1 corresponding to τB1 . It is clear that degX(FB1) = 1 since as we
argued degX(F1) = 0. Even if the encoding corresponding to FB1 is used in a subsequent query
to the BSOMI oracle, the resulting polynomial FBi corresponding to the encoding τBi retuned
to the adversary satisfies degX(FBi) = 1. From this it follows that the polynomials FBj for all

j > 1 satisfy degX(FBj ) = 1. In turn this means that for all i ∈ [qO+1] for (F
(i)
A , F

(i)
B ) to satisfy

the verification equation, we must have degX(F
(i)
B ) = 1 and degX(F

(i)
A ) = 0.

We now argue that we must have for all i ∈ [qO + 1] that degY (F
(i)
A ) = 0. First note that at

the start of the game there exists no polynomial F on the list L1 where degY (F ) 6= 0. The only
polynomials on the list L1 with a degree of Y different from 0 are those corresponding to the
encodings τB and τC resulting from the response of the BSOMI oracle. Note that none of the
queries in the game result in a polynomial on the list L1 with the monomial HXY j . Thus, if

for any i ∈ [qO + 1] the polynomial F
(i)
A has a term containing the monomial HY n, for the pair

(F
(i)
A , F

(i)
B ) to be a valid BSOMI pair, we must have that F

(i)
B contains a term with the monomial

HXY n which is a contradiction. Similarly, if for any i ∈ [qO +1] the polynomial F
(i)
A has a term

containing the monomial Y n for some n 6= 0, we must also have that F
(i)
B contains a term with

the monomial XY n. Note that the only Laurent polynomials with a monomial Y n and a degree
0 of H are those corresponding to linear combinations of the polynomials FBi (associated with

the encodings τBi) returned by the BSOMI oracle. This implies that for (F
(i)
A , F

(i)
B ) to be a valid

pair, we must have degX(F
(i)
B ) = 2 which as argued earlier is impossible. Thus, it follows that

we must have for all i ∈ [qO + 1] that the polynomial F
(i)
A satisfies degY (F

(i)
A ) = 0 from which it

follows that for the pair (F
(i)
A , F

(i)
B ) to be a valid pair, it must be the case that degY (F

(i)
B ) = 1.

We now argue that for all i ∈ [qO + 1], we have that degH(F
(i)
A ) = 0. Note that none of the

operations on the polynomials on the list L1 results in a polynomial with the monomial HjXn

for j 6= 0 and n 6= 0. Thus, if for any i ∈ [qO + 1] it holds that the polynomials F
(i)
A contains

a monomial of the form Hj for j 6= 0, for the pair (F
(i)
A , F

(i)
B ) to be a valid BSOMI pair, it

must be the case that F
(i)
B contains a term with the monomial HjX which as argued above is

impossible. Thus, it follows that for all i ∈ [qO + 1], we have that degH(F
(i)
A ) = 0 from which it

follows that degH(F
(i)
B ) = 0.

From the above, it is clear we must have for all i ∈ [qO + 1] that

F
(i)
A = αi +

qO∑
j=1

βi,jAj ·

If for any i ∈ [qO + 1] we have that αi 6= 0, then it must be the case that F
(i)
B has a term of the

form αiX which as argued above is not possible since no linear combination of the polynomials
on the list L1 the adversary obtains in the game can lead to a polynomial with such a term.
Therefore, it is clear we must have for all i ∈ [qO + 1] that

F
(i)
A =

qO∑
j=1

βi,jAj

F
(i)
B = γi +

qO∑
j=1

δi,jFBj ·
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For the pair (F
(i)
A , F

(i)
B ) to satisfy (6), we must have that for all i ∈ [qO + 1] that γi = 0.

Therefore, it follows that for all i ∈ [qO + 1] we have

F
(i)
B =

qO∑
j=1

δi,jFBj =

qO∑
j=1

δi,j (AjX + FjAjY ) ·

Equality (7) implies that we must have for at least one value of j that βi,j 6= 0. Now for (6)
to hold, by the monomial AjX we must have that for all j ∈ [qO] that βi,j = δi,j , and by the
monomial AjY we must have that for all j ∈ [qO] that δi,jFj = βi,jmi. Since we must have for
all j ∈ [qO] that βi,j = δi,j , it follows that we have for all j ∈ [qO] that Fj = mi. If for more
than one value of j we have βi,j 6= 0 then it must be the case that the corresponding queries to
the BSOMI oracle used in the linear combination were on the same encoding corresponding to
the same polynomial F in which case it is obvious that it is impossible to output qO + 1 valid
BSOMI tuples on qO + 1 distinct messages after only qO queries. So the best the adversary can
do is to only have for a single value of j ∈ [qO] that βi,j 6= 0. Even in this case it is clear that
the adversary can at most output qO valid BSOMI tuples on qO distinct messages.

Thus far, we showed that equalities (6) and (7) do not hold identically. We now bound
the probability of the challenger’s simulation failing and show that such a probability is neg-
ligible (in the security parameter λ). The simulation fails if for any two Laurent polynomials
F and F ′ on the list Li for i ∈ {1, 2, T} it holds that F 6= F ′ but F (a1, . . . , aqO , h, x, y) =
F ′(a1, . . . , aqO , h, x, y) for some a1, . . . , aqO , h, x, y ∈ Zp. In other words, the adversary wins if
any of the following happens:

F, F ′ ∈ L1 and F 6= F ′ but F (a1, . . . , aqO , h, x, y) = F ′(a1, . . . , aqO , h, x, y) (8)

F, F ′ ∈ L2 and F 6= F ′ but F (a1, . . . , aqO , h, x, y) = F ′(a1, . . . , aqO , h, x, y) (9)

F, F ′ ∈ LT and F 6= F ′ but F (a1, . . . , aqO , h, x, y) = F ′(a1, . . . , aqO , h, x, y) (10)

Note that the only indeterminate in those Laurent polynomials with a negative power is H.
Thus, for all Laurent polynomials F on those lists we can view F as a fraction of polynomials
of the form F = R

S where R ∈ Zp[A1, . . . , AqO , H,X, Y ] and S ∈ Zp[H]. Note that Zp[H] ⊂
Zp[A1, . . . , AqO , H,X, Y ]. In fact in our case we are only working with simpler polynomials S
which are monic monomials of the form Hn for some n ≥ 0. We can thus substitute the check

F (a1, . . . , aqO , h, x, y) = F ′(a1, . . . , aqO , h, x, y)

with the check

R(a1, . . . , aqO , h, x, y)S′(h) = R′(a1, . . . , aqO , h, x, y)S(h)·

We first give a bound on the degree of such polynomials.
Note that before the first BSOMI oracle query, the only non-constant polynomial on the list

L1 is the polynomial H. At the end of the game, the Laurent polynomial F corresponding to
polynomials R and S with the largest degrees on the list L1 is the polynomial resulting from
calling the BSOMI oracle first time on the encoding corresponding to the polynomial H and then
repeatedly querying the oracle on the polynomial correspondence to the encoding τB returned by
the oracle. Such a polynomial is of the form F = α+

∑qO
i=1 βi

∏qO
j=iAjXY

qO−i+γ
∏qO
j=iAjHY

qO .
This ensures that for any polynomial on the list L1 it holds that deg(R) ≤ 2qO+1 and deg(S) =
0. By the Schwartz-Zippel lemma the probability that (8) occurs is bounded from above by
2qO+1
p .
The polynomials that one can obtain on the list L2 at the end of the game are linear

combinations of the (Laurent) polynomials X, Y and H−1. Thus, for any F = R
S on the list
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L2, we have that deg(S) ∈ {0, 1} and deg(R) ∈ {0, 1, 2}. By the Schwartz-Zippel lemma the
probability that (9) occurs is bounded from above by 3

p .

From the above, it follows that we have that all Laurent polynomials on the list LT cor-
respond to polynomial fractions R

S where deg(R) ≤ 2qO + 3 and deg(S) ∈ {0, 1}. By the

Schwartz-Zippel lemma the probability that (10) occurs is bounded from above by 2qO+4
p .

Summing over all choices of F and F ′ in each case we have that the probability ε of the
simulation failing for this reason is

ε ≤
(
|L1|

2

)
2qO + 1

p
+

(
|L2|

2

)
3

p
+

(
|LT |

2

)
2qO + 4

p

≤ (6 + qG + 3qO + qP )2(2qO + 4)

p
·

By the Schwartz-Zippel lemma and the above bounds on the degrees of the polynomials, we
have that the probability of sampling the root of a polynomial in the denominator is bounded
from above by 6+qG+3qO+qP

p .

The probability of the simulation failing is thus ≤ (6+qG+3qO+qP )
2(2qO+4)+(6+qG+3qO+qP )

p ,

i.e. O(
q2GqO+q2P qO+q3O

p ). Since by definition we have that qO, qG and qP are all polynomial in λ
whereas log p ∈ Θ(λ), it follows that the adversary’s advantage is negligible.

ut

3.3 The Extended BSOM (E-BSOM) Assumption

This assumption extends the BSOM assumption by allowing the adversary to query the oracle
on pairs of the form (M, t) ∈ G×Zp and wins if she outputs t∗ ∈ Zp and k+1 tuples of the form
(mi, Ai, Bi)

k+1
i=1 where e(Bi, Ŷ ) = e(Ai, X̂Ĝ

miŴ t∗) after querying the oracle at most k times on
(·, t∗).

Definition 3 (E-BSOM Assumption). Let P = (G, Ĝ,T, G, Ĝ, e, p) be the description of
Type-III bilinear groups output by BG(1λ), and let H := Gh, Ĥ := Ĝh, Ŵ := Ĝw, X̂ := Ĝx,
Ŷ := Ĝy, for some h,w, x, y ← Zp. Let OE-BSOMH,Ĥ,Ŵ ,X̂,Ŷ be an oracle that on input a pair

(M, t) ∈ G×Zp returns a triple
(
A := Ga, B := (MGx+wt)

a
y , C := H

a
y
)
∈ G3 for some a← Zp.

We say the E-BSOM assumption holds if for all PPT adversaries A, the following advantage is
negligible (in λ):

Pr


P ← BG(1λ); h,w, x, y ← Zp; (H, Ĥ, Ŵ , X̂, Ŷ ) := (Gh, Ĝh, Ĝw, Ĝx, Ĝy);(
t∗, (Ai, Bi,mi)

k+1
i=1

)
← AOE-BSOMH,Ĥ,Ŵ ,X̂,Ŷ (·,·)

(
P, H, Ĥ, Ŵ , X̂, Ŷ

)
:∣∣∣{mi}k+1

i=1

∣∣∣ = k + 1 ∧ ∀i ∈ [k + 1] : Ai 6= 1G ∧ e(Bi, Ŷ ) = e(Ai, X̂Ĝ
miŴ t∗)

∧ A made at most k queries of the form (·, t∗)


Note here that the E-BSOM assumption is stronger than the BSOM assumption since a tuple

breaking the BSOM assumption along with t∗ = 0 is tuple breaking the E-BSOM assumption.

We show in Appendix A that the assumption is intractable in the generic group model.

3.4 The Extended BSOMI (E-BSOMI) Assumption

This assumption extends the BSOMI assumption to allow the adversary to query the oracle on
pairs of the form (M, t) ∈ G× Zp.
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Definition 4 (E-BSOMI Assumption). Let P = (G, Ĝ,T, G, Ĝ, e, p) be the description of

Type-III bilinear groups output by BG(1λ), and let H := Gh, Ĥ ′ := Ĝ
1
h , Ŵ := Ĝw, X̂ := Ĝx,

Ŷ := Ĝy for some h,w, x, y ← Zp. Let OE-BSOMIH,Ĥ′,Ŵ ,X̂,Ŷ be an oracle that on input a

pair (M, t) ∈ G × Zp returns a triple
(
A := Ga, B := MayGa(x+wt), C := Hay

)
∈ G3 for some

a ← Zp. We say the E-BSOMI assumption holds if for all PPT adversaries A, the following
advantage is negligible (in λ):

Pr


P ← BG(1λ); h,w, x, y ← Zp; (H, Ĥ ′, Ŵ , X̂, Ŷ ) := (Gh, Ĝ

1
h , Ĝw, Ĝx, Ĝy);(

t∗, (Ai, Bi,mi)
k+1
i=1

)
← AOE-BSOMIH,Ĥ′,Ŵ ,X̂,Ŷ (·,·)

(
P, H, Ĥ ′, Ŵ , X̂, Ŷ

)
:∣∣∣{mi}k+1

i=1

∣∣∣ = k + 1 ∧ ∀i ∈ [k + 1] : Ai 6= 1G ∧ e(Bi, Ĝ) = e(Ai, X̂Ŷ
miŴ t∗)

∧ A made at most k queries of the form (·, t∗)


It is easy to see that the E-BSOMI assumption is stronger than the BSOMI assumption

since a tuple breaking the BSOMI assumption along with t∗ = 0 is a valid solution for the
E-BSOMI assumption. We show is Appendix B that the assumption is intractable in the generic
group model.

4 Syntax & Security of Blind Signatures

In this section, we define the syntax and security of blind signatures. Since we are interested
in round-optimal blind signatures, we will specialize our definitions to this case. A blind signa-
ture scheme BS (with a two-move signature request) consists of the following polynomial-time
algorithms:

KeyGenBS(1λ) On input a security parameter 1λ, this probabilistic algorithm outputs a pair
(vkBS, skBS) of public/secret keys for the signer. Without loss of generality we assume the
security parameter is an implicit input to the rest of the algorithms.

Request0BS(vkBS,m): This algorithm run by the user takes as input a message m in the message
space M and the public key vkBS, and produces a signature request ρ, plus some state st
(which is assumed to contain m).

IssueBS(skBS, ρ): This probabilistic algorithm run by the signer takes as input the secret key
skBS and the signature request ρ, and produces a pre-signature β.

Request1BS(vkBS, β, st): On input the public key vkBS, the pre-signature β, and the state st,
this algorithm produces a blind signature σ on m, or it outputs ⊥ if it does not accept the
transcript.

VerifyBS(vkBS,m, σ): This deterministic algorithm outputs 1 if σ is a valid signature on the
message m, or 0 otherwise.

(Perfect) correctness of blind signatures requires that for all λ ∈ N and all m ∈M, we have

Pr

[
(vkBS, skBS)← KeyGenBS(1λ); (ρ, st)← Request0BS(vkBS,m);
β ← IssueBS(skBS, ρ);σ ← Request1BS(vkBS, β, st) : VerifyBS(vkBS,m, σ) = 1

]
= 1.

Security of blind signatures [44, 51] which was strengthened by [28, 54] requires blindness and
unforgeability.

Unforgeability. Unforgeability requires that it is infeasible for an adversarial user who interacts
with an honest signer on k occasions to output k+1 valid signatures on k+1 distinct messages.
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Experiment: ExpUnforge
BS,A (λ)

- (vkBS, skBS)← KeyGenBS(1λ)

- {(mi, σi)}k+1
i=1 } ← AIssuekBS(skBS,·)(vkBS)

- Return 0 if any of the following holds:
- ∃i, j ∈ [k + 1], with i 6= j but mi = mj

- ∃i ∈ [k + 1] s.t. VerifyBS(vkBS,mi, σi) = 0
- Return 1

Experiment: ExpBlind
BS,A (λ)

- (vkBS,m0,m1, stfind)← Afind(λ)
- b← {0, 1}
- (ρb, stb)← Request0BS(vkBS,m0)
- (ρ1−b, st1−b)← Request0BS(vkBS,m1)
- (β0, β1, stissue)← Aissue(ρ0, ρ1, stfind)
- σ0 ← Request1BS(vkBS, βb, stb)
- σ1 ← Request1BS(vkBS, β1−b, st1−b)
- If σ0 =⊥ or σ1 =⊥ Then Return 0
- b∗ ← Aguess(σ0, σ1, stissue)
- Return 1 if b = b∗ Else Return 0

Fig. 1. The security experiments for unforgeability (left) and blindness w.r.t. malicious keys (right)

Definition 5 (Unforgeability). A blind scheme BS satisfies unforgeability if for all λ ∈ N,

for all PPT adversaries A, the advantage AdvUnforge
BS,A (λ) against the game ExpUnforge

BS,A defined in
Fig. 1. is negligible (in λ) where

AdvUnforge
BS,A (λ) = Pr[ExpUnforge

BS,A (λ) = 1].

Blindness. Blindness (w.r.t. malicious keys [1, 48]) requires that an adversarial signer who
freely chooses two messages m0 and m1 as well as the keys and then takes part in interactions
with an honest user to generate signatures on those messages cannot tell the order in which the
messages were signed.

Definition 6 (Blindness w.r.t. malicious keys). A blind scheme BS satisfies blindness
w.r.t. malicious keys if for all λ ∈ N, for all PPT adversaries A, the advantage AdvBlind

BS,A(λ)

against the game ExpBlind
BS,A defined in Fig. 1 is negligibly close to 1

2 where

AdvBlind
BS,A(λ) =

∣∣∣∣Pr[ExpBlind
BS,A(λ) = 1]− 1

2

∣∣∣∣ .
5 Blind Signature Constructions

Here we present our two constructions of blind signatures satisfying blindness in the malicious-
key model.

5.1 Construction I

Here we present our first construction whose unforgeability is based on the BSOM assumption.
The high-level idea is that when requesting a blind signature on the message m ∈ Zp, the
user uses the Pedersen commitment scheme to commit to m as Co := GmHr and sends the
commitment Co to the signer. Unlike many existing constructions, neither the user nor the
signer in our construction are required to produce expensive zero-knowledge proofs to prove
correctness of their computation. Note that since the Pedersen commitment is perfectly hiding,
the commitment Co reveals no information about the committed message. We can think of such
a commitment as the message M on which the oracle in the BSOM assumption is queried. Now
the signer, playing the role of the oracle in the definition of the BSOM assumption, returns
the tuple (A′, B′, C ′). The user can check whether such a tuple corresponds to a valid pre-
signature by first verifying that the last element (which is independent of the message) is
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constructed correctly. This is achieved by verifying that e(C ′, Ŷ ) = e(A′, Ĥ). If such a check
does not pass, the user returns ⊥. Otherwise, since the user already knows the randomness r
she used in constructing the commitment Co, she can now adapt the pre-signature (A′, B′) on
the commitment Co to one on the message m by letting B′ := B′C ′−r and then randomizing
the signature (A′, B′) into a new one (A,B) so that the two pairs are unlinkable. Similarly to
e.g. [33, 31], by assuming that the bilinear group generator BG is deterministic combined with
the fact that the Pedersen commitment remains hiding even if the commitment key is generated
maliciously, we achieve blindness w.r.t. malicious keys. The construction is detailed in Fig. 2.

KeyGenBS(1λ)
- P ← BG(1λ); h, x, y ← Zp
- (H, Ĥ, X̂, Ŷ ) := (Gh, Ĝh, Ĝx, Ĝy)
- vkBS := (H, Ĥ, X̂, Ŷ ), skBS := (h, x, y)
- Return (vkBS, skBS)

Request0BS(vkBS = (H, Ĥ, X̂, Ŷ ),m)
- P ← BG(1λ)
- Return ⊥ if H = 1G or e(H, Ĝ) 6= e(G, Ĥ)
- r ← Z×p ; Co := GmHr

- Return (ρ := Co, st := (m, r))

IssueBS(skBS = (h, x, y), ρ = Co)

- a′ ← Z×p ; A′ := Ga
′
; B′ := (GxCo)

a′
y ; C ′ := H

a′
y

- Return β :=
(
A′, B′, C ′

)

Request1BS(vkBS, β = (A′, B′, C ′), st = (m, r))

- Parse vkBS as (H, Ĥ, X̂, Ŷ )
- Return ⊥ if A′ = 1G or e(C ′, Ŷ ) 6= e(A′, Ĥ)
- Set B′ := B′C ′

−r

- Return ⊥ if e(B′, Ŷ ) 6= e(A′, X̂Ĝm)
- a← Z×p ; Return σ = (A,B) := (A′

a
, B′

a
)

VerifyBS (vkBS,m, σ = (A,B))

- If A = 1G or e(B, Ŷ ) 6= e(A, X̂Ĝm) Then
Return 0

- Else
Return 1

Fig. 2. Our 1st blind signature construction

Note that the checks performed in the Request0BS algorithm to verify well-formedness of the
signer’s verification key need only be performed once when requesting the first signature and
not each time a signature is requested.

Theorem 3. The construction is a secure blind signature scheme in the malicious-key model
in the standard model.

Proof. We first show that the scheme is correct. We have that Co = GmHr, B′ = (GxCo)
a′
y =

G
a′x
y Co

a′
y = G

a′x
y (GmHr)

a′
y and C ′ = H

a′
y . We have thatB′ = B′C ′−r = G

a′x
y (GmHr)

a′
y H

−a′r
y =

G
a′x
y G

ma′
y . Thus, (A′, B′) satisfy e(B′, Ŷ ) = e(A′, X̂Ĝm).

The following 2 lemmata complete the proof.

Lemma 1 (Unforgeability). The construction is unforgeable if the BSOM assumption is in-
tractable.

Proof. Let A be an adversary against the unforgeability of the scheme. We show how to use
A to construct an adversary B against the BSOM assumption. Adversary B gets the tuple
(P, H, Ĥ, X̂, Ŷ ) from her game and she has access to the oracle OBSOMH,Ĥ,X̂,Ŷ (·) which she

can query polynomially many times. B starts A on vkBS := (H, Ĥ, X̂, Ŷ ). When queried on Coi,
B forwards such query to her oracle and returns the answer to A. Eventually, when A outputs
her k+1 message-signatures tuples {(mi, Ai, Bi)}k+1

i=1 , B returns that as the answer in her game.
It is clear that B wins her game with the same advantage as that of A in her game. Thus, we
have AdvUnforge

BS,A = AdvBSOM,B.

Lemma 2. The construction is perfectly blind in the malicious-key model.
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Proof. Since the Pedersen commitment is perfectly hiding, it is clear that Co sent by the user
reveals no information about the committed message. Now the check we perform on the pre-
signatures ensures that each pre-signature is valid on its respective commitment. If any of those
pre-signatures is invalid, we return (⊥,⊥). It is obvious in the latter case the adversary gains
no information about the order in which the messages were signed. If the checks on the pre-
signatures pass, it means the first pre-signature is a valid signature on the the message mb

committed in Cob whereas the second signature is valid on the message m1−b committed in
Co1−b. From the adversary’s point of view each signature could be on either message since the
commitment could have been on either message. What remains now is to show that (A′, B′, C ′)
is unlinkable to (A,B). By definition we have that A′0 6= 1G and A′1 6= 1G. Now each final
signature is computed by raising the corresponding pre-signature to a random exponent from
Z×p . Thus, each final signature is uniformly distributed over the space of possible signatures and
it follows that the final signature is independent of the pre-signature.

ut

5.2 Construction II

Here we present our second construction whose unforgeability is based on the BSOMI assump-
tion. The high-level idea is similar to that of the first construction. When requesting a blind
signature on the message m ∈ Zp, the user uses the Pedersen commitment scheme to commit to
m as Co := GmHr and sends the commitment Co to the signer. Here we view the commitment
as the message M on which the oracle in the BSOMI assumption is queried. Now the signer,
playing the role of the oracle in the definition of the BSOMI assumption, returns the tuple
(A′, B′, C ′). The user can check whether such a tuple corresponds to a valid pre-signature by
first verifying that the last element (which is independent of the message) is constructed cor-
rectly. This is achieved by verifying that e(C ′, Ĥ ′) = e(A′, Ŷ ). If such a check does not pass, the

KeyGenBS(1λ)
- P ← BG(1λ); h, x, y ← Zp
- (H, Ĥ ′, X̂, Ŷ ) := (Gh, Ĝ

1
h , Ĝx, Ĝy)

- vkBS := (H, Ĥ ′, X̂, Ŷ ), skBS := (h, x, y)
- Return (vkBS, skBS)

Request0BS(vkBS = (H, Ĥ ′, X̂, Ŷ ),m)
- P ← BG(1λ)
- Return ⊥ if H = 1G or e(H, Ĥ ′) 6= e(G, Ĝ)
- r ← Z×p ; Co := GmHr

- Return (ρ := Co, st := (m, r))

IssueBS(skBS = (h, x, y), ρ = Co)

- a′ ← Z×p ; A′ := Ga
′
; B′ := A′

xCoa
′y; C ′ := Ha′y

- Return β :=
(
A′, B′, C ′

)

Request1BS(vkBS, β = (A′, B′, C ′), st = (m, r))

- Parse vkBS as (H, Ĥ ′, X̂, Ŷ )
- Return ⊥ if A′ = 1G or e(C ′, Ĥ ′) 6= e(A′, Ŷ )
- Set B′ := B′C ′

−r

- Return ⊥ if e(B′, Ĝ) 6= e(A′, X̂Y m)
- a← Z×p ; Return σ = (A,B) := (A′

a
, B′

a
)

VerifyBS (vkBS,m, σ = (A,B))

- If A = 1G or e(B, Ĝ) 6= e(A, X̂Ŷ m) Then
Return 0

- Else
Return 1

Fig. 3. Our 2nd blind signature construction

user returns ⊥. Otherwise, since the user already knows the randomness r she used in construct-
ing the commitment Co, she can now adapt the pre-signature (A′, B′) on the commitment Co
to one on the message m by letting B′ := B′C ′−r and then randomizing the signature (A′, B′)
into a new one (A,B) so that the two pairs are unlinkable. Again as in our first construction,
by assuming that the bilinear group generator BG is deterministic combined with the fact that

16



the Pedersen commitment remains hiding even if the commitment key is generated maliciously,
we achieve blindness w.r.t. malicious keys. The construction is detailed in Fig. 3.

Note that the checks performed in the Request0BS algorithm to verify well-formedness of the
signer’s verification key need only be performed once when requesting the first signature and
not each time a signature is requested.

Theorem 4. The construction is a secure blind signature scheme in the malicious-key model
in the standard model.

Proof. We first show that the scheme is correct. We have that Co = GmHr, B′ = A′xCoa
′y =

Ga
′xCoa

′y = Ga
′x(GmHr)a

′y and C ′ = Ha′y. We have thatB′ = B′C ′−r = Ga
′x(GmHr)a

′yH−a
′yr =

Ga
′xGma

′y. Thus, (A′, B′) satisfy e(B′, Ĝ) = e(A′, X̂Ŷ m).
The following 2 lemmata complete the proof.

Lemma 3 (Unforgeability). The construction is unforgeable if the BSOMI assumption is
intractable.

Proof. Let A be an adversary against the unforgeability of the scheme. We show how to use
A to construct an adversary B against the BSOMI assumption. Adversary B gets the tuple
(P, H, Ĥ ′, X̂, Ŷ ) from her game and she has access to the oracle OBSOMIH,Ĥ′,X̂,Ŷ (·) which she

can query polynomially many times. B starts A on vkBS := (H, Ĥ ′, X̂, Ŷ ). When queried on Coi,
B forwards such query to her oracle and returns the answer to A. Eventually, when A outputs
her k+1 message-signatures tuples {(mi, Ai, Bi)}k+1

i=1 , B returns that as the answer in her game.
It is clear that B wins her game with the same advantage as that of A in her game. Thus, we
have AdvUnforge

BS,A = AdvBSOMI,B.

Lemma 4. The construction is perfectly blind in the malicious-key model.

Proof. Since the Pedersen commitment is perfectly hiding, it is clear that Co sent by the user
reveals no information about the committed message. Now the check we perform on the pre-
signatures ensures that each pre-signature is valid on its respective commitment. If any of those
pre-signatures is invalid, we return (⊥,⊥). It is obvious in the latter case the adversary gains
no information about the order in which the messages were signed. If the checks on the pre-
signatures pass, it means the first pre-signature is a valid signature on the the message mb

committed in Cob whereas the second signature is valid on the message m1−b committed in
Co1−b. From the adversary’s point of view each signature could be on either message since the
commitment could have been on either message. What remains now is to show that (A′, B′, C ′)
is unlinkable to (A,B). By definition we have that A′0 6= 1G and A′1 6= 1G. Now each final
signature is computed by raising the corresponding pre-signature to a random exponent from
Z×p . Thus, each final signature is uniformly distributed over the space of possible signatures and
it follows that the final signature is independent of the pre-signature.

ut

Efficiency Comparison. We compare in Table 1 the efficiency of our blind signature con-
structions with the most efficient existing schemes offering the same security in the standard
model [33, 31]. As can be seen from the table, our schemes outperform existing schemes in every
efficiency metric. At 80-bit security, the size of our signatures is 40 bytes, i.e. 67% shorter than
those of [33]. Also, blindness in our schemes holds in the information-theoretic sense which is
another advantage. All schemes in the table including ours involve an interactive intractability
assumption. Note that the most efficient scheme based on non-interactive assumptions in the
standard model [36] is much less efficient than the schemes in the table, e.g. the signature size
in [36] is 183 group elements in symmetric bilinear groups. In the table, P stands for pairing,
A for point addition, and MKM for the malicious-key model.
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Scheme
σ vk Communication

Verification MKM BlindnessG Ĝ G Ĝ User Signer

G Ĝ G Ĝ
[33] 4 1 1 4 2 - 2 1 7P Y Computational
[31] 7 3 - 4 4 - 2 1 15P Y Computational

Ours I 2 - 1 3 1 - 3 - 2P + 1A Y Perfect

Ours II 2 - 1 3 1 - 3 - 2P + 1A Y Perfect
Table 1. Efficiency comparison

6 Blind Schemes for a Vector of Messages

In this section we give constructions of blind signatures for a vector of messages. These construc-
tions are extensions of their single-message counterparts in which we replace the single-message
Pedersen commitment scheme by its generalized variant which allows committing to a vector of
messages at once, and make the necessary changes.

KeyGenBS(1λ, n)
- P ← BG(1λ); h, x, y, z1, . . . , zn−1 ← Zp
- (H, Ĥ, X̂, Ŷ ) := (Gh, Ĝh, Ĝx, Ĝy)
- (Zi, Ẑi) := (Gzi , Ĝzi) for i = 1, . . . , n− 1
- Set vkBS := (H, Ĥ, X̂, Ŷ , {Zi, Ẑi}n−1i=1 )
- Set skBS := (h, x, y, {zi}n−1i=1 )
- Return (vkBS, skBS)

Request0BS (vkBS,m = (m1, . . . ,mn))

- Parse vkBS as (H, Ĥ, X̂, Ŷ , {Zi, Ẑi}n−1i=1 )
- P ← BG(1λ)
- Return ⊥ if H = 1G or e(H, Ĝ) 6= e(G, Ĥ)
- Return ⊥ if e(Zi, Ĝ) 6= e(G, Ẑi) for any i ∈ [n− 1].

- r ← Z×p ; Co := Gm1

n∏
i=2

Zmi
i−1H

r

- Return (ρ := Co, st := (m, r))

IssueBS(skBS = (h, x, y, z1, . . . , zn−1), ρ = Co)

- a′ ← Z×p ; A′ := Ga
′
; B′ := (GxCo)

a′
y ; C ′ := H

a′
y

- Return β :=
(
A′, B′, C ′

)

Request1BS(vkBS, β = (A′, B′, C ′), st = (m, r))

- Parse vkBS as
(
H, Ĥ, X̂, Ŷ , {Zi, Ẑi}n−1i=1

)
- Return ⊥ if any of the following hold:

A′ = 1G
e(C ′, Ŷ ) 6= e(A′, Ĥ)

- Set B′ := B′C ′
−r

- Return ⊥ if e(B′, Ŷ ) 6= e(A′, X̂Ĝm1

n∏
i=2

Ẑmi
i−1)

- a← Z×p ; Return σ = (A,B) := (A′
a
, B′

a
)

VerifyBS (vkBS,m, σ = (A,B))

- Parse vkBS as (H, Ĥ, X̂, Ŷ , {Zi, Ẑi}n−1i=1 )
- Return 1 if all the following hold:

A 6= 1G

e(B, Ŷ ) = e(A, X̂Ĝm1

n∏
i=2

Ẑmi
i−1)

Fig. 4. A blind signature scheme I for a vector of messages ∈ Znp

6.1 Construction I

We show in Fig. 4 that we can without affecting the signature size or the number of pairings
involved in the verification extend our scheme from Sections 5.1 to blindly sign a vector of
messages. This variant is unforgeable under the same assumption as the single-message scheme.

All the checks performed in the Request0BS algorithm to verify well-formedness of the signer’s
verification key need only be performed once when requesting the first signature and not each
time a signature is requested.

Theorem 5. The scheme in Fig. 4 is a secure blind signature.
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KeyGenBS(1λ, n)
- P ← BG(1λ); h, x, y, z1, . . . , zn−1 ← Zp
- (H, Ĥ ′, X̂, Ŷ ) := (Gh, Ĝ

1
h , Ĝx, Ĝy)

- (Zi, Ẑi) := (Gzi , Ŷ zi) for i = 1, . . . , n− 1

- Set vkBS :=
(
H, Ĥ ′, X̂, Ŷ , {Zi, Ẑi}n−1i=1

)
- Set skBS :=

(
h, x, y, {zi}n−1i=1

)
- Return (vkBS, skBS)

Request0BS (vkBS,m = (m1, . . . ,mn))

- Parse vkBS as
(
H, Ĥ ′, X̂, Ŷ , {Zi, Ẑi}n−1i=1

)
- P ← BG(1λ)
- Return ⊥ if H = 1G or e(H, Ĥ ′) 6= e(G, Ĝ)
- Return ⊥ if e(Zi, Ŷ ) 6= e(G, Ẑi) for any i ∈ [n− 1]

- r ← Z×p ; Co := Gm1

n∏
i=2

Zmi
i−1H

r

- Return (ρ := Co, st := (m, r))

IssueBS(skBS = (h, x, y, z1, . . . , zn−1), ρ = Co)

- a′ ← Z×p ; A′ := Ga
′
; B′ := A′

xCoa
′y; C ′ := Ha′y

- Return β :=
(
A′, B′, C ′

)

Request1BS(vkBS, β = (A′, B′, C ′), st = (m, r))

- Parse vkBS as
(
H, Ĥ ′, X̂, Ŷ , {Zi, Ẑi}n−1i=1

)
- Return ⊥ if any of the following hold:

A′ = 1G
e(C ′, Ĥ ′) 6= e(A′, Ŷ )

- Set B′ := B′C ′
−r

- Return ⊥ if e(B′, Ĝ) 6= e(A′, X̂Ŷ m1

n∏
i=2

Ẑmi
i−1)

- a← Z×p ; Return σ = (A,B) := (A′
a
, B′

a
)

VerifyBS (vkBS,m, σ = (A,B))

- Parse vkBS as
(
H, Ĥ ′, X̂, Ŷ , {Zi, Ẑi}n−1i=1

)
- Return 1 if all the following hold:

A 6= 1G

e(B, Ĝ) = e(A, X̂Ŷ m1

n∏
i=2

Ẑmi
i−1)

- Else Return 0

Fig. 5. A blind signature scheme II for a vector of messages ∈ Znp

Proof. Correctness is straightforward to verify. Perfect blindness in the malicious-key model
also holds similarly to the perfect blindness of the single-message scheme. The following lemma
proves unforgeability of the scheme.

Lemma 5 (Unforgeability). The scheme is unforgeable if the BSOM assumption is intractable.

Proof. Let A be an adversary against the unforgeability of the scheme. We show how to use
A to construct an adversary B against the BSOM assumption. Adversary B gets the tuple
(P, H, Ĥ, X̂, Ŷ ) from her game and she has access to the oracle OBSOMH,Ĥ,X̂,Ŷ (·) which she

can query polynomially many times. B chooses z1, . . . , zn−1 ← Z×p and computes (Zi, Ẑi) :=

(Gzi , Ĝzi) for all i ∈ [n − 1]. She then starts A on vkBS := (H, Ĥ, X̂, Ŷ , {Zi, Ẑi}n−1i=1 ). When
queried on Coi, B forwards such query to her oracle and returns the answer to A. Eventually,
when A outputs her k + 1 message-signature tuples {(mi = (mi,1, . . . ,mi,n), Ai, Bi)}k+1

i=1 where
the vectors mi are distinct, B computes m′i = mi,1+

∑n
j=2 zj−1mi,j for all i ∈ [k+1] and returns

the k + 1 tuples {(m′i, Ai, Bi)}
k+1
i=1 as the answer in her game. It is clear that B wins her game

with the same advantage as that of A in her game. Thus, we have AdvUnforge
BS,A = AdvBSOM,B.

ut

6.2 Construction II

We show in Fig. 5 that we can without affecting the signature size or the number of pairings
involved in the verification extend our scheme from Sections 5.2 to blindly sign a vector of
messages. This variant is unforgeable under the same assumption as the single-message scheme.

All the checks performed in the Request0BS algorithm to verify well-formedness of the signer’s
verification key need only be performed once when requesting the first signature and not each
time a signature is requested.

Theorem 6. The scheme in Fig. 5 is a secure blind signature.
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Proof. Correctness is easy to verify and the proof for perfect blindness is similar to that of the
schemes in 5.2 and 6.1. The following lemma proves unforgeability of the scheme.

Lemma 6 (Unforgeability). The scheme is unforgeable if the BSOMI assumption is in-
tractable.

Proof. Let A be an adversary against the unforgeability of the scheme. We show how to use
A to construct an adversary B against the BSOMI assumption. Adversary B gets the tuple
(P, H, Ĥ ′, X̂, Ŷ ) from her game and she has access to the oracle OBSOMIH,Ĥ′,X̂,Ŷ (·) which she

can query polynomially many times. B chooses z1, . . . , zn−1 ← Z×p and computes (Zi, Ẑi) :=

(Gzi , Ŷ zi) for all i ∈ [n − 1]. She then starts A on vkBS := (H, Ĥ ′, X̂, Ŷ , {Zi, Ẑi}n−1i=1 ). When
queried on Coi, B forwards such query to her oracle and returns the answer to A. Eventually,
when A outputs her k + 1 message-signature tuples {(mi = (mi,1, . . . ,mi,n), Ai, Bi)}k+1

i=1 where
the vectorsmi are distinct, B computes m′i := mi,1+

∑n
j=2 zj−1mi,j for all i ∈ [k+1] and returns

the k + 1 tuples {(m′i, Ai, Bi)}
k+1
i=1 as the answer in her game. It is clear that B wins her game

with the same advantage as that of A in her game. Thus, we have AdvUnforge
BS,A = AdvBSOMI,B.

ut

7 Partially Blind Signature Schemes

Here we show how to modify our schemes in Sections 6.1 & 6.2 to obtain partially blind signature
schemes. For more generality, we give schemes where the public information is also a vector
τ = (τ1, . . . , τn′) ∈ Zn′p . This allows to attach multiple attributes to the signature.

7.1 Construction I

To realize our first construction, we modify the blind scheme on vector messages from Section
6.1 to attach a vector τ = (τ1, . . . , τn′) ∈ Zn′p of public information to the signature. To do so, we

add to the public key of the scheme in Fig. 4 the elements Ŵi := Ĝwi for some randomly chosen
elements wi ← Zp for i = 1, . . . , n′. When asked to sign (Co, τ ), the signer chooses a′ ← Z×p and
returns the pre-signature

β = (A′, B′, C ′) :=

(
Ga
′
, (CoGx+

∑n′
i=1 τiwi)

a′
y

, H
a′
y

)
.

Upon receiving the pre-signature β, the user first checks that it is valid. If it is not valid, she
aborts by returning the symbol ⊥. Otherwise, using the randomness r, she recovers a signature
σ′ = (A′, B′) on (m, τ ) which she then re-randomizes to obtain a blind signature σ = (A,B).

The details of the construction are in Fig. 6. All the checks performed in the Request0BS

algorithm to verify well-formedness of the signer’s verification key need only be performed once
when requesting the first signature and not each time a signature is requested.

Theorem 7. The scheme in Fig. 6 is a secure partially blind signature.

Proof. Correctness is straightforward to verify. Perfect partial blindness in the malicious-key
model also holds similarly to the perfect blindness of the blind scheme in Fig. 4. Note that in
the blindness game the same public information τ is used for both challenge signatures. The
following lemma proves unforgeability of the scheme.

Lemma 7 (Unforgeability). The scheme is unforgeable if the E-BSOM assumption is in-
tractable.
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KeyGenPBS(1λ, n, n′)

- P ← BG(1λ)
- h,w1, . . . , wn′ , x, y, z1, . . . , zn−1 ← Zp
- (H, Ĥ, X̂, Ŷ ) := (Gh, Ĝh, Ĝx, Ĝy)

- (Zi, Ẑi) := (Gzi , Ĝzi) for all i ∈ [n− 1]

- Ŵi := Ĝwi for all i ∈ [n′]

- vkPBS :=
(
H, Ĥ, {Ŵi}n

′
i=1, X̂, Ŷ , {Zi, Ẑi}n−1

i=1

)
- skPBS :=

(
h, {wi}n

′
i=1, x, y, {zi}n−1

i=1

)
- Return (vkPBS, skPBS)

Request0PBS (vkPBS,m = (m1, . . . ,mn), τ = (τ1, . . . , τn′))

- Parse vkPBS as
(
H, Ĥ, {Ŵi}n

′
i=1, X̂, Ŷ , {Zi, Ẑi}n−1

i=1

)
- P ← BG(1λ)

- Return ⊥ if H = 1G or e(H, Ĝ) 6= e(G, Ĥ)

- Return ⊥ if e(Zi, Ĝ) 6= e(G, Ẑi) for any i ∈ [n− 1]

- r ← Z×p ; Co := Gm1
n∏
i=2

Zmi
i−1H

r

- Return (ρ := Co, st := (m, r))

IssuePBS

(
skPBS = (h, x, y, {wi}n

′
i=1, {zi}n−1

i=1 ), ρ = Co, τ
)

- a′ ← Z×p ; A′ := Ga
′
; B′ :=

CoG
x+

n′∑
i=1

τiwi


a′
y

; C′ := H
a′
y

- Return β :=
(
A′, B′, C′

)
Request1PBS(vkPBS, β = (A′, B′, C′), st = (m, r), τ )

- Parse vkPBS as
(
H, Ĥ, {Ŵi}n

′
i=1, X̂, Ŷ , {Zi, Ẑi}n−1

i=1

)
- Return ⊥ if A′ = 1G or e(C′, Ŷ ) 6= e(A′, Ĥ)

- Set B′ := B′C′
−r

- Return ⊥ if e(B′, Ŷ ) 6= e(A′, X̂Ĝm1
n∏
i=2

Ẑmi
i−1

n′∏
i=1

Ŵ τi
i )

- a← Z×p ; Return σ = (A,B) :=
(
A′
a
, B′

a)
VerifyPBS (vkPBS,m, τ , σ = (A,B))

- Parse vkPBS as
(
H, Ĥ, {Ŵi}n

′
i=1, X̂, Ŷ , {Zi, Ẑi}n−1

i=1

)
- Return 1 if the following holds and 0 otherwise:

A 6= 1G and e(B, Ŷ ) = e(A, X̂Ĝm1
n∏
i=2

Ẑmi
i−1

n′∏
i=1

Ŵ τi
i )

Fig. 6. A partially blind signature scheme I for a vector of messages ∈ Znp

Proof. Let A be an adversary against the unforgeability of the scheme. We show how to use
A to construct an adversary B against the E-BSOM assumption. Adversary B gets the tuple
(P, H, Ĥ, Ŵ , X̂, Ŷ ) from her game and she has access to the oracle OE-BSOMH,Ĥ,Ŵ ,X̂,Ŷ (·, ·)
which she can query polynomially many times. Adversary B chooses z1, . . . , zn−1, w2, . . . , wn′ ←
Z×p and computes (Zi, Ẑi) := (Gzi , Ĝzi) for all i ∈ [n − 1], Ŵ1 := Ŵ and Ŵi := Ŵwi for

all i ∈ {2, . . . , n′}. She then starts A on vkPBS =
(
H, Ĥ, {Ŵi}n

′
i=1, X̂, Ŷ , {Zi, Ẑi}

n−1
i=1

)
. When

queried on (Coi, τ i), B forwards
(
Coi, τ

′
i := τi,1 +

∑n′

j=2wjτi,j

)
to her oracle and returns the

answer to A.
Eventually, when A outputs

(
τ ∗ = (τ∗1 , . . . , τ

∗
n′),

(
m∗

i , (Ai, Bi)
)k+1

i=1

)
where the vectors m∗

i

are distinct, adversay B computes τ ′ := τ∗1 +
∑n′

j=2wjτ
∗
j and m′i = m∗i,1 +

∑n
j=2 zj−1m

∗
i,j for all

i ∈ [k + 1] and returns
(
τ ′, (m′i, (Ai, Bi))}

k+1
i=1

)
as the answer in her game. It is clear that B

wins her game with the same advantage as that of A in her game. Thus, we have AdvUnforge
PBS,A =

AdvE-BSOM,B.
ut

7.2 Construction II

Our second partially blind signature construction shown in Fig. 7 is an extension of our blind
construction from Fig. 5 in a similar manner to the first construction.

Theorem 8. The scheme in Fig. 7 is a secure partially blind signature.

Proof. Correctness is straightforward to verify. Perfect partial blindness in the malicious-key
model also holds similarly to the perfect blindness of the blind signature scheme in Fig. 5. The
following lemma proves unforgeability of the scheme.

Lemma 8 (Unforgeability). The scheme is unforgeable if the E-BSOMI assumption is in-
tractable.
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KeyGenPBS(1λ, n, n′)

- P ← BG(1λ)
- h,w1, . . . , wn′ , x, y, z1, . . . , zn−1 ← Zp
- (H, Ĥ ′, X̂, Ŷ ) := (Gh, Ĝ

1
h , Ĝx, Ĝy)

- (Zi, Ẑi) := (Gzi , Ŷ zi) for all i ∈ [n− 1]

- Ŵi := Ĝwi for all i ∈ [n′]

- vkPBS :=
(
H, Ĥ ′, {Ŵi}n

′
i=1, X̂, Ŷ , {Zi, Ẑi}n−1

i=1

)
- skPBS :=

(
h, {wi}n

′
i=1, x, y, {zi}n−1

i=1

)
- Return (vkPBS, skPBS)

Request0PBS (vkPBS,m = (m1, . . . ,mn), τ = (τ1, . . . , τn′))

- Parse vkPBS as
(
H, Ĥ ′, {Ŵi}n

′
i=1, X̂, Ŷ , {Zi, Ẑi}n−1

i=1

)
- P ← BG(1λ)

- Return ⊥ if H = 1G or e(H, Ĥ ′) 6= e(G, Ĝ)

- Return ⊥ if e(Zi, Ŷ ) 6= e(G, Ẑi) for any i ∈ [n− 1]

- r ← Z×p ; Co := Gm1
n∏
i=2

Zmi
i−1H

r

- Return (ρ := Co, st := (m, r))

IssuePBS

(
skPBS =

(
h, {wi}n

′
i=1, x, y, {zi}n−1

i=1

)
, ρ = Co, τ

)
- a′ ← Z×p ; A′ := Ga

′
; B′ := A′

x
Coa

′yG
a′

n′∑
i=1

wiτi

; C′ := Ha′y

- Return β :=
(
A′, B′, C′

)
Request1PBS(vkPBS, β = (A′, B′, C′), st = (m, r), τ )

- Parse vkPBS as
(
H, Ĥ ′, {Ŵi}n

′
i=1, X̂, Ŷ , {Zi, Ẑi}n−1

i=1

)
- Return ⊥ if A′ = 1G or e(C′, Ĥ ′) 6= e(A′, Ŷ )

- Set B′ := B′C′
−r

- Return ⊥ if e(B′, Ĝ) 6= e(A′, X̂Ŷ m1
n∏
i=2

Ẑmi
i−1

n′∏
i=1

Ŵ τi
i )

- a← Z×p ; Return σ = (A,B) := (A′
a
, B′

a
)

VerifyPBS (vkPBS,m, τ , σ = (A,B))

- Parse vkPBS as
(
H, Ĥ ′, {Ŵi}n

′
i=1, X̂, Ŷ , {Zi, Ẑi}n−1

i=1

)
- Return 1 if the following holds and 0 otherwise:

A 6= 1G and e(B, Ĝ) = e(A, X̂Ŷ m1
n∏
i=2

Ẑmi
i−1

n′∏
i=1

Ŵ τi
i )

Fig. 7. A partially blind signature scheme II for a vector of messages ∈ Znp

Proof. Let A be an adversary against the unforgeability of the scheme. We show how to use
A to construct an adversary B against the E-BSOMI assumption. Adversary B gets the tuple(
P, H, Ĥ ′, Ŵ , X̂, Ŷ

)
from her game and she has access to the oracle OE-BSOMIH,Ĥ′,Ŵ ,X̂,Ŷ (·, ·)

which she can query polynomially many times. B chooses z1, . . . , zn−1, w2, . . . , wn′ ← Z×p and

computes (Zi, Ẑi) := (Gzi , Ŷ zi) for all i ∈ [n − 1], Ŵ1 := Ŵ , and Ŵi := Ŵwi for all i ∈
{2, . . . , n′}. She then starts A on vkPBS :=

(
H, Ĥ ′, {Ŵi}n

′
i=1, X̂, Ŷ , {Zi, Ẑi}

n−1
i=1 ,

)
. When queried

on (Coi, τ i), B computes τ ′i := τi,1 +
n′∑
j=2

wjτi,j and forwards (Coi, τ
′
i) to her oracle and returns

the answer to A.

Eventually, whenA outputs

(
τ ∗ = (τ∗1 , . . . , τ

∗
n′),

(
m∗

i = (m∗i,1, . . . ,m
∗
i,n), (Ai, Bi)

)k+1

i=1

)
where

the vectors m∗
i are distinct, adversary B computes τ ′ := τ∗1 +

n′∑
j=2

wjτ
∗
j and m′i := m∗i,1 +∑n

j=2 zj−1m
∗
i,j for all i ∈ [k + 1] and returns

(
τ ′, (m′i, (Ai, Bi))

k+1
i=1

)
as the answer in her game.

It is clear that B wins her game with the same advantage as that of A in her game. Thus, we
have AdvUnforge

PBS,A = AdvE-BSOMI,B.
ut

Acknowledgments. We thank Ian Goldberg for pointing out an issue in the description of the
partially blind scheme in an earlier version.
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28. M. Fischlin and D. Schröder. Security of Blind Signatures under Aborts. In PKC 2009, Springer LNCS 5443,

297–316, 2009.
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A Intractability of the E-BSOM Assumption

We now show that the assumption is intractable in the generic group model. The proof is similar
to that of the BSOM assumption, bar some differences.

Theorem 9. For any generic adversary A against the E-BSOM assumption, if p is the (prime)
order of the bilinear group and A makes qG group operation queries, qP pairing queries and
qO queries to the E-BSOM oracle OE-BSOMH,Ĥ,Ŵ ,X̂,Ŷ , then the probability of A against the

E-BSOM assumption is O(
q2GqO+q2P qO+q3O

p ).

Proof. At the start of the game, the challenger initializes the empty lists by executing Update(L1, 1),
Update(L1, H), Update(L2, 1), Update(L2, H), Update(L2,W ), Update(L2, X), and Update(L2, Y ).

24



The way group operation and pairing queries are handled is identical to that in the BSOM as-
sumption proof so we will ignore those details here.

Adversary A can make up to qO queries to the oracle OE-BSOMH,Ĥ,Ŵ ,X̂,Ŷ . To answer
the i-th such query OE-BSOMH,Ĥ,Ŵ ,X̂,Ŷ (τi, ti), the challenger searches L1 for a pair (τi, Fi).
If no such pair exists, the challenger returns the symbol ⊥. Otherwise, the challenger returns
(τA, τB, τC) computed as follows to A where Ai, H,W,X, and Y −1 are indeterminates as above.

τA ← Update(L1, Ai),
τB ← Update(L1, (X + Fi + tiW )AiY

−1),

τC ← Update(L1, AiHY −1).

At the end of the game, the total number of (non-constant) Laurent polynomials contained in
the lists L1,L2 and LT is µ where µ ≤ 7 + qG + qP + 3qO.

If A is successful, she outputs t∗ and k + 1 tuples
(
mi, τ

(i)
A , τ

(i)
B

)k+1

i=1
where mi ∈ Zp are

distinct and τ
(i)
A , τ

(i)
B are handles on the list L1 and A made no more than k queries of the form

OE-BSOMH,Ĥ,Ŵ ,X̂,Ŷ (·, t∗).
Let F

(i)
A and F

(i)
B denote the associated (formal) Laurent polynomials with τ

(i)
A and τ

(i)
B ,

respectively. Since A’s output must correspond to a solution to the E-BSOM problem, we must
have for all i ∈ [k + 1]

F
(i)
B Y − F (i)

A (X +mi + t∗W ) ≡ 0 (11)

F
(i)
A 6≡ 0 (12)

We first argue that for all i ∈ [k+ 1], we have that F
(i)
B satisfies that degX(F

(i)
B ) = 1. Note that

at the start of the game, there is no polynomial F on the list L1 satisfying degX(F ) 6= 0. Thus,
on the first oracle call OE-BSOMH,Ĥ,Ŵ ,X̂,Ŷ (τ1, t1), it follows that degX(F1) = 0 where F1 is
the polynomial corresponding to the encoding τ1. After the oracle has computed its response
to the first query, the only polynomial on the list L1 with a degree of X different from 0 is
FB1 = (X + F1 + t1W )A1Y

−1 corresponding to τB1 . It is clear that degX(FB1) = 1 since as we
argued degX(F1) = 0. Even if the encoding corresponding to FB1 has been used in a subsequent
query to the E-BSOM oracle, the resulting polynomial FBi corresponding to the encoding τBi
retuned to the adversary satisfies degX(FBi) = 1. From this it follows that the polynomials FBj

for all j > 1 satisfy degX(FBj ) = 1. In turn this means that for all i ∈ [k+ 1], for (F
(i)
A , F

(i)
B ) to

satisfy the verification equation, we must have degX(F
(i)
B ) = 1 and degX(F

(i)
A ) = 0.

We now argue that we must have for all i ∈ [k + 1] that degY (F
(i)
A ) = 0. First note that

at the start of the game there exists no polynomial F on the list L1 where degY (F ) 6= 0. The
only polynomials on the list L1 with a degree of Y different from 0 are those corresponding to
the encodings τB and τC resulting from the response of the E-BSOM oracle. Note that none of
the queries result in a polynomial on the list L1 with the monomial HXY j . Thus, if for any

i ∈ [k+1], the polynomial F
(i)
A has a term containing the monomial HY n, for the pair (F

(i)
A , F

(i)
B )

to be a valid pair, we must have that F
(i)
B contains a term with the monomial HXY n−1 which

is a contradiction. Similarly, if for any i ∈ [k+ 1] the polynomial F
(i)
A has a term containing the

monomial Y n for some n 6= 0, we must also have that F
(i)
B contains a term with the monomial

XY n−1. Note that the only Laurent polynomials on the list L1 with a monomial Y n and a degree
0 of H are those corresponding to linear combinations of the polynomials FBi (associated with

the encodings τBi) returned by the E-BSOM oracle. This implies that for (F
(i)
A , F

(i)
B ) to be a

valid pair, we must have degX(F
(i)
B ) = 2 which as argued earlier is impossible.
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We now argue that for all i ∈ [k + 1] we must have that degH(F
(i)
A ) = 0. Note that none

of the queries result in a polynomial with the monomial HjXn for j 6= 0 and n 6= 0. If for any

i ∈ [k+ 1] we have degH(F
(i)
A ) = j 6= 0 then for the pair (F

(i)
A , F

(i)
B ) to be a valid E-BSOM pair,

the polynomial F
(i)
B must have a term with the monomial HjX which as argued earlier is

impossible.

We now argue that for all i ∈ [k + 1] we must have that degW (F
(i)
A ) = 0. Note that at

the start of the game, there is no polynomial F on the list L1 satisfying degW (F ) 6= 0. Thus,
on the first oracle call OE-BSOMH,Ĥ,Ŵ ,X̂,Ŷ (τ1, t1), it follows that degW (F1) = 0 where F1 is
the polynomial corresponding to the encoding τ1. After the oracle has computed its response
to the first query, the only polynomial on the list L1 with a degree of W different from 0 is
FB1 = (X + F1 + t1W )A1Y

−1 corresponding to τB1 . It is clear that degW (FB1) = 1 (unless
t1 = 0) since as we argued degW (F1) = 0. Even if the encoding corresponding to FB1 has been
used in a subsequent query to the E-BSOM oracle, the resulting polynomial FBi corresponding
to the encoding τBi retuned to the adversary satisfy degW (FBi) ∈ {0, 1}. From this it follows
that the polynomials FBj for all j > 1 satisfy degW (FBj ) ∈ {0, 1}. In turn this means that for all

i ∈ [k+ 1], for (F
(i)
A , F

(i)
B ) to satisfy the verification equation, we must have degW (F

(i)
B ) ∈ {0, 1}

and degW (F
(i)
A ) = 0.

Therefore, it is clear we must have for all i ∈ [k + 1], that

F
(i)
A = αi +

qO∑
j=1

βi,jAj ·

If for any i ∈ [k + 1] we have that αi 6= 0, then it must be the case that F
(i)
B has a term of the

form αiX which is not possible since no linear combination of the polynomials the adversary
obtains in the game can lead to a polynomial with such term on the list L1. Therefore, it is
clear we must have for all i ∈ [k + 1] that

F
(i)
A =

qO∑
j=1

βi,jAj F
(i)
B = γi +

qO∑
j=1

δi,jFBj

Since by (12) we must have that F
(i)
A 6≡ 0, if for any i ∈ [k + 1] we have γi 6= 0, then we must

have that F
(i)
A contains a term of the form γiY which is impossible. Thus, it follows that we

must have γi = 0 for all i ∈ [k + 1] which implies

F
(i)
B =

qO∑
j=1

δi,jFBj =

qO∑
j=1

δi,j
(
AjXY

−1 + FjAjY
−1 + tjAjWY −1

)
·

Equality (12) implies we must have for at least one value of j that βi,j 6= 0. Now, for (11) to
hold, by the monomial AjX we must have that for all j ∈ [qO] that βi,j = δi,j , and by the
monomial AjW we must have that for all j ∈ [qO] that tjδi,j = t∗βi,j since we have βi,j = δi,j ,

we have that tj = t∗, i.e. F
(i)
B can only be a linear combination of polynomials FBj returned by

the E-BSOM oracle as response to queries of the form (·, t∗) whose number by the definition of
the assumption cannot exceed k. Now, by the monomial Aj , we have Fjδi,j = miβi,j from which
it follows that we have for all j ∈ [k] that Fj = mi. Thus, if for more than one value of j we
have βi,j 6= 0 then it must be the case that the corresponding queries to E-BSOM oracle used
in the linear combination were on the same encoding corresponding to the same polynomial F
in which case it is obvious that it is impossible to output k + 1 valid tuples on k + 1 distinct
messages after only k oracle queries involving t∗. So the best the adversary can do is to only
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have for a single value of j ∈ [k] that βi,j 6= 0. Even in this case it is clear that the adversary
can at most output k valid E-BSOM tuples w.r.t. t∗ on k distinct messages. This proves that
equalities (11) and (12) do not hold identically.

We now bound the probability of the challenger’s simulation failing and show that such
a probability is negligible (in the security parameter λ). The simulation fails if for any two
Laurent polynomials F and F ′ on the list Li for i ∈ {1, 2, T} it holds that F 6= F ′ but
F (a1, . . . , aqO , h, w, x, y) = F ′(a1, . . . , aqO , h, w, x, y) for some a1, . . . , aqO , h, w, x, y ∈ Zp. In
other words, the adversary wins if any of the following happens:

F, F ′ ∈ L1 and F 6= F ′ but F (a1, . . . , aqO , h, w, x, y) = F ′(a1, . . . , aqO , h, w, x, y) (13)

F, F ′ ∈ L2 and F 6= F ′ but F (a1, . . . , aqO , h, w, x, y) = F ′(a1, . . . , aqO , h, w, x, y) (14)

F, F ′ ∈ LT and F 6= F ′ but F (a1, . . . , aqO , h, w, x, y) = F ′(a1, . . . , aqO , h, w, x, y) (15)

Note that the only indeterminate in those Laurent polynomials with a negative power is Y .
Thus, for all Laurent polynomials F on those lists we can view F as a fraction of polynomials
of the form F = R

S where R ∈ Zp[A1, . . . , AqO , H,W,X, Y ] and S ∈ Zp[Y ]. Note that Zp[Y ] ⊂
Zp[A1, . . . , AqO , H,W,X, Y ]. In fact in our case we are only working with simpler polynomials
S which are monic monomials of the form Y n for some n ≥ 0. We can thus substitute the check

F (a1, . . . , aqO , h, w, x, y) = F ′(a1, . . . , aqO , h, w, x, y)

with the check

R(a1, . . . , aqO , h, w, x, y)S′(y) = R′(a1, . . . , aqO , h, , w, x, y)S(y)·

We first give a bound on the degree of such polynomials. Note that before the first E-BSOM or-
acle query, the only non-constant polynomial on the list L1 is the polynomial H. At the end of
the game, the Laurent polynomial F corresponding to polynomials R and S with the largest
degrees in the list L1 is the polynomial resulting from calling the oracle E-BSOM oracle first
time on (τH , ·) where τH is the encoding corresponding to the polynomial H and then repeatedly
querying the oracle on (τBj−1 , ·) where the encoding τBj−1 corresponds to the polynomial FBj−1

returned by the E-BSOM oracle from in the previous query. Such a polynomial has the form

F = α+

qO∑
i=1

βi

qO∏
j=i

AjXY
−(qO−i+1) + γ

qO∏
i=1

AiHY
−qQ +

qO∑
i=1

δi

qO∏
j=i

AjWY −(qO−i+1)

which corresponds toR = αY qQ+
∑qO

i=1 βi
∏qO
j=iAjXY

i−1+γ
∏qO
i=1AiH+

∑qO
i=1 δi

∏qO
j=iAjWY i−1

and S = Y qQ . This ensures that for any Laurent polynomial on the list L1 it holds that
deg(R) ≤ qO + 1 and deg(S) ≤ qO. By the Schwartz-Zippel lemma, the probability that (13)
occurs is bounded from above by 2qO+1

p . The polynomials that one can obtain on the list L2 at

the end of the game have degrees ∈ {0, 1}, i.e. for any F = R
S on the list L2 we have that S = 1

and hence deg(S) = 0 and deg(R) = 1. By the Schwartz-Zippel lemma, the probability that (14)
occurs is bounded from above by 1

p . From the above two bounds on the degrees of polynomials
in L1 and L2, it follows that we have that all Laurent polynomials on the list LT correspond
to polynomial fractions R

S where deg(R) ≤ qO + 2 and deg(S) ≤ qO. By the Schwartz-Zippel

lemma, the probability that (15) occurs is bounded from above by 2qO+2
p . Summing over all

choices of F and F ′ in each case we have that the probability ε of the simulation failing for this
reason is

ε ≤
(
|L1|

2

)
2qO + 1

p
+

(
|L2|

2

)
1

p
+

(
|LT |

2

)
2qO + 2

p

≤ (7 + qG + 3qO + qP )2(2qO + 2)

p
·
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An issue that arises when working with Laurent polynomials instead of standard polynomials
is that if we happen to sample the root of the polynomial in the denominator then such a value
is not defined and the simulation will fail. Therefore, we also need to bound the probability of
such an event happening. By the Schwartz-Zippel lemma we have that the probability of this
happening is bounded by (7+qG+3qO+qP )qO

p .

The probability of the simulation failing is ≤ (7+qG+3qO+qP )
2(2qO+2)+(7+qG+3qO+qP )qO

p , i.e.

O(
q2GqO+q2P qO+q3O

p ). Since by definition we have that qO, qG and qP are all polynomial in λ
whereas log p ∈ Θ(λ), it follows that the adversary’s advantage is negligible.

ut

B Intractability of the E-BSOMI Assumption

We now show that the assumption is intractable in the generic group model. The proof is similar
to that of the BSOMI assumption, bar some differences.

Theorem 10. For any generic adversary A against the E-BSOMI assumption, if p is the
(prime) order of the bilinear group and A makes qG group operation queries, qP pairing queries
and qO queries to the E-BSOMI oracle OE-BSOMIH,Ĥ′,Ŵ ,X̂,Ŷ , then the probability of A against

the E-BSOMI assumption is O(
q2GqO+q2P qO+q3O

p ).

Proof. At the start of the game, the challenger initializes the empty lists by executing Update(L1, 1),
Update(L1, H), Update(L2, 1), Update(L2, H−1), Update(L2,W ), Update(L2, X), and Update(L2, Y ).

The way group operation and pairing queries are handled is identical to that in the BSOMI as-
sumption proof so we will ignore those details here. Adversary A can make up to qO queries to
the E-BSOMI oracle. To answer the i-th such query OBSOMIH,Ĥ′,Ŵ ,X̂,Ŷ (τi, ti), the challenger
searches L1 for a pair (τi, Fi). If no such pair exists, the challenger returns the symbol ⊥. Oth-
erwise, the challenger returns (τA, τB, τC) computed as follows to A where Ai,W,X, Y and H
are indeterminates as above.

τA ← Update(L1, Ai),
τB ← Update(L1, (X + FiY + tiW )Ai),

τC ← Update(L1, AiHY )·

At the end of the game, the total number of (non-constant) Laurent polynomials contained in
the lists L1,L2 and LT is µ where µ ≤ 7 + qG + qP + 3qO.

If A is successful, she outputs t∗ and k + 1 tuples
(
mi, τ

(i)
A , τ

(i)
B

)k+1

i=1
where mi ∈ Zp are

distinct and τ
(i)
A , τ

(i)
B are handles on the list L1, and A made no more than k queries of the form

OBSOMIH,Ĥ′,Ŵ ,X̂,Ŷ (·, t∗). Let F
(i)
A and F

(i)
B denote the (formal) Laurent polynomials associated

with τ
(i)
A and τ

(i)
B , respectively.

Since A’s output must correspond to a solution to the E-BSOMI problem, we must have for
all i ∈ [k + 1]

F
(i)
B − F

(i)
A (X +miY + t∗W ) ≡ 0 (16)

F
(i)
A 6≡ 0 (17)

We first argue that for all i ∈ [k+ 1], we have that F
(i)
B satisfies that degX(F

(i)
B ) = 1. Note that

at the start of the game, there is no polynomial F on the list L1 satisfying degX(F ) 6= 0. Thus,
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on the first oracle call OE-BSOMIH,Ĥ′,Ŵ ,X̂,Ŷ (τ1, t1), it follows that degX(F1) = 0 where F1 is
the polynomial corresponding to the encoding τ1. After the oracle has computed its response
to the first query, the only polynomial on the list L1 with a degree of X different from 0 is
FB1 = (X + F1Y − t1W )A1 corresponding to τB1 . It is clear that degX(FB1) = 1 since as we
argued degX(F1) = 0. Even if the encoding corresponding to FB1 is used in a subsequent query
to the E-BSOMI oracle, the resulting polynomial FBi corresponding to the encoding τBi retuned
to the adversary satisfies degX(FBi) = 1. From this it follows that the polynomials FBj for all

j > 1 satisfy degX(FBj ) = 1. In turn this means that for all i ∈ [k+ 1], for (F
(i)
A , F

(i)
B ) to satisfy

the verification equations, we must have degX(F
(i)
B ) = 1 and degX(F

(i)
A ) = 0.

We now argue that we must have for all i ∈ [k + 1] that degY (F
(i)
A ) = 0. First note that

at the start of the game there exists no polynomial F on the list L1 where degY (F ) 6= 0. The
only polynomials on the list L1 with a degree of Y different from 0 are those corresponding to
the encodings τB and τC resulting from the response of the E-BSOMI oracle. Note that none of
the queries in the game result in a polynomial on the list L1 with the monomial HXY j . Thus,

if for any i ∈ [k + 1] the polynomial F
(i)
A has a term containing the monomial HY n, for the

pair (F
(i)
A , F

(i)
B ) to be a valid pair, we must have that F

(i)
B contains a term with the monomial

HXY n which is a contradiction. Similarly, if for any i ∈ [k+ 1] the polynomial F
(i)
A has a term

containing the monomial Y n for some n 6= 0, we must also have that F
(i)
B contains a term with

the monomial XY n. Note that the only Laurent polynomials with a monomial Y n and a degree
0 of H are those corresponding to linear combinations of the polynomials FBi (associated with

the encodings τBi) returned by the E-BSOMI oracle. This implies that for (F
(i)
A , F

(i)
B ) to be a

valid pair, we must have degX(F
(i)
B ) = 2 which as argued earlier is impossible. Thus, it follows

that we must have for all i ∈ [k+ 1] that the polynomial F
(i)
A satisfy degY (F

(i)
A ) = 0 from which

it follows that for the pair (F
(i)
A , F

(i)
B ) to be a valid pair, it must be the case that degY (F

(i)
B ) = 1

unless mi = 0 in which case degY (F
(i)
B ) = 0. Note that in the latter case by the condition that

the messages mi are distinct, only one at most mi for some i ∈ [k + 1] can satisfy mi = 0.

We now argue that we must have for all i ∈ [k + 1] that degW (F
(i)
A ) = 0. First note that

at the start of the game there exists no polynomial F on the list L1 where degW (F ) 6= 0. The
only polynomials on the list L1 with a degree of W different from 0 are those corresponding
to the encodings τB resulting from the response of the E-BSOMI oracle on queries of the form
(·, tj 6= 0). Note that none of the queries in the game result in a polynomial on the list L1 with

the monomial WX. Thus, if for any i ∈ [k + 1] the polynomial F
(i)
A has a term containing the

monomial W , for the pair (F
(i)
A , F

(i)
B ) to be a valid pair, we must have that F

(i)
B contains a term

with the monomial WX which is a contradiction. Thus, it follows that we must have for all

i ∈ [k + 1] that the polynomial F
(i)
A satisfy degW (F

(i)
A ) = 0 from which it follows that for the

pair (F
(i)
A , F

(i)
B ) to be a valid pair, it must be the case that degW (F

(i)
B ) = 1 unless t∗ = 0 in

which case degW (F
(i)
B ) = 0.

We now argue that for all i ∈ [k + 1], we have that degH(F
(i)
A ) = 0. Note that none of the

operations on the polynomials on the list L1 results in a polynomial with the monomial HjXn

for j 6= 0 and n 6= 0. Thus, if for any i ∈ [k + 1] it holds that the polynomials F
(i)
A contains a

monomial of the form Hj for j 6= 0, for the pair (F
(i)
A , F

(i)
B ) to be a valid pair, it must be the

case that F
(i)
B contains a term with the monomial HjX which as argued above is impossible.

Thus, it follows that for all i ∈ [k + 1], we have that degH(F
(i)
A ) = 0 from which it follows that

degH(F
(i)
B ) = 0.
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From the above, it is clear we must have for all i ∈ [k + 1] that

F
(i)
A = αi +

qO∑
j=1

βi,jAj ·

If for any i ∈ [k + 1] we have that αi 6= 0, then it must be the case that F
(i)
B has a term of the

form αiX which as argued above is not possible since no linear combination of the polynomials
on the list L1 the adversary obtains in the game can lead to a polynomial with such a term.
Therefore, it is clear we must have for all i ∈ [k + 1] that

F
(i)
A =

qO∑
j=1

βi,jAj ,

F
(i)
B = γi +

qO∑
j=1

δi,jFBj ·

For the pair (F
(i)
A , F

(i)
B ) to satisfy (16 ) & (17 ), we must have that for all i ∈ [k+ 1] that γi = 0.

Therefore, it follows that for all i ∈ [k + 1] we have

F
(i)
B =

qO∑
j=1

δi,jFBj =

qO∑
j=1

δi,j (AjX + FjAjY + tjAjW ) ·

Equality (17) implies that we must have for at least one value of j that βi,j 6= 0. Now for (16) to
hold, by the monomial AjX we must have that for all j ∈ [qO] that βi,j = δi,j . By the monomial
AjW , we must have t∗βi,j = tjδi,j from which it follows that we must have for all j ∈ [qO]

that t∗ = tj , i.e. F
(i)
B can only be a linear combination of polynomials FBj returned by the

E-BSOMI oracle as response to queries of the form (·, t∗) whose number by the definition of the
assumption cannot exceed k. Now, by the monomial AjY , we have Fjδi,j = miβi,j from which
it follows that we have for all j ∈ [k] that Fj = mi. Thus, if for more than one value of j we
have βi,j 6= 0 then it must be the case that the corresponding queries to E-BSOMI oracle used
in the linear combination were on the same encoding corresponding to the same polynomial F
in which case it is obvious that it is impossible to output k + 1 valid tuples on k + 1 distinct
messages after only k oracle queries involving t∗. So the best the adversary can do is to only
have for a single value of j ∈ [k] that βi,j 6= 0. Even in this case it is clear that the adversary
can at most output k valid E-BSOMI tuples w.r.t. t∗ on k distinct messages.

The above proves that equalities (16) and (17) do not hold identically. We now bound the
probability of the challenger’s simulation failing and show that such a probability is negligi-
ble (in the security parameter λ). The simulation fails if for any two Laurent polynomials F
and F ′ on the list Li for i ∈ {1, 2, T} it holds that F 6= F ′ but F (a1, . . . , aqO , h, w, x, y) =
F ′(a1, . . . , aqO , h, w, x, y) for some a1, . . . , aqO , h, w, x, y ∈ Zp. In other words, the adversary
wins if any of the following happens:

F, F ′ ∈ L1 and F 6= F ′ but F (a1, . . . , aqO , h, w, x, y) = F ′(a1, . . . , aqO , h, w, x, y) (18)

F, F ′ ∈ L2 and F 6= F ′ but F (a1, . . . , aqO , h, w, x, y) = F ′(a1, . . . , aqO , h, w, x, y) (19)

F, F ′ ∈ LT and F 6= F ′ but F (a1, . . . , aqO , h, w, x, y) = F ′(a1, . . . , aqO , h, w, x, y) (20)

Note that the only indeterminate in those Laurent polynomials with a negative power is H.
Thus, for all Laurent polynomials F on those lists we can view F as a fraction of polynomials
of the form F = R

S where R ∈ Zp[A1, . . . , AqO , H,W,X, Y ] and S ∈ Zp[H]. Note that Zp[H] ⊂

30



Zp[A1, . . . , AqO , H,W,X, Y ]. In fact in our case we are only working with simpler polynomials
S which are monic monomials of the form Hn for some n ≥ 0. We can thus substitute the check

F (a1, . . . , aqO , h, w, x, y) = F ′(a1, . . . , aqO , h, w, x, y)

with the check

R(a1, . . . , aqO , h, w, x, y)S′(h) = R′(a1, . . . , aqO , h, w, x, y)S(h)·

We first give a bound on the degree of such polynomials.
Note that before the first E-BSOMI oracle query, the only non-constant polynomial on the

list L1 is the polynomial H. At the end of the game, the Laurent polynomial F corresponding
to polynomials R and S with the largest degrees in the list L1 is the polynomial resulting from
calling the oracle E-BSOMI oracle first time on (τH , ·) where τH is the encoding corresponding
to the polynomial H and then repeatedly querying the oracle on (τBj−1 , ·) where the encoding
τBj−1 corresponds to the polynomial FBj−1 returned by the E-BSOMI oracle in the previous
query. Such a polynomial is of the form

F = α+

qO∑
i=1

βi

qO∏
j=i

AjXY
qO−i + γ

qO∏
j=i

AjHY
qO

qO∑
i=1

δi

qO∏
j=i

AjWY qO−i·

This ensures that for any polynomial on the list L1 it holds that deg(R) ≤ 2qO+1 and deg(S) =
0. By the Schwartz-Zippel lemma the probability that (18) occurs is bounded from above by
2qO+1
p .
The polynomials that one can obtain on the list L2 at the end of the game are linear

combinations of the (Laurent) polynomials X, Y and H−1. Thus, for any F = R
S on the list

L2, we have that deg(S) ∈ {0, 1} and deg(R) ∈ {0, 1, 2}. By the Schwartz-Zippel lemma the
probability that (19) occurs is bounded from above by 3

p .
From the above two bounds on the degrees of polynomials in L1 and L2, it follows that we

have that all Laurent polynomials on the list LT correspond to polynomial fractions R
S where

deg(R) ≤ 2qO + 3 and deg(S) ∈ {0, 1}. By the Schwartz-Zippel lemma the probability that (20)
occurs is bounded from above by 2qO+4

p .

Summing over all choices of F and F ′ in each case we have that the probability ε of the
simulation failing for this reason is

ε ≤
(
|L1|

2

)
2qO + 1

p
+

(
|L2|

2

)
3

p
+

(
|LT |

2

)
2qO + 4

p

≤ (7 + qG + 3qO + qP )2(2qO + 4)

p
·

By the Schwartz-Zippel lemma and the above bounds on the degrees of the polynomials, we
have that the probability of sampling the root of a polynomial in the denominator is bounded
from above by 7+qG+3qO+qP

p .

The probability of the simulation failing is ≤ (7+qG+3qO+qP )
2(2qO+4)+(7+qG+3qO+qP )

p , i.e.

O(
q2GqO+q2P qO+q3O

p ). Since by definition we have that qO, qG and qP are all polynomial in λ
whereas log p ∈ Θ(λ), it follows that the adversary’s advantage is negligible.

ut
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