
Double-base scalar multiplication revisited

Daniel J. Bernstein1,2, Chitchanok Chuengsatiansup1, and Tanja Lange1

1 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
c.chuengsatiansup@tue.nl, tanja@hyperelliptic.org

2 Department of Computer Science, University of Illinois at Chicago
Chicago, IL 60607–7045, USA

djb@cr.yp.to

Abstract. This paper reduces the number of field multiplications re-
quired for scalar multiplication on conservative elliptic curves. For an
average 256-bit integer n, this paper’s multiply-by-n algorithm takes just
7.47M per bit on twisted Edwards curves −x2 + y2 = 1 + dx2y2 with
small d. The previous record, 7.62M per bit, was unbeaten for seven
years.

Unlike previous record-setting algorithms, this paper’s multiply-by-n
algorithm uses double-base chains. The new speeds rely on advances
in tripling speeds and on advances in constructing double-base chains.
This paper’s new tripling formula for twisted Edwards curves takes just
11.4M, and its new algorithm for constructing an optimal double-base
chain for n takes just (logn)2.5+o(1) bit operations.

Extending this double-base algorithm to double-scalar multiplications,
as in signature verification, takes 8.80M per bit to compute n1P +n2Q.
Previous techniques used 9.34M per bit.

Keywords: scalar multiplication, Edwards curves, triplings, double-base
chains, directed acyclic graphs, double-scalar multiplication, signatures.

1 Introduction

Elliptic-curve computations have many applications ranging from the elliptic-
curve method for factorization (ECM) to elliptic-curve cryptography. The most
important elliptic-curve computation is scalar multiplication: computing the nth
multiple nP of a curve point P . For example, in ECDH, n is Alice’s secret key,
P is Bob’s public key, and nP is a secret shared between Alice and Bob.

This work was supported by the National Science Foundation under grants 1018836
and 1314919, by the Netherlands Organisation for Scientific Research (NWO) under
grants 639.073.005 and 613.001.011, and by the European Commission through the
ICT program under contract ICT-645421 ECRYPT-CSA. Date of this document:
2017.01.13.

2 Bernstein, Chuengsatiansup, Lange

There is an extensive literature proposing and analyzing scalar-multiplication
algorithms that decompose P 7→ nP into field operations in various ways. Some
speedups rely on algebraically “special” curves, but we restrict attention to the
types of curves that arise in ECM and in conservative ECC: large characteristic,
no subfields, no extra endomorphisms, etc. Even with this restriction, there is a
remarkable range of ideas for speeding up scalar multiplication.

It is standard to compare these algorithms by counting field multiplications
M, counting each field squaring S as 0.8M, and disregarding the overhead of field
additions, subtractions, and multiplications by small constants. (Of course, the
most promising algorithms are then analyzed in more detail in implementation
papers for various platforms, accounting for all overheads.) For seven years the
record number of field multiplications has been held by an algorithm of Hisil,
Wong, Carter, and Dawson [19]; for an average 256-bit scalar n, this algorithm
computes P 7→ nP using 7.62M per bit.

This paper does better. We present an algorithm that, for an average 256-bit
scalar n, computes P 7→ nP using just 7.47M per bit. Similarly, for double-
scalar multiplication, we use just 8.80M per bit, where previous techniques used
9.34M per bit.

We emphasize that the new 7.47M and 8.80M per bit, like the old 7.62M
and 9.34M per bit, are averages over n; the time depends slightly on n. These
algorithms leak some information about n through total timing, and much more
information through higher-bandwidth side channels, so they should be avoided
in contexts where n is secret. However, there are many environments in which
scalars are not secret: examples include ECC signature verification and ECM.
We present new algorithms for single and double scalar multiplication, covering
these important applications.

We also emphasize that these operation counts ignore the cost of convert-
ing n into a multiply-by-n algorithm. The conversion cost is significant for the
new algorithm. This does not matter if n is used many times, but it can be a
bottleneck in scenarios where n is not used many times. To address this issue,
this paper introduces a fast new conversion method, explained in more detail
below; this reduces the number of times that n has to be reused to justify apply-
ing the conversion. Note also that, in the context of signature verification, this
conversion can be carried out by the signer and included in the signature as an
encoding of n. This helps ECC signatures in applications where so far RSA was
preferred due to the faster signature verification speeds (with small public RSA
exponent).

1.1. Double-base chains. One way to speed up scalar multiplication is to
reduce the number of point operations, such as point additions and point dou-
blings. For a simple double-and-add algorithm, using the binary representation
of n, the number of point doublings is approximately the bitlength of n and
the number of point additions is the Hamming weight of n, i.e., the number of
bits set in n. Signed digits, windows, and sliding windows write n in a more
general binary representation

∑`
i=1 di2

ai with d in a coefficient set, and reduce
the number of point additions to a small fraction of the bitlength of n.

Double-base scalar multiplication revisited 3

Even though the binary representation is widely and commonly used, it is
not the only way to express integers. A double-base representation, specifically a
{2, 3}-representation, writes n as

∑`
i=1 di2

ai3bi , where a1 ≥ a2 ≥ · · · ≥ a` ≥ 0;
b1 ≥ b2 ≥ · · · ≥ b` ≥ 0; and di is restricted to a specified set S, such as
{1} or {−1, 1}. This representation is easy to view as a double-base chain to
compute nP : a chain of additions, doublings, and triplings to compute nP , where
each addition is of some diP . Double-base chains were introduced by Dimitrov,
Imbert, and Mishra in [12] for the case S = {−1, 1}, and were generalized to
any S by Doche and Imbert in [17].

Representing an integer as a double-base chain allows various tradeoffs be-
tween doublings and triplings. This representation of n is not unique; selecting
the fastest chain for n can save time. As a concrete example, we comment that
the computation 212(23 + 1) − 1 used in [7] for ECM computations can be im-
proved to 21232 − 1, provided that two triplings are faster than three doublings
and an addition.

For some elliptic-curve coordinate systems, the ratio between tripling cost
and doubling cost is fairly close to log2 3 ≈ 1.58. It is then easy to see that the
total cost of doublings and triplings combined does not vary much across double-
base chains, and the literature shows that within this large set one can find
double-base chains with considerably fewer additions than single-base chains,
saving time in scalar multiplication.

For example, twisted Hessian curves [4] cost 7.6M for doubling, 11.2M for
tripling (or 10.8M for special fields with fast primitive cube roots of 1), and
11M for addition. A pure doubling chain costs 7.6(log2 n)M for doublings, and
a pure tripling chain costs 11.2(log3 n)M ≈ 7.1(log2 n)M for triplings. Many
different double-base chains have costs between 7.1(log2 n)M and 7.6(log2 n)M
for doublings and triplings, while they vary much more in the costs of additions.
The speeds reported in [4] use double-base chains, and are the best speeds known
for scalar multiplication for curves with cofactor 3.

However, the situation is quite different for twisted Edwards curves. Com-
pared to twisted Hessian curves, twisted Edwards curves cost more for tripling,
less for doubling, and less for addition. The higher tripling-to-doubling cost ratio
(close to 2) means that trading doublings for triplings generally loses speed, and
the higher tripling-to-addition cost ratio (around 1.5) means that the disadvan-
tage of extra triplings easily outweighs the advantage of reducing the number of
additions.

The literature since 2007 has consistently indicated that the best scalar-
multiplication speeds are obtained from (1) taking a curve expressible as a
twisted Edwards curve and (2) using single-base chains. These choices are fully
compatible with the needs of applications such as ECM and ECC; see, for exam-
ple, [7] and the previous Edwards-ECM papers cited there. Bernstein, Birkner,
Lange and Peters [3] obtained double-base speedups for some coordinate systems
but obtained their best speeds from single-base Edwards. Subsequent improve-
ments in double-base techniques have not been able to compete with single-base
Edwards; for example, the double-base twisted Hessian speeds reported in [4],

4 Bernstein, Chuengsatiansup, Lange

above 8M per bit, are not competitive with the earlier single-base Edwards speed
from [19], just 7.62M per bit.

Our new speed, 7.47M per bit, marks the first time that double-base chains
have broken through the single-base barrier. This speed relies on double-base
chains, more specifically optimal double-base chains (see below), and also relies
on new Edwards tripling formulas that we introduce. These tripling formulas
use just 9M + 3S, i.e., 11.4M, saving 1S compared to the best previous results.
This is almost as fast as the tripling speeds from tripling-oriented Doche–Icart–
Kohel [16] and twisted Hessian [4], and has the advantage of being combined
with very fast doublings and additions.

1.2. Converting n to a chain. Because there are so many choices of double-
base chains for n (with any particular S), finding the optimal chain for n is not
trivial (even for that S).

Doche and Habsieger [15], improving on chain length compared to previous
papers, proposed a tree-based algorithm to compute double-base chains. They
start with n at the root of a tree, and perform the following steps at each tree
node: (1) remove all 2 and 3 factors; (2) add ±1 to the unfactored part; (3)
branch two new nodes for the obtained values. They repeat these processes until
they obtain a node with value 1. To limit the size of the tree they prune each
level as it is constructed, keeping only the smallest nodes at that level.

It does not seem to have been noticed that the algorithm of [15], without any
pruning, finds an optimal double-base chain in time polynomial in n: the tree has
only polynomially many levels, and there are only polynomially many possible
nodes at each level. A recent paper by Capuñay and Thériault [8] presents an
algorithm with an explicit (log n)4+o(1) time bound to find an optimal double-
base chain for n, assuming S ⊆ {−1, 1}.

We observe that finding an optimal double-base chain is equivalent to a
shortest-path computation in an explicit directed acyclic graph withO(ω(log n)2)
nodes, assuming S ⊆ {−ω, . . . ,−1, 0, 1, . . . , ω}; in particular, (log n)2+o(1) nodes
when ω ∈ (log n)o(1). We actually build two such graphs, and show how one of the
graphs allows optimized arithmetic, reducing the total chain-construction time to
just (log n)2.5+o(1). For comparison, scalar multiplication takes time (log n)3+o(1)

using schoolbook techniques for field arithmetic, time (log n)2.58...+o(1) using
Karatsuba, or time (log n)2+o(1) using FFTs.

1.3. Organization of this paper. Section 2 presents our new tripling formulas.
Section 3 recasts the search for an optimal double-base chain as the search for
a shortest path in an explicit DAG. Section 4 constructs our second explicit
DAG, with a rectangular structure that simplifies computations; using this DAG
to find the optimal double-base chain for n takes (log n)3+o(1) bit operations.
Section 5 shows how to use smaller integers to represent nodes in the same
graph, reducing (log n)3+o(1) to (log n)2.5+o(1). Section 6 extends these ideas to
generate optimal double-base chains for double-scalar multiplication. Section 7
compares our results to previous results.

Double-base scalar multiplication revisited 5

2 Faster point tripling

This section presents faster point tripling formulas for twisted Edwards curves
ax2 + y2 = 1 + dx2y2 in both projective and extended coordinates. We also
show how to minimize the cost when mixing additions, doublings and triplings
in different coordinate systems.

2.1. Projective coordinates. Recall that projective coordinates (X : Y : Z),
for nonzero Z, represent (x, y) = (X/Z, Y/Z). These formulas are faster by one
squaring than the previously best tripling formulas in projective coordinates [3],
which in turn are faster than performing point doubling followed by point addi-
tion.

Here are the formulas for computing (X3 : Y3 : Z3) = 3(X1 : Y1 : Z1),
i.e., point tripling in projective coordinates. These formulas cost 9M + 3S +
1Ma + 2M2 + 7A, where as before M denotes field multiplication, S denotes
field squaring, Ma denotes field multiplication by curve parameter a, M2 denotes
field multiplication by constant 2, and A denotes a general field addition.

Y Y = Y 2
1 ; aXX = a ·X2

1 ; Ap = Y Y + aXX; B = 2(2Z2
1 −Ap); xB = aXX ·B;

yB = Y Y ·B; AA = Ap · (Y Y − aXX); F = AA− yB; G = AA+ xB;

X3 = X1 · (yB +AA) · F ; Y3 = Y1 · (xB −AA) ·G; Z3 = Z1 · F ·G.

For affine inputs where Z1 = 1, computing (X3 : Y3 : Z3) = 3(X1 : Y1 : 1)
costs only 8M + 2S + 1Ma + 1M2 + 7A. That is, we save 1M + 1S + 1M2 by
ignoring multiplication and squaring of Z1.

2.2. Extended coordinates. We also present similar tripling formulas in ex-
tended coordinates. Recall that extended coordinates (X : Y : Z : T) represent
(x, y) = (X/Z, Y/Z), like projective coordinates, but also have an extra coor-
dinate T = XY/Z. The importance of extended coordinates is that addition
of points in extended coordinates is faster than addition of points in projective
coordinates.

The following formulas compute (X3 : Y3 : Z3 : T3) = 3(X1 : Y1 : Z1), i.e.,
point tripling in extended coordinates. These formulas cost 11M + 3S + 1Ma +
2M2 + 7A; in other words, it costs 2M extra to compute the coordinate T .

Y Y = Y 2
1 ; aXX = a ·X2

1 ; Ap = Y Y + aXX; B = 2(2Z2
1 −Ap); xB = aXX ·B;

yB = Y Y ·B; AA = Ap · (Y Y − aXX); F = AA− yB; G = AA+ xB;

xE = X1 · (yB +AA); yH = Y1 · (xB −AA); zF = Z1 · F ; zG = Z1 ·G;

X3 = xE · zF ; Y3 = yH · zG; Z3 = zF · zG; T3 = xE · yH.

For affine inputs where Z1 = 1, computing (X3 : Y3 : Z3 : T3) = 3(X1 : Y1 :
1 : T1) costs only 9M+2S+1Ma+1M2 +7A. That is, we save 2M+1S+1M2

by ignoring multiplication and squaring of Z1.
Note that the input for these formulas is projective (X1 : Y1 : Z1); to triple

an extended (X1 : Y1 : Z1 : T1) we simply discard the extra T1 input. We could

6 Bernstein, Chuengsatiansup, Lange

instead compute T3 = T1 · (yB + AA) · (xB − AA) and skip computing one of
zF and zG but this would not save any multiplications.

2.3. Mixing doublings, triplings, and additions. Point doubling in ex-
tended coordinates [6] also takes projective input, and costs only 1M extra to
compute the extra T output. The best known single-base chains compute a se-
ries of doublings in projective coordinates, with the final doubling producing
extended coordinates; and then an addition, again producing projective coordi-
nates for the next series of doublings.

In the double-base context, because triplings cost 2M extra to produce ex-
tended coordinates while doublings cost only 1M extra, we suggest replacing
DBL-TPL-ADD with the equivalent TPL-DBL-ADD. More generally, the con-
version from projective to extended coordinates should be performed after point
doubling and not tripling (if possible). A good sequence of point operations and
coordinate systems is as follows: For every nonzero term, first compute point
tripling(s) in projective coordinates; then compute point doubling(s) in projec-
tive coordinates, finishing with one doubling leading to extended coordinates;
finally, compute the addition taking both input points in extended coordinates
and outputting the result in projective coordinates.

We still triple into extended coordinates if a term does not include any dou-
blings (e.g., computing (36 + 1)P): i.e., compute point tripling(s) in projective
coordinates, finishing with one tripling leading to extended coordinates; finally,
as before, compute the addition taking both input points in extended coordinates
and outputting the result in projective coordinates.

2.4. Cost of point operations when a = −1. Table 1 summarizes the
costs for point operations for twisted Edwards curves. Our new tripling formulas
presented in Sections 2.1 and 2.2 are for twisted Edwards curves for any curve
parameter a; the table assumes a = −1 to include the point-addition speedup
from [19]. The rest of the paper builds fast scalar multiplication on top of the
point operations summarized in this table.

3 Graph-based approach to finding double-base chains

This section shows how to view double-base chains for n as paths from n to 0 in
an explicit DAG. If weights are assigned properly to the edges of the DAG then
the weight of a path is the same as the cost of the double-base chain. Finding the
lowest-cost double-base chain for n is therefore the same as finding the lowest-
cost (“shortest”) path from n to 0. Dijkstra’s algorithm [11] finds this path in
time (log n)O(1).

3.1. Double-base chains. We formally define a double-base chain as a finite
sequence of operations, where each operation is either “×2+c” for some integer
c or “×3+c” for some integer c. The integers c are allowed to be negative, and
when c is negative we abbreviate “+c” as “−|c|”; e.g., the operation “×3+−7”
is abbreviated “×3−7”; c is also allowed to be 0.

Double-base scalar multiplication revisited 7

Table 1: Cost of point operations for twisted Edwards curves with a = −1.

Operations Coordinate systems Cost

Mixed Addition E +A → P 6M ≈ 6.0M
Addition E + E → P 7M ≈ 7.0M

Doubling P → P 3M+4S ≈ 6.2M
Doubling P → E 4M+4S ≈ 7.2M

Tripling P → P 9M+3S ≈ 11.4M
Tripling P → E 11M+3S ≈ 13.4M

Doubling + Mixed Addition P → E ; E +A → P 10M+4S ≈ 13.2M
Doubling + Addition P → E ; E + E → P 11M+4S ≈ 14.2M

Tripling + Mixed Addition P → E ; E +A → P 17M+3S ≈ 19.4M
Tripling + Addition P → E ; E + E → P 18M+3S ≈ 20.4M

Note: We use symbols A for (extended) affine coordinates (X : Y : 1 : T); P for
projective coordinates (X : Y : Z); and E for extended coordinates (X : Y : Z : T).

A double-base chain represents a computation of various multiples nP of a
group element P . This computation starts from 0P = 0, converts each “×2+c”
into a doubling Q 7→ 2Q followed by an addition Q 7→ Q+cP , and converts each
“×3+c” into a tripling Q 7→ 3Q followed by an addition Q 7→ Q + cP , after an
initial computation of all relevant multiples cP . For example, the chain

(“×2+1”, “×3+0”, “×3+0”, “×2+1”, “×2+0”)

computes successively 0P, 1P, 3P, 9P, 19P, 38P .
Formally, given a double-base chain (o1, o2, . . . , o`), define a sequence of inte-

gers (n0, n1, n2, . . . , n`) as follows: n0 = 0; if oi = “×2+c” then ni = 2ni−1 + c;
if oi = “×3+c” then ni = 3ni−1 + c. This is the sequence of intermediate re-
sults for the chain, and the chain is a chain for n`. Evidently one can compute
n`P from 0P using one doubling and one addition of cP for each “×2+c” in the
chain, and one tripling and one addition of cP for each “×3+c” in the chain.
Note that the sequence of intermediate results does not determine the chain, and
does not even determine the cost of the chain.

3.2. Restrictions on additions. Several variations in the definition of a double-
base chain appear in the literature. Often the differences are not made explicit.
We now introduce terminology to describe these variations.

Some definitions allow double-base chains to carry out two additions in a row,
with no intervening doublings or triplings. Our double-base chains are reduced,
in the sense that “+c”, “+d” is merged into “+(c+ d)”.

Obviously some limit needs to be placed on the set of c for the concept
of double-base chains to be meaningful: for example, the double-base chain
(“×2+1”, “×2+314157”) computes 314159P with two additions and an inter-
mediate doubling but begs the question of how the summand 314157P was
computed. Some papers require “+c” to have c ∈ {−1, 0, 1}, while other papers
allow c ∈ S for a larger set S of integers.

8 Bernstein, Chuengsatiansup, Lange

We consider the general case, and define an S-chain as a chain for which
each “+c” has c ∈ S. We require the set S here to contain 0. We focus on sets
S for which it is easy to see the cost of computing cP for all c ∈ S, such as the
set S = {−ω, . . . ,−2,−1, 0, 1, 2, . . . , ω}. Subtracting cP is as easy as adding cP
for elliptic curves (in typical curve shapes), so we focus on sets S that are closed
under negation, but our framework also allows nonnegative sets S; this means
that the distinction between addition chains and addition-subtraction chains is
subsumed by the distinction between different sets S.

A double-base chain (o1, o2, . . . , o`) is increasing if the sequence of inter-
mediate results (n0, n1, n2, . . . , n`) has n0 < n1 < n2 < · · · < n`. For example,
(“×2+5”, “×2+− 1”) is increasing since 0 < 5 < 9; but (“×2+1”, “×2+− 1”
is not increasing. Any ni > −minS (with i < `) automatically has ni+1 > ni,
so allowing non-increasing chains for positive integers n cannot affect anything
beyond initial computations of integers bounded by −minS.

A double-base chain is greedy if each intermediate result that is a multiple
of 2 or 3 (or both) is obtained by either “×2+0” or “×3+0”. This is a more
serious limitation on the set of available chains.

3.3. The DAG. Fix a finite set S of integers with 0 ∈ S. Define an infinite
directed graph D as follows. There is a node n for each nonnegative integer n.
For each c ∈ S and each nonnegative integer n, there is an edge 2n+ c→ n with
label “×2+c” if 2n+ c > n, and there is an edge 3n+ c→ n with label “×3+c”
if 3n+ c > n.

Each edge points from a larger nonnegative integer to a smaller nonnegative
integer, so this graph D is acyclic, and the set of nodes reachable from any
particular n is finite. Theorem 1 states that this set forms a directed acyclic
graph containing at most O((log n)2) nodes for any particular S.

Theorem 1. Assume that S ⊆ {−ω, . . . ,−1, 0, 1, . . . , ω}. Let n be a positive
integer. Then there are at most (2ω + 1)(blog2 n+ 1cblog3 n+ 1c + 1) nodes in
D reachable from n.

Proof. First step: Show that each node v reachable in exactly s steps from n has
the form n/(2a3b) + d for some integers a, b and some rational number d with
a ≥ 0, b ≥ 0, |d| ≤ ω, and a+ b = s.

Induct on s. If s = 0 then v must be n, so v = n/(2a3b) + d with (a, b, d) =
(0, 0, 0). If s ≥ 1 then there is an edge u→ v for some node u reachable in exactly
s − 1 steps from n. By the inductive hypothesis, u has the form n/(2a3b) + d
with a ≥ 0, b ≥ 0, |d| ≤ ω, and a+ b = s− 1.

If the edge has label “×2+c” then u = 2v+c so v = (u−c)/2 = n/(2a+13b)+
(d− c)/2; and c ∈ S so |c| ≤ ω so |(d− c)/2| ≤ ω. Hence v has the correct form.
Similarly, if the edge has label “×3+c” then u = 3v + c so v = (u − c)/3 =
n/(2a3b+1) + (d− c)/3, and |(d− c)/3| ≤ (2/3)ω ≤ ω. This completes the proof
of the first step.

Second step: We count the nodes v with a ≤ log2 n and b ≤ log3 n. There
are at most blog2 n+ 1c possibilities for a, and at most blog3 n+ 1c possibilities

Double-base scalar multiplication revisited 9

for b. Any particular (a, b) limits v to the interval [n/(2a3b)− ω, n/(2a3b) + ω],
which contains at most 2ω + 1 integers.

Third step: We count the remaining nodes v. Here a > log2 n so 2a > n, or
b > log3 n so 3b > n, or both; in any case n/(2a3b) < 1 so |v| < 1 + |d| < 1 + ω;
i.e., v ∈ {−ω, . . . , ω}. This limits v to at most 2ω + 1 possibilities across all of
the possible pairs (a, b). ut

Theorem 2 states a straightforward correspondence between the set of paths
in D from n to 0 and the set of increasing double-base S-chains for n. The
correspondence simply reads the edge labels in reverse order.

Theorem 2. Let n be a nonnegative integer. If (e`, . . . , e1) is a path from n
to 0 in D with labels (o`, . . . , o1) then (o1, . . . , o`) is an increasing double-base
S-chain for n. Conversely, every increasing double-base S-chain for n has this
form.

Proof. Each oi is an edge label in D, which by definition of D has the form
“×2+c” or “×3+c”, so C = (o1, . . . , o`) is a double-base chain; what remains is
to show that it is an increasing S-chain for n.

Specifically, say oi = “×ti+ci”. Define (n0, n1, . . . , n`) as the corresponding
sequence of intermediate results; then n0 = 0, and ni = tini−1 + ci for i ∈
{1, . . . , `}.

We now show by induction on i that ei is an edge from ni to ni−1. If i = 1
then by hypothesis of the theorem ei = e1 is an edge to 0 = n0 = ni−1. If i > 1
then ei−1 is an edge from ni−1 by the inductive hypothesis so ei is an edge to
ni−1. For any i, ei is an edge to ni−1. The label oi = “×ti+ci” then implies that
ei is an edge from tini−1 + ci, i.e., from ni, as claimed.

In particular, e` is an edge from n`, but also e` is an edge from n by hypothesis
of the theorem, so n = n`. Hence C is a chain for n. Furthermore, C is an S-
chain since each ci ∈ S by definition of D, and C is increasing since each edge
decreases by definition of D.

Conversely, take any increasing double-base S-chain C for n. Write C as
(o1, . . . , o`), write oi as “×ti+ci”, and define (n0, n1, . . . , n`) as the corresponding
sequence of intermediate results. Then D has an edge ei with label oi from ni
to ni−1, so (e`, . . . , e1) is a path from n` = n to 0 in D. ut

3.4. Chain cost and path cost. Theorem 2 suggests the following simple
strategy to find an optimal increasing double-base S-chain for n: use Dijkstra’s
algorithm to find a shortest path from n to 0 in D. This takes time polynomial
in log n if ω is polynomially bounded: the number of nodes visited is polynomial
by Theorem 1, and it is easy to see that constructing all of the outgoing edges
from a node takes polynomial time.

Dijkstra’s algorithm requires each edge to be assigned a positive weight,
and requires the cost of a path to be defined as the sum of edge weights. This
strategy therefore requires the cost of a chain to be defined “locally”: the cost of
doubling nP and adding cP must not depend on any context other than (n, c),

10 Bernstein, Chuengsatiansup, Lange

and similarly for tripling. This limitation is not a problem for, e.g., accounting
for free additions of 0P ; accounting for a free initial doubling of 0P ; accounting
for lower-cost addition of P , i.e., c = 1, if P is kept in affine coordinates while
other multiples of P are kept in projective or extended coordinates; accounting
for the cost of tripling into extended coordinates (see Section 2); etc.

One can also handle non-increasing chains by allowing negative integers and
dropping the conditions 2n + c > n and 3n + c > n. This allows cycles in
D, not a problem for typical breadth-first shortest-path algorithms building a
shortest-path tree; see, e.g., [10]. For simplicity we focus on acyclic graphs in
this paper.

3.5. Example. Figure 1 shows the subset of D reachable from n = 17 when
S = {−1, 0, 1}. We omit the 0 node from the figure. We replace the remaining
edge labels with costs according to Table 1, namely, 11.4 for tripling, 6.2 for
doubling, 7 for mixed addition.

The choice S = {−1, 0, 1} means that each even node t has two outgoing
edges: one for t/2 and one for (t + c)/3 for a unique c, because exactly one of
t, t+ 1, t− 1 is divisible by 3. Each odd node t has three outgoing edges: one for
(t − 1)/2, one for (t + 1)/2, and one for (t + c)/3 for a unique c. For example,
8 is reached from 17 as (17 − 1)/2 costing one addition and one doubling; 6 is
reached as (17 + 1)/3 costing one addition and one tripling. There are two edges
between 5 and 2, namely, one corresponding to 2 = (5−1)/2 and one (obviously
worse) corresponding to 2 = (5 + 1)/3.

3.6. The DAG approach vs. the tree approach. The Doche–Habsieger
tree-based algorithm summarized in Section 1 considers only some special greedy
chains: when it sees an even node it insists on dividing by 2, prohibiting nontrivial
additions, and similarly when it sees a multiple of 3 it insists on dividing by 3;
when it sees a number that is neither a multiple of 2 or of 3 it uses an addition.
This reduces the number of nodes by roughly a factor 3, but we have found many
examples where the best greedy chain is more expensive than the best chain.

Each possible intermediate result appears exactly once in the DAG in this
section, but can appear at many different tree levels in the tree-based algorithm.
The tree has Θ(log n) levels, and a simple heuristic suggests that an intermediate
result will, on average, appear on Θ((log n)0.5) of these levels. The tree-based
algorithm repeatedly considers the same edges out of the same coefficient, while
the DAG avoids this redundant work. Pruning the tree reduces the cost of the
tree-based algorithm but compromises the quality of the resulting chains.

4 Rectangular DAG-based approach

The DAG that we introduced in Section 3 reduces the target integer n to various
smaller integers, each obtained by subtracting an element of S and dividing by
2 or 3. It repeats this process to obtain smaller and smaller integers t, stopping
at 0.

In this section we build a slightly more complicated DAG with a three-
dimensional structure. Each node in this new DAG has the form (a, b, t), where

Double-base scalar multiplication revisited 11

17
13.2

uu

13.2

��

19.4

))
8

6.2

""

19.4

''

9
13.2

||

13.2

��

11.4

��

6

11.4

��

6.2

��

4

19.4

��

6.2

��

5

13.2

��

19.4

		

13.2

""
3

13.2

vv
13.2

}}

11.4

ww

2

6.2

��

19.4

1

Fig. 1: Example of a DAG for finding double-base chains for n = 17

a is the number of doublings used in paths from n to t, and b is the number of
triplings used in paths from n to t.

One advantage of this DAG is that it is now very easy to locate nodes in a
simple three-dimensional array, rather than incurring the costs of the associative
arrays typically used inside Dijkstra’s algorithm. The point is that for t between
n/(2a3b)−ω and n/(2a3b)+ω, as in the proof of Theorem 1, we store information
about node (a, b, t) at index (a, b, t−

⌊
n/(2a3b)− ω

⌋
) in the array.

Another advantage of this DAG is that we no longer incur the costs of main-
taining a list of nodes to visit inside Dijkstra’s algorithm. Define the “position”
of the node (a, b, t) as (a, b): then each doubling edge is from position (a, b)
to position (a + 1, b), and each tripling edge is from position (a, b) to position
(a, b+1). There are many easy ways to topologically sort the nodes, for example
by sweeping through positions in increasing order of a+ b.

The disadvantage of this DAG is that a single t can now appear multiple
times at different positions (a, b). However, this disadvantage is limited: it can
occur only when there are near-collisions among the values n/(2a3b), something

12 Bernstein, Chuengsatiansup, Lange

that is quite rare except for the extreme case of small values. We show that
the DAG has (log n)2+o(1) nodes (assuming ω ∈ (log n)o(1)), like the DAG in
Section 3, and thus a total of (log n)3+o(1) bits in all of the nodes.

We obtain an algorithm to find shortest paths in this DAG, and thus optimal
double-base chains, using time just (log n)3+o(1). Section 5 explains how to do
even better, reducing the time to (log n)2.5+o(1) by using reduced representatives
for almost all of the integers t.

4.1. The three-dimensional DAG. Fix a positive integer ω. Fix a subset
S ⊆ {−ω, . . . ,−1, 0, 1, . . . , ω} with 0 ∈ S. Fix a positive integer n. Define a
finite directed acyclic graph Rn as follows.

There is a node (a, b, v) for each integer a ∈ {0, 1, . . . , blog2 nc+ 1}, each
integer b ∈ {0, 1, . . . , blog3 nc+ 1}, and each integer v within ω of n/(2a3b).
Note that not all nodes will be reachable from n in general.

If (a, b, v) and (a+ 1, b, u) are nodes, v > u, and v = 2u+ c with c ∈ S, then
there is an edge (a, b, v)→ (a+ 1, b, u) with label “×2+c”.

Similarly, if (a, b, v) and (a, b + 1, u) are nodes, v > u, and v = 3u + c with
c ∈ S, then there is an edge (a, b, v)→ (a, b+ 1, u) with label “×3+c”.

Theorem 3, analogously to Theorem 1, says that Rn does not have many
nodes. Theorem 4, analogously to Theorem 2, says that paths in Rn from (0, 0, n)
to (. . . , . . . , 0) correspond to double-base chains for n.

Theorem 3. There are at most (2ω+ 1)(blog2 n+ 2cblog3 n+ 2c) nodes in Rn.

Proof. There are blog2 n+ 2c choices of a and blog3 n+ 2c choices of b. For each
(a, b), there are at most 2ω + 1 integers v within ω of n/(2a3b). ut

Theorem 4. Let n be a positive integer. If (e`, . . . , e1) is a path from (0, 0, n)
to (a, b, 0) in Rn with labels (o`, . . . , o1) then (o1, . . . , o`) is an increasing double-
base S-chain for n with at most blog2 nc+ 1 doublings and at most blog3 nc+ 1
triplings. Conversely, every increasing double-base S-chain for n with at most
blog2 nc+ 1 doublings and at most blog3 nc+ 1 triplings has this form.

Proof. Given a path from (0, 0, n) to (a, b, 0) in Rn, remove the first two compo-
nents of each node to obtain a path from n to 0 in D. This path has the same
labels (o`, . . . , o1), so (o1, . . . , o`) is an increasing double-base S-chain for n by
Theorem 2. It has at most blog2 nc + 1 doublings since each doubling increases
the first component within {0, 1, . . . , blog2 nc+ 1}, and similarly has at most
blog3 nc+ 1 triplings.

Conversely, given an increasing double-base S-chain for n, construct the cor-
responding path in D by Theorem 2. Insert two extra components into each
node to count the number of doublings and triplings. If the chain has at most
blog2 nc+ 1 doublings and at most blog3 nc+ 1 triplings then these components
are contained in {0, 1, . . . , blog2 nc+ 1} and {0, 1, . . . , blog3 nc+ 1} respectively,
producing a path in Rn from (0, 0, n) to (a, b, 0). ut

Figure 2 illustrates R17. Only nodes reachable from (0, 0, n) are included,
nodes (. . . , . . . , 0) are omitted. The rectangular plane shows positions (a, b). Full

Double-base scalar multiplication revisited 13

description of how to use the rectangular DAG to find double-base chains for
n = 17 can be found in Appendix A.

4.2. Cost analysis. We now analyze the performance of shortest-path com-
putation using this DAG, taking account of the cost of handling multiprecision
integers such as n. A Python script suitable for carrying out experiments appears
in Appendix B.

Recall that information about node (a, b, t) is stored in a three-dimensional
array at index (a, b, t −

⌊
n/(2a3b)− ω

⌋
). We keep a table of these base values⌊

n/(2a3b)− ω
⌋
. Building this table takes one division by 2 or 3 at each position

(a, b). Each division input has O(log n) bits, and dividing by 2 or 3 takes time
linear in the number of bits; the total time is O((log n)3).

The information stored for (a, b, t) is the minimum cost of a path from (0, 0, n)
to (a, b, t). We optionally store the nearest edge label for a minimum-cost path,
to simplify output of the path, but this can also be efficiently reconstructed
afterwards from the table of costs.

We sweep through positions (a, b) in topological order, starting from (0, 0, n).
At each node (a, b, t) with t > 0, for each s ∈ S with 2 | t − s, we update the
cost stored for (a+ 1, b, (t− s)/2); and, for each s ∈ S with 3 | t− s, we update
the cost stored for (a, b+ 1, (t− s)/3). An easy optimization is to stop with any
t ∈ S, rather than just t = 0.

There are O(ω(log n)2) nodes, each with O(ω) outgoing edges, for a total of
O(ω2(log n)2) update steps. Each update step takes time O(log n), for total time
O(ω2(log n)3).

5 Reduced rectangular DAG-based approach

Recall that the shortest-path computation in Section 4 takes time (log n)3+o(1),
assuming ω ∈ (log n)o(1). This section explains how to reduce the exponent from
3 + o(1) to 2.5 + o(1).

5.1. Multiprecision arithmetic as a bottleneck. There are O(ω(log n)2)
nodes in the graph Rn; there are O(ω) edges out of each node; there are O(1)
operations at each edge. The reason for an extra factor of log n in the time
complexity is that the operations are multiprecision arithmetic operations on
integers that often have as many bits as n. We now look more closely at where
such large integers are actually used.

Writing down a position (a, b) takes only O(log log n) bits. Writing down a
cost also takes only O(log log n) bits. We are assuming here, as in most analyses
of Dijkstra’s algorithm, that edge weights are integers in O(1); for example, each
edge weight in Figure 1 is (aside from a scaling by 0.1) one of the three integers
62, 132, 184, so any s-step path has weight at most 184s.

Writing down an element of S, or an array index t −
⌊
n/(2a3b)− ω

⌋
, takes

only O(log(2ω+ 1)) bits. However, both t and the precomputed
⌊
n/(2a3b)− ω

⌋
are usually much larger, on average Θ(log n) bits. Several arithmetic operations
are forced to work with these large integers: for example, writing down the first

14 Bernstein, Chuengsatiansup, Lange

(0, 0, 17)

(1, 0, 9) 17

ww

��

��

9

��

 ��

8

�� ��

(0, 1, 6)

(1, 0, 8) 6

�� ��

5

��

��

4

�� ��

3

��

��

$$

2

�� $$
3

��

��

2

�� ��

1 1

2

��

$$

1

2

�� ��

1 1

1

1 1 (0, 0) (0, 1) (0, 2) (0, 3)

(1, 0) • • • •

(2, 0) • • • •

(3, 0) • • • •

(4, 0) • • • •

(5, 0) • • • •

• • • •

Fig. 2: Example of a 3D-DAG for finding double-base chains for n = 17

t at a position (a, b), computing t− s for the first s ∈ S, and checking whether
t− s is divisible by 3.

5.2. Reduced representatives for large numbers. This section saves time by
replacing almost all of the integers t with reduced representatives. Each of these
representatives occupies only (log n)0.5+o(1) bits, for a total of (log n)2.5+o(1)

Double-base scalar multiplication revisited 15

bits. There are occasional “boundary nodes” that each use (log n)1+o(1) bits,
but there are only (log n)1.5+o(1) of these nodes, again a total of (log n)2.5+o(1)

bits. Arithmetic becomes correspondingly less expensive.

Specifically, (a, b, t) is a boundary node if a is a multiple of α or b is a
multiple of β or both. Here α and β are positive integers, parameters for the
algorithm. For example, the solid lines in Figure 3 connect the boundary nodes
for α = β = 2. We will choose α and β as (log n)0.5+o(1), giving the above-
mentioned (log n)1.5+o(1) boundary nodes.

These boundaries partition the DAG into subgraphs. Each subgraph has
O(ωαβ) nodes at (α + 1)(β + 1) positions covering an area α × β within the
space of positions. Specifically, subgraph (q, r) covers all positions (a, b) where
a ∈ {qα, qα+ 1, . . . , qα+ α} and b ∈ {rβ, rβ + 1, . . . , rβ + β}. Some subgraphs
are truncated because they stretch beyond the maximum positions (a, b) allowed
in Rn; one can, if desired, avoid this truncation by redefining Rn so that the
maximum a is a multiple of α and the maximum b is a multiple of β.

To save time in handling a node (a, b, t) at the top position (a, b) = (qα, rβ)
in subgraph (q, r), we work with the remainder t mod 2α3β . More generally, to
save time in handling a node (a, b, t) at position (a, b) = (qα + i, rβ + j) in the
subgraph, we work with the remainder t mod 2α−i3β−j . Each of these remainders
is below 2α3β , and therefore occupies only (logn)0.5+o(1) bits when α and β are
(log n)0.5+o(1).

The critical point here is that the remainder t mod 2α3β is enough infor-
mation to see whether t − s is divisible by 2 or 3. This remainder also re-
veals the next remainder ((t − s)/2) mod 2α−13β if t − s is divisible by 2, and
((t − s)/3) mod 2α3β−1 if t − s is divisible by 3. There is no need to take a
detour through writing down the much larger integer t− s; we instead carry out
a computation on a much smaller number (t − s) mod 2α3β . Continuing in the
same way allows as many as α divisions by 2 and as many as β divisions by
3, reaching the bottom boundary of the subgraph. We reconstruct the original
nodes at this boundary and then continue to the next subgraph.

Note that remainders do not easily allow testing whether t is 0. These tests
are used in Section 4, but only as a constant-factor optimization to save time in
enumerating some cost-0 edges. What is important is testing divisibility of t− s
by 2 or 3. Similarly, there is no reason to limit attention to increasing chains.

We have found it simplest to allow negative remainders inside each subgraph,
skipping all intermediate mod operations. For example, if t mod 2α3β happens to
be 0 and s = 2, then we write down (0−2)/2 = −1 rather than 2α−13β−1. The
integer operations inside each subgraph then consist of divisions by 2, divisions
by 3, and subtractions of elements of S. To reconstruct a node at the bottom
boundary of the subgraph, we first merge the sequence of operations into a
single subtract-and-divide operation, and then apply this subtract-and-divide
operation to the top node t. For example, we merge “subtract 1, divide by 2,
subtract 1, divide by 2” into “subtract 3, divide by 4” and then directly compute
(t− 3)/4, without computing the large intermediate result (t− 1)/2. Note that
arbitrary divisions of O(log n)-bit numbers take time (log n)1+o(1), as shown by

16 Bernstein, Chuengsatiansup, Lange

•
?

α

?

�
β

�
•

+

•
•
•
•

•
•

+

•
•
•
•

◦
◦
⊕
ut
ut
•
•

•
•
ut
•
•

•
•
ut
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•

•
•
•

Fig. 3: Example of graph division where α = β = 2.

Cook in [9, pages 81–86], using Simpson’s division method from [21, page 81]
on top of Toom’s multiplication method from [22].

In the case α = β = 2 depicted in Figure 3, we begin by computing the small
integer n mod 2232 at the top of the first subgraph. This is enough information
to reconstruct the pattern of edges involving as many as α = 2 divisions by 2 and
as many as β = 2 divisions by 3. The boundary nodes involving 2 divisions by 2
are marked ◦ and ⊕. These boundary nodes have values close to n/22, n/(223),
and n/(2232); we reconstruct these values, reduce them again, and continue with
the next subgraph down and to the left. Similarly, the boundary nodes involving
2 divisions by 3 are marked + and ⊕, with values close to n/32, n/(2 · 32), and
n/(2232); we reconstruct these values, reduce them again, and continue with the
next subgraph down and to the right. The fourth subgraph similarly begins by
reconstructing its boundary nodes, marked ⊕ and ut.

A Python script suitable for experiments appears in Appendix C.

Example 1. Consider the problem of computing double-base chains for n = 917,
using S = {−1, 0, 1}. We use the same cost model as in previous examples. We
take α = β = 2.

Since 917 ≡ 17 (mod 2232), we compute a subgraph of size 2×2 starting with
17. We shall refer to this subgraph as Subgraph17. The result of this computation
is depicted using a 3-dimensional graph in Figure 4a and using a projective view
in Figure 4b.

To reconstruct nodes from the original graph at the bottom boundary of the
subgraph, we start at the root, or more generally at any known node in the
original graph, and then follow a path to the boundary. Consider, for example,
the node (2, 0, 4) in Figure 4a. This 4 was (optimally) computed as (17−1)/2/2,
i.e., as (17−1)/4, so we compute (917−1)/4 = 229, obtaining the corresponding
node (2, 0, 229) in the original graph. Similarly, the 5 in (2, 0, 5) was (optimally)

Double-base scalar multiplication revisited 17

17
ww
��

��

9

��
��

��

8

��
��

6

��
��

5

��

4

��

3

��
�� ��

2

��2

$$
1

$$

1
ww
��1

0
• • •

• • •
• • •

(a) Three-dimensional view of Subgraph17

17

}} !!
8, 9

}} !!

6

}} !!
4, 5

!!

3

}} !!

2

}}
1, 2

!!

1

}}
0, 1

(b) Projection of Subgraph17

Fig. 4: Example of a subgraph of 17 ≡ 917 (mod 2232)

13, 14

!!

13, 14

}} !!
4, 5

!!

6, 7

}} !!

4, 5

}} !!
1, 2 // 3, 4

!!

2, 3

}} !!

1, 2

}}
1, 2

!!

0, 1

}}
0, 1

Fig. 5: Example of right boundary and subgraph computation

computed as ((17 + 1)/2 + 1)/2 = (17 + 3)/4, so we compute (917 + 3)/4 = 230,
obtaining the corresponding node (2, 0, 230) in the original graph. There are
several ways to speed this up further, such as computing 230 as 229 + 5− 4, but
computing each node separately is adequate for our (log n)2.5+o(1) result.

Once we have recomputed all nodes in the original graph at the bottom
boundary of the subgraph, we move to the next subgraph, for example replacing
229 with 229 mod 2232 = 13 and replacing 230 with 230 mod 2232 = 14. Figure 5
shows the values provided as input (left) and obtained as output (right) in the
next subgraph to the bottom left. Similarly, Figure 6 shows the values provided
as input (left) and obtained as output (right) in the next subgraph to the bottom
right.

These procedures of computing intermediate and boundary nodes repeat,
eventually covering all subgraphs of the original graph, although one can save
a constant factor by skipping computations of some subgraphs. For example,

18 Bernstein, Chuengsatiansup, Lange

30

}}

30

}} !!
15

}}

15

}} !!

10

}} !!
7, 8 // 7, 8

!!

5

}} !!

3

}}
2, 3

!!

1, 2

}}
0, 1

Fig. 6: Example of left boundary and subgraph computation

25, 26

}} !!

25, 26

}} !!
12, 13

}}

8, 9

!!

12, 13

}} !!

8, 9

}} !!
6, 7 2, 3 // 6, 7

!!

4, 5

}} !!

2, 3

}}
2, 3

!!

1, 2

}}
0, 1

Fig. 7: Example of both boundaries and subgraph computation

Figure 7 shows the fourth subgraph computation. Reconstruction shows that
the bottom 0, 1 in this subgraph corresponds to 0, 1 in the original graph, so at
this point we have found complete chains to compute 917, and there is no need
to explore further subgraphs below these 0, 1 nodes.

6 Double-base double-scalar multiplication

Our graph-based approaches to finding double-base chains for single-scalar mul-
tiplication can easily be extended to finding double-base chains for double-scalar
multiplication. In this section, we explain how to extend the reduced rectangular
DAG-based approach to finding double-base chains for double-scalar multiplica-
tion.

Recall that inputs for double-scalar multiplication are two scalars (which we
will call n1 and n2), and two points on an elliptic curve (which we will call P
and Q). Given these inputs, the algorithm returns a double-base chain computing

n1P + n2Q, where n1 and n2 are expressed as (n1, n2) =
∑`
i=1(ci, di)2

ai3bi and
pairs (ci, di) are chosen from a precomputed set S.

Note that the precomputed set S for double-scalar multiplication is defined
differently from the single-scalar case. Recall that in the latter case, each member
in the set S is a single integer which is the coefficient in a double-base chain

Double-base scalar multiplication revisited 19

representation as defined in Section 1.1. In the former case, each member in the
set S is a pair of integers (ci, di) where ci and di are coefficients in a double-base
chain representation of n1 and n2 respectively.

If di = 0 this means that the precomputed point depends only on P , e.g.,
(2, 0), (3, 0), (4, 0), (5, 0) correspond to 2P , 3P , 4P , 5P respectively. Similarly,
if ci = 0 this means that the precomputed point depends only on Q, e.g., (0, 2),
(0, 3), (0, 4), (0, 5) correspond to 2Q, 3Q, 4Q, 5Q respectively. If both ci and di
are nonzero, this means that the precomputed points depend on both P and Q,
e.g., (1, 1), (1,−1), (2, 1), (2,−1), (1, 2), (1,−2) correspond to P + Q, P − Q,
2P +Q, 2P −Q, P + 2Q, P − 2Q respectively.

For example, S = ±{(0, 0), (1, 0), (0, 1), (1, 1), (1,−1)} or equivalently S =
{(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1), (1, 1), (−1,−1), (1,−1), (−1, 1)} means that
we allow addition of 0 (no addition), P,−P,Q,−Q, (P +Q), (−P −Q), (P −Q),
and (−P +Q) in double-base chains. Note that in this case, S requires space to
store 4 points (since negation can be computed on the fly) but it costs only 2
point additions for precomputation, namely, P +Q and P −Q.

The algorithm for generating double-base chains for double-scalar multipli-
cation starts by computing t1 ≡ n1 (mod 2α3β) and t2 ≡ n2 (mod 2α3β), and
then initializes the root node t0,0 to the pairs (t1, t2), i.e., the reduced repre-
sentation of (n1, n2). For each pair (tr, ts) at each node ti,j where 0 ≤ i ≤ α
and 0 ≤ j ≤ β, we follow a subgraph computation similar to that explained in
Section 5, namely,

• If t′1 = (tr − c)/2 and t′2 = (ts − d)/2 are integers, where (c, d) is from the
set S, then insert this pair (t′1, t

′
2) to the node ti+1,j if it does not exist yet

or update the cost if cheaper.
• If t′′1 = (tr − c)/3 and t′′2 = (ts − d)/3 are integers, where (c, d) is from the

set S, then insert this pair (t′′1 , t
′′
2) to the node ti,j+1 if it does not exist yet

or update the cost if cheaper.

Once all pairs (tr, ts) at all nodes ti,j are visited, apply the boundary node com-
putation. The algorithm continues by repeating subgraph and boundary node
computation until pairs (c, d) ∈ S are reached in a subgraph for which the values
of (tr, ts) at the root node are less than 2α3β as integers, i.e., without perform-
ing modular reduction (see example below). Notice that the concepts of reduced
representative, boundary nodes, and subgraphs are the same as explained in
Section 5.

Example 2. Consider the problem of computing double-base chains for n1 = 83
and n2 = 125, using S = ±{(0, 0), (1, 0), (0, 1), (1, 1), (1,−1)}, and taking α =
β = 2. We use the same cost model as in previous examples.

Since 83 ≡ 11 (mod 2232) and 125 ≡ 17 (mod 2232), we compute a sub-
graph of size 2 × 2 starting with (11, 17). We shall refer to this subgraph as
Subgraph1117. Figure 8 depicts the result of this computation.

To compute the next subgraphs, we have to recompute all pairs of boundary
nodes as if they were computed from the original integers (no modular reduction
by 2232). For example, the pair (2, 4) of the leftmost node, are computed as

20 Bernstein, Chuengsatiansup, Lange

(11, 17)

|| ""
(5,8),(5,9),
(6,8),(6,9)

|| ""

(4, 6)

|| ""
(2,4),(2,5),
(3,4),(3,5)

""

(2, 3)

|| ""

(1, 2)

||
(1, 1), (1, 2)

""

(0, 1), (1, 1)

||
(0,0),(0,1),
(1,0),(1,1)

Fig. 8: Computation of Subgraph1117

(20,31),(20,32),
(21,31),(21,31)

|| �&
(10,15),(10,16),
(11,15),(11,15)

|| ""

(7,10), (7,11)

|| �&
(5,7),(5,8),
(6,7),(6,8)

""

(3, 5), (4, 5)

|| ""

(2,3),(2,4),
(3,3),(3,4)

||
(1,2),(1,3),
(2,2),(2,3)

""

(1,1),(1,2),
(2,1),(2,2)

||
(0,1),

(1,0),(1,1)

Fig. 9: Computation of Subgraph2031, the bottom left to Subgraph1117. Note
that pairs from Subgraph1117 are labeled with bold face and doubled arrows;
pairs in S are labeled in italics.

2 = ((11 − 1)/2 − 1)/2 and 4 = ((17 − 1)/2)/2. Therefore, these numbers map
to ((83− 1)/2− 1)/2 = 20 and ((125− 1)/2)/2 = 31.

Apply similar recomputations for all pairs along the bottom left boundary
nodes: (2,5), (3,4), (3,5) map to (20,32), (21,31), (21,32); (1,1), (1,2) map to
(7,10), (7,11); and (0,0), (0,1), (1,0), (1,1) map to (2,3), (2,4), (3,3), (3,4) re-
spectively. We shall refer to this subgraph as Subgraph2031. Figure 9 depicts
the result of the boundary node recomputation and the subgraph computation
of that subgraph.

Double-base scalar multiplication revisited 21

(9,14)

x� ""
(4,7), (5,7)

x� ""

(3, 5)

|| ""
(2,3),(2,4),
(3,3),(3,4)

""

(1,2),(1,3),
(2,2),(2,3)

|| ""

(1, 2)

||
(0,1),(0,2),
(1,1),(1,2)

""

(0 , 1), (1 , 1)

(0 , 1)

Fig. 10: Computation of Subgraph0914, the bottom right to Subgraph1117. Note
that pairs from Subgraph1117 are labeled with bold face and doubled arrows;
pairs in S are labeled in italics; dotted line means no computations.

Similar recomputations are also applied to all pairs along the bottom right
boundary nodes of Subgraph1117. We shall refer to this subgraph as Subgraph0914.
Figure 10 depicts the result of the boundary node recomputation and the sub-
graph computation of that subgraph.

Notice that we do not need to compute the subgraph underneath Sub-
graph1117 (i.e., the bottom right of Subgraph2031 and bottom left of Sub-
graph0914) because (1) the root nodes of Subgraph2031 and Subgraph0914 are
already less than 2232, meaning that the reduced representations are the same
as without performing modular reduction; (2) both bottom left and bottom
right boundaries reach pairs (c, d) ∈ S, i.e., both left and right child nodes of
(2,3),(2,4),(3,3),(3,4) reach pairs in S.

We continue recomputing the bottom left boundary of Subgraph2031. We
shall refer to this subgraph as Subgraph0507. Figure 11 depicts the result of
this computation. We also continue recomputing the bottom right boundary
of Subgraph0914. We shall refer to this subgraph as Subgraph0102. Figure 12
depicts the result of this computation. We do not perform further subgraph
computation because Subgraph0507 and Subgraph0102 reach pairs (c, d) ∈ S.
An overview of subgraphs is depicted in Figure 13.

7 Results and comparison

We conducted several experiments to measure the performance of our algorithms
for single-scalar and double-scalar multiplications where in each case we com-
pared to both single-base and double-base algorithms, namely, we considered
single-base single-scalar, double-base single-scalar, single-base double-scalar, and
double-base double-scalar multiplications. These experiments were designed to

22 Bernstein, Chuengsatiansup, Lange

(5,7),(5,8),
(6,7),(6,8)

|| �&
(2,3),(2,4),
(3,3),(3,4)

|| ""

(1,2),(1,3),
(2,2),(2,3)

|| �&
(1,1),(1,2),
(2,1),(2,2)

(0,1),(0,2),
(1,1),(1,2)

(0,1),
(1,0),(1,1)

Fig. 11: Computation of Subgraph0507, the bottom left to Subgraph2031. Note
that pairs from Subgraph2031 are labeled with bold face and doubled arrows;
pairs in S are labeled in italics; dotted lines mean no computations.

(1,2)

x� ""
(0,1),(1,1)

x�

(0 , 1)

(0,1)

Fig. 12: Computation of Subgraph0102, the bottom right to Subgraph0914. Note
that pairs from Subgraph0914 are labeled with bold face and doubled arrows;
pairs in S are labeled in italics; dotted lines mean no computations.

separately measure the performance due to the new tripling formulas, the per-
formance due to the graph-based approach to generate double-base chains, and
the overall performance of combining these two. Comparisons among various
algorithms and previous results are also presented.

In all experiments we used at least 1000 randomly chosen integers between 0
and 2`−1. The average number of multiplications observed in these experiments,
and the average divided by `, are rounded to a limited number of digits after
the decimal point and reported below as “Mults” and “Mults/`”. The rounding
means that dividing “Mults” by ` does not exactly produce “Mults/`”.

Double-base scalar multiplication revisited 23

Subgraph1117

Subgraph2031 Subgraph0914

Subgraph0507 Subgraph0102

Fig. 13: An overview of subgraphs. Note that dotted lines mean no computation
for that subgraph.

7.1. Overall performance. To illustrate the overall performance when using
the new tripling formulas together with optimal double-base chains, we per-
formed experiments on many different sets of coefficients focusing on 256-bit
scalars. In these experiments, we used the traditional S = 0.8M and Ma =
M2 = A = 0M.

We used mixed coordinate systems: projective coordinates as input to dou-
bling and tripling mixed with extended coordinates as input to addition. Each
“×2+c” and “×3+c” thus produces projective coordinates as output but uses
extended coordinates internally if c 6= 0. We take P in affine coordinates but
compute further multiples cP in extended coordinates: an inversion to convert
to affine coordinates is not worthwhile.

Recall the operation costs shown in Table 1: a doubling without an addition
costs 3M + 4S; a tripling without an addition costs 9M + 3S; a doubling fol-
lowed by a mixed addition of an extended point costs 11M + 4S (4M + 4S for
the doubling producing extended coordinates, and 7M for the mixed addition
producing projective coordinates); a doubling followed by a mixed addition of
an affine point costs 10M + 4S; a tripling followed by a mixed addition of an
extended point costs 18M + 3S; a tripling followed by a mixed addition of an
affine point costs 17M + 3S.

For double-base single-scalar multiplication, we considered many sets of co-
efficients, including those in [3]. Table 2 shows the results from the four best
coefficient sets S, along with S = {−1, 0, 1} for comparison. Mults/` denotes the
number of field multiplications per bit, including the cost of initial cP computa-
tions and the cost of the subsequent double-base chain. The best result is 7.47M
per bit to compute scalar multiplication. A comparison to previous single-scalar
multiplication results is presented in Section 7.5 and Table 9.

For double-base double-scalar multiplication, we considered all sets of coeffi-
cients as in [18], namely, S1 = ±{(0, 0), (1, 0), (0, 1), (1, 1), (1,−1)} by precom-
puting P+Q and P−Q, S5 = S1∪±{(5, 0), (0, 5)} by precomputing 5P and 5Q in
addition to S1, S7 = S5∪±{(7, 0), (0, 7)} by precomputing 7P and 7Q in addition

24 Bernstein, Chuengsatiansup, Lange

Table 2: New results for double-base single-scalar multiplication for 256-bit num-
bers

Mults Mults/` S Pre cost Table size

1994.84 7.79233 ±{0, 1} – 1
1915.82 7.48369 ±{0, 1, 2, 4, 5, 7, 11, 13} 44.4M 7
1914.77 7.47959 ±{0, 1, 5, 7, 11, 13, 17, 19, 23, 25} 76.4M 9
1913.14 7.47320 ±{0, 1, 5, 7, 11, 13, 17, 19} 60.4M 7
1912.91 7.47229 ±{0, 1, 2, 4, 5, 7, 11, 13, 17, 19} 60.4M 9

Note: “Pre cost” denotes the precomputation cost. This cost is already included in the
first column.

to S5, and S52 = S5 ∪ ±{(1, 5), (1,−5), (5, 1), (5,−1), (5, 5), (5,−5)} by precom-
puting P+5Q,P−5Q, 5P+Q, 5P−Q, 5P+5Q and 5P−5Q extra to S5. We also
considered sets of coefficients that we label S5a, S5b, S5c, S5d, S5e, S7a, S7b, S7c,
Sbest1 (see below). Sets S5∗ extend S5 to include more precomputation points.
Similarly, sets S7∗ extend S7 to include more precomputation points. Set Sbest1

is derived from the best precomputation set of the double-base single-scalar to
work for double-base double-scalar multiplication. Table 3 summarizes precom-
putation sets for double-base double-scalar multiplication.

The results from the four best coefficient sets S are shown in Table 4 along
with the result using S1 = ±{(0, 0), (1, 0), (0, 1), (1, 1), (1,−1)} for comparison.
Note that these costs already include the cost of precomputation. The best result
is 2250.76M using set S5e with table size 16.

7.2. More curve shapes, more tripling formulas, more S/M ratios. We
also conducted experiments to observe the impact of our algorithms performed
on other curve shapes of interest, including traditional a = −3 short Weierstrass
curves in Jacobian coordinates and twisted Hessian curves in projective coordi-
nates. We considered several coefficient sets but, for each curve shape, present
only the coefficient set producing the best results for that curve shape. In or-
der to explicitly distinguish the gain due to the new tripling formulas from the
gain due to the optimal double-base chain generation algorithm, we also con-
sidered twisted Edwards curves with the old tripling formulas. We also varied
the ratio of costs between field squaring and field multiplication, considering
S = 1M, S = 0.8M, and S = 0.67M. All of these experiments used double-base
single-scalar multiplications with 256-bit scalars. Table 5 shows this comparison
expressed in the number of field multiplications per bit.

7.3. Comparison of tree-based vs. graph-based for single scalars. To
compare the gain due to the optimal double-base chain generation algorithms
with the previous (non-optimal) heuristic algorithms, we present the cost to per-
form scalar multiplication together with the cost to generate double-base chains.
The former is measured by counting the number of field multiplications needed
to perform scalar multiplication. The latter is measured by counting the number
of nodes generated during the double-base chain generation of each algorithm,

Double-base scalar multiplication revisited 25

Table 3: Precomputation sets for double-base double-scalar multiplications
Set S Precomputation Pre cost |T |

S1 = ±{(0, 0), (1, 0), (0, 1), P+Q,P−Q 12.0M 4
(1, 1), (1,−1)}

S5 = S1 ∪ ±{(5, 0), (0, 5)} 5P, 5Q (and S1) 52.8M 6

S7 = S5 ∪ ±{(7, 0), (0, 7)} 7P, 7Q (and S5) 68.8M 8

S52 = S5 ∪ ±{(1, 5), (1,−5), P+5Q,P−5Q, 5P+Q, 96.8M 12
(5, 1), (5,−1), (5, 5), 5P−Q, 5P+5Q, 5P−5Q
(5,−5)} (and S5)

S5a = S5 ∪ ±{(2, 0), (0, 2), 2P, 2Q, 4P, 4Q (and S5) 52.8M 10
(4, 0), (0, 4)}

S5b = S5a ∪ ±{(1, 2), (1,−2), P+2Q,P−2Q, 2P+Q, 136.8M 22
(2, 1), (2,−1), (1, 4), 2P−Q,P+4Q,P−4Q,
(1,−4), (4, 1), (4,−1), 4P+Q, 4P−Q,P+5Q,
(1, 5), (1,−5), (5, 1), P−5Q, 5P+Q, 5P−Q
(5,−1)} (and S5a)

S5c = S5a ∪ ±{(2, 2), (2,−2), 2P+2Q, 2P−2Q, 4P+4Q, 100.8M 16
(4, 4), (4,−4), (5, 5), 4P−4Q, 5P+5Q, 5P−5Q
(5,−5)} (and S5a)

S5d = S5a ∪ ±{(2, 4), (2,−4), 2P+4Q, 2P−4Q, 4P+2Q, 148.8M 22
(4, 2), (4,−2), (2, 5), 4P−2Q, 2P+5Q, 2P−5Q,
(2,−5), (5, 2), (5,−2), 5P+2Q, 5P−2Q, 4P+5Q,
(4, 5), (4,−5), (5, 4), 4P−5Q, 5P+4Q, 5P−4Q
(5,−4)} (and S5a)

S5e = S5a ∪ ±{(1, 5), (1,−5), P+5Q,P−5Q, 5P+Q, 96.8M 16
(5, 1), (5,−1), (5, 5), 5P−Q, 5P+5Q, 5P−5Q
(5,−5)} (and S5a)

S7a = S5a ∪ ±{(7, 0), (0, 7)} 7P, 7Q (and S5a) 68.8M 12

S7b = S5b ∪ ±{(7, 0), (0, 7), 7P, 7Q,P+7Q,P−7Q, 180.8M 28
(1, 7), (1,−7), (7, 1), 7P+Q, 7P−Q (and S5b)
(7,−1)

S7c = S5c ∪ ±{(7, 0), (0, 7), 7P, 7Q, 7P+7Q, 7P−7Q 132.8M 20
(7, 7), (7,−7) (and S5c)

Sbest1 = S1 ∪ ±{(2, 0), (0, 2), 2P, 4P, 5P, 7P, 11P, 13P, 132.8M 20
(4, 0), (0, 4), (5, 0), 17P, 19P, 2Q, 4Q, 5Q,
(0, 5), (7, 0), (0, 7), 7Q, 11Q, 13Q, 17Q, 19Q
(11, 0), (0, 11), (13, 0), (and S1)
(0, 13), (17, 0), (0, 17),
(19, 0), (0, 19)}

Note: “Pre cost” denotes the precomputation cost. “|T |” denotes the table size.

namely, the tree-based [15] (for double-base single-scalar), tree-JBT [18] (for
double-base double-scalar), DAG-based (DAG, Section 3), rectangular DAG-
based (rDAG, Section 4), and reduced rectangular DAG-based (rrDAG, Sec-
tion 5). Note that all our DAG-based algorithms are applicable for both double-
base single-scalar and double-base double-scalar.

26 Bernstein, Chuengsatiansup, Lange

Table 4: New results for double-base double-scalar multiplication for 256-bit
numbers

Mults Mults/` S Table size

2351.86 9.18695 S1 4

2266.32 8.85281 S5d 22
2264.67 8.84637 S5b 22
2251.70 8.79570 S52 12
2250.76 8.79203 S5e 16

Table 5: Impact of other tripling formulas, curve shapes, and S/M ratios on
double-base single-scalar for 256-bit numbers

Curve shape
S/M ratio

1 0.8 0.67

Jacobian-3 [5] - 9.34297 -
(new) 10.20950 9.12516 8.39722

Hessian [4] - 8.77382 -
(new) 9.16351 8.52279 8.09017

Twisted Edwards [19] 8.40625 7.62109 -
(new) 8.27195 7.52247 7.01979

Twisted Edwards (new formulas) 8.20036 7.47415 6.97923

The number of nodes together with the operation cost per node reflect the
time required to run these algorithms. We categorize nodes into 2 types, ones
with operation cost log2 n and ones with operation cost log2 2α3β . In tree-based,
tree-JBT, DAG-based and rDAG-based algorithms, only the first type appears.
In rrDAG-based, both types appear; nodes with log2 2α3β operation cost are
intermediate nodes while nodes with log2 n operation cost are boundary nodes.
The cost to generate double-base chains is computed using the number of nodes
and operation cost per node.

We emphasize that the tree-based and tree-JBT algorithms do not produce
optimal chains while DAG-based, rDAG-based and rrDAG-based algorithms do
produce optimal chains. Beware that these costs have somewhat high variance,
and this variance is visible despite the number of experiments that we carried
out.

Table 6 displays the results of these experiments for double-base single-scalar
multiplications using 256-bit scalars, assuming S = 0.8M. We varied the bound
B used for tree pruning, i.e., the maximum number of nodes kept for each level
in the tree-based approach, by using B = 102, B = 103, B = 104, and B = 105;
costs increase as B increases, until B is large enough to eliminate the pruning.
For the rrDAG, we set the size of subgraphs to be α = b(log2 n)0.5e and β =
b(log3 n)0.5e. These experiments focus on the case where no precomputation is
allowed, i.e., S = {−1, 0, 1}, for comparability to previous work using this S.

These results suggest that in double-base single-scalar multiplication only the
most extreme pruning produces results faster with the tree-based method than

Double-base scalar multiplication revisited 27

Table 6: Tree-based and graph-based comparison for 256-bit numbers
Method Mults Mults/` Optimal Nodes Cost

T
re

e

B = 102 2035.56 7.95141 no 6072 + 0 1554432
B = 103 2034.46 7.94711 no 41948 + 0 10738688
B = 104 2034.46 7.94711 no 171739 + 0 43965184
B = 105 2034.46 7.94711 no 173206 + 0 44340736

G
ra

p
h DAG 1994.83 7.79230 yes 10449 + 0 2674944

rDAG 1994.83 7.79230 yes 40845 + 0 10456320
rrDAG 1994.83 7.79230 yes 4607 + 38106 2574244

Table 7: Tree-based and graph-based comparison at 256-bitlength for double-
based double-scalar multiplication

Method Mults Mults/` Optimal Nodes Cost

Tree-JBT 2392.17 9.34441 no 34339 + 0 8790841
DAG 2335.97 9.12488 yes 40309 + 0 10319079
rDAG 2335.97 9.12488 yes 80193 + 0 20529550
rrDAG 2335.97 9.12488 yes 11286 + 93267 6303312

DAG, but trees produce suboptimal chains. It depends on the application, e.g.,
on how often the chain will be used, whether the extra effort is justified. It is
interesting to see that even for large pruning bounds B the tree-based algorithm
does not reach optimal chains.

The results clearly show the obvious savings of rrDAG over rDAG in the cost
of computing the chains and the less obvious benefit of rrDAG over DAG.

7.4. Comparison of tree-based vs. graph-based for double scalars. Ta-
ble 7 displays the results of analogous experiments for double-scalar multiplica-
tions. For the rrDAG, we set the size of subgraphs to be α = b(log2 n)0.5e and
β = b(log3 n)0.5e. Because we focus on counting the number of nodes generated
during the search for the chain and not on finding the best precomputation set,
these experiments focus on the simple case where no precomputation is allowed,
i.e., S = ±{(0, 0), (1, 0), (0, 1)}. Extensive comparisons of the cost to evaluate
double-base double-scalar multiplication where precomputation is allowed can
be found in Table 10.

These results suggest that in double-base double-scalar multiplication the
cost to generate optimal double-base chains using rrDAG is less than using the
tree-JBT approach. Moreover, the non-optimal chains are indeed worse than
the optimal ones. This means that our new rrDAG algorithm achieves a better
performance in both the time to generate double-base chains and the time to
evaluate those chains.

7.5. Single-base vs. double-base for single scalars. We also implemented
a conventional signed-sliding-window double-and-add algorithm for computing
single-base single-scalar and single-base double-scalar multiplication. We used
the fastest formulas available, namely, twisted Edwards with parameter a = −1,

28 Bernstein, Chuengsatiansup, Lange

Table 8: New results for single-base single-scalar multiplication for 256-bit num-
bers

Mults Mults/` S Table size

2170.39 8.47808 ±{0,1} 1
1947.55 7.60762 ±{0,1,3,5,7,. . . ,31} 16
1939.85 7.57752 ±{0,1,3,5,7,. . . ,17} 9
1939.02 7.57428 ±{0,1,3,5,7,. . . ,25} 13
1938.57 7.57252 ±{0,1,3,5,7,. . . ,21} 11

Table 9: Comparison of single-scalar multiplication to previous works
Base Mults Mults/` S Table size

double 2092.60 [14] 8.17422 ±{0, 1} 1
double 1994.84 (new) 7.79233 ±{0, 1} 1

single 1950.60 [19] 7.61953 ±{0, 1, 3, 5, 7, 9, 11, 13, 15} 8
single 1938.57 (new) 7.57252 ±{0, 1, 3, 5, 7,. . . , 21} 11
double 1913.14 (new) 7.47320 ±{0, 1, 5, 7, 11, 13, 17, 19} 7
double 1912.91 (new) 7.47229 ±{0, 1, 2, 4, 5, 7, 11, 13, 17, 19} 9

together with the state-of-the-art technique of using mixed coordinate systems.
We ran the experiment using various precomputation sets, namely, the 21 sets
listed in [3], and 6 other sets: ±{0, 1, 2, 4, 5, 7}, ±{0, 1, 2, 4, 5, 7, 11, 13, 17, 19, 23,
25}, ±{0, 1, 2, 4, 5}, ±{0, 1, 2, 4, 5, 7, 11}, ±{0, 1, 2, 4, 5, 7, 11, 13}, ±{0, 1, 2, 4, 5, 7,
11, 13, 17, 19}.

Note that the set ±{0, 1, 5, 7} was considered in [3]. The reason we also
considered the set ±{0, 1, 2, 4, 5, 7} is that in order to compute 5P we need to
compute 2P and 4P . Therefore, we included 2P and 4P in the precomputed set.
Similar reasons apply to the other 5 extra sets.

Table 8 shows results from the best precomputation sets for single-scalar mul-
tiplication. We also include the case of no precomputation, i.e., S = {−1, 0, 1}.
The best result is 7.57M per bit to compute single-base single-scalar multiplica-
tion.

We compare our results to previous works. Comparison for single-scalar mul-
tiplication is shown in Table 9. If no precomputation is allowed, Doche [14] re-
ported 2092.60M ≈ 8.17`M using “near optimal controlled” method. Our results
show that our algorithm requires only 1994.84M ≈ 7.79`M. For the case that
precomputation is allowed, Bernstein and Lange [5] reported 2038.7M ≈ 7.96`M
using S = ±{0, 1, 3, 5, . . . , 17} with inverted Edwards coordinates. Hisil, Wong,
Carter and Dawson [19] then reported 1950.60M ≈ 7.62`M using “4-NAF”
with mixed (projective/extended) Edwards coordinates and the a = −1 ad-
dition speedup. Table 8 shows that replacing 4-NAF with ±{0, 1, 3, 5, . . . , 21}
does better, needing ≈ 7.57`M. This is further beaten by our best result for
double-base chains, only 1912.91M ≈ 7.47`M.

Double-base scalar multiplication revisited 29

Table 10: Comparison of double-scalar multiplication to previous works
B Method |T | 192-bit 256-bit 320-bit 384-bit 448-bit 512-bit

si
n
g
le

s.sld ω=2 [20] 16 2355 3140 3925 4710 5495 6280
s.sld ω=3 [20] 34 2286 3049 3811 4573 5335 6097
inter ω=4 [20] 20 2295 3060 3825 4590 5356 6121
inter ω=5 [20] 44 2294 3058 3823 4587 5352 6116
JSF [18] 4 2044 2722 3401 4062 4758 5436

d
o
u
b
le

RHBTJF [1] 2 1997 2661 3326 3990 4654 5319
Tree-JBT [18] 4 1953 2602 3248 3896 4545 5197
RHBTJF + new tpl (new) 2 1946 2594 3241 3889 4536 5183
Tree-JBT5 [18] 6 1920 2543 3168 3792 4414 5042
HBTJF [1] 14 1914 2530 3145 3761 4376 4992
Tree-JBT7 [18] 8 1907 2521 3137 3753 4365 4980
Tree-JBT52 [18] 12 1890 2485 3079 3677 4270 4862
HBTJF + new tpl (new) 14 1859 2456 3053 3650 4247 4844

si
n
g
le

slide ω=3 4 1884 2494 3103 3715 4324 4935
slide ω=4 8 1838 2424 3009 3595 4181 4767
slide ω=5 16 1836 2391 2944 3500 4055 4610
slide ω=6 32 1931 2478 3016 3550 4084 4617

d
o
u
b
le

Tree-JBT + new tpl (new) 4 1848 2467 3074 3695 4314 4919
Tree-JBT5 + new tpl (new) 6 1823 2408 3010 3592 4182 4792
Tree-JBT7 + new tpl (new) 8 1800 2394 2973 3554 4142 4727
Tree-JBT52 + new tpl (new) 12 1787 2354 2918 3489 4056 4621
rrDAG (new) 4 1768 2352 2937 3521 4105 4690
rrDAG5 (new) 6 1748 2315 2883 3450 4018 4585
rrDAG7 (new) 8 1734 2292 2851 3410 3969 4527
rrDAG52 (new) 12 1709 2252 2794 3337 3879 4422

Note: “B” in the first column specifies the base used. Abbreviations in the second
column: “s.sld” means simutaneous sliding (precompute ciP + diQ), “inter” means
interleaving (precompute multiples of P and Q individually, i.e., ciP and diQ), “slide”
means sliding window, and “new tpl” means using our new tripling formulas. “|T |” in
the third column denotes the table size.

7.6. Single-base vs. double-base for double scalars. Table 10 shows an
analogous comparison for double-scalar multiplication. The results show that
single-base signed-sliding-window methods use fewer multiplications than double-
base Tree-JBT (with old tripling formulas) for double-scalar multiplication. Our
rrDAG algorithms, even without precomputations, use fewer multiplications
than signed-sliding-window methods with the best precomputation. This means
that our algorithm is less costly and at the same time requires less space for
look-up tables.

The Tree-JBT and JSF costs in Table 10 are copied from [18] which obtained
by implicitly converting precomputed points into affine coordinates. However,
these cost do not include the cost of conversion. Therefore, the total cost to
perform scalar multiplication using Tree-JBT and JSF would be higher than the

30 Bernstein, Chuengsatiansup, Lange

costs shown in the table. The other costs in Table 10 are the total cost to perform
scalar multiplication.

The results attributed to [20] are quoted from [20] for 160-bit integers; we
extrapolated linearly to larger bitlengths. The sliding-window results and rrDAG
results in Table 10 are from our own experiments.

To summarize, our new double-base chains are (for 256-bit scalars) more
than 6% better than all previous results for double-scalar multiplication, and
more than 10% better than all previous double-base results for double-scalar
multiplication.

References

[1] Jithra Adikari, Vassil S. Dimitrov, Laurent Imbert, Hybrid binary-ternary number
system for elliptic curve cryptosystems, IEEE Transactions on Computers 60
(2011), 254–265. Citations in this document: §10, §10.

[2] Rana Barua, Tanja Lange (editors), Progress in cryptology — INDOCRYPT 2006,
7th international conference on cryptology in India, Kolkata, India, December 11–
13, 2006, proceedings, Lecture Notes in Computer Science, 4329, Springer, 2006.
ISBN 3-540-49767-6. See [17].

[3] Daniel J. Bernstein, Peter Birkner, Tanja Lange, Christiane Peters, Optimizing
double-base elliptic-curve single-scalar multiplication, in Indocrypt 2007 (2007),
167–182. URL: https://eprint.iacr.org/2007/414. Citations in this document:
§1.1, §2.1, §7.1, §7.5, §7.5.

[4] Daniel J. Bernstein, Chitchanok Chuengsatiansup, David Kohel, Tanja Lange,
Twisted Hessian curves, in Latincrypt 2015 (2015), 269–294. URL: https://

eprint.iacr.org/2015/781. Citations in this document: §1.1, §1.1, §1.1, §1.1,
§5.

[5] Daniel J. Bernstein, Tanja Lange, Analysis and optimization of elliptic-curve
single-scalar multiplication, in Finite fields and applications Fq8 (2008), 1–19.
URL: https://cr.yp.to/antiforgery/efd-20071204.pdf. Citations in this doc-
ument: §5, §7.5.

[6] Daniel J. Bernstein, Tanja Lange (editors), Explicit Formulas Database, accessed
3 October 2015 (2015). URL: https://hyperelliptic.org/EFD. Citations in this
document: §2.3.

[7] Joppe W. Bos, Thorsten Kleinjung, ECM at work, in Asiacrypt 2012 (2012),
467–484. URL: https://eprint.iacr.org/2012/089. Citations in this document:
§1.1, §1.1.

[8] Alex Capuñay, Nicolas Thériault, Computing optimal 2-3 chains for pairings, in
Latincrypt 2015 (2015), 225–244. Citations in this document: §1.2.

[9] Stephen A. Cook, On the minimum computation time of functions, Ph.D. thesis,
Department of Mathematics, Harvard University, 1966. URL: https://cr.yp.

to/bib/1966/cook.html. Citations in this document: §5.2.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Intro-
duction to algorithms, MIT Press, 2009 (3rd edition). Citations in this document:
§3.4.

[11] Edsger W. Dijkstra, A note on two problems in connexion with graphs, Numerische
Mathematik 1 (1959), 269–271. Citations in this document: §3.

https://eprint.iacr.org/2007/414
https://eprint.iacr.org/2015/781
https://eprint.iacr.org/2015/781
https://cr.yp.to/antiforgery/efd-20071204.pdf
https://hyperelliptic.org/EFD
https://eprint.iacr.org/2012/089
https://cr.yp.to/bib/1966/cook.html
https://cr.yp.to/bib/1966/cook.html

Double-base scalar multiplication revisited 31

[12] Vassil Dimitrov, Laurent Imbert, Pradeep Kumar Mishra, Efficient and se-
cure elliptic curve point multiplication using double-base chains, in Asiacrypt
2005 (2005), 59–78; see also newer version [13]. URL: https://www.iacr.org/
archive/asiacrypt2005/059/059.pdf. Citations in this document: §1.1.

[13] Vassil Dimitrov, Laurent Imbert, Pradeep Kumar Mishra, The double-base num-
ber system and its application to elliptic curve cryptography, Mathematics of Com-
putation 77, 1075–1104; see also older version [12]. URL: https://www.ams.org/
mcom/2008-77-262/S0025-5718-07-02048-0/S0025-5718-07-02048-0.pdf.

[14] Christophe Doche, On the enumeration of double-base chains with applications
to elliptic curve cryptography, in Asiacrypt 2014 (2014). URL: https://eprint.
iacr.org/2014/371. Citations in this document: §7.5, §9.

[15] Christophe Doche, Laurent Habsieger, A tree-based approach for computing
double-base chains, in Information Security and Privacy, 13th Australasian Con-
ference (2008), 433–446. URL: https://web.science.mq.edu.au/~doche/tree_
DBNS.pdf. Citations in this document: §1.2, §1.2, §7.3.

[16] Christophe Doche, Thomas Icart, David R. Kohel, Efficient scalar multiplication
by isogeny decompositions, in Public Key Cryptography 2006 (2006), 191–206.
URL: https://eprint.iacr.org/2005/420. Citations in this document: §1.1.

[17] Christophe Doche, Laurent Imbert, Extended double-base number system with
applications to elliptic curve cryptography, in [2] (2006), 335–348. URL: https://
eprint.iacr.org/2006/330. Citations in this document: §1.1.

[18] Christophe Doche, David R. Kohel, Francesco Sica, Double-base number sys-
tem for multi-scalar multiplications, in Eurocrypt 2009 (2009), 502–517. URL:
https://www.iacr.org/archive/eurocrypt2009/54790501/54790501.pdf. Ci-
tations in this document: §7.1, §7.3, §10, §10, §10, §10, §10, §7.6.

[19] Hüseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, Ed Dawson, Twisted Ed-
wards curves revisited, in Asiacrypt 2008 (2008), 326–343. URL: https://eprint.
iacr.org/2008/522. Citations in this document: §1, §1.1, §2.4, §5, §7.5, §9.

[20] Katsuyuki Okeya, Kouichi Sakurai, Fast multi-scalar multiplication methods on
elliptic curves with precomputation strategy using Montgomery trick, in CHES
2002 (2002), 564–578. Citations in this document: §10, §10, §10, §10, §7.6, §7.6.

[21] Thomas Simpson, Essays on several curious and useful subjects in speculative and
mix’d mathematics, illustrated by a variety of examples, 1740. URL: https://cr.
yp.to/bib/1740/simpson.html. Citations in this document: §5.2.

[22] Andrei L. Toom, The complexity of a scheme of functional elements realizing the
multiplication of integers, Soviet Mathematics Doklady 3 (1963), 714–716. ISSN
0197-6788. Citations in this document: §5.2.

https://www.iacr.org/archive/asiacrypt2005/059/059.pdf
https://www.iacr.org/archive/asiacrypt2005/059/059.pdf
https://www.ams.org/mcom/2008-77-262/S0025-5718-07-02048-0/S0025-5718-07-02048-0.pdf
https://www.ams.org/mcom/2008-77-262/S0025-5718-07-02048-0/S0025-5718-07-02048-0.pdf
https://eprint.iacr.org/2014/371
https://eprint.iacr.org/2014/371
https://web.science.mq.edu.au/~doche/tree_DBNS.pdf
https://web.science.mq.edu.au/~doche/tree_DBNS.pdf
https://eprint.iacr.org/2005/420
https://eprint.iacr.org/2006/330
https://eprint.iacr.org/2006/330
https://www.iacr.org/archive/eurocrypt2009/54790501/54790501.pdf
https://eprint.iacr.org/2008/522
https://eprint.iacr.org/2008/522
https://cr.yp.to/bib/1740/simpson.html
https://cr.yp.to/bib/1740/simpson.html

32 Bernstein, Chuengsatiansup, Lange

A Example of rDAG-based approach

In this appendix we detail the steps in computing double-chains for n = 17 under
the set of coefficients S = {−1, 0, 1} and operation costs according to Table 1,
namely, tripling = 11.4, doubling = 6.2, doubling followed by addition and/or
subtraction by one = 13.2, and tripling followed by addition and/or subtraction
by one = 19.4.

The algorithm starts by initializing (0, 0, 17).

At (0, 0, 17): since 17 is odd, there are 3 outgoing edges to:
- (1, 0, 8) having cost 13.2 = 0 + 13.2
- (1, 0, 9) having cost 13.2 = 0 + 13.2
- (0, 1, 6) having cost 19.4 = 0 + 19.4

At (1, 0, 8): since 8 is even, there are 2 outgoing edges to:
- (2, 0, 4) having cost 19.4 = 13.2 + 6.2
- (1, 1, 3) having cost 32.6 = 13.2 + 19.4

At (1, 0, 9): since 9 is odd, there are 3 outgoing edges to:
- (2, 0, 4) having cost 26.4 = 13.2 + 13.2. This node already exists, and the new
cost is more expensive than the previous one. Therefore, the previous cheaper
cost 19.4 remains.
- (2, 0, 5) having cost 26.4 = 13.2 + 13.2
- (1, 1, 3) having cost 24.6 = 13.2 + 11.4. This node also already exists, but the
new cost is cheaper than the previous one. Thus, we update the cost at this node.

At (0, 1, 6): since 6 is even, there are 2 outgoing edges to:
- (1, 1, 3) having cost 25.6 = 19.4 + 6.2. However, this is not cheaper than the
previous cost. Therefore, no update at this node.
- (0, 2, 2) having cost 30.8 = 19.4 + 11.4

At (2, 0, 5): since 5 is odd, there are 3 outgoing edges to:
- (3, 0, 2) having cost 39.6 = 26.4 + 13.2
- (3, 0, 3) having cost 39.6 = 26.4 + 13.2
- (2, 1, 2) having cost 45.8 = 26.4 + 19.4

At (2, 0, 4): since 4 is even, there are 2 outgoing edges to:
- (3, 0, 2) having cost 25.6 = 19.4 + 6.2. This is cheapter than before, so update
the cost.
- (2, 1, 1) having cost 38.8 = 19.4 + 19.4

At (1, 1, 3): since 3 is odd, there are 3 outgoing edges to:
- (2, 1, 1) having new cost 37.8 = 24.6 + 13.2
- (2, 1, 2) having new cost 37.8 = 24.6 + 13.2
- (1, 2, 1) having cost 36 = 24.6 + 11.4

Double-base scalar multiplication revisited 33

At (0, 2, 2): since 2 is even, there are 2 outgoing edges to:
- (1, 2, 1) having no cost update
- (0, 3, 1) having cost 50.2 = 30.8 + 19.4

At (3, 0, 3): since 3 is odd, there are 3 outgoing edges to:
- (4, 0, 1) having cost 52.8 = 39.6 + 13.2
- (4, 0, 2) having cost 52.8 = 39.6 + 13.2
- (3, 1, 1) having cost 51 = 39.6 + 11.4

At (3, 0, 2): since 2 is even, there are 2 outgoing edges to:
- (4, 0, 1) having new cost 31.8 = 25.6 + 6.2
- (3, 1, 1) having new cost 45 = 25.6 + 19.4

At (2, 1, 2): since 2 is even, there are 2 outgoing edges to:
- (3, 1, 1) having new cost 44 = 37.8 + 6.2
- (2, 2, 1) having cost 57.2 = 37.8 + 19.4

At (2, 1, 1), (1, 2, 1) and (0, 3, 1), since 1 ∈ S, continue to next node.

At (4, 0, 2), there are 2 outgoing edges to:
- (5, 0, 1) having cost 59 = 52.8 + 6.2
- (4, 1, 1) having cost 72.2 = 52.8 + 19.4.

At (4, 0, 1), (3, 1, 1), (2, 2, 1), (5, 0, 1) and (4, 1, 1), since 1 ∈ S, continue to
next node.

Once all nodes are visited, by selecting the path with minimum cost, we
obtain the optimal {2, 3} chain, namely 24 + 1, having cost 31.8.

34 Bernstein, Chuengsatiansup, Lange

B Code for rectangular DAG-based algorithm

import math

cost of point arithmetic on twisted Edwards
mad = 7 # mixed addition (Z = 1) need to +1 in case tpl -> mad
add = 8 # general addition need to +1 in case tpl -> add
dbl = 3 + 0.8*4 # doubling
tpl = 9 + 0.8*3 # tripling

w = 1 # max coefficient (d_i)
s = [] # precomputation
for i in range (w,-(w+1),-1):

s.append(i)

def basic(n,s):

amax = int(math.log(n,2) + w + 0.5) + 1 # max power of 2
bmax = int(math.log(n,3) + w + 0.5) + 1 # max power of 3
wmax = 2*w + 1 # max element at (i,j)

init table
table = []
for i in range (amax+1):

table.append([])
for j in range (bmax+1):

table[i].append([])
for k in range (wmax+1):

table[i][j].append([])

table[0][0][0] = [n,0,[0,0,0]] # init root
table[i][j][k] = [data1, data2, data3]
data1 = curr n
data2 = cost to reach this curr n,
data3 = [div 2 or 3, amount add, prev k index]

result = []

for i in range (amax): # for each power of 2
for j in range (bmax): # for each power of 3

base2 = -1
base3 = -1
for k in range (wmax): # for each element at vertex (i,j)

if table[i][j][k] == []: continue
t = table[i][j][k][0]

if t in s and not(t == 0): # reach known chain integer
if len(result) == 0 or table[i][j][k][1] < result[0][1][1]:

result.insert(0,[[i,j,k],table[i][j][k]]) # add result
continue

for ic in range (len(s)): # for each coefficient
c = s[ic]
if (t-c)%2 == 0:

curr2 = (t-c)/2
if base2 == -1: base2 = curr2
idx2 = curr2 - base2
cost = table[i][j][k][1] + dbl
if abs(c) == 1: cost += mad
elif abs(c) > 0: cost += add
if table[i+1][j][idx2] == [] or table[i+1][j][idx2][1] > cost:
update if new number or less cost

table[i+1][j][idx2] = [(t-c)/2,cost,[2,c,k]]

if (t-c)%3 == 0:
curr3 = (t-c)/3
if base3 == -1:

Double-base scalar multiplication revisited 35

if table[i][j+1][0] == []:
base3 = curr3

else:
base3 = table[i][j+1][0][0]

idx3 = curr3 - base3
cost = table[i][j][k][1] + tpl
if abs(c) == 1: cost += mad + 1 # p2e
elif abs(c) > 0: cost += add + 1 # p2e
if table[i][j+1][idx3] == [] or table[i][j+1][idx3][1] > cost:
update if new number or less cost

table[i][j+1][idx3] = [(t-c)/3,cost,[3,c,k]]
return table,result

36 Bernstein, Chuengsatiansup, Lange

C Code for reduced rectangular DAG-based algorithm

import math

cost of point arithmetic on twisted Edwards
mad = 7 # mixed addition (Z = 1) need to +1 in case tpl -> mad
add = 8 # general addition need to +1 in case tpl -> mad
dbl = 3 + 0.8*4 # doubling
tpl = 9 + 0.8*3 # tripling

w = 1 # max coefficient (d_i)
s = [] # precomputation
for i in range (w,-(w+1),-1):

s.append(i)

wmax = 2*w + 1 # max element at (i,j)

amod = 16
bmod = 13

def getchain(table,x,rev):
chain = []
strchain = "" # sequence of (mul,add) e.g., (2,0) (3,0) (3,-1) = 3*(3*(2-0)-0)-1 = 17
[i,j,k] = x[0]
t = x[1][0] # value
d = x[1][2][0] # dbl or tpl
a = x[1][2][1] # add
while i > 0 or j > 0:

k = table[i][j][k][2][2]
if d == 2: i -= 1
elif d == 3: j -= 1
strchain += "(" + str(d) + "," + str(a) + ") "
if rev: chain.insert(0,[d,a])
else: chain.append([d,a])
d = table[i][j][k][2][0]
a = table[i][j][k][2][1]
t = table[i][j][k][0]

return chain

def boundary3(table,idxa,idxb,n,mincost):
i = 0
init = False
for j in range (bmod+1):

for k in range (wmax):

if idxa*amod+i >= len(table): continue
elif idxb*bmod+j >= len(table[idxa*amod+i]): continue
elif k >= len(table[idxa*amod+i][idxb*bmod+j]): continue

if table[idxa*amod+i][idxb*bmod+j][k] == []: continue
if table[idxa*amod+i][idxb*bmod+j][k][1] > mincost[0]: continue

nd = [[idxa*amod+i,idxb*bmod+j,k],table[idxa*amod+i][idxb*bmod+j][k]]
[starting coordinate, table at that coordinate]

ch = getchain(table,nd,True)
chain from that coordinate back to the original n

t = n
for x in ch:

t -= x[1]
t /= x[0]

if not init:
nb = t
t %= 2**amod * 3**bmod
nm = t
table[idxa*amod+i][idxb*bmod+j][k] = [t,nd[1][1],nd[1][2]]
init = True

else:

Double-base scalar multiplication revisited 37

tt = t % (2**amod * 3**bmod)
table[idxa*amod+i][idxb*bmod+j][k] = [nm+(t-nb),nd[1][1],nd[1][2]]

if not init: continue
nb/=3; nm/=3

def boundary2(table,idxa,idxb,n,mincost):
j = 0
init = False
for i in range (amod+1):

for k in range (wmax):

if idxa*amod+i >= len(table): continue
elif idxb*bmod+j >= len(table[idxa*amod+i]): continue
elif k >= len(table[idxa*amod+i][idxb*bmod+j]): continue

if table[idxa*amod+i][idxb*bmod+j][k] == []: continue
if table[idxa*amod+i][idxb*bmod+j][k][1] > mincost[0]: continue

nd = [[idxa*amod+i,idxb*bmod+j,k],table[idxa*amod+i][idxb*bmod+j][k]]
[starting coordinate, table at that coordinate]

ch = getchain(table,nd,True)
chain from that coordinate back to the original n

t = n
for x in ch:

t -= x[1]
t /= x[0]

if not init:
nb = t
t %= 2**amod * 3**bmod
nm = t
table[idxa*amod+i][idxb*bmod+j][k] = [t,nd[1][1],nd[1][2]]
init = True

else:
tt = t % (2**amod * 3**bmod)
table[idxa*amod+i][idxb*bmod+j][k] = [nm+(t-nb),nd[1][1],nd[1][2]]

if not init: continue
nb/=2; nm/=2

def subgraph(table,idxa,idxb,n,check,result,mincost):
for i in range (amod+1): # for each power of 2

for j in range (bmod+1): # for each power of 3
base2 = -1
base3 = -1
for k in range (wmax): # for each element at vertex (i,j)

if idxa*amod+i >= len(table): continue
elif idxb*bmod+j >= len(table[idxa*amod+i]): continue
elif k >= len(table[idxa*amod+i][idxb*bmod+j]): continue

if table[idxa*amod+i][idxb*bmod+j][k] == []: continue
t = table[idxa*amod+i][idxb*bmod+j][k][0]

if table[idxa*amod+i][idxb*bmod+j][k][1] > mincost[0]: continue

check condition
if check:

nd = [[idxa*amod+i,idxb*bmod+j,k],table[idxa*amod+i][idxb*bmod+j][k]]
ch = getchain(table,nd,True)
m = n
for x in ch:

m -= x[1]
m /= x[0]

if m == 1: # reach known chain integer
if len(result) == 0 or table[idxa*amod+i][idxb*bmod+j][k][1] < result[0][1][1]:

result.insert(0,[[idxa*amod+i,idxb*bmod+j,k],table[idxa*amod+i][idxb*bmod+j][k]])
add result
mincost[0] = result[0][1][1]

continue

38 Bernstein, Chuengsatiansup, Lange

for ic in range (len(s)): # for each coefficient
c = s[ic]

if i < amod and (t-c)%2 == 0:
curr2 = (t-c)/2
if base2 == -1: base2 = curr2
idx2 = curr2 - base2
cost = table[idxa*amod+i][idxb*bmod+j][k][1] + dbl
if abs(c) == 1: cost += mad
elif abs(c) > 0: cost += add
if table[idxa*amod+i+1][idxb*bmod+j][idx2] == [] or \

table[idxa*amod+i+1][idxb*bmod+j][idx2][1] > cost:
update if new number or less cost
table[idxa*amod+i+1][idxb*bmod+j][idx2] = [(t-c)/2,cost,[2,c,k]]

if j < bmod and (t-c)%3 == 0 and not (idxa>0 and i==0):
curr3 = (t-c)/3
if base3 == -1:

if table[idxa*amod+i][idxb*bmod+j+1][0] == []:
base3 = curr3

else:
base3 = table[idxa*amod+i][idxb*bmod+j+1][0][0]

idx3 = (k+ic)/3
cost = table[idxa*amod+i][idxb*bmod+j][k][1] + tpl
if abs(c) == 1: cost += mad + 1 # p2e
elif abs(c) > 0: cost += add + 1 # p2e
if table[idxa*amod+i][idxb*bmod+j+1][idx3] == [] or \

table[idxa*amod+i][idxb*bmod+j+1][idx3][1] > cost:
update if new number or less cost
table[idxa*amod+i][idxb*bmod+j+1][idx3] = [(t-c)/3,cost,[3,c,k]]

def advance(n,s):

mincost = [n]

amax = int(math.log(n,2) + w + 0.5) + 1 # max power of 2
bmax = int(math.log(n,3) + w + 0.5) + 1 # max power of 3

init table
table = []
for i in range (amax+1):

table.append([])
for j in range (bmax+1):

table[i].append([])
for k in range (wmax+1):

table[i][j].append([])

table[0][0][0] = [n%(2**amod * 3**bmod),0,[0,0,0]] # init root
table[i][j][k] = [data1, data2, data3]
data1 = curr n
data2 = cost to reach this curr n,
data3 = [div 2 or 3, amount add, prev k index]

result = []

for idxJ in range (bmax/bmod):
for idxI in range (amax/amod):

if idxI > 0:
boundary3(table,idxI,idxJ,n,mincost)

if idxJ > 0:
boundary2(table,idxI,idxJ,n,mincost)

subgraph(table,idxI,idxJ,n,True,result,mincost)
return table,result

