
Searchable Encrypted Relational Databases:
Risks and Countermeasures

Mohamed Ahmed Abdelraheem1, Tobias Andersson1 and Christian
Gehrmann2

1 RISE SICS AB, Lund, Sweden
moh.ahm.abdelraheem@gmail.com, tobias.andersson@ri.se

2 Lund University, Sweden
christian.gehrmann@eit.lth.se

Abstract. We point out the risks of protecting relational databases via
Searchable Symmetric Encryption (SSE) schemes by proposing an infer-
ence attack exploiting the structural properties of relational databases.
We show that record-injection attacks mounted on relational databases
have worse consequences than their file-injection counterparts on un-
structured databases. Moreover, we discuss some techniques to reduce
the effectiveness of inference attacks exploiting the access pattern leak-
age existing in SSE schemes. To the best of our knowledge, this is the
first work that investigates the security of relational databases protected
by SSE schemes.

1 Introduction

One of the practical solutions for searching on encrypted data is provided
by Searchable Symmetric Encryption (SSE) schemes. The very first such
scheme was proposed by Song et al. in [19]. Later, Curtmola et al’s [11] in-
troduced two security notions for SSE schemes, namely, the non-adaptive
semantic security definition and the adaptive semantic security defini-
tion. Subsequent SSE schemes [7,6,5] are all based on Curtmola et al’s
security model. The price of the efficiency offered by SSE schemes comes
at the cost of leaking the frequency of each keyword after it has been
queried. This makes SSE schemes vulnerable to inference attacks [13,4]
which recovers the issued queries by combining their access pattern leak-
age by background information about the protected dataset. Most of the
proposed SSE schemes are designed to protect unstructured document
datasets such as emails or a backup of any sensitive files. However, re-
cently two SSE schemes proposed by Cash et al. [6,5] are designed to
efficiently run and protect relational databases where they achieved a
query speed comparable to the unprotected MySQL (release 5.5) [6,5].

1



In addition to SSE schemes, there are several practical solutions pro-
posed to execute SQL queries on an encrypted database. Recently, Popa
et al. proposed CryptDB as a solution to protect confidentiality for appli-
cations using SQL databases [17]. CryptDB uses column-level encryption
to encrypt the database tables. To enable equality searches, CryptDB uses
deterministic encryption. Order preserving encryption (OPE) is used to
enable range and comparison queries on encrypted data. OPE is the weak-
est encryption scheme used in CryptDB whose design concept is based on
the trade-off between functionality and confidentiality. Recently, Naveed
et al. [16] mounted inference attacks that recovered the plaintext from
CryptDB’s columns protected by deterministic encryption and order pre-
serving encryption schemes.

Another line of research in preserving database privacy is achieved
by distributing and fragmenting the database table across two or more
servers [2,8,10] using vertical fragmentation where the table’s columns are
partitioned across the servers. Privacy in the scheme proposed in [2] is
provided under the assumption that the two cloud servers are unable to
communicate directly with each other. However, privacy in the work pro-
posed in [8,10] is achieved without this assumption where encryption is
used as little as possible and fragmentation is used to provide security by
breaking the associations among the attributes and also to provide func-
tionality by keeping most attributes in plaintext. In the scheme proposed
in [9], privacy is preserved by using fragmentation only and no encryption
is employed. This comes at the cost of saving sensitive data in the clear
at the data owner, i.e. the client. All these privacy constraints schemes
provide efficiency and functionality but at the cost of having plaintext
fields and only encrypting sensitive data which makes them vulnerable
to be attacked by an adversary with background information about the
database. Also adding or modifying a record reveals the relation among
the fragments to passive adversary monitoring the fragments.

Comparing the above methods for searching on encrypted data in
terms of security, one can see that SSE schemes offer better security than
deterministic or order preserving encryption schemes since they do not
leak the frequency of a keyword before querying it. They also provide
better security than the data fragmentation method via privacy con-
straints [8] since they encrypt all the plaintext data and they can also
securely manage a dynamic database [5].

However, SSE schemes suffer from leaking the access pattern of a
queried keyword which make them vulnerable to inference attacks as
demonstrated by Islam et al. [13] and Cash et al. [4]. In this paper, we

2



study the effect of these inference attacks as well as the recent file-injection
attacks [21] on relational databases. We also propose a suitable inference
control to safeguard relational databases secured via SSE schemes from
being completely recovered by strong adversaries with background knowl-
edge about the relational database.

Our Contribution. We exploit the properties of relational databases
and propose an inference attack [13,4] targeting relational databases which
requires only prior knowledge about the frequency of the attribute-value
pairs in the target database. This is a clear advantage over previous in-
ference attacks when it comes to attacking relational databases since our
proposed attack does not require any joint frequency knowledge about
the attribute-value pairs in the target database as done by Cash et al. [4]
and Islam et al. [13] but only frequency knowledge about attribute-value
pairs. We also study the injection attacks [21] in the context of relational
databases protected via SSE schemes. We propose the use of privacy
constraints [2,8,10] to distribute the encrypted index of an SSE scheme
into several fragments or servers to reduce the effectiveness of inference
attacks exploiting the access pattern leakage [13,4] which is inherent in
SSE schemes. Note that the privacy constraints as defined in [2,8,10] were
mainly used to depart completely from the use of encryption or to use
encryption as less as possible. However, in this paper we propose using
them to strengthen the security of SSE schemes against inference attacks.

Related Work. Query recovery attacks exploiting the access pattern
leakage of SSE schemes were proposed by Islam et al. [13] and recently im-
proved by Cash et al. [4]. Both attacks assume background knowledge in
the form of joint frequencies between keywords and were proposed mainly
to deal with unstructured datasets. However, in this work we propose an
inference attack called Relational-Count that uses only knowledge about
the frequency of keywords in the target relational database. We show
that this might lead to complete record-recovery attacks. Moreover, we
propose the use of privacy constraints as an additional countermeasure
that should be used together with padding to reduce the effectiveness of
inference attacks. The recently proposed file-injection attack by Zhang et
al. [21] recovers only a set of keywords in encrypted document and could
be prevented by limiting the content of each injected file. However, in
this paper we show that record-injection attacks have more severe con-
sequences than file-injection attacks since they can achieve full record
recovery on relational databases protected via SSE schemes. Moreover,
record-injection attacks cannot be simply prevented by limiting the con-
tent of an injected record as done to prevent file-injection attacks [21]

3



since that would hinder the addition of complete records to the protected
relational databases.

Organization of the paper. Section 2 gives a brief overview about
SSE schemes. In Section 3, we give a brief overview about inference at-
tacks and propose a new inference attack targeting relational databases.
In Section 4, we point out the security risks of protecting relational
databases via SSE schemes where we show that inference attacks and
record-injection attacks can fully recover a significant number of database
records. In Section 5, we propose the use of privacy constraints as an in-
ference control and countermeasure to reduce the risk of inference attacks.
Section 6 concludes the paper.

2 Background

Definition. An SSE scheme takes as inputs a plaintext database in-
dex together with the client’s secret keys and outputs an encrypted and
frequency-hiding database index where the keywords are encrypted using
a deterministic encryption algorithm and the document/records identi-
fiers are encrypted using a randomized algorithm. When the SSE-protected
database is a relational database (i.e. searchable encrypted relational
databases), a keyword wi will represent an attribute-value pair which
points to a cell in the relational database (i.e wi = (attributei : vi) where
attributei refers to the column name or attribute name and vi refers to the
value of the attribute). All recent SSE schemes follow the adaptive secu-
rity definition proposed by Curtmola et al. [11] where security is achieved
against an honest-but-curious server.

Leakage Profile. An SSE scheme leaks the access pattern: the result size
of the query and the document/record IDs corresponding to the queried
keyword wi and also leaks the search pattern: the fact that whether two
searches are the same or not.

Passive Attacks on SSE Schemes. Two passive attacks against SSE
schemes exploiting the access pattern leakage have been proposed recently
by Islam et al. [13] and later developed by Cash et al. [4]. These passive at-
tacks are inference attacks mounted by an honest-but-curious server who
knows the distribution of the dataset under attack or knows a significant
number of the client’s plaintext documents.

Active Attacks on SSE Schemes. Another class of attacks outlined by
Cash et al. [4] are the chosen-document attacks and the chosen-query at-
tacks. Both attacks are mounted by an active adversary who is somehow

4



capable of deceiving the client into including her own chosen-document
into the documents set as well as into choosing her favorite queries re-
spectively. Recently, Zhang et al. [21] presented a concrete description
of a chosen-document attack (file-injection) where the attacker is able
to recover all the queries without any prior knowledge about the client’s
dataset under attack. The equivalent of file-injection in the context of
searchable encrypted relational databases is record-injection and it has
worse consequences that go beyond query recovery, namely, full record
recovery or partial record recovery (cf. Section 4.2).

3 Inference Attacks

Inference attacks are mounted on SSE schemes to recover the plaintext
of encrypted keywords involved on previous queries issued by the client
and observed by the attacker. This kind of attack is called query recovery
and was proposed by Islam, Kuzu and Kantarcioglu (IKK) in [13]. Their
attack, known in the literature as the IKK attack, targets the strongest
kinds of SSE schemes which are those proved to be secure under the adap-
tive security definition. The IKK attack models the problem of recovering
the unknown keywords as an optimization problem solved using a simu-
lated annealing algorithm. Recently, Cash et al. [4] improved the IKK by
proposing another inference attack, called the Count attack, that is sim-
pler and more efficient than the IKK attack. The Count attack assumes
knowledge about the joint frequency of any two keywords as well as the
frequency of each keyword in the dataset under attack.

However, in this section, we propose an inference attack that assumes
only that the attacker knows the frequency of each keyword (attribute-
value pair). We call our attack, the Relational-Count attack. Our attack
targets relational databases by exploiting their structural properties. First
we describe the Count attack and then describe the Relational-Count
attack.

The Count Attack. The Count attack [4] assumes knowledge about
the joint frequency (or co-occurrence count) of any two plaintext key-
words wi, wj ∈W where W is the set of all unique keywords in the target
database. It also assumes knowledge about the occurrence of each key-
word w (attribute-value pair) over all the database documents/records,
say size(w). Assume that the number of unique keywords (or attribute-
value pairs) indexed by an SSE scheme is m. Then the attacker uses the
joint frequency knowledge to construct an m×m matrix M where its en-
try M [i, j] holds the co-occurrence value or the joint frequency of having

5



the ith unique keyword and jth unique keyword together in the database
indexed by the SSE scheme under consideration. The constructed ma-
trix M represents the background knowledge of the attacker about the
encrypted database. Using the access pattern leakage, the attacker also
constructs another matrix C that represents the observed joint frequency
between any two queries intercepted by the attacker. Obviously, any key-
word w with unique result size will be easily recovered when queried since
the size of the result set of its query q, size(q), will be known to the at-
tacker who will use the knowledge about the frequency or occurrence of
each keyword w to find the keyword whose frequency matches the result
size of q (i.e. find a keyword w such that size(q) = size(w)). The unique
counts approach will recover all the queries corresponding to keywords
with unique result sizes which can be significant in some databases. A
query q with non-unique result size is recovered by creating a candidate
list consisting of all keywords with the same result size as q and then
discarding the wrong keywords from the candidate list by comparing the
observed joint frequency between q and any previously recovered query
qk with the prior known joint frequency between ci and wk where ci is the
candidate keyword under consideration and wk is the recovered keyword
corresponding to qk. If they are unequal (i.e. C[q, qk] 6= M [ci, wk]), then
ci will be discarded from the candidate list.

The Relational-Count Attack. Similar to the Count attack, our attack
assumes that the attacker has knowledge about the frequency of each
attribute-value pair which allows the attacker to recover the queries with
unique result sizes and to add a candidate list for each query with non-
unique result size. However, unlike the Count attack, we do not assume
that the attacker has any knowledge about the joint frequencies between
attribute-value pairs. Instead, we use the following simple observation
about the structural properties of relational databases to filter out the
wrong candidates.

Observation 1. The observed joint frequency (or observed co-occurrence
count) between any two different queries (tokens) is non-zero only when
their corresponding attribute names are different.

In other words, the observed joint frequency (or observed co-occurrence
count) is zero for any two different queries (tokens) with the same at-
tribute name. The observation should be clear from the fact that each
relational database record has only one value for each column or attribute
name. This observation allows us to reduce the list of candidates for a
given query with non-unique result size. Assume that there is an unknown

6



query qi with non-unique result size, then one can see that a candidate
keyword wj = (aj : vj), where aj is the attribute name and vj is its value,
will be discarded if there is a previously recovered query qk whose at-
tribute name is aj and whose joint frequency with qi is non-zero. In other
words, If C[qi, qk] 6= 0, then discard wj , where C is the observed joint
frequency matrix. This is because the right candidate keyword must have
the same attribute name as the unknown query qi. Next, we apply the
Count attack and the Relational-Count attack on searchable encrypted
relational databases.

4 Risks of Using Searchable Encrypted Relational
Databases

In this section, we point out three risks that might occur when protecting
relational databases via SSE schemes. The first risk is breaking query
privacy by a passive adversary with knowledge about the target relational
database represented in the form of joint frequencies between attribute-
value pairs and the frequency of each attribute-value pair (i.e. knowledge
of all the database records). This means that the attacker here is only
interested in recovering queries to break query privacy. The second risk is
the possibility of complete record recovery attack by a passive adversary
who has knowledge about the frequency distribution of attribute-value
pairs. The third risk is the possibility of complete record recovery via
record-injection attacks performed by an active adversary with no prior
knowledge about the target database.

4.1 Query and Record Recovery Attacks

One can see that inference attacks on searchable encrypted relational
databases will probably lead to a partial or full record recovery since query
recovery directly translates to partial record recovery in this case. Thus,
inference attacks that do not require the knowledge of all the database
records but only the frequency distribution of attribute-value pairs, such
as our Relational-Count attack, are more interesting from the attacker’s
point’s of view since they extend the attacker’s goal from only breaking
query privacy by performing query recovery as done in the Count attack
to gaining new knowledge through partial or full record recovery.

In the following, we apply the Count and Relational-Count attacks
on searchable encrypted relational databases. Our goal is to firstly break
query privacy using the Count attack which employs a strong attacker

7



who knows almost all the database records (i.e. so the attacker is able to
compute joint frequencies between attribute-value pairs and frequencies
of attribute-value pairs) and then secondly recover complete records using
our Relational-Count attack which employs a weaker attacker who knows
only the frequency distribution of the attribute-value pairs of the target
database.

Data Sets. We mount the Count attack over the Census dataset [15],
the Bank dataset [18] and the Adult dataset [14]. These are real world
datasets from the UCI Machine Learning Repository [12]. The Census
dataset consists of 299285 records, 40 columns, and 3993 distinct attribute-
value pairs when we exclude the 8 missing attribute-value pairs (in total
there are 4001 attribute-value pairs but we do not consider the empty or
missing values in our keywords set). The Bank dataset consists of 4521
records, 17 columns, and 3720 distinct attribute-value pairs. The Adult
dataset consists of 32561 records, 14 columns, and 498 distinct attribute-
value pairs.

Query Generation. We used a standard single-keyword SSE scheme
where a Bitmap encrypted index is used similar to the single-keyword
Bitmap index scheme described in [1,20,13] to transform each target rela-
tional database into a separate searchable encryption relational database.
We conducted four experiments per each target dataset where different
sets of random queries within the target protected database are issued
in each experiment. The access pattern leakage (result size + retrieved
record IDs) of each query is intercepted by a passive attacker who com-
bines this knowledge with background knowledge about the dataset and
then execute the Count or the Relational-Count attacks described above
to recover the queries.

Query Recovery via the Count Attack. Table 1 shows the query
recovery results on the three datasets. Three experiments are conducted
for each dataset. One can see that when the number of issued queries in-
creases, the rate of query recovery also increases. For example, the Census
dataset contains 3993 unique attribute-value pairs and only 77.60% are
recovered when 600 queries are issued. But when all queries are issued
as shown in the 3rd experiment, we see that a high percentage of queries
(≈ 98.1%) are recovered in the Census dataset. So query privacy is com-
pletely broken by the Count attack. Note that the record recovery rate
will be high but the attacker here is only concerned about query recovery
and not record recovery since we assume that the attacker already knows
all the database records.

8



Table 1: Query Recovery Results on Different Relational Databases. All
queries are issued in the 3rd experiment. Results are averaged over 3
tests, where queries are chosen randomly, in the 1st and 2nd experiments.
455/600 indicates an average of 455 queries out of 600 issued queries were
recovered successfully using the Count attack.

Exp. No Census Data Set Bank Data Set Adult Data Set

1 455/600 300/600 135/150
2 1432/1500 1237/1500 230/250
3 3917/3993 3460/3720 466/498

Record Recovery via the Relational-Count Attack. We applied our
attack on the three relational databases described above. Table 2 shows
that our attack recovers only 757 queries out of 3993 queries whereas the
Count attack recovers 3917 queries out of 3993 queries. Thus, our attack is
not as effective as the Count attack. However, our attack assumes that the
attacker only knows the frequency distribution of the attribute-value pairs
which is a more realistic assumption that could hold in practice. Table 3
shows that the 757 queries recovered in the Census dataset allowed us
to recover 447 complete records in the Census dataset whereas the 122
queries recovered in the Bank dataset allowed us to recover only recover
1 complete database record in the Bank dataset. The Bank dataset also
has 989 records where 64.99-52% (9-11 attributes) of the attributes are
recovered. The results on the Census displayed in Table 3 show that
even recovering as few as 757/3993 queries allows us to learn a high
percentage of records in the Census data set. For example 109433 records
are recovered where only between 2 and 6 attributes are missing. This
could enable a strong attacker that uses machine learning to predict the
missing values given the 757 records that are fully recovered. We have
not investigated this possibility and we leave it for future work.

Note that we can recover only 149 complete records from the Census
dataset after recovering only the 531 attribute-value pairs with unique
result sizes compared to recovering 447 complete records when we re-
solve the attribute-value pairs with non-unique result sizes using our
Relational-Count attack. This shows the effect of our Relational-Count
attack in recovering complete database records.

Moreover, when deterministic encryption is used to encrypt each col-
umn in the Adult, Bank and Census datasets, then an attacker with
frequency knowledge about the attribute-value pairs frequency distribu-
tion can only recover 272/498, 150/3720 and 829/3993 attribute-value

9



pairs only respectively due to the existence of some values within the
same column that have the same frequency in these datasets. This is
very close to the number of queries (236/498, 122/3720 and 757/3993
shown in Table 2) recovered by our Relational-Count attack when the
same three datasets are encrypted using an SSE scheme. Therefore, we
see our Relational-Count attack as one step toward closing the security
gap between searchable encrypted relational databases and column-based
deterministically encrypted relational databases. The implementation of
our Relational-Count attack is available on github.

Table 2: The table shows the total number of queries recovered in three
relational databases when all the queries are issued and the Relational-
Count attack is used. The unique recovery column shows the number
of queries recovered whose result sizes are unique and the non-unique
recovery column shows the number of queries whose result sizes are non-
unique which are recovered using the Relational-Count attack.

Data Set unique recovery non-unique recovery total

Adult dataset 155 81 236/498
Bank 97 25 122/3720
Census 531 226 757/3993

Table 3: The table shows the number of records recovered with the per-
centage of attributes recovered (record recovery rate) in each record when
all queries are executed in the SSE-protected Bank and Census datasets
together. 100% Rec. means all attributes are recovered, 95-85% Rec.
means all attributes are recovered except 5-15% of them have not been
recovered, and so on. The entry 708/4521 indicates that around 84.99-
74% attributes (i.e. 13-14 attributes out of 17 attributes) of 708 records
out of 4521 records of the Bank dataset are recovered. Note that the
bank dataset has 989 records where 64.99-52% (i.e. 9-11 attributes) of
the attributes are recovered which is not shown in the table. 4521 ≡ total
number of records for the Bank dataset and 299285 ≡ total number of
records for the Census dataset.

Data Set 100% Rec. 95-85% Rec. 84.99-74% Rec. 73.99-65% Rec.

Bank 1/4521 39/4521 997/4521 2495/4521
Census 447/299285 109433/299285 131253/299285 58152/299285

10

https://github.com/mohab2014/Searchable-Encrypted-Relational-Databases


4.2 Record-Injection Attacks

Zhang et al.’s non-adaptive file-injection binary attack [21] cannot be ap-
plied exactly in searchable encrypted relational databases since we are
dealing with a structured text governed by a relational database rather
than unstructured text. Depending on the relational database under at-
tack, there might be a large number of records needed to be injected in
order to recover all the possible encrypted queries if the database con-
tains attributes whose values are variables (not discrete) with a big range.
However, if the attacker is concerned about a small subset of attribute-
value pairs. Then the attacker can inject a number of records by focusing
on some attributes whose values are discrete with a small range as noted
in [21]. This will reduce the number of injected records and will lead
to query recovery and consequently partial record recovery without any
prior knowledge.

We focus here on non-adaptive record injections as adaptive injection
attacks need background knowledge about the target encrypted database
and they can be prevented by using a forward secure SSE scheme [3].
Similar to Zhang et al. [21], we assume that the attacker can identify the
record ID of each injected record. Let D be a relational database with
n records and m attributes or columns where each attribute is denoted
by ai and its cardinality is denoted by |ai|, 1 ≤ i ≤ m. Assume that the
number of records need to be injected in D in order to cover the whole
attribute-value pair space |W| or a target subset of attribute-value pairs
S is l. Suppose that R = r1r2 · · · rl is the search result on the injected
records regarding an observed query q, where ri = 1 iff the ith injected
record is part of the result set of the query q, otherwise ri = 0. Clearly
l ≥ |ai| for all i, otherwise the injected records will not recover all the
values of the attribute ai. Assume that there are t attributes (a1, · · · , at)
with the same cardinality d, then in order to cover all the d · t values
one can construct a mapping that assigns each attribute-value pair to a
unique search result string on the injected records by simply injecting d · t
records as follows. Let the first d records contain all the values of the 1st
attribute (i.e. a11, a12, · · · , a1d) and the other attributes belonging to S
are empty. Also, let the second d records contain all the values of the 2nd
attribute (i.e. a21, a22, · · · , a2d) and the other attributes belonging to S
are empty and so on until the last and tth d records contain all the values
of the tth attribute and the other attributes belonging to S are empty.
Now one can see that the search result on the injected records regarding
any attribute-value pair in S will yield a binary string with Hamming
weight one where the location of the i-th active bit in the binary string

11



indicates that the attribute value is located at position i mod d (or last
position if i mod d = 0) in the di/deth attribute.

However, one can inject l records, where l is much less than d · t, by
injecting t columns of length l where the search results of all the attribute-
value pairs in a single column have active bits at different positions and
all the possible search results representing all attribute-value pairs are
disjoint. In other words, we need to separate the l-bit binary strings where
each l-bit corresponds to a search result into t disjoint sets where each
set Sj has d elements representing the d attribute-value pairs of the jth
column (note that all the t columns have the same cardinality). Each
element in Sj is an l-bit binary string representing a search result of an
attribute-value pair belonging to the jth column. Assume that all the
elements of Sj have the same Hamming weight wj . Assume also that
d divides l. Then, wj must be ≤ l/d in order to have a valid set Sj
representing unique search results. The number of l-bit binary strings
of Hamming weight i is

(
l
i

)
. Therefore, one can look for the smallest l

satisfying the inequality
(
l
l/d

)
+· · ·+

(
l
1

)
≥ d·t and the same time construct

a one-to-one mapping between the l-bit binary strings of Sj representing
the unique search results and the injected columns Cj of length l for all
1 ≤ j ≤ t.
Concrete Example. The Census dataset discussed above, has 7 at-
tributes with cardinality 3. By setting t = 7 and d = 3 in the above
inequality, one can see that l = 6 is the smallest integer to satisfy it. Now
we need to divide all the 6-bit binary vectors with Hamming weight ≤ 2
(since l/d = 6/3 = 2) into 7 disjoint sets where each set Sj holds three
(since d = 3) 6-bit binary vectors that have different active positions. The
elements of Sj must contain binary vectors of Hamming weight two or
one as otherwise we will not be able to cover all the d · t = 3 · 7 = 21
attribute-value pairs. One can see that S1 = {100000, 010000, 001000} is a
set whose binary strings can represent the search results corresponding to

the attribute-value pairs injected in the column C1 =
[
a11 a12 a13 ? ? ?

]T
where ‘?’ means an empty entry and T is the transpose operator. Let
C1 be the first column injected in our records. When one searches for
a11, a12 and a13 the search results on the injected records will be 100000,
010000 and 001000 respectively. Now, from S1 we could generate an-
other valid search results set S2 by looking at the other possible binary
strings of Hamming weight one representing valid search results. There
are exactly 3 other possible binary strings, namely, 000100, 000010 and
000001. So S2 = {000100, 000010, 000001} and it represents the search
results corresponding to the attribute-value pairs injected in the column

12



C2 =
[
? ? ? a21 a22 a23

]T
. Let C2 be the second column injected in our

records. Now we consider search results whose binary strings have Ham-
ming weight 2 such as S3 = {110000, 001100, 000011} which represents the

attribute-value pairs injected in the column C3 =
[
a31 a31 a32 a32 a33 a33

]T
.

Let C3 be the third column injected in our records. Thus, we have three
sets and we need to construct another four sets in order to obtain seven
sets that cover all the search results of the 21 attribute-value pairs. One
set S3 has three binary strings of Hamming weight 2. So there remains
another

(
6
2

)
− 3 = 15 − 3 = 12 binary strings of Hamming weight 2 and

we need to divide them into 4 sets S4, S5, S6 and S7 where each set has 3
elements which have different positions for the active bits similar to S3.
Note that each binary string in S3 have four non-active bits, so inter-
changing the location of an active bit with the location of a non-active
bit will yield a new binary string but we need to interchange the location
of active bits with the location of non-active bits for all the binary strings
of S3. So the four sets, S4, S5, S6 and S7, can be obtained by permuting
the locations of active bits within each element in S3. To do so, we need
to consider the elements of S3 as columns of a matrix M3 where the first
column is

[
1 1 0 0 0 0

]T
, the second column is

[
0 0 1 1 0 0

]T
and the last

column is
[
0 0 0 0 1 1

]T
. In each column of M3, there are four locations

to move the active bits in order to get a new valid and unique column.
However, we want all the new columns to have active bits at different

positions in order to form valid and unique search results (e.g. Si i ≥ 4).
To construct the set S4, we change the positions of the active bits in M3

by multiplying it by a 6× 6 permutation matrix, Pπ4 where the first and
third rows of the 6×6 identity matrix I6 are permuted and also the second
and fifth rows are permuted. In cyclic notation, the permutation π4 can be
written as follows π4 = (13)(25). Now, M4 = Pπ4 ×M3. The first column

of M4 is
[
0 0 1 0 1 0

]T
. The second column is

[
1 0 0 1 0 0

]T
and the last

column is
[
0 1 0 0 0 1

]T
. The columns of M4 form valid search results and

thus S4 = {001010, 100100, 010001}. Its corresponding injected column is

C4 =
[
a41 a42 a43 a41 a43 a42

]T
.

Similarly, we form another 6 × 6 permutation matrix, Pπ5 by inter-
changing the first and fourth rows and also interchanging the second
and the sixth rows in the identity matrix I6. In cyclic notation, the per-
mutation π5 can be written as follows π5 = (14)(26). The columns of
M5 = Pπ5 ×M3 gives us S5 = {0000101, 101000, 010010}. Its correspond-

ing injected column is C5 =
[
a51 a52 a51 a53 a52 a53

]T
. S6 is obtained from

the columns of M6 = Pπ6 ×M3 where Pπ6 is a permutation matrix ob-

13



tained by interchanging the rows of the identity matrix corresponding
to the cyclic permutation π6 = (15)(24). S6 = {000110, 011000, 100001}
and its corresponding injected column is C6 =

[
a61 a62 a62 a63 a63 a61

]T
.

Finally, S7 is obtained from the columns of M7 = Pπ7 × M3 where
Pπ7 is a permutation matrix obtained by interchanging the rows of the
identity matrix corresponding to the cyclic permutation π7 = (16)(23).
S7 = {001001, 010100, 100010} and its corresponding injected column is

C7 =
[
a71 a72 a73 a72 a71 a73

]T
. Thus, we can inject only l = 6 records

instead of l = d · t = 3.7 = 21 records in order to cover all the 7 attributes
with the same cardinality 3 in the Census dataset. Table 4 shows the
injected 6 records formed by injecting 7 columns yielding unique search
results.

Table 4: The table shows that for each attribute-value aij we have a
unique search result on the injected records. Injecting 6 records to cover
7 attributes each with 3 attribute-value pairs. A query for the attribute-
value a21 will yield the search result 000100 on the injected records while
a query for the attribute-value a71 will yield the search result 100010.

No a1 a2 a3 a4 a5 a6 a7

1 a11 ? a31 a41 a51 a61 a71
2 a12 ? a31 a42 a52 a62 a72
3 a13 ? a32 a43 a51 a62 a73
4 ? a21 a32 a41 a53 a63 a72
5 ? a22 a33 a43 a52 a63 a71
6 ? a23 a33 a42 a53 a61 a73

Discussion. It is clear that once an attacker is able to inject records then
record-injection will lead to query recovery and eventually could lead to
full record recovery. The above record injection attack works under the
assumption that the attacker can identify the record identifiers of the
injected records. This assumption was also adopted by Zhang et al. [21].
If the client updates one record at a time, then the attacker will always
be able to identify the identifier of an injected records based on the time
at which it is stored in the server. However, if the client does only batch
updates, then an attacker could inject records in a certain way such that
each attribute-value pair has a unique number of appearances in all the
injected records. The file-injection countermeasure proposed by Zhang
et al. [21] which restricts the number of keywords per document to a
certain threshold T (e.g. T � |W|/2) cannot be applied here since a

14



relational database record has a certain number of keywords (attribute-
value pairs) equivalent to its number of attributes and any restriction
would hinder the work of any application using the searchable encrypted
relational database. So one needs to use a forward secure SSE scheme
such as the one proposed in [3] in order to protect relational databases
against adaptive injection attacks (Note that the above described attacks
are non-adaptive attacks but an adaptive injection attacks similar to the
one proposed in [21] can easily be realized).

5 Countermeasures Against Attacks on SSE Schemes

Countermeasures against inference attacks must be used in order to re-
duce the their effectiveness. A well known technique is padding which
is proposed in [13,4] as a potential countermeasure to reduce the ef-
fectiveness of inference attacks. Basically, during the setup of the en-
crypted database, the client adds dummy record (or document) IDs to
each attribute-value pair (or keyword) in the index in order to hide the ac-
tual frequency of the keyword. Also, the client adds an encrypted dummy
record (or document) corresponding to each dummy ID added in the in-
dex. Later, during search, the client filters out the dummy records (or
documents). Experiments in [4], show that a padding level that increases
the index size by 15% for a real world sample dataset and 30% for an-
other real world sample dataset, does not affect the success rate of the
generalized Count attack [4] which is a slight improvement of the Count
attack. It basically does not depend on resolving queries with unique
frequency which will not exist in a padded SSE scheme but it initially
guesses these queries. The detection of a wrong guess is done during the
co-occurrence testing phase which does equality matches in a window or
a range of a fixed size to nullify the noise coming from the dummy records
(or documents) causing false co-occurrence count values. Thus, the gen-
eralized Count attack presented in [4] suggests that padding alone does
not reduce the effectiveness of inference attacks as matches in a range
can be done through the observed co-occurrence matrix. The effect of our
Relational-Count attack can be reduced by padding to reduce the num-
ber of attribute-value pairs with unique result sizes. So we focus here on
preventing the Count attack.

Countermeasure Against the Count Attack. In addition to reducing
the effectiveness of the actual query result size by padding, one might
think of reducing the effectiveness of the queries’ observed joint frequency
matrix C by forcing the observed joint frequency between some queries to

15



be zero. One can see that if qi and qj are distributed in different fragments
according to a defined privacy constraints, then C[qi, qj ] will be zero when
each query is executed in only one fragment and the fragments are not
allowed to interact with each other to evaluate any query. Now an equality
match or a window equality match with the joint frequency knowledge-
matrix M [si, tj ] as done in [4] will never happen which will significantly
reduce the effectiveness of the Count attack. This can be done by applying
vertical fragmentation to a relational database table according to a pre-
defined set of privacy constraints on its columns.

The aim behind the privacy constraints is hiding the association among
the attributes which means that there should be no joint appearance of
the attributes in the privacy constraints [2,8,10]. For example, consider
the relation of the following attributes about patients in a hospital: Name,
Date of Birth (DOB), Disease, Medical Doctor (MD), and ZIP. Now one
can define the following privacy constraints c1 = {Name, DOB}, c2 =
{Name, Disease}, c3 = {Name, ZIP}, c4 = {Name, MD}, c5 = {DOB,
ZIP, Disease} and c6 = {DOB, ZIP, MD}. Now a privacy constraint
prevents some columns from being together, so the privacy constraint
c1 = {Name,DoB} prevents the Name column or attribute from being
together in one fragment with the DoB column since they might reveal
together more information about a specific person if one of them is re-
covered using an inference attack. We note that the privacy constraints
should be used to produce the minimal amount of fragments possible us-
ing the heuristic algorithm proposed in [8]. For instance, a valid minimal
fragmentation for the relation and privacy constraints defined above is
the following F ={F1={Name}, F2 = {DoB,ZIP}, F3 ={Disease,MD}}.
After applying the fragmentation, we need to ensure that each query is
executed in only one fragment in order to prevent an attacker monitoring
all the fragments (or collaborative honest-but-curious fragment servers)
from gaining any information about the correlation of the records be-
tween any two fragments which will obviously break the pre-defined the
privacy constraints set by the data owner. Moreover, we need to have
different record IDs for the same original record at each fragment in or-
der to achieve security against an attacker monitoring all fragments (or
collaborative honest-but-curious fragment servers) and also apply secure
random shuffling for the fragment’s records. After that, we can apply the
same SSE scheme in each fragment using a different key. This ensures
that applying inference attacks on each fragment is not effective since the
encrypted attributes within each fragment does not provide sufficient in-
formation if they are recovered. Note that the generalized Count attack is

16



effective in each fragment and it could probably recover entire records in
each fragment. However, the fragments are defined according to the pri-
vacy constraints which means that the recovered records are unlinkable
and thus will not reveal useful information. If all fragments are recovered,
the attacker will not be able to link or combine them to recover the origi-
nal record before fragmentation. This is because each fragment is shuffled
differently and each fragment’s record has a different record ID secretly
pointing to the same original record.

Security Gain. Vertical fragmentation using privacy constraints pre-
vents full record recovery but the fragmented SSE scheme will still leak the
access pattern inside each fragment as well as leaking the attribute of the
queries in each fragment. We performed one experiment to show the secu-
rity gain when we employ vertical fragmentation via privacy constraints.
We split the Bank dataset into three fragments. The first fragment con-
tains five attributes, namely, “age”, “job”, “marital”, “education” and
“duration”. The second fragment contains seven attributes, namely, “de-
fault”, “balance”, “housing”, “loan”, “contact”, “day” and “month”. The
third fragment contains five attributes, namely, “campaign”, “pdays”,
“previous”, “poutcome” and “y”. The Count attack was not able to re-
solve 130/961 queries in the first fragment, 1264/2405 queries in the sec-
ond fragment, and 105/354 queries in the third fragment. In total, there
are 1499/3720 queries that have not been recovered in all the three frag-
ments compared to only, 3620-3460 = 260, queries that have not been
recovered when vertical fragmentation is not employed as shown in Ta-
ble 1 where 3460/3720 queries are recovered. The increased number of
unresolved queries after fragmentation shows the impact of vertical frag-
mentation as an effective countermeasure in reducing the strength of the
Count attack.

We note here that in some scenarios, vertical fragmentation alone
might not be enough to prevent the Count attack, for example in a small
dataset such as the Adult dataset, the Count attack will always recover
most of the fragments and the security gain will only be in preventing
the attacker from linking the recovered records and combine them to
recover one or more original records. Such a gain can be useful to reduce
the effect of the Relational-Count attack where record recovery is the
one of the attacker’s goals. However, an attacker who is able to perform
the Count attack is concerned only about query recovery and not record
recovery. Therefore, we need to employ padding also as an additional
countermeasure needed to reduce the effectiveness of the Count attack.

17



Privacy Constraints vs. Record Injection Attacks. Privacy con-
straints can not prevent record injection attacks but they can reduce their
effectiveness since the attacker will not be able to re-construct and com-
bine the recovered fragments to form the original plaintext records even
if all the records of each fragment are recovered since each fragment has
a different record ID secretly pointing to the same original record before
fragmentation. Note that an attacker injecting records that do not have
any prior knowledge about the target database will not be able to link
and combine the fragmented records in case all fragments are recovered.

Performance Gain. The drawback with the fragmentation approach is
in the extra computational work done when a multi-keyword query whose
keywords or attribute-value pairs exist in different fragments. But this can
be improved using a fragmentation algorithm which takes usage data into
account [10] which will allow us to find a suitable minimal fragmentation
providing efficient execution for multi-keyword queries and the same time
meeting the security demands set by the privacy constraints.

6 Conclusion

In this paper, we pointed out that inference and record-injection attacks
pose a real threat to searchable encrypted relational databases. We pro-
posed the use of privacy constraints together with padding on top of any
SSE scheme in order to reduce the effectiveness of the inference attacks
proposed in [13,4].

Acknowledgments

We would like to thank Erik Zenner for helpful comments and suggestions
on an earlier draft of this paper. This work was supported through the
EU Horizon 2020 program under project no 644814 (PaaSword).

References

1. Mohamed Ahmed Abdelraheem, Christian Gehrmann, Malin Lindström, and
Christian Nordahl. Executing boolean queries on an encrypted bitmap index.
In Proceedings of the 2016 ACM on Cloud Computing Security Workshop, pages
11–22. ACM, 2016.

2. Gagan Aggarwal, Mayank Bawa, Prasanna Ganesan, Hector Garcia-Molina, Kr-
ishnaram Kenthapadi, Rajeev Motwani, Utkarsh Srivastava, Dilys Thomas, and
Ying Xu. Two can keep a secret: A distributed architecture for secure database
services. CIDR 2005, 2005.

18



3. R. Bost. σoϕoς: Forward secure searchable encryption. In CCS 2016.
4. David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse

attacks against searchable encryption. In Proceedings of CCS 2015.
5. David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk,

Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in very-
large databases: Data structures and implementation. IACR Cryptology ePrint
Archive, 2014:853, 2014.

6. David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin
Roşu, and Michael Steiner. Highly-scalable searchable symmetric encryption with
support for boolean queries. In Advances in Cryptology–CRYPTO 2013, pages
353–373. Springer, 2013.

7. Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure.
In Advances in Cryptology-ASIACRYPT 2010, pages 577–594. Springer, 2010.

8. Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati. Fragmentation and encryption to
enforce privacy in data storage. In Computer Security–ESORICS 2007.

9. Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati. Keep a few: Outsourcing data while
maintaining confidentiality. In Computer Security–ESORICS 2009, pages 440–455.
Springer, 2009.

10. Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati. Combining fragmentation and en-
cryption to protect privacy in data storage. ACM Transactions on Information
and System Security (TISSEC), 2010.

11. Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable sym-
metric encryption: improved definitions and efficient constructions. In Proceedings
of the 13th ACM conference on Computer and communications security, pages
79–88. ACM, 2006.

12. Center for Machine Learning and Intelligent Systems. University of california,
irvine. https://archive.ics.uci.edu/ml/datasets.html. [Last Accessed June
2017].

13. Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack and mitigation. In NDSS,
2012.

14. R. Kohavi and B. Becker. Adult data set. https://archive.ics.uci.edu/ml/

machine-learning-databases/adult/, 1996. [Last Accessed June 2017].
15. Terran Lane and Ronny Kohavi. Census-income (kdd) data set. https://

archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/,
2000. [Last Accessed June 2017].

16. Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference attacks on
property-preserving encrypted databases. In Proceedings of CCS 2015.

17. Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
Cryptdb: protecting confidentiality with encrypted query processing. In Proceed-
ings of the Twenty-Third ACM Symposium on Operating Systems Principles, pages
85–100. ACM, 2011.

18. R. Laureano S. Moro and P. Cortez. Using data mining for bank direct marketing:
An application of the crisp-dm methodology. In P. Novais et al. (Eds.), Proceedings
of the European Simulation and Modelling Conference - ESM’2011, pp. 117-121,
Guimarães, Portugal, October, 2011. EUROSIS, https://archive.ics.uci.edu/
ml/datasets/Bank+Marketing. [Last Accessed June 2017].

19

https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/
https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/
https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing


19. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In Security and Privacy, 2000. S&P 2000. Proceedings.
2000 IEEE Symposium on, pages 44–55. IEEE, 2000.

20. Peter van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and Willem
Jonker. Secure Data Management: 7th VLDB Workshop, SDM 2010, chapter Com-
putationally Efficient Searchable Symmetric Encryption.

21. Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries
are belong to us: The power of file-injection attacks on searchable encryption.
Cryptology ePrint Archive, Report 2016/172.

20


	Searchable Encrypted Relational Databases: Risks and Countermeasures

