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Abstract. We propose a new generic framework for constructing fully
secure attribute based encryption (ABE) in multilinear settings. It is
applicable in a generic manner to any predicates. Previous generic frame-
works of this kind are given only in bilinear group settings, where appli-
cable predicate classes are limited. Our framework provides an abstrac-
tion of dual system paradigms over composite-order graded multilinear
encoding schemes in a black-box manner.
As applications, we propose new fully secure ABE systems for general
predicates, namely, ABE for circuits. We obtain two schemes for each of
key-policy (KP) and ciphertext-policy (CP) variants of ABE. All of our
four fully secure schemes can deal with unbounded-size circuits, while en-
joy succinctness, meaning that the key and ciphertext sizes are (less than
or) proportional to corresponding circuit sizes. In the CP-ABE case, no
scheme ever achieves such properties, even when considering selectively
secure systems. Furthermore, our second KP-ABE achieves constant-size
ciphertexts, whereas our second CP-ABE achieves constant-size keys.
Previous ABE systems for circuits are either selectively secure (Gor-
bunov et al. STOC’13, Garg et al. Crypto’13, and subsequent works),
or semi-adaptively secure (Brakerski and Vaikuntanathan Crypto’16),
or fully-secure but not succinct and restricted to bounded-size circuits
(Garg et al. ePrint 2014/622, and Garg et al. TCC’16-A).

Keywords. Attribute-based encryption, full security, multilinear maps,
dual system, pair encodings, circuits.

1 Introduction

Attribute-based encryption (ABE), introduced by Sahai and Waters [44], is a
new paradigm that generalizes traditional public key encryption. Instead of en-
crypting to a target recipient, a sender can specify in a more general way about
who should be able to view the message. In ABE for predicate R : X×Y→ {0, 1},
a ciphertext encrypting message M is associated with a ciphertext attribute, say,

∗This paper subsumes [4]. The full version is available at [6].
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Y ∈ Y, while a secret key, issued by an authority, is associated with a key at-
tribute, say, X ∈ X, and the decryption will succeed if and only if R(X,Y ) = 1.
From an application point of view, it is instructive to consider one kind of at-
tributes as policies, which are Boolean functions, and the other kind as inputs
to functions. In this sense, there are two variants of ABE. In Key-Policy (KP)
type [33], X is a set of Boolean functions, while Y is a set of inputs to functions,
and we define R(f, x) = f(x). In Ciphertext-Policy (CP) type [10], the roles of
X and Y are swapped (that is, ciphertexts are associated with policies).

A central theme to ABE has been to expand the class of allowable boolean
functions. Until recently, there were only ABE for simple classes such as boolean
formulae [33, 10, 37, 40] and inner product predicate [34, 7, 41]. Only recently,
ABE systems that allow any unbounded polynomial-size circuits (but bounded-
depth) were proposed independently by Garg et al. (GGHSW) [24] and Gor-
bunov et al. (GVW) [31]. The former is based on multi-linear maps (more
precisely, graded encoding systems) [23, 20], while the latter is based on the
Learning-With-Error assumption. They proposed key-policy variants, and by
using universal circuits, ciphertext-policy systems can also be obtained albeit
for only bounded-size circuits. Subsequently, Garg et al. [28] proposed ABE for
circuits based on witness encryption. Boneh et al. [13] (BGG+) proposed KP-
ABE for circuits with short keys or short ciphertexts.

Full vs Selective Security. The standard security for ABE is adaptive security,
or often called full security. However, previous ABE systems for circuits [24,
31, 28, 13] were proved only in a weaker model called selective security. Such
a notion requires the adversary to announce a target ciphertext attribute Y ?

upfront before seeing the public key, after then, he can ask for secret keys of
X such that R(X,Y ?) = 0. Contrastingly, full security allows the adversary to
adaptively ask for secret keys and choose a target in any order.

Complexity Leveraging. There is a trivial method to generically bootstrap
selective security to full security called complexity leveraging [12]. In this ap-
proach, the security reduction would incur a loss factor |Y| (stemmed from the
probability of guessing Y ? from the ciphertext attribute domain Y). In KP-ABE
for circuits that allows inputs of length n, we have |Y| = 2n, hence the loss factor
is exponential. Although this loss can be compensated by increasing the security
parameter by n, this is undesirable by two reasons. First, as a direct consequence,
it makes the resulting scheme inefficient. Second, and perhaps more importantly,
the resulting security reduction becomes “unfalsifiable” in the sense that even
an attacker with probability 1 in attacking the scheme cannot be used to solve
the underlying hard problem in sub-exponential time [16].

Fully Secure CP-ABE for Circuits. The situation for CP-ABE for unbounded-
size circuits is even more devastating since the loss factor can be as large as
double exponential, as the number of all Boolean functions with n inputs is 22n .
In this case, complexity leveraging cannot be used since we cannot compensate
by increasing the security parameter by 2n, which is exponential. Moreover, even
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when we restrict to bounded-depth circuits, the loss factor can still be super-
exponential or large exponential functions (in parameters such as depth `).1,2

Problem Statement. To this end, we consider the following problem:

Problem 1: Is it possible to construct fully secure KP-ABE and CP-ABE
for circuits with polynomial reductions (in all parameters) to some non-
interactive assumptions?

Unbounded-size Circuits and Succinctness. It is desirable for new fully se-
cure schemes to preserve functionalities and efficiency from previous selectively
secure systems. For functionalities, the goal is ABE that allows unbounded-size
circuits. For efficiency, we require succinctness: the size of a key (resp., a cipher-
text) for circuit f is less than or proportional to the circuit size in KP-ABE
(resp., CP-ABE). In KP-ABE case, we refine our question to:

Problem 1′: Is it possible to construct fully secure KP-ABE that allows
unbounded circuits (possibly bounded-depth) and/or admits succinctness
(again, with polynomial reductions to non-interactive assumptions)?

In CP-ABE case, however, all the available schemes [24, 31] are for bounded-size
circuits and do not admit succinctness, not to mention that they are selectively
secure. This is due to the use of universal circuits [46]. We thus ask:

Problem 2: Is it possible to construct (even selectively secure) CP-ABE
that allows unbounded-size circuits and/or admits succinctness?

Short Ciphertexts and Short Keys. Finally, we focus on optimizing the size
of a ciphertext (resp. a key) for an input string x in KP-ABE (resp. CP-ABE).
We say that a scheme admits constant-size ciphertext (resp., key) if the size
besides the description of x is constant in term of the length n of x. We ask:

Problem 3: Is it possible to construct fully-secure KP-ABE with constant-
size ciphertexts, fully-secure CP-ABE with constant-size keys (again, for
unbounded-size circuits and with polynomial reductions)?

1.1 Our Contributions on ABE Instantiations

Our contribution is twofold: a generic framework and instantiations. We first
introduce our results regarding instantiations, which are summarized as:

Theorem 1. ( Instantiations, informally). There exist fully secure KP-ABE,
CP-ABE for unbounded-size bounded-depth circuits with polynomial reductions
to some non-interactive assumptions on composite-order 3`-multilinear maps,
where ` is the bounded depth. Constructively, we obtain 4 schemes:

1We do not elaborate the exact number as it is quite tricky to count the number of all
Boolean functions that can be computed by unbounded-size bounded-depth circuits.

2When we further restrict to bounded-size circuits, the loss factor is 2poly(gmax), where
gmax is the maximum circuit size. This is exactly the reduction loss for all the available
fully secure CP-ABE via complexity leveraging (see Table 2).
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1. fully secure KP-ABE admitting succinctness.

2. fully secure KP-ABE admitting succinctness and constant-size ciphertexts.

3. fully secure CP-ABE admitting succinctness.

4. fully secure CP-ABE admitting succinctness and constant-size keys.

Our schemes affirmatively answer Problem 1, constructing fully secure ABE
with polynomial reductions. (See below for independent works [26, 27] that also
solve Problem 1.) Moreover, both of our KP-ABE schemes and both of our CP-
ABE schemes are the first to affirmatively answer Problem 1′ and Problem 2,
respectively. Finally, our second KP-ABE and our second CP-ABE provide the
first positive answers to Problem 3.

We provide comparisons to the other schemes in the literature in Table 1,2
(and with sizes provided in more details in Table 3,4).

Comparisons. From Table 1,2, we can see that our first and second (fully
secure) KP-ABE schemes are comparable to the (selectively secure) KP-ABE of
GGHSW [24] and BGG+2 [13] in both functionality (unbounded-size circuits)
and efficiency (succinctness, constant-size ciphertext). On the other hand, both
of our (fully secure) CP-ABE schemes perform much better than all the previous
(selectively secure) schemes in both functionality (ours are the first to allow
unbounded-size circuits) and efficiency (ours are the first to be succinct).

In independent3 works, Garg et al. proposed fully-secure ABE [26] (and
FE [27], see §1.4) for circuits, thus also answer Problem 1; however, their schemes
are for bounded-size circuits and do not admit succinctness, due to their essential
use of “fixed-once and for all” universal circuits. Moreover, as shown in Table 1,2,
our schemes require much less multi-linearity and admit tighter reductions.

On Assumptions. To prove security of our schemes, we introduce some new
non-interactive assumptions (thus, they are falsifiable [39]). They somewhat ex-
tend the Multi-linear Decisional Diffie-Hellman Assumption (MDDH) [15, 23,
20]. These assumptions are of “parameterized” type (or often called “q-type”),
where the size of assumption grows depending on some parameters. Although
they are not standard, we prove that they hold in the generic model. To compare
these assumptions quantitatively, in Table 1,2, we represent their complexities
in terms of their assumption sizes. Intuitively, but not necessarily, the larger the
size, the stronger the assumption is. We note that, in our schemes, the parame-
ters for the assumptions depend only on the depth `, width m, or input length n,
of a circuit in one query (and not on the number of key queries). The reduction
cost in our schemes is O(q1) where q1 is the number of pre-challenge key queries.

Implementations. Unfortunately, currently there is no known secure multilin-
ear map (see more later in §1.4). Hence, at present, our results can be considered
as only theoretical black-box reductions from fully secure succinct ABE for un-
bounded circuits to (composite-order) multi-linear maps. Nevertheless, due to
the nature of black-box usages, any future secure candidates can be used.

3Our preliminary version [4] has been made available shortly after [26, 27].
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Table 1: KP-ABE for Circuits.

Schemes |Cipher|† |Key|† Unbound Tool Security‡ Reduction Assumptions§

|circuit|?

GVW [31] O(n) O(g) yes LWE full O(2n) 2O(nε)-hardness of LWE

selective O(1) 2O(nε)-hardness of LWE

GGHSW [24] O(n′) O(g) yes `-multmap full O(2n) param-ass. size O(`)
selective O(1) param-ass. size O(`)

BGG+1 [13] O(n) O(1) yes LWE full O(2n) 2O(nε)-hardness of LWE

selective O(1) 2O(nε)-hardness of LWE

BGG+2 [13] O(1) O(n2 + g) yes `-multmap full O(2n) param-ass. size O(`+ n)
selective O(1) param-ass. size O(`+ n)

GGHZ1,2 [26, 27] poly(gmax) poly(gmax) no poly(gmax)- full poly(gmax, param-ass. size poly(gmax)
multmap qall)

BV [11]** O(n) O(1) yes LWE semi-adapt O(1) subexp-hardness of LWE

Our KP1 (§4) O(n′) O(g) yes 3`-multmap full O(q1) param-ass. size O(`m2)
semi-adapt O(1) param-ass. size O(`)

Our KP2 (§5) O(1) O(n2 + g) yes 3`-multmap full O(q1) param-ass. size O(`m2 + n2)
semi-adapt O(1) param-ass. size O(`+ n)

Table 2: CP-ABE for Circuits.

Schemes |Cipher|† |Key|† Unbound Tool Security‡Reduction Assumptions§

|circuit|?

GVW [31]¶ poly(gmax) poly(gmax) no LWE full 2poly(gmax) 2O(nε)-hardness of LWE

selective O(1) 2O(nε)-hardness of LWE

GGHSW [24]¶ poly(gmax) poly(gmax) no poly(gmax)- full 2poly(gmax) param-ass. size poly(gmax)
multmap selective O(1) param-ass. size poly(gmax)

BGG+1 [13]¶ poly(gmax) O(1) no LWE full 2poly(gmax) 2O(nε)-hardness of LWE

selective O(1) 2O(nε)-hardness of LWE

BGG+2 [13]¶ O(1) poly(n2, gmax) no poly(gmax)- full 2poly(gmax) param-ass. size poly(gmax)
multmap selective O(1) param-ass. size poly(gmax)

GGHZ1,2 [26, 27] poly(gmax) poly(gmax) no poly(gmax)- full poly(gmax, param-ass. size poly(gmax)
multmap qall)

Our CP1 (§6.2) O(g) O(n′) yes 3`-multmap full O(qall) param-ass. size O(`m2)

Our CP2 (§6.2) O(n2 + g) O(1) yes 3`-multmap full O(qall) param-ass. size O(`m2 + n2)

∗ Notation for variables: n is the length of input to a circuit; n′(≤ n) is the number of 1’s in the input bit string to
circuits; g is the size of a circuit (the number of gates including input nodes); gmax is the maximum bound for g
(if bounded); m is the width of a circuit; ` is the bounded depth of circuits; q1 are the number of pre-challenge
key queries; qall is the number of all key queries. ε is a parameter for LWE (0 < ε < 1/2) [31].
∗∗ Only ABE of [11] achieves unbounded input length, i.e., the input string length n is not a-priori bounded.
† Sizes (|Cipher|, |Key|) are shown in the number of “unit” elements naturally defined in the respective underlying

tool. Let λ be the security parameter. For multi-linear maps, one unit element is a graded encoded element;
for previous (now-broken) candidates [20, 22], the size of one unit is poly(λ, κ) bits, for κ-multilinear maps. For
LWE, intuitively, one unit element is a matrix that defines a single instance of the LWE assumption; the size for
one unit is poly(λ, `1/ε) bits for the GVW [31] and the BGG+1 systems [13]. The overall ciphertext size is then
|Cipher||unit|+ |Y |, where |Y | is the description size of ciphertext attribute (circuit f for CP, input string x for
KP). Similarly, The overall key size is |Key||unit|+ |X|. We provide overall sizes in Table 3,4.
‡ For each scheme satisfying two levels of security, we provide respective reduction/assumptions in each line.
§ All multi-linear map based schemes in the tables use “parameterized” assumptions (param-ass.). To be able to

compare quantitively, we write their complexities in terms of the assumption size. (Intuitively but not necessarily,
the larger the size, the stronger the assumption is). All of these schemes use at most three assumptions, and the
size in the table represents the largest one.
¶ These CP-ABE schemes were obtained by converting from KP-ABE via universal circuits. In doing so, one must

fix gmax, i.e., the resulting schemes are for bounded-size circuit. An (asymptotically) optimal universal circuit [46]
has size O(gmax log gmax) and depth O(gmax), hence related parameters can be given by poly(gmax).
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Table 3: KP-ABE for Circuits (sizes given in more details).

Schemes |Cipher| |Key|
(no. of bits) (no. of bits)

GVW [31] O(n)poly(λ, `1/ε) O(g)poly(λ, `1/ε)

GGHSW [24] O(n′)poly(λ, `) + n O(g)poly(λ, `)

BGG+1,BV [13, 11] O(n)poly(λ, `1/ε) poly(λ, `1/ε) + |f |

BGG+2 [13] poly(λ, `) + n O(n2 + g)poly(λ, `)

GGHZ1,2 [26, 27] poly(gmax)poly(λ, gmax) poly(gmax)poly(λ, gmax)

Our KP1 (§4) O(n′)poly(λ, `) + n O(g)poly(λ, `)

Our KP2 (§5) poly(λ, `) + n O(n2 + g)poly(λ, `)

Table 4: CP-ABE for Circuits (sizes given in more details).

Schemes |Cipher| |Key|
(no. of bits) (no. of bits)

GVW [31] poly(gmax)poly(λ, g
1/ε
max) poly(gmax)poly(λ, g

1/ε
max)

GGHSW [24] poly(gmax)poly(λ, gmax) poly(gmax)poly(λ, gmax)

BGG+1 [13] poly(gmax)poly(λ, g
1/ε
max) poly(λ, g

1/ε
max) + n

BGG+2 [13] poly(λ, gmax) + |f | poly(gmax)poly(λ, gmax)

GGHZ1,2 [26, 27] poly(gmax)poly(λ, gmax) poly(gmax)poly(λ, gmax)

Our CP1 (§6.2) O(g)poly(λ, `) O(n′)poly(λ, `) + n

Our CP2 (§6.2) O(n2 + g)poly(λ, `) poly(λ, `) + n

1.2 Our Contributions on New Framework

The main building block behind our ABE schemes is a new generic and modular
framework, based on a new primitive called multilinear pair encoding. Our main
result for framework can be summarized as:

Theorem 2. ( Framework, informally). Suppose that a (new) subgroup decision
assumption in multilinear settings holds. A “doubly-selectively” secure multilin-
ear pair encoding scheme for predicate R implies a fully secure ABE scheme for
predicate R via a generic construction.

Our Formalization. Our framework generalizes the recent framework by Attra-
padung [3] (and Wee [51]), which works only in bilinear settings, to multi-linear
settings. The framework of [3] provides an algebraic abstraction of dual-system
encryption techniques, introduced by Waters [48] and utilized by many works
[35, 37, 40, 36, 51], via a primitive called pair encoding. As seemingly inherent to
bilinear settings, pair encoding of [3] is confined to only linear functions, so that
the security proof under subgroup decision assumptions can be achieved. This
prevents multiplication of variables in encodings since it would exactly destroy
linearity. On the other hand, in generalizing to multi-linear settings, it is exactly
the multiplication operation that we would like to enable. We resolve this conun-
drum by formalizing our multilinear version of pair encoding via a new notion
we call multilinear programs, which allows both addition and multiplication. Our
novelty then lies in identifying a subclass of multilinear programs that we call
associative programs that will exactly admit the security proof under a subgroup
decision assumption. Intuitively, associative programs allow us to compute the
same encodings in two equivalent ways (hence the name, associative); one is used
for the construction, and the other is used in simulation for the security proof.

“Doubly selective security” of pair encodings [3] can then be generalized
to multi-linear settings in a natural manner. This consists of selective and co-
selective notions for encodings, which mimic the definitions of selective and co-
selective security of ABE. Selective notion refers to the situation where a cipher-
text attribute is queried before a key attribute, while in co-selective notion, the
order is reversed. This reflects one of the advantages of the framework: to achieve
secure encodings in the selective notion, we can borrow algebraic techniques for
selective security of ABE, which is much easier to achieve than full security.
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Dual Conversion. Another advantage of the pair encoding framework is that
it comes equipped with the powerful dual conversion [3, 9]. For a predicate R :
X × Y → {0, 1}, its dual is defined by R̄ : Y × X → {0, 1} where R̄(Y,X) :=
R(X,Y ). Hence KP-ABE and CP-ABE are dual to each other. Attrapadung and
Yamada [9] described a generic conversion that converts (bilinear) pair encoding
P for a predicate R to another scheme P for its dual while preserves doubly
selective security and efficiency. More precisely, selective security of P implies co-
selective security of P (and analogously in an alternating manner). We generalize
to multilinear settings in this paper. This, for the first time, allows us to convert
KP-ABE to CP-ABE for circuits without using universal circuits, which was the
only known (and highly inefficient) method so far.

Perspective. Ananth et al. [2] recently proposed a generic conversion from
selective to full security in functional encryption (FE) for sufficiently expressive
classes. (More on this later in §1.4.) However, they left an open problem of
constructing a similar selective-to-full conversion for ABE. The ABE case is
a harder task since the starting primitive, i.e., selectively secure ABE, is less
powerful than selectively secure FE. Our framework provides a partial solution
by starting with any doubly selectively secure pair encodings (rather than any
selective ABE), and converting to fully secure ABE via Theorem 2.

Potential Applications. Although we demonstrate applications of our frame-
work by considering circuits, we may try to use it for plausibly constructing
ABE for “moderate” classes in the Chomsky hierarchy (e.g., Pushdown Au-
tomata, Linear-bounded Automata) with the hope that it can be done under
multilinear maps with much lower multi-linearity (e.g., small constant), which
itself might be easier to achieve than general-purpose multi-linear maps. Indeed,
this is the case for ABE for Deterministic Finite Automata, where the sufficient
multi-linearity is 2 (i.e., bilinear) [49, 3].

1.3 Our Techniques

Here, we highlight techniques for constructing new fully secure ABE for circuits.
We first quickly note that the “information-theoretic variant” of dual system
techniques [51, 3] will not work for circuit predicate due to “backtracking at-
tack” [24] (due to the multi-fanout property of circuits).

We thus seek for “doubly selectively” secure encoding for the circuit predi-
cate, which exhibits the “computational variant” of dual system techniques [36,
3]. Our blueprint starts with KP-ABE of GGHSW [24]. We immediately obtain
selectively secure encoding by borrowing techniques for proving selective secu-
rity of KP-ABE. The missing piece is then to prove the co-selective security for
this encoding, or equivalently, the selective security of its dual encoding. Intu-
itively, we need new techniques to directly prove selective security of CP-ABE for
circuits (without using universal circuits). One evidence that constructing selec-
tively secure CP-ABE for circuits can be hard is that the Waters CP-ABE [47],
which is for Boolean formulae, is proved under an already more complex (q-type)
assumption than the KP-ABE counterpart [33], à la the Parallel BDHE [47].
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Our goal is to generalize the selective proof of Waters’ CP-ABE to the case
of circuits. This poses two main issues. First, the output of a gate can be wired
as an input to another gate (we call this a hierarchy issue). Second, and more
essentially, the output of a gate (or a circuit input) can be wired as inputs
to many gates (this is called multi-fanout). In the Waters CP-ABE, these two
issues were not problematic since the scheme can be thought of using one big
gate (multi-fan-in) that can express a linear secret-sharing scheme.

We solve these issues by designing a new assumption and a security proof
that generalize “individual randomness” techniques similar to Waters [47], and
Rouselakis and Waters [43] to work with circuits. The security proof works by
“chaining” information on the paths from a given input gate to the output gate.
One technical difficulty is that the number of chains can be exponential in the
number of all gates (which would result in an exponential size assumption). We
resolve this by giving out “decomposed” elements separately and letting the
reduction multiply these terms on the fly to form the chains. In doing so, we
carefully avoid enabling multiplication that results in a term that would trivially
break the assumption. We note that our resulting assumption itself will not be
tied to any particular circuit; it is only parameterized by the width, the input
length, and the depth of the queried circuit.

Semi-adaptive Security under Simpler Assumptions. For the purpose of
basing our schemes under simple assumptions, we consider semi-adaptive se-
curity of ABE [19, 45], which is an intermediate notion between selective and
full security. We establish a tight reduction from semi-adaptive security of our
generic construction to the selective security of pair encodings. Loosely speaking,
this enables us to upgrade the KP-ABE of GGHSW [24] from selective to semi-
adaptive security for almost free4, since the selective security of our encodings
relies on a similar (simple) assumption as that of GGHSW. See Table 1,2.

1.4 Related Work

Multilinear Map Candidates. Our framework is based on multi-linear maps.
More precisely, we use composite-order asymmetric graded encoding systems (in
a black-box manner). Multi-linear graded encoding systems was first proposed by
Garg et al. [23] and subsequently by Coron et al. [20] (CLT13). Gentry et al. [29]
extended the CLT13 system to the composite-order setting. Unfortunately, these
candidates (and their variants, notably CLT15 [22]) were later shown to be bro-
ken [17, 21, 18].5 As an alternative approach, multilinear maps based on indistin-
guishability obfuscation (IO) are recently proposed in [1]. However, the current
security proof of IO under a polynomial-size set of assumptions requires com-
plexity leveraging and hence exponential loss in reduction [30]. Nevertheless, this
sheds some light on possibility of multilinear maps in the future.

4We although still need the subgroup decision assumption required for framework.
5As a caveat, some schemes are plausibly secure in the setting where encodings of zero
are not given out. However, in ABE, we will need them for our security proof.
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Fully Secure FE. Recently, Waters [50] and Ananth et al. [2] obtained fully-
secure functional encryption (FE) for circuits. Waters provides a direct scheme
based on IO [25, 30], while Ananth et al. provide a generic conversion from
selective to full security for FE in unconditional manner and one can then use
selectively secure FE from [25, 50], which is again based on IO. Due to an implicit
exponential loss via IO, we do not elaborately include [50, 2] in Table 1,2.

As mentioned earlier, Garg et al. [27] obtained fully secure FE for circuits
without obfuscation, hence also implies ABE with polynomial reduction. As
in [26], it uses universal circuits, and thus can deal only with bounded-size cir-
cuits. Its asymptotic efficiency is also similar to [26] (cf. Table 1,2), albeit with
much larger polynomials. Moreover, it requires stronger multilinear maps with
the so-called Extension functionality [27].

Semi-adaptive Secure ABE. Very recently, Brakerski and Vaikuntanathan [11]
obtained semi-adaptively secure KP-ABE for circuits that also achieves a re-
markable feature of unbounded input length. Also very recently, Goyal et al. [32]
proposed a generic selective-to-semi-adaptive conversion for ABE.

2 Preliminaries

Predicate Family. We consider a predicate family R = {RΛ}Λ∈Nc , for some
constant c ∈ N, where a relation RΛ : XΛ × YΛ → {0, 1} is a predicate function
that maps a pair of key attribute in a space XΛ and ciphertext attribute in a
space YΛ to {0, 1}. The family index Λ = (n1, n2, . . .) specifies the description
of a predicate from the family, where we let n1 be the security parameter λ ∈ N.

ABE Syntax. An ABE scheme for predicate R consists of the following:

• Setup(1Λ) → (PK,MSK): takes as input a a family index Λ (which includes
the security parameter λ) of predicate family R, and outputs a master public
key PK and a master secret key MSK.
• Encrypt(Y,M,PK) → CT: takes as input a ciphertext attribute Y ∈ YΛ, a

message M ∈M (the message space), and PK. It outputs a ciphertext CT.
• KeyGen(X,MSK,PK) → SK: takes as input a key attribute X ∈ XΛ and the

master key MSK. It outputs a secret key SK.
• Decrypt(CT,SK) → M : given a ciphertext CT with its attribute Y and the

decryption key SK with its attribute X, it outputs a message M or ⊥.

Correctness. Consider all indexes Λ, all M ∈ M, X ∈ XΛ, Y ∈ YΛ such that
RΛ(X,Y ) = 1. If Encrypt(Y,M,PK) → CT and KeyGen(X,MSK,PK) → SK
where (PK,MSK) is generated from Setup(1Λ), then Decrypt(CT,SK)→M .

Security Notions for ABE. We use the standard definitions for full security
and semi-adaptive security. Due to the lack of space, we refer to the full version.
The advantages of A against the full and semi-adaptive security of the scheme
ABE are denoted by AdvABEA (λ),Advsemi,ABE

A (λ), respectively.

Circuit Notations. A circuit consists of six tuples f = (`, n, {mi}i∈[2,`], L, R,
Type). We first note that it is wlog that we consider only monotone and layered
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circuits [24]. We let ` be the number of layers (the depth), n be the number
of inputs, and mi be the number of gates in the i-th layer for i ∈ [2, `]. Define
m := maxi∈[2,`]mi, which represents the width. We also definem1 = n. We define
Inputs = {w1,1, . . . , w1,n}, and for i ∈ [2, `], Gatesi = {wi,1, . . . , wi,mi}. We let
Gates =

⋃
i∈[2,n] Gatesi, and let Nodes = Inputs ∪ Gates. Also denote wtop = w`,1

(the output gate). We define Depth(wi,j) = i and Num(wi,j) = j. The two
functions L : Gates → Gates r {wtop} and R : Gates → Gates r {wtop} identify
the two input gates; that is, L(wi,j), R(wi,j) have outputs wired to wi,j as the
first input (left input) and the second input (right input), respectively. We require
that Num( L(wi,j)) < Num(R(wi,j)). The function Type : Gates → {OR,AND}
specifies the type of gate as either OR or AND. For w ∈ Gates, we denote fw(x)
to be the circuit evaluation of x at the output of w.

The predicate of KP-ABE for circuits is Rλ,n,` : Fn,`×{0, 1}n → {0, 1} where
R(f, x) = f(x), where Fn,` is the set of all circuits with bounded input length n
and bounded depth `.

Composite-order Graded Encoding. We use the same syntax of (composite-
order) graded encoding schemes as in [23, 20, 22]. Due to the lack of space, we
postpone the full definition to the full version and only give a short description
here. A composite-order asymmetric graded encoding scheme is parameterized
by multi-linearity κ ∈ N and the number of subrings ν ∈ N. It allows us to
encode a scalar a in a given ring R = ZN1

× · · · × ZNν , together with an index,
which is a set S ⊆ [1, κ], to a corresponding encoding, which we denote it by
[ a ]S . Intuitively, it is hard to recover the original scalar from its encoding, yet
we are still allowed to perform some arithmetic operations on encodings. More
precisely, we are allowed to perform operations +,−, · on encodings as

[ a ]S + [ b ]S = [ a+ b ]S , [ a ]S1
· [ b ]S2

= [ a · b ]S1∪S2
,

and −[ a ]S = [−a ]S , for a, b ∈ R, S, S1, S2 ⊆ [1, κ] such that S1 ∩ S2 = ∅.
We also give some notation, originally appeared in [26], when the encoded

scalar is projected to only subring components. In our ABE scheme, we will use
ν = 2. We denote [ a ]1S := [ a1 ]S where we set a1 ≡ a (mod N1) and a1 ≡ 0
(mod N2). [ a ]2S is denoted similarly. Thus, [ a ]1S and [ a ]2S are independently
distributed due to the Chinese Remainder Theorem. Also, we can decompose
[ a ]S uniquely to [ a ]S = [ a ]1S + [ a ]2S . Moreover, we have orthogonality: [ a1 ]1S1

·
[ a2 ]2S2

= [ 0 ]S1∪S2
, for any a1, a2 ∈ R (and disjoint S1, S2). More importantly,

we can establish some subgroup decision problems. We describe this in §3.4.
Our scheme will not require public encoding functionality of any element;

instead, we only need public encoding procedures of unknown random elements
(as is the case for previous candidates [23, 20, 22]). We denote it by [ a ]∅ ←
Samp(param), which gives us a level-∅ encoding of an unknown random element
a ∈ R. To encode it to level S, we need an encoding of 1, namely, [ 1 ]S , to
compute [ a ]∅ · [ 1 ]S = [ a ]S .

We briefly describe procedures for graded encodings here. InstGen(1λ, κ, ν)
outputs (param, esk, {Ni}i), where param is public parameter, esk is a secret
encoding key, and the order {Ni}i of subrings. By using esk, one can encode
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any a ∈ R to [ a ]VS for any S, V . Extraction algorithm Ext takes param and a
level-[1, κ] encoding [ a ][1,κ] as inputs, and outputs a string K ∈ {0, 1}λ. We

require that if a ∈R R, then K ∈R {0, 1}λ (∈R means uniformly distributed). As
in all previous candidates, encodings may be non-deterministic. In such a case,
we have a re-randomization procedure, and we require that the extraction of two
encodings of the same value will result in the same string.

3 Our Dual System Framework in Multilinear Settings

In this section, we describe our framework for constructing ABE for any given
predicate R from a new primitive called multilinear pair encoding scheme (for
predicate R). This primitive is defined using formal variables in polynomials. To
capture a formal system of graded encoding, we introduce the following notion
of indexed polynomials, which are basically formal polynomials with the index
being sets, and their operations mimic those of graded encodings.

Definition 1 (Formal Variables and Polynomials). A formal variable is a
bit string, and distinct variables denote different strings. A fresh variable is any
string that has not been assigned to another former variable. A formal polynomial
is a polynomial with formal variables.

Definition 2 (Indexed Polynomial). An indexed polynomial p is defined as
a pair of formal polynomial a with coefficients in Z and a set S ⊆ [1, κ]. We
denote it as p = ( a )S. We define its formal operations +,−, · as

( a1 )S + ( a2 )S = ( a1 + a2 )S , ( a1 )S1
· ( a2 )S2

= ( a1 · a2 )S1∪S2
,

and −( a )S = (−a )S, for S, S1, S2 ⊆ [1, κ] and S1 ∩ S2 = ∅.

Definition 3 (Indexed Singleton). An indexed singleton is an indexed poly-
nomial of a single variable (degree-1 monomial of a variable with coefficient 1)
or a constant. The former is also called indexed variable.

We formalize algorithms that perform formal operations on indexed poly-
nomials as multilinear programs. Below, we then capture a kind of multilinear
programs, called associative programs, that will be useful for our framework. We
will typically denote a vector of indexed polynomials using bold fonts.

Definition 4 (Multilinear Program). A multilinear program, say P, is a
procedure that takes a vector of indexed polynomials, say x, as an input, per-
forms only formal operations on its elements, and outputs a vector of indexed
polynomials, say v. When a security parameter λ is considered, we require the
number of formal operations to be polynomial in λ.

Definition 5 (Associative Program). We say that a multilinear program P

is associative over an ordered pair of vectors (x,w) of indexed singletons if its
input is a vector of indexed polynomials each of which is of the form6

(xi )∅ · (wj1 )Tj1 · · · (wjk )Tjk ,

6This form implies that all Tj1 , . . . , Tjk are pairwise disjoint.
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for some (wj1 )Tj1 , . . . , (wjk )Tjk ∈ w (for some k)7 and some variable xi such
that there exists (xi )Si ∈ x where Tj1 ∪ · · · ∪ Tjk = Si.

Using Associative Programs. The reason why we define associative programs
is that we can identify the following associativity property:

(xi )∅ · (wj1 )Tj1 · · · (wjk )Tjk = (xi )Si · (wj1 )∅ · · · (wjk )∅ (1)

(where Tj1 ∪ · · · ∪ Tjk = Si). Intuitively, this property will allows us to have two
ways of obtaining an equivalent element to be input to the program. Looking
forward in our ABE context, one way will allow us to define ABE constructions
and the other will allow us to simulate equivalent elements in the security proof.
More precisely, we have a lemma below. Before that, we define two more notions.

A Useful Notation. We define the notation of index-less projection that maps
a vector a of indexed polynomials to the same vector but with all indexes being
∅, denoted Va. That is,

a = { ( ai )Si | i ∈ [1, k] } 7→ Va := { ( ai )∅ | i ∈ [1, k] } .

Extended Program. For a multilinear program P that is associative over
(x,w), we define its canonically extended multilinear program, denoted as EP,
that takes (Vx, w) as inputs, and does as follows. From Vx and w, EP computes
each indexed polynomial (xi )∅ · (wj1 )Tj1 · · · (wjk )Tjk that appears in the input
set of P by formal multiplications. These thus comprise the whole input set to P

and EP then finally computes P and outputs the result. We have the following:

Lemma 1 (Associativity). For any vectors x,w of indexed polynomials, for
any multilinear program P that is associative over (x,w), we have

EP(Vx,w) = EP(x,Vw).

Proof. The left-hand side and the right-hand side programs compute each input
to P in the form of left-hand side and right-hand side of Eq.(1), respectively,
which are equal. From that point on, both compute the same program P. ut

Applying Graded-encoding Schemes to Formal System. Let us fix a
graded encoding scheme and use the bracket notation. For an indexed polynomial
p = ( a )S , we denote its corresponding graded-encoded element as [ p ] = [ a ]S ,
where we abuse the bracket notation. It also applies component-wise to vectors.

Let P be a multilinear program with an input size z and an output size
z′ (sizes are the length of vectors). We define a corresponding algorithm that
takes a vector of z graded-encoded elements as an input and outputs a vector
of z′ graded-encoded elements. This algorithm has the same procedure as P

but replaces each formal operation +,−, · on indexed polynomials to operation
+,−, · on graded-encoded elements, resp. We thus abuse the notation and denote
this algorithm also as P. The following lemma will be useful in the proof.

7Here, for a vector x, the notation ‘z ∈ x’ means that z is an element in x.



13

Lemma 2 (Decomposability). For any multilinear program P, any input x,
we have P([x ]) = P([x ]1) + P([x ]2).

Proof. We decompose [x ] = [x ]1 + [x ]2. We claim that the decomposition will
be preserved for each operation. For +,−, it is trivial. For multiplication we see
that ([x ]1S1

+ [x ]2S1
)([x′ ]1S2

+ [x′ ]2S2
) = [x ]1S1

· [x′ ]1S2
+ [x ]2S1

· [x′ ]2S2
, due to

orthogonality. Hence, multiplication also preserves decomposition. ut

We also obtain the following two corollaries from Lemma 1,2, resp., which
will be used in the security proof. They hold for any vectors x,w of indexed
polynomials, and for any multilinear program P that is associative over (x,w).

Corollary 1. EP([Vx ], [w ]1) = EP([x ]1, [Vw ]) = EP([x ]1, [Vw ]1).

Proof. Since each input to P is of the form in Definition 5, when [x ] is projected
to [x ]1, the input term to P is also projected due to orthogonality. Hence, we
have the latter equality. The rest follows from Lemma 1. ut

Corollary 2. EP([x ], [Vw ]) = EP([x ]1, [Vw ]) + EP([x ]2, [Vw ]).

3.1 Multilinear Pair Encodings

Syntax. A multilinear pair encoding scheme for predicate family R consists of
four deterministic polynomial-time algorithms as P = (Init,EncK,EncC,Pair):8

• Init(Λ)→
(
κ,hc,hk, n

)
. It outputs a multi-linearity level κ, two vectors hc,hk

of indexed singletons, and an integer n specifying the number of all variables
in hc,hk. We require that each singleton is hi or 1, where h1, . . . , hn are
variables. Let Sc, Sk be the set of all indexes in hc,hk, respectively. Also let
Sc =

⋃
S∈Sc

S, Sk =
⋃
S∈Sk

S. We require that Sc∩Sk = ∅ and Sc∪Sk = [1, κ].

Also we require ( 1 )Sk
∈ hk.

9

• EncK(X,hk) →
(
B, r,PX

)
. The Key Encoding algorithm takes X ∈ XΛ

and hk as inputs. It outputs two vectors B, r of indexed polynomials, and
a multilinear program PX . We require that r =

(
( r1 )S1

, . . . , ( rm )Sm
)
, where

r1, . . . , rm are fresh variables, for some S1, . . . , Sm ⊆ Sk for some integer m.
We require that

PX is associative over (r,hk) and EPX (Vr,hk) = B.

We distinguish the first indexed polynomial in B and require it to have index
Sk; we call it the Master-key Masking term10 and denote it as (K0 )Sk

. Hence,
B =

(
(K0 )Sk

,K
)
.

8We define syntax in such a way that it does not refer to multilinear maps. We do this
so that it can accommodate both perfect and computational flavor of security (the
former will not refer to mult-maps while the latter will, cf. §3.2), similarly to [3, 5].

9Or, ( 1 )Sk is computable from hk. This is only for our purpose of dual conversion in §6.
10It will be used to mask the master-key in our generic scheme in §3.3, hence the name.
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• EncC(Y,hc) →
(
C, s,PY

)
. The Ciphertext Encoding algorithm takes Y ∈ YΛ

and hc as inputs. It outputs two vectors C, s of indexed polynomials, and a
multilinear program PY . We require that s =

(
( s0 )Sc , ( s1 )T1 , . . . , ( sw )Tw

)
,

where s0, s1, . . . , sw are fresh variables, for some T1, . . . , Tw ⊆ Sc for some
integer w. We require that

PY is associative over (s,hc) and EPY (Vs,hc) = C.

We distinguish the first indexed variable ( s0 )Sc in s where we require it to have
index Sc. Also, we require that ( s0 )Sc ∈ C and call it the Base Randomness
term. (Wlog, we let it be the first indexed polynomial in C).
• Pair(X,Y )→ PX,Y . It outputs a description of multilinear program PX,Y .

Correctness. If R(X,Y ) = 1 then PX,Y (K,C) = (K0s0 )[1,κ], for K,K0,C, s0

defined as above. In particular, (K0 )Sk
and ( s0 )Sc are the master-key masking

term in K and the base randomness term in C, respectively.

3.2 Security Definitions for Multilinear Pair Encoding

In this section, we formalize security notions for multilinear pair encoding. Look-
ing forward, intuitively, they are formalized so as to provide indistinguishability
between certain game switchings in the security proof for ABE. Nevertheless, it
is simpler than the full security of ABE as the adversary will not obtain elements
corresponding to public keys (graded-encoded hc in our context).

We formalize the computational security here, and postpone the information-
theoretic one to the full version. It generalizes that of (bilinear) pair encoding
in [3] (with a refinement regarding the number of queries in [9]). It consists
of two sub-notions: selective and co-selective master-key hiding (SMH,CMH) in
a graded encoding system G. We recall that G.Samp gives a level-∅ encoding of
random element. We use the same notation for a vector x of indexed polynomial:
that is, [Vx ] ← Samp(param) gives [x1 ]∅, · · · , [xk ]∅ ← Samp(param).

Selective Master-key Hiding. Let t1, t2 ∈ N. The (t1, t2)-SMH security is
defined via the following game between the challenger C and the adversary A in
the following order. For a definitional purpose, we fix b ∈ {0, 1}.

1 Setup: The challenger C setups the pair encoding P.Init(Λ) →
(
κ,hc,hk, n

)
,

and setups the graded encoding G.InstGen(1λ, κ, 2) → (param, esk, N1, N2).
C graded-encodes 1 for all indexes in Sc∪Sk to obtain I :=

{
[ 1 ]1S , [ 1 ]2S

}
S∈Sc∪Sk

.

The input to A is (param, I). C further samples [Vh ], [β ]∅ ← Samp(param)
for using in the next phases. From b, define

β? := 0 if b = 0 and β? := β if b = 1.

2 Ciphertext query phase: A makes a query Y for graded-encoded EncC. C
then runs P.EncC(Y,hc) →

(
C, s,PY

)
, samples [Vs ] ← Samp(param), and

returns [C ]2 to A. At most t1 ciphertext queries are allowed.
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3 Key query phase: A makes a query X for graded-encoded EncK. We re-
quire that R(X,Y ) = 0 for all queries Y in the previous phase. C runs
P.EncK(X,hk) →

(
B, r,PX

)
, samples [Vr ] ← Samp(param). Parse B =

((K0 )Sk
,K) and returns

([β? ]2Sk
+ [K0 ]2Sk

, [K ]2)

to A. At most t2 key queries are allowed.
4 Guess: The adversary A outputs a guess b′ ∈ {0, 1}.

Let Expb(λ) denote the output of the game. We define the advantage of A as

Adv
(t1,t2)-SMH(P)
A (λ) := |Pr[Exp0(λ) = 1] − Pr[Exp1(λ) = 1]|. We say that P is

(t1, t2)-SMH in G if the advantage is negligible for all polynomial time attackers
A. If ti is not a-priori bounded, we denote ti = poly.

Remark 1. We note that, in the above game, C can compute the returned graded-
encoded elements by using I and known level-∅ graded-encoded variables, [Vh ],
[Vs ], [Vr ]. Also note that, if graded encoding is noisy, C re-randomizes answers
to have a certain noise level before returning back to A.

Co-selective Master-key Hiding. The (t1, t2)-CMH security is defined in ex-
actly the same manner as that of SMH except that we swap the order of the
two query phases: we let the key query phase comes before the ciphertext query
phase. Now, t1, t2 denotes the number of key and ciphertext queries, respectively.
We note that an analogous restriction is required in the ciphertext query phase.

3.3 Our Generic ABE Construction for Any Predicate

Construction. From a multi-linear pair encoding scheme P for predicate R
and a graded encoding system G, we construct an ABE scheme for R, denoted
ABE(P,G), as follows. We let the message space be M = {0, 1}λ.

• Setup(1Λ) → (PK,MSK). Initialize P.Init(Λ) →
(
κ,hc,hk, n

)
and generate

G.InstGen(1λ, κ, 2) → (param, esk, N1, N2). For i ∈ [1, n], sample hi
$← R.

Sample α
$← R. It graded-encodes all elements in hc,hk, in ZN1 components

(by using the secret encoding key esk). Output:

PK =
(
param, [hc ]1, [α ]1[1,κ]

)
, MSK =

(
param, [hk ]1, [α ]1,2Sk

)
.

• Encrypt
(
PK, Y,M

)
→ CT. Run P.EncC(Y,hc)→

(
C, s,PY

)
. Sample [Vs ] ←

Samp(param). Compute

[C ]1 = EPY

(
[Vs ], [hc ]1

)
.

It then computes [αs0 ]1[1,κ] = [α ]1[1,κ]·[ s0 ]∅ and C0 = G.Ext(param, [αs0 ]1[1,κ])⊕
M . Output CT =

(
[C ]1, C0

)
.
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• KeyGen
(
MSK, X

)
→ SK. Run P.EncK(X,hk)→

(
(K0 )Sk

,K, r,PX
)
. Sample

[Vr ] ← Samp(param). Compute

([K0 ]1Sk
, [K ]1) = EPX ([Vr ], [hk ]1)

Output SK =
(

[α ]1,2Sk
+ [K0 ]1Sk

, [K ]1
)
.

• Decrypt(SK,CT) → M . Assume R(X,Y ) = 1. Parse [ s0 ]1Sc
from CT. Run

P.Pair(X,Y )→ PX,Y . Compute PX,Y ([K ]1, [C ]1)→ [K0s0 ]1[1,κ] and

([α ]1,2Sk
+ [K0 ]1Sk

) · [ s0 ]1Sc
− [K0s0 ]1[1,κ] = [αs0 ]1[1,κ],

and obtain M as C0 ⊕ G.Ext(param, [αs0 ]1[1,κ]).

Semi-functional Algorithms. In the security proof, we will use semi-functional
algorithms defined below. In these, we will use hatted variables which are fresh
variables (thus are independent from their non-hatted counterparts). For a vector
x of indexed variables, let x̂ be a vector of indexed variables where we swap each
variable in x with its hatted counterpart. In particular, this defines ĥc, ĥk, ŝ, r̂.

• SFSetup(1Λ)→ (PK,MSK, P̂K, M̂SK). This is exactly the same as Setup albeit

it additionally outputs P̂K, M̂SK as follows. For i ∈ [1, n], sample ĥi
$← R. It

graded-encodes all elements in ĥc, ĥk projecting to subring ZN2 and outputs:

P̂K =
(

[ ĥC ]2, [α ]2[1,κ]

)
, M̂SK = [ ĥK ]2,

It also outputs [ 1 ]2Sk
(for using as an input to SFKeyGen below).

• SFEncrypt
(
PK, Y,M, P̂K

)
→ CT. First, proceed as Encrypt

(
PK, Y,M

)
to ob-

tain [C ]1 and [αs0 ]1[1,κ]. Sample [Vŝ ] ← Samp(param). Compute

[ Ĉ ]2 := EPY

(
[Vŝ ], [ ĥc ]2

)
.

Compute [αŝ0 ]2[1,κ] = [α ]2[1,κ] · [ ŝ0 ]∅, and Ĉ0 = G.Ext(param, [αs0 ]1[1,κ] +

[αŝ0 ]2[1,κ])⊕M . Output CT =
(

[C ]1 + [ Ĉ ]2, Ĉ0

)
.

• SFKeyGen
(
MSK, X, type, aux

)
→ SK. aux is an auxiliary input. If type = 1,

let aux = M̂SK. If type = 2, let aux = (M̂SK, [ 1 ]2Sk
, [β ]∅). If type = 3, let

aux = ([ 1 ]2Sk
, [β ]∅). First, run KeyGen

(
MSK, X

)
→ ([α ]1,2Sk

+ [K0 ]1Sk
, [K ]1).

Sample [Vr̂ ] ← Samp(param). If type = 1 or 2, compute

([ K̂0 ]2Sk
, [ K̂ ]2) := EPX

(
[Vr̂ ], [ ĥk ]2

)
.

For type = 2 or 3, also compute [β ]2Sk
= [ 1 ]2Sk

· [β ]∅. Output

SK =


(
[α ]1,2Sk

+ [K0 ]1Sk
+ [ K̂0 ]2Sk

, [K ]1 + [ K̂ ]2
)

if type = 1(
[α ]1,2Sk

+ [K0 ]1Sk
+ [β ]2Sk

+ [ K̂0 ]2Sk
, [K ]1 + [ K̂ ]2

)
if type = 2(

[α ]1,2Sk
+ [K0 ]1Sk

+ [β ]2Sk
, [K ]1

)
if type = 3

.
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3.4 Multilinear Subgroup Decision Assumption

We introduce a new subgroup decision assumption in multilinear settings. It
generalizes the First and Second Subgroup Decision Assumptions in [35, 37, 3],
which are defined in bilinear groups, to multilinear settings. We require the
composite settings with only two subrings, instead of three as in [35, 37, 51, 3].

Definition 6 (MSD). For κ ∈ N, U ⊆ [1, κ], we define the (κ, U)-Multilinear
Subgroup Decision Assumption as follows. Let InstGen(1λ, κ, 2) → (param, esk,

N1, N2). For i ∈ U , let zi
$← R. Define Ū = [1, κ] \ U . For i ∈ Ū , let ai

$← R. It
states that the following distributions are computationally indistinguishable:(

D,Z =
{

[ zi ]1{i}

}
i∈U

)
and

(
D,Z =

{
[ zi ]1,2{i}

}
i∈U

)
,

where D =

(
param, I =

{
[ 1 ]1{i}

}
i∈[1,κ]

, A =
{

[ ai ]1,2{i}

}
i∈Ū

, B = [ 1 ]2U

)
.

We are able to use only two subrings thanks to asymmetric settings. Intu-
itively, if we were to use symmetric ones, B, which has only the ZN2 component,
can be used to test Z by multiplying to it. (And hence to prevent it, a mask
from another subgroup was needed). In asymmetric settings, we cannot multiply
B with any element in Z since their indexes intersect.

Properties from MSD. We describe some properties from MSD that will be
used in the security proof. We can write Zi := [ zi ]1,2{i} = [ zi,1 ]1{i} + [ zi,2 ]2{i}.

The problem can be restated as to distinguish whether zi,2 = 0 for all i ∈ U or
zi,2 ∈R R for all i ∈ U . For further use in the proofs, we denote the following.
For S ⊆ U , we denote ZS :=

∏
i∈S Zi and zS,j :=

∏
i∈S zi,j , for j = 1, 2. Hence,

we have ZS = [ zS,1 ]1S + [ zS,2 ]2S by orthogonality. Similarly, we write Ai :=

[ ai ]1,2{i} = [ ai,1 ]1{i} + [ ai,2 ]2{i}. For S ⊆ Ū , AS :=
∏
i∈S Ai and aS,j :=

∏
i∈S ai,j ,

for j = 1, 2; hence, we have AS = [ aS,1 ]1S + [ aS,2 ]2S . We also note that from I,
for any S ⊆ [1, κ], we can compute

∏
i∈S [ 1 ]1{i} = [ 1 ]1S .

3.5 Security for Our Generic Construction

Theorem 3. Suppose that a pair encoding P for predicate R is (1, 1)-CMH and
(1, poly)-SMH in G. Suppose the MSD Assumption holds in G. Then, our generic
construction, ABE(P,G), for predicate R is fully secure. More precisely, for any
PPT adversary A, there exist PPT algorithms B1,B2,B3,B4, whose running
times are the same as A plus some polynomial times, such that for any λ,

Adv
ABE(P,G)
A (λ) ≤ Adv

(κ,Sc)-MSD
B1

(λ) + (2q1 + 2)Adv
(κ,Sk)-MSD
B2

(λ)

+ q1Adv
(1,1)-CMH(P)
B3

(λ) + Adv
(1,poly)-SMH(P)
B4

(λ),

where q1 is the number of queries in phase 1, κ is the multi-linearity level, and
Sc, Sk ⊆ [1, κ] are specified by the encoding scheme P.
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Proof. We use a sequence of games in the following order:

Greal G0 G1,1

· · ·
Gk−1,3 Gk,1 Gk,2 Gk,3

· · ·
Gq1,3 Gq1+1 Gq1+2 Gq1+3 Gfinal

MSD MSD CMH MSD MSD SMH MSD =

where each game is defined as follows.11 Greal is the actual security game. Each of
the following game is defined exactly as its previous game in the sequence except
the specified modification as follows. For notational purpose, let G0,3 := G0.

− G0: We modify the challenge ciphertext to be semi-functional type.
− Gk,i where k ∈ [1, q1], i ∈ {1, 2, 3}: We modify the k-th queried key to be

semi-functional of type-i. We use fresh β for each key (for type i = 2, 3).
− Gq1+i where i ∈ {1, 2, 3}: We modify all the keys in phase 2 to be semi-

functional of type-i at once. We use the same β for all these keys (for type
i = 2, 3).

− Gfinal: We modify the challenge to encrypt a random message.

In the final game, the advantage of A is trivially 0. We prove the indistinguisha-
bility between all these adjacent games. Due to the lack of space, we provide
only two of these lemmata below and defer the rest to the full version. In these

lemmata, we define GjAdv
ABE(P,G)
A (λ) to be the advantage of A in the game Gj .

Summing all the advantage differences from these lemmata, we obtain the ad-
vantage bound stated as in Theorem 3. ut

Proof Intuition. We describe some intuition for proofs of lemmata for game
switching with key modifications. We consider two categories. (Ciphertext mod-
ification works similarly to the first category below).

For the game switching where β is not changed (normal to type-1 keys,
type-2 to type-3 keys), the difference between the two games is exactly the key
encodings in the ZN2

component. We thus simulate the key randomness [ r ] using
Z from the MSD problem instance, where we have to distinguish whether Z has
the ZN2 component or not. The reduction would then compute EP([ r ], [Vhk

]),
where [Vhk

] is sampled by the reduction and is used for generating other keys.
But, due to associativity (Lemma 1), this is equal to EP([Vr ], [hk ]), and due to
decomposability (Lemma 2), we can deduce that it is exactly the form of normal
or semi-functional key as per definition, depending on whether Z has the ZN2

component or not. Hence, the reduction to MSD is established.
For the game switching where β is changed (type-1 to type-2 keys), the dif-

ference between the two games is exactly β. We can embed exactly the challenge
from the CMH or SMH game, where we have to distinguish if β? = 0 or β? is
random. If the switched key is in phase 1, we use CMH, where the key query
comes before the ciphertext query. If the switched key is in phase 2, we use SMH.
The parameter (1, poly) of SMH lets us switch all post-challenge keys at once.

11More precise definitions of these games are given in the full version.
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We provide here the proofs for the game switching from Greal to G0 (changing
normal to semi-functional ciphertext), and Gk,1 to Gk,2 (changing type-1 to type-
2 semi-functional key).

Lemma 3 (Greal to G0). For any adversary A, there exists an algorithm B that

breaks the (κ, Sc)-MSD Assumption with |GrealAdv
ABE(P,G)
A (λ)−G0Adv

ABE(P,G)
A (λ)|

≤ Adv
(κ,Sc)-MSD
B (λ).

Proof. As an instance of the (κ, Sc)-MSD Assumption, the algorithm B obtains
an input (D, {Zi}i∈Sc) where Zi = [ zi,1 ]1{i} + [ zi,2 ]2{i}. B’s task is to guess

whether zi,2 = 0 or zi,2 ∈R R (both for all i ∈ Sc).
B simulates SFSetup as follows. First, B samples [ α̃ ]∅ ← Samp(param) and

sets [α ]1,2Sk
= [ α̃ ]∅ ·ASk

for MSK, and [α ]1[1,κ] = [α ]1,2Sk
· [ 1 ]1Sc

for PK.

For i ∈ [1, n], B samples [ h̃i ]∅ ← Samp(param). For each indexed variable
(hi )S in hc or hk (for some S), B computes [hi ]1S = [ h̃i ]∅ · [ 1 ]1S (computable

since [ 1 ]1S is available in I) and implicitly sets [ ĥi ]2S = [ h̃i ]∅ · [ 1 ]2S (unknown

since [ 1 ]2S is not available). Hence we have hi = h̃i mod N1 and ĥi = h̃i mod N2.

Due to CRT, hi and ĥi distribute independently, as required by definition of
SFSetup. This feature is called parameter-hiding [36, 3]. All these terms com-
pletely define PK,MSK. PK is given to A.

Phase 1,2. When A makes the j-th key query for X(j), B generates a key as
usual: SKj ← KeyGen(MSK, X(j)).

Challenge. The adversary A outputs messages M0,M1 ∈ {0, 1}λ along with

a target Y ?. B chooses b
$← {0, 1}. B runs P.EncC(Y ?,hc) →

(
C, s,PY ?

)
. Let

w = |s| − 1. For i ∈ [0, w], sample [ s̃i ]∅ ← Samp(param). Suppose that s =(
( s0 )Sc , ( s1 )T1

, . . . , ( sw )Tw
)
. B then computes

[ s̄ ] :=
(

[ s̃0 ]∅ · ZSc , [ s̃1 ]∅ · ZT1
, . . . , [ s̃w ]∅ · ZTw

)
,

[ C̄ ] :=EPY ?

(
[ s̄ ], [Vh̃c

]
)
,

C̄0 :=G.Ext
(
param, [α ]1,2Sk

· [ s̃0 ]∅ · ZSc

)
⊕Mb

where ZS = [ zS,1 ]1S + [ zS,2 ]2S for S ⊆ Sc is indeed derivable from the problem
instance. (See at the end of §3.4 for the definition of ZS). B sets CT = ([ C̄ ], C̄0).
We claim that CT properly distributes as a normal or semi-functional ciphertext.
To prove this, we observe that

[ C̄ ] = EPY ?

(
[ s̄ ], [Vh̃c

]
)

= EPY ?

(
[ s̄ ]1, [Vh̃c

]
)

+ EPY ?

(
[ s̄ ]2, [Vh̃c

]
)

(2)

= EPY ?

(
[Vs ], [hc ]1

)
+ EPY ?

(
[Vŝ ], [ ĥc ]2

)
, (3)

where Eq.(2) is due to decomposability (via Corollary 1), while Eq.(3) is due
to the associativity (via Corollary 2), where the variable si, ŝi (for i ∈ [0, w])
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in s, ŝ are implicitly set as si = s̃izTi,1 and ŝi = s̃izTi,2, respectively. (Denote
T0 = Sc). In particular, s0 = s̃0zSc,1 and ŝ0 = s̃0zSc,2 , hence in C̄0 we have

[α ]1,2Sk
· [ s̃0 ]∅ ·ZSc = [αs0 ]1[1,κ] + [αŝ0 ]2[1,κ]. Hence, if zi,2 = 0 for all i ∈ Sc, then

CT is normal. Otherwise, zi,2 ∈R R for all i ∈ Sc, then CT is semi-functional.

Guess. The algorithm B has properly simulated Greal if zi,2 = 0 for all i ∈ Sc,
and G0 if zi,2 ∈R R for all i ∈ Sc. Hence, B can use the output of A to break the
(κ, Sc)-MSD Assumption. ut

Lemma 4 (Gk,1 to Gk,2). For any adversary A against the ABE(P,G) scheme,
there exists an algorithm B that breaks the (1, 1)-CMH security of the pair encod-

ing scheme P with |Gk,1AdvABE(P,G)
A (λ)− Gk,2Adv

ABE(P,G)
A (λ)| ≤ Adv

(1,1)-CMH
B (λ).

Proof. In the CMH game, B is given param and I =
{

[ 1 ]1S , [ 1 ]2S
}
S∈Sc∪Sk

from

its challenger. It simulates Gk,1 or Gk,2 for A as follows.
B simulates SFSetup as follows. It generates PK,MSK as in the construction

but using the given I instead. Namely, B runs P.Init(Λ) →
(
κ,hc,hk, n

)
. It

samples [α ]∅, [h1 ]∅, . . . , [hn ]∅ ← Samp(param). By using I, B can then obtain
[hc ]1, [α ]1[1,κ] for PK, and [hk ]1, [α ]1,2Sk

for MSK. It sends PK to A. We remark

that [ ĥc ]2, [ ĥk ]2 (as parts of P̂K, M̂SK) are not yet defined until the first query
that requires using them, which is the k-th key query below.

Phase 1. When A makes the j-th key query for X(j), B does as follows.

(Case j < k). B samples [βj ]∅ ← Samp(param), and computes a type-3 semi-
functional key as SKj ← SFKeyGen(MSK, X(j), 3, [ 1 ]2Sk

, [βj ]∅).

(Case j = k). B generates a type-1 or type-2 semi-functional key as follows.
B first obtains KeyGen

(
MSK, X(k)

)
→ SK = ([α ]1,2Sk

+ [K0 ]1Sk
, [K ]1). B then

makes a key query for X(k) to its challenger in the CMH game and obtains

ŜK =
(
[β? ]2Sk

+ [ K̂0 ]2Sk
, [ K̂ ]2

)
.

This is the challenge for B to guess if β? = 0 or β? ∈R R. B then returns SK+ ŜK
to A. If β? = 0, then this is a type-1 semi-functional key. If β? ∈R R, then it is
of type-2. We note that this simulated key implicitly defines [ ĥc ]2, [ ĥk ]2.

(Case j > k). B generates a normal key as SKj ← KeyGen(MSK, X(j)).

Challenge. The adversary A outputs messages M0,M1 ∈ {0, 1}λ along with a
target Y ? such that R(Xj , Y

?) = 0 for all j ∈ [1, q1]. B first obtains [C ]1 by
running Encrypt

(
PK, Y,M

)
. B then makes a ciphertext query for Y ? to its chal-

lenger in the CMH game and receives back [ Ĉ ]2. This query can be made since

R(Xk, Y
?) = 0. B parses [ s0 ]1Sc

from [C ]1, and [ ŝ0 ]2Sc
from [ Ĉ ]2. B then chooses

b
$← {0, 1} and computes Ĉ0 = G.Ext(param, [α ]∅ · [ 1 ]1Sk

· [ s0 ]1Sc
+ [α ]∅ · [ 1 ]2Sk

·
[ ŝ0 ]2Sc

) ⊕Mb. B forms the challenge ciphertext as CT =
(

[C ]1 + [ Ĉ ]2, Ĉ0

)
,

which is a properly distributed semi-functional ciphertext as required.
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Phase 2. For each query in this phase, B generates a normal key as usual.

Guess. The algorithm B has properly simulated Gk,1 if β? = 0, and Gk,2 if β?

is random. Hence, B can use the output of A to guess β?. ut

Variants of Security Theorems. We also obtain a theorem for the case of
(1, 1)-SMH, instead of (1, poly)-SMH. This results in looser reduction. We defer
their proofs to the full version, where we also provide some more variants.

Corollary 3. Suppose that a pair encoding P for predicate R is (1, 1)-CMH,
(1, 1)-SMH in G. Suppose that the MSD Assumption holds in G. Then, ABE(P,G)
is fully secure, with advantage bounded by

Adv
ABE(P,G)
A (λ) ≤ Adv

(κ,Sc)-MSD
B1

(λ) + 2qallAdv
(κ,Sk)-MSD
B2

(λ)

+ q1Adv
(1,1)-CMH(P)
B3

(λ) + q2Adv
(1,1)-SMH(P)
B4

(λ).

On the other hand, we can establish tight reduction from semi-adaptive se-
curity to (1, poly)-SMH as shown in the following corollary.

Corollary 4. Suppose that a pair encoding P for predicate R is (1, poly)-SMH
in G. Suppose that the MSD Assumption holds in G. Then, ABE(P,G) is semi-
adaptively secure, with advantage bounded by

Adv
semi,ABE(P,G)
A (λ) ≤ Adv

(κ,Sc)-MSD
B1

(λ) + 2Adv
(κ,Sk)-MSD
B2

(λ) + Adv
(1,poly)-SMH(P)
B3

(λ).

4 Fully Secure KP-ABE for Circuits

We describe our first KP-ABE via multilinear pair encoding scheme PKPABE1. It
is based on the (selectively-secure) KP-ABE of GGHSW [24], albeit we require
3`-multilinear maps, instead of (`+ 1) as in [24]. More precisely, instead of using
all singleton-set levels {1}, . . . , {`+1}, we implement the scheme on encodings of
levels in S := { [1, `+ 1], [`+ 2, 2`+ 1], {2`+ 2}, . . . , {3`} }. In the construction,
each of the first two “bundled” levels will always be used as a whole bundle.
We only decompose them in the simulation to accommodate the assumption in
the proof. Another difference are some additional terms T1, T2, D1, D2, for the
purpose of proving the CMH,SMH security using randomizer techniques [3, 36].

Construction PKPABE1.

• Init
(
λ, n, `

)
→
(
κ,hc,hk, n̄

)
. Set κ = 3`. Set n̄ = n+ 2 where we use variables

h1, . . . , hn, φ1, φ2. Let S′ :=
{

[`+ 2, 2`+ 1], {2`+ 2}, . . . , {3`}
}

. Define

hc =
(
( 1 )Sc , (h1 )Sc . . . , (hn )Sc , (φ1 )Sc , (φ2 )Sc

)
,

hk =
(
{( 1 )S}S∈S′ , (h1 )[`+2,2`+1] . . . , (hn )[`+2,2`+1], (φ1 )Sk

, (φ2 )Sk

)
,

where Sc = [1, `+ 1], Sk = [`+ 2, 3`].
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• EncC
(
hc, x ∈ {0, 1}n

)
→
(
C, s,Px

)
.12 Let Ax = { j ∈ [1, n] | xj = 1 }. Out-

put a ciphertext encoding C =
(
T1, C, {Cj}j∈Ax , T2

)
where

T1 = ( t )[1,`+1], C = ( s )[1,`+1], Cj = (hjs )[1,`+1], T2 = (φ2t+ φ1s )[1,`+1].

The indexed variable vector is s =
(
( t )[1,`+1], ( s )[1,`+1]

)
. That is, the base

randomness term is ( t )[1,`+1].
13

• EncK
(
hk, f ∈ Fn,`

)
→
(
(K0 )Sk

,K, r,Pf
)
.12 Set the indexed variable vector:

r =
(

( r )[`+2,3`],
{

(αw )[`+2,2`+iw]

}
w∈Nodes ,

{
( vw )[`+2,2`+1]

}
w∈Inputs ,{

( `w ){2`+iw}, ( rw ){2`+iw}
}
w∈Gates

)
where we denote iw := Depth(w). Define

D1 = (φ2r )[`+2,3`], D2 = ( r )[`+2,3`], D3 = (φ1r − αwtop )[`+2,3`].

Define the key element Kw for each w ∈ Nodes as follows.
1. For each input node w ∈ Inputs (i.e., Depth(w) = 1), let j = Num(w).

Define Kw = (Uw,Kw) as

Uw = ( vw )[`+2,2`+1], Kw = (αw + hjvw )[`+2,2`+1].

2. For each gate w ∈ Gates (i.e., Depth(w) > 1), define Lw = ( `w ){2`+iw},
Rw = ( rw ){2`+iw}, and do as follows.
− If Type(w) = OR, then set Kw = (Lw, Rw,Kw,1,Kw,2), where we let

Kw,1 = (αw + α L(w)`w )[`+2,2`+iw], Kw,2 = (αw + αR(w)rw )[`+2,2`+iw].

− If Type(w) = AND, then we set Kw = (Lw, Rw,Kw), where we let

Kw = (αw + α L(w)`w + αR(w)rw )[`+2,2`+iw].

Output the key encoding as ((K0 )Sk
,K) where the master-key masking term

is (K0 )Sk
= D1 and the rest is K =

(
D2, D3, {Kw}w∈Nodes

)
.

• Pair(f, x) → Pf,x. Assume f(x) = 1. We describe multilinear program Pf,x
that takes (C,K) as an input, and outputs (K0t )[1,3`]. It computes at each
node w such that fw(x) = 1 in the bottom-up manner. It will derive Ew :=
(αws )[1,2`+i], where i = Depth(w). We show this by induction on i (1 to `).

1. For each input node w ∈ Inputs = [1, n] such that fw(x) = 1, we have
xw = 1 and j := Num(w) ∈ Ax. Compute

Ew = C ·Kw − Cj · Uw = (αws )[1,2`+1].

This effectively proves the base case of the induction.

12The multilinear programs Px output from EncC and Pf output from EncK are
straightforwardly deducible from the respective encodings.

13That is, we use variable t in place of s0 of the generic construction.
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2. For each gate w ∈ Gates such that fw(x) = 1, we have two cases.

− If Type(w) = OR, then f L(w)(x) = 1 or fR(w)(x) = 1. Wlog, we can
assume that f L(w)(x) = 1. Hence, E L(w) = (α L(w)s )[1,2`+i−1] by the
induction hypothesis, as Depth( L(w)) = i− 1. Then, compute

Ew = C ·Kw,1 − E L(w) · Lw = (αws )[1,2`+i].

− If Type(w) = AND, then f L(w)(x) = 1 and fR(w)(x) = 1. Hence, E L(w) =
(α L(w)s )[1,2`+i−1], ER(w) = (αR(w)s )[1,2`+i−1], by the induction hy-
pothesis. Then, compute

Ew = C ·Kw −
(
E L(w) · Lw + ER(w) ·Rw

)
= (αws )[1,2`+i].

This concludes the induction. Finally, at the top gate wtop, where Depth(wtop) =
`, we obtain Ewtop = (αwtops )[1,3`]. Compute and obtain

T2 ·D2 − Ewtop − C ·D3 = (K0t )[1,3`],

as required.

Properties. We can see that the key encoding for circuit f contains (at most)
2n+ 4g′ + 3 elements, where g′ is the number of internal gates. Hence it admits
succinctness (the size is O(g), where g = n + g′ is the size of a circuit). The
ciphertext encoding for x contains |Ax| + 3 ≤ n + 3 elements. Moreover, it has
no bound on circuit size and fan-out. We only require bounds on input length n
and depth `.

Assumptions. We describe two new assumptions, SMDDH1 and EMDDH1,
which extend the regular Multi-linear DDH assumption (MDDH) [15, 23, 20] in
asymmetric setting. (S,E is for Simple/Esoteric extension, resp.) For assumption
X, we define the advantage AdvXA(λ) := |Pr[A(D,Z) = 1] − Pr[A(D,Z ′) = 1]|,
for adversary A, where D,Z,Z ′ are specified in each assumption.

Definition 7 (`-SMDDH1). Let InstGen(1λ, 3`, 2) → (param, esk). Sample ζ, z,
c1, . . . , c`+1, from R. The `-SMDDH1 Assumption states that the following dis-
tributions are computationally indistinguishable:(

D,Z = [ c1 · · · c`+1z ]2[`+2,3`]

)
and

(
D,Z ′ = [ ζ ]2[`+2,3`]

)
,

where D consists of: param,
{

[ 1 ]1{i}, [ 1 ]2{i}

}
i∈[1,3`]

, [ z ]2[1,`+1], [ c1z ]2[`+2,3`],

[ c1 ]2[1,`+1], [ c1 ]2[`+2,2`+1], [ c1 ]2{2`+2}, . . . , [ c1 ]2{3`},

[ c2 ]2[`+2,2`+1], [ c3 ]2{2`+2}, . . . , [ c`+1 ]2{3`}.

SMDDH1 differs from MDDH (in asymmetric settings) in two aspects. First,
the target element is in the level [`+ 2, 3`], instead of the whole, which is [1, 3`].
Second, it gives out one more element [ c1z ]2[`+2,3`]. We can see that this would
not help attacking since it cannot be multiplied with available c2, . . . , c` as they
are all encoded in levels that are subsets of [`+ 2, 3`].



24

Definition 8 ((`,m)-EMDDH1). Let InstGen(1λ, 3`, 2) → (param, esk). Sample
b, z, v, c1, · · · , c`+1, µ1, · · · , µ`, ν1, · · · , ν`, ω1, · · · , ω`, {ai,j , di,j}i∈[1,`],j∈[1,m], and
ζ from R. Denote µ = µ1 · · ·µ`, ν = ν1 · · · ν`, ω = ω1 · · ·ω`. The (`,m)-EMDDH1
Assumption states that the following distributions are computationally indistin-
guishable:(

D,Z = [ c1 · · · c`+1b ]2[`+2,3`]

)
and

(
D,Z ′ = [ ζ ]2[`+2,3`]

)
,

where D consists of 14: param,
{

[ 1 ]1S , [ 1 ]2S
}
S∈S, [ zb ]2[1,`+1], [ v ]2[1,`+1], [ v ]2[`+2,3`],

[ vb ]2[`+2,3`], [
c1···c`+1

v ]2[`+2,3`], and

∀e∈{0,−1} [µia
e
i,j ]2{i}, [

z

µ
]2{`+1},

∀e∈{0,1} [ νia
e
i,jdi,j ]2{i}, [

c1
ν

]2{`+1},

∀e∈{0,−1} [ωia
e
i,j ]2{i}, [

ωi
ω
zv

1

ai,j
]2{i,`+1},

∀(e,e′)∈E [
aei,j
ae

′
i,j′

di,j ]2{i}, ∀(e,e′)∈E? [ zc1
aei,j
ae

′
i,j′

di,j ]2{i,`+1},

[
c2
d1,j

]2[`+2,2`+1], ∀i∈[2,`] [
ci+1

di,j
]2{2`+i},

∀i∈[2,`]∀e∈{0,1} [ aei,jdi,j ]2{`+1+i},

∀e∈{0,1} [ c1 · · · ciaei,jdi,j ]2Si , ∀e∈{0,1} [ c1 · · · ci+1a
e
i,j

di,j
di,j′

]2Si ,

where, unless stated above, subscripts range for all i ∈ [1, `], j, j′ ∈ [1,m] such
that j′ 6= j. Denote E = {(0, 0), (0, 1), (1, 0), (1, 1), (−1, 0)}; E? = E \ {(0, 0)}.
Denote S1 = {`+ 2} and Si = [`+ 2, `+ 1 + i] ∪ [2`+ 2, 2`+ i] for i ≥ 2.

Due to the lack of space, we defer the intuition, some remark, and its generic
hardness for EMDDH1 to the full version. We provide some discussions regarding
EMDDH1 as follows.

On Assumption Simplicity. To compare simplicity of assumptions quantita-
tively, we measure their sizes. The size of EMDDH1 is O(`m2). In bilinear groups,
we already have the Expanded m-BDHE [49] assumption, or the one in [43], of
which size is O(m2). The expansion factor of O(`) in ours is somewhat natural
since we extend to 3`-linear maps. Indeed, the most basic assumption for `-linear
maps, namely, the normal `-MDDH [15, 23, 20], already has size Ω(`).

Comparing to Uber Assumption. The Uber Assumptions in multilinear set-
tings (Uber) are introduced in [42, 38], for proving their IO schemes. Intuitively,
Uber assumes the indistinguishability of (D,Z) and (D,Z ′) for all non-trivial
triples of (D,Z,Z ′). We compare EMDDH1 to Uber as they share this similar

14We refer the definition of S to the beginning of this section (§4).
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intuition. However, contrastingly to Uber, EMDDH1 requires only one such spe-
cific triple, parameterized by (`,m). Our scheme could possibly be proved as
well under Uber, so that new assumptions would not be needed. However, this
would be undesirable since Uber is not efficiently falsifiable [42]; while, on the
other hand, our assumptions are. In other words, we believe that it is important
to come up with such a specific triple, even if it might look complex. Indeed,
our novelty exactly lies in identifying such an explicit triple (D,Z,Z ′) defined
for EMDDH1.

Security. We now state the security theorems for our encoding PKPABE1. Their
proofs are deferred to the full version. From these and Theorem 3, Corollary 4,
we also obtain the full and semi-adaptive security of our first KP-ABE below.

Theorem 4. PKPABE1 is (1, 1)-CMH under the (`,m)-EMDDH1 assumption with
tight reduction, where `,m is the bounded depth and the width of queried circuit.

Theorem 5. PKPABE1 is (1, poly)-SMH under the `-SMDDH1 assumption with
tight reduction, where ` is the bounded depth.

Corollary 5. ABE(PKPABE1,G) is fully secure under EMDDH1,SMDDH1,MSD,
and semi-adaptively secure under SMDDH1,MSD, with advantage bounded by

Adv
ABE(PKPABE1,G)
A (λ) ≤Adv(κ,Sc)-MSD

B1
(λ) + (2q1 + 2)Adv

(κ,Sk)-MSD
B2

(λ)

+ q1Adv
(`,m)-EMDDH1
B3

(λ) + Adv`-SMDDH1
B4

(λ),

Adv
semi,ABE(PKPABE1,G)
A (λ) ≤Adv(κ,Sc)-MSD

B′
1

(λ) + 2Adv
(κ,Sk)-MSD
B′

2
(λ) + Adv`-SMDDH1

B′
3

(λ),

where κ = 3`, Sc = [1, `+ 1],Sk = [`+ 2, 3`].

5 Fully Secure KP-ABE with Short Ciphertext

We describe our KP-ABE for circuits with short ciphertexts. We use similar
techniques from compact ABE for formulae of [8, 3], which are also similar to [13,
19], for designing elements related to the input layer of circuits. The mechanism
regarding internal gates of circuits are exactly the same as our first KP-ABE.

Construction PKPABE2.

• Init
(
λ, n, `

)
→
(
κ,hc,hk, n̄

)
. Set κ = 3`. Set n̄ = n+ 4 where we use variables

h0, h1, . . . , hn, φ1, φ2, φ3. Define hc and hk as in our first KP-ABE except that
we have one additional term for each: (φ3 )[1,`+1] in hc; (φ3 )[`+2,2`+1] in hk.

• EncC
(
hc, x ∈ {0, 1}n

)
→
(
C, s,Px

)
. Let Ax = { j ∈ [1, n] | xj = 1 }. Output

a ciphertext encoding C =
(
C,C1, C2, T1, T2

)
where

C = ( s )[1,`+1], C1 = (φ3s+ (h0 +
∑
j∈Ax

hj)u )[1,`+1], C2 = (u )[1,`+1]

T1 = ( t )[1,`+1], T2 = (φ2t+ φ1s )[1,`+1].

The indexed variable vector is s =
(

( t )[1,`+1], ( s )[1,`+1], (u )[1,`+1]

)
.
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• EncK
(
hk, f ∈ Fn,`

)
→
(
(K0 )Sk

,K, r,Pf
)
. All the elements are the same as

our first KP-ABE except {Kw}w∈Inputs. Let j = Num(w). We define Kw =
(Uw,Kw, Fw, {Gw,i}i∈[1,n]r{j}) as

Uw = ( vw )[`+2,2`+1], Kw = (αw + φ3vw )[`+2,2`+1],

Fw = ( (h0 + hj)vw )[`+2,2`+1], Gw,i = (hivw )[`+2,2`+1].

• Pair(f, x) → Pf,x. Assume that f(x) = 1. We describe the multilinear pro-
gram Pf,x that takes (C,K) as an input and outputs (K0t )[1,3`]. It computes
exactly as in our first KP-ABE except the computation regarding input nodes.
For each input node w ∈ Inputs = [1, n] such that fw(x) = 1, we have xw = 1.
Let j = Num(w). We have j ∈ Ax. We compute:

Ew =C ·Kw − C1 · Uw + C2 · Fw + C2 ·
∑

i∈Axr{j}

Gw,i = (αws )[1,2`+1]

The rest of algorithm is defined as in PKPABE1.

Properties. We can see that the ciphertext encoding for string x always contains
5 elements (hence constant-size relative to n). The key encoding for circuit f
contains n(n− 1) + 4g′ + 6 elements, where g′ is the number of internal gates.

Assumptions. We use new assumptions SMDDH2, EMDDH2, which are similar
to SMDDH1, EMDDH1 respectively, albeit with some additional terms that will
be used for simulating the new input layer. In particular, SMDDH2 consists
of terms that are similar to the BDHE [14] and the Multi-linear BDHE [13]

assumptions (the terms of the form g, ga, . . . , ga
n

, ga
n+2

, . . . , ga
2n

), depicted in
the last line of SMDDH2 below. Again, we prove their generic hardness in the
full version.

Definition 9 ((`, n)-SMDDH2). Let InstGen(1λ, 3`, 2) → (param, esk). Sample
ζ, z, c1, . . . , c`+1, b from R. Let S = [`+2, 2`+1]. The (`, n)-SMDDH2 Assumption
states that the following distributions are computationally indistinguishable:(

D,Z = [ cn+1
1 c2 · · · c`+1b ]2[`+2,3`]

)
and

(
D,Z ′ = [ ζ ]2[`+2,3`]

)
,

where D consists of: param,
{

[ 1 ]1{i}, [ 1 ]2{i}

}
i∈[1,3`]

, and

[ z ]2[1,`+1], [
z

b
]2[1,`+1], [ c

n+1
1 b ]2[`+2,3`],

[ cn+1
1 ]2{2`+2}, . . . , [ c

n+1
1 ]2{3`},

[ c2 ]2[`+2,2`+1], [ c3 ]2{2`+2}, . . . , [ c`+1 ]2{3`},

[ c1 ]2[1,`+1], . . . , [ c
n+1
1 ]2[1,`+1], [ c1 ]2S , . . . , [ c

n+1
1 ]2S

[ c1c2 ]2S , . . . , [ c
n
1 c2 ]2S , [ c

n+2
1 c2 ]2S , . . . , [ c

2n+1
1 c2 ]2S .
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Definition 10 ((`,m, n)-EMDDH2). The (`,m, n)-EMDDH2 is defined in ex-
actly the same manner as (`,m)-EMDDH1 except that the given part D contains
also additional elements as follows. The problem instance additionally samples
bj for j ∈ [1, n]. It augments D to also contain, for j, j′ ∈ [1, n] such that j 6= j′,

[µ1bj ]2{1}, [ ν1b
2
j ]2{1}, [

1

bj
]2{1}, [

zc1bj
b2j′

]2{1,`+1},

[ bjc2 ]2[`+2,2`+1], [
c1
bj

]2{`+2}, [
c1
b2j

]2{`+2}, [
c1c2bj
bj′

]2{`+2}, [
c1c2bj
b2j′

]2{`+2}.

Security. We now state the security theorems for PKPABE2. We prove them in the
full version. The full/semi-adaptive security of the resulting ABE is also given
below.

Theorem 6. PKPABE2 is (1, 1)-CMH under the (`,m, n)-EMDDH2 assumption
with tight reduction, where ` is the bounded depth, n is the input length, and m
is the width of the queried circuit.

Theorem 7. PKPABE2 is (1, poly)-SMH under the (`, n)-SMDDH2 assumption
with tight reduction, where ` is the bounded depth and n is the input length.

Corollary 6. ABE(PKPABE2,G) is fully secure under EMDDH2,SMDDH2,MSD,
and semi-adaptively secure under SMDDH2,MSD, with advantage bounded by

Adv
ABE(PKPABE2,G)
A (λ) ≤Adv(κ,Sc)-MSD

B1
(λ) + (2q1 + 2)Adv

(κ,Sk)-MSD
B2

(λ)

+ q1Adv
(`,m,n)-EMDDH2
B3

(λ) + Adv
(`,n)-SMDDH2
B4

(λ),

Adv
semi,ABE(PKPABE2,G)
A (λ) ≤Adv(κ,Sc)-MSD

B′
1

(λ) + 2Adv
(κ,Sk)-MSD
B′

2
(λ) + Adv

(`,n)-SMDDH2
B′

3
(λ),

where κ = 3`, Sc = [1, `+ 1],Sk = [`+ 2, 3`].

6 Dual Conversion and CP-ABE

In this section, we provide a generic dual conversion for multilinear pair encoding.
It uses essentially the same idea as the dual conversion for bilinear pair encoding
of [9]. We then apply it to our KP-ABE and obtain CP-ABE for circuits.

6.1 Generic Dual Conversion

Given a multi-linear pair encoding scheme P for predicate R, we construct a
scheme Con(P) for its dual predicate R̄ as follows. We also denote P = Con(P).

• P.Init(Λ): Run P.Init(Λ)→
(
κ,hc,hk, n

)
. Parse Sc, Sk from hc,hk. Let

S̄c := Sk, S̄k := Sc, hc := (hk, (φ )S̄c
), hk := (hc, (φ )S̄k

),

where φ is a fresh variable. Output
(
κ,hc,hk, n+ 1

)
.
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• P.EncK(Y,hk): Parse hc from hk. Run P.EncC(Y,hc)→
(
C, s,PY

)
. Define

K̄0 := φs0, K := C, r̄ := s.

Define PY exactly as PY (which outputs C) but with an additional input
(φs0 )S̄k

, which is trivially wired to output ( K̄0 )S̄k
. Output

(
( K̄0 )S̄k

,K, r̄,PY
)
.

• P.EncC(X,hc): Parse hk from hc. Run P.EncK(X,hk)→
(
(K0 )Sk

,K, r,PX
)
.

Define

C :=
(
( s̄0 )S̄c

, (φs̄0 +K0 )S̄c
,K
)
, s̄ :=

(
( s̄0 )S̄c

, r
)
.

where s̄0 is a fresh variable. Define PX exactly as PX (which is a program
that outputs ((K0 )Sk

,K)) but with additional inputs ( s̄0 )S̄c
, (φs̄0 )S̄c

, which

is used for the two new output elements in C. Output
(
C, s̄,PX

)
.

• P.Pair(Y,X): Run P.Pair(X,Y )→ PX,Y . Define program PY,X as:

PY,X(K,C) : Output (φs̄0 +K0 )S̄c
( s0 )S̄k

− PX,Y (K,C).

Note that (φs̄0 + K0 )S̄c
and K are parsed from C, while ( s0 )S̄k

is parsed

from the first element of K = C. Outputs the description of PY,X .

Correctness. Assume R̄(Y,X) = 1. Hence, R(X,Y ) = 1. From the correctness
of P, we have PX,Y (K,C) = (K0s0 )[1,κ]. Hence

PY,X(K,C) = (φs̄0 +K0 )S̄c
( s0 )S̄k

− (K0s0 )[1,κ]

= (φs̄0 )S̄c
( s0 )S̄k

= ( s̄0 )S̄c
(φs0 )S̄k

= ( K̄0s̄0 )[1,κ],

as required. We must also verify the associativity of PY over (r̄,hk), and of PX
over (s̄,hc). But these are straightforward due to the associativity of PY over
(s,hc), and of PX over (r,hk), and the new elements can be easily inspected, in
particular, ( s̄0 )S̄c

( 1 )∅ = ( s̄0 )∅( 1 )S̄c
, and we have ( 1 )S̄c

∈ hk.
The following lemma shows that the conversion preserves security (in an

alternating manner). The proof is similar to [9], and is given in the full version.

Lemma 5. (1, 1)-CMH security of P implies (1, 1)-SMH security of P. Oppo-
sitely, (1, 1)-SMH security of P implies (1, 1)-CMH security of P.

6.2 Fully-Secure CP-ABE for Circuits

We obtain multi-linear pair encoding schemes for CP-ABE by applying the dual
conversion to our two encoding schemes for KP-ABE. In particular, we obtain
two schemes: PCPABE1 := Con(PKPABE1) and PCPABE2 := Con(PKPABE2). The effi-
ciency is obtained by swapping the key encoding size and the ciphertext encoding
size of the original KP-ABE schemes, plus one element for each encoding due to
the conversion. Therefore, both resulting CP-ABE schemes admit succinctness,
and the second CP-ABE achieves constant-size keys. The functionality is also
preserved, hence they can deal with unbounded-size circuits.
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From Lemma 5 and the security of PKPABE1 and PKPABE2 (Theorem 4,5 and
6,7), and the fact that (1, poly)-SMH trivially implies (1, 1)-SMH, we have the
following corollaries. Recall that ` is the bounded depth, n is the input length,
while m is the width of the queried circuit.

Corollary 7. PCPABE1 is (1, 1)-CMH under the `-SMDDH1 assumption.

Corollary 8. PCPABE1 is (1, 1)-SMH under the (`,m)-EMDDH1 assumption.

Corollary 9. PCPABE2 is (1, 1)-CMH under the (`, n)-SMDDH2 assumption.

Corollary 10. PCPABE2 is (1, 1)-SMH under the (`,m, n)-EMDDH2 assumption.

All the above corollaries admit tight reductions. From these and Corollary 3,
we obtain fully secure CP-ABE schemes with O(qall) reduction as follows.

Corollary 11. ABE(PCPABE1,G) is fully secure under EMDDH1,SMDDH1,MSD.
ABE(PCPABE2,G) is fully secure under EMDDH2,SMDDH2,MSD. We have

Adv
ABE(PCPABE1,G)
A (λ) ≤Adv(κ,S̄c)-MSD

B1
(λ) + 2qallAdv

(κ,S̄k)-MSD
B2

(λ)

+ q1Adv
`-SMDDH1
B3

(λ) + q2Adv
(`,m)-EMDDH1
B4

(λ).

Adv
ABE(PCPABE2,G)
A (λ) ≤Adv(κ,S̄c)-MSD

B1
(λ) + 2qallAdv

(κ,S̄k)-MSD
B2

(λ)

+ q1Adv
(`,n)-SMDDH2
B3

(λ) + q2Adv
(`,m,n)-EMDDH2
B4

(λ).

Here, κ = 3`, S̄c = [`+ 2, 3`],S̄k = [1, `+ 1].
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