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Abstract. In cryptographic access control sensitive data is protected
by cryptographic primitives and the desired access structure is enforced
through appropriate management of the secret keys. In this paper we
study rigorous security definitions for the cryptographic enforcement of
Role Based Access Control (RBAC). We propose the first simulation-
based security definition within the framework of Universal Composabil-
ity (UC). Our definition is natural and intuitively appealing, so we expect
that our approach would carry over to other access models.
Next, we establish two results that clarify the strength of our definition
when compared with existing ones that use the game-based definitional
approach. On the positive side, we demonstrate that both read and write-
access guarantees in the sense of game-based security are implied by UC
security of an access control system. Perhaps expected, this result serves
as confirmation that the definition we propose is sound.
Our main technical result is a proof that simulation-based security re-
quires impractical assumptions on the encryption scheme that is em-
ployed. As in other simulation-based settings, the source of inefficiency
is the well known “commitment problem” which naturally occurs in the
context of cryptographic access control to file systems.
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1 Introduction

Access control is one of the cornerstones of computer security. It comprises mech-
anisms and techniques that ensure that subjects (users, processes, etc) get access
only to the objects (files, memory locations, etc) in a way that preserves the pri-
vacy/integrity of the objects per some access policy that is in place. Traditional
access control mechanisms rely on reference monitors. Since monitors need to
be permanently on-line and have to be executed in trust domains outside the
control of the data owner(s), this has limitations that directly affect scalability
and deployability of applications.

A solution to this problem employs cryptography and is based on a simple and
elegant idea: protect the objects using cryptographic primitives (i.e. encryption
to guarantee privacy and signatures for integrity) and then enforce the desired
security policies by providing the right secret keys to the right parties. This type



of implementation eliminates the need for an on-line monitor: the objects being
protected can be made publicly available in encrypted form and access is only
provided to the users that have the right secret keys.

Security models for cryptographic access control. Much of the prior
work in this area was concerned with designing access control systems from basic
cryptographic primitives [18, 15, 2, 11, 10, 9, 8] and/or designing new primitives
tailored for the problem of access control [17, 23, 24, 14]. For the most part, the
security of cryptographic access control systems was only heuristically studied.
Yet, precise definitions are particularly important in this area: recent construc-
tions employ complex cryptographic primitives for which the level of security
is not always easy to ascertain and for which it is important to understand
how they fit within the higher level systems that employ them. For instance,
in attribute based encryption there is a sizable gap between security against
adversaries that decide statically the keys they will attack and those that take
this decision adaptively. Which of these types of schemes should be used in ac-
cess control systems to ensure security requires rigorous definitions of what such
systems aim to achieve and proofs that a given security level suffices.

Throughout the literature, rigorous models that look at the security of sys-
tems for access control have only sporadically been developed and were usually
concerned with particular schemes or applications [19, 1, 7, 6]. Security models
for broader frameworks have only recently been developed [13, 3]. One line of
work in this direction is due to Ferrara et al. who consider cryptographic en-
forcement of Role-Based Access Control models [13, 12]. Specifically, they define
a general syntax for cryptographic RBAC schemes (cRBAC in short), propose a
security model that captures privacy guarantees for objects protected with such
a system, and suggest an implementation based on predicate-encryption (PE).

The models proposed by Ferrara et al. use the so-called game-based approach.
Here, the model formalizes the interaction between an adversary and the system
and rigorously clarifies what is a security breach, e.g. as an event that occurs
during the execution. The appeal of this approach is its relative simplicity: exe-
cutions consider stand-alone scenarios where the system is in complete isolation
from other systems and the different security goals (e.g. privacy and integrity of
sensitive data) are treated independently from one another. At the same time,
simplicity is also cause of some concern. Since the security games must spec-
ify precisely the information that an adversary can obtain when attacking the
scheme, threats from arbitrary environments may not always be appropriately
captured. Similarly, individual treatment of security properties may overlook un-
wanted interaction since oftentimes security properties are contradictory. Fur-
thermore, it may not always be possible to exhaustively enumerate the different
properties that one may desire from a system.

In this paper we consider a definitional alternative that does not suffer from
the above shortcomings. Under this paradigm, called simulation-based approach,
security is defined by comparing a system with an idealized version and demands
that the real execution of a system reveals at most as much information is re-
vealed by an ideal version of the system. As a consequence of this definition,



the real system inherits all of the security properties of the ideal one, so there
is no need to enumerate security properties separately. One important class of
simulation-based security considers executions determined by an arbitrary envi-
ronment (tasked, e.g. to provide inputs to the system), so security in this sense
is composable in the sense that it is preserved in any environment in which the
system is employed [4, 20, 22]. Unfortunately, simulation security is often difficult
to establish and impose stringent restrictions on the implementations which rule
out construction with no obvious weakness or, at the very least, require ineffi-
cient realizations [5, 25]. In particular, the only attempt at a simulation-based
definition for access control is the work of Halevi, Karger, and Naor [19] who
provide such a security notion for access control in distributed file storage. Their
definition is for a specific system rather than for a general model as the one
developed in this paper.

Our contribution. The observation that motivates this paper is that simulation-
based security with composability properties is an excellent fit for the context
of cryptographic access control. Such systems involve multiple parties, are quite
complex and need to satisfy several security requirements (e.g. both individual
and joint privacy for the protected objects). Moreover, by their raison d’être, ac-
cess control systems need to maintain their security properties when employed
within higher level protocols. Below, we overview our results.

Security definition. We start with the formalization of an ideal functionality
that captures the security guarantees expected from a cryptographic RBAC
system. Our functionality reflects directly the semantics associated to RBAC
systems [26]. Roughly speaking, the functionality keeps track of all of the opera-
tions performed on the system and maintains the induced access control matrix;
user requests to access files are then granted/refused based on this matrix. Se-
curity in the sense that we define requires that an adversary cannot do more
against the concrete implementation than it can do against the functionality.
This requirement essentially says that the implementation enforces the expected
semantics of the RBAC system. Technically, to show security one needs to con-
struct a simulator which can simulate the complete view that an adversary has
against the real system but only from access to the information that the ideal
functionality provides.

We note that our approach should work for any other model that benefits
from a precise semantics with an induced access control matrix.

Relation with game-based definitions. Next, we study the relation between the
existent game-based security notions and the level of security that our definition
entails. It is generally believed that, for the same task, simulation-based security
is stronger than game-based security, even if only because the former is supposed
to capture all of the security properties expected of a system. Indeed, we show
that our notion of security entails both security with respect to read access (the
game-based variant introduced in [13]) and write access (the game-based variant
introduced in [12]). While expected these types of results help build confidence
in the definitions.



Lower-bounds for UC-secure cRBAC. Our main result is a gap between simulation-
security and game-based security. More precisely, we show that it is impossible
for a cryptographic RBAC system to be UC-secure. In technical terms, we show
that the so-called commitment problem [5] occurs in the context of access control.
Roughly, the problem is that the simulator required by the security definition
needs to produce valid looking encryptions of the objects that are protected with-
out actually knowing the actual content of these objects (e.g. files). The problem
is that when the adversary gains access to such a file (e.g. by corrupting a user
who has access to this file), the simulator needs to produce a decryption key
that explains the ciphertext as an encryption of some particular content which
the simulator did not know when the ciphertext was created.

In a bit more detail, our proof proceeds in two steps. First, we provide a
generic construction of a universally composable non-interactive communication
protocol (NICP) out of any universally composable cRBAC system. A classical
result by Nielsen shows that such schemes do not exist if no setup assumptions
are in place [25]. Nielsen’s result does not apply directly in our setting since our
construction of a NICP inherits several assumptions that are in place for the cR-
BAC system; in particular, it requires a publicly available file-system and secure
channels between some of the parties. We bypass this difficulty by extending
Nielsen’s impossibility result to settings that involve these setup assumptions
whenever their use are restricted in certain ways, and argue that these restric-
tions are natural in access control.

2 Preliminaries

In this section, we give a brief overview of Canetti’s UC framework [4], provide
some background of the Role-Based Access Control and recall Ferrara et at.’s
notion of cryptographic Role-Based Access Control.

The Universal Composability (UC) framework. The UC framework is
based on the “real-world/ideal-world” paradigm, which originates in Goldreich,
Micali and Wigderson’s paper [16]. The basic idea of this paradigm is to show
that the execution of a real-world protocol emulates a process which carries out
the given task in an idealized way: all the participants securely provide their
individual inputs to a trusted party, who then locally computes the outputs
and provide them to the participants according to the specification of the task.
The emulation property essentially requires that every possible damage caused
by an adversary against the real system can also be simulated by an adversary
(the simulator) in the ideal world. Since an adversary cannot really break the
idealized protocol, the real-world protocol should also be secure.

This paradigm has been further developed by the UC framework. In the
UC framework, the trusted party of the ideal process is modelled as an entity
called ideal functionality and denoted by F . In addition to handling the inputs
obtained repeatedly from the parties and generating the prescribed outputs, F
is allowed to interact with the adversary, in a way that captures the allowed
leakage of the protocol. To provide security guarantee under composition, the



UC framework introduces an adversarial entity called the environment Z, which
represents all possible settings in which the protocol can be executed. Z acts as
an interactive distinguisher which aims to tell if it is interacting with the real
protocol or with the ideal one. In the process, the environment is allowed to
exchange information with the adversary, to provide inputs to the participants
of it choice and to obtain outputs from them. A protocol Π is said to securely
realize the functionality F , if for any adversary A, there exists a simulator S
such that no environment can distinguish between its interactions with parties
running Π and A and the interactions with the ideal process for F and S.

An special type of adversary is the so-called dummy adversary D. This ad-
versary simply delivers the messages from the environment to the parties and
forwards the messages from the parties to the environment: this adversary essen-
tially allows the environment to fully control the input/output and the commu-
nication between the parties. A simulator that works for the dummy adversary
essentially gives rise to a simulator for any other adversary.

An important concept in the UC framework is the hybrid model, an execution
setting which is a mix between a real protocol and an idealized setting. Specif-
ically, in an F-hybrid the parties running the protocol can use multiple copies
of an ideal functionality F . The extension of the notion of realizing of an ideal
functionality in the hybrid model is immediate. In fact, it captures the essence of
the general composition theorem specific to UC. If a protocol ρ securely realizes
an ideal functionality G in F-hybrid model and there is a protocol π securely
realizes F , then the composed protocol ρπ/F where all the calls to F are replaced
by calls to π securely realizes G. Hence π provides the same security guarantee
as the ideal functionality F even if used within an arbitrary protocol ρ; further-
more the composed protocol ρπ/F still provides the same security guarantee as
the ideal functionality G.

One particular application of hybrid models is to capture various communi-
cation models. This is achieved by formulating an appropriate ideal functionality
F that represents the abstraction from the communication, then real-world pro-
tocols in the communication model can be presented in the F-hybrid model.
To exemplify this approach, we present Fsmt, the ideal functionality for secure
message transmission (aka secure communication) in Fig. 1. In Fsmt, a sender
PS with input m sends its input to a receiver PR, while the adversary only learns
|m|, the length of the message m, and can delay the message delivery. Notice
that Fsmt can only transmit a single message, to transmit multiple messages
we need to use multiple instances of Fsmt. We refer to [4] for more details and
formal descriptions about the UC framework.

Cryptographic Role-Based Access Control. Role-based access control
(RBAC) is a general access control model that offers many benefits includ-
ing allowing for fine-grained access controls and simplifying the management
of user permissions. Instead of assigning users with the permissions directly, it
introduces an indirection namely the roles such that the access control poli-
cies are decomposed into two associations: the user-role assignment relation and
permission-role assignment relation. More formally, at any point a (core) RBAC



Functionality Fsmt

Fsmt proceeds as follows, with a sender PS , a receiver PR and an adversary S.

1. Upon receiving an input (Send, sid, PR,m) from PS , send (Sent, sid, PS , PR, |m|)
to the adversary and generate a delayed output (Sent, PS , sid,m) to PR then
halt.

2. Upon receiving (Corrupt, sid, P ) from S, where P ∈ {PS , PR}, reveal m to the
adversary. If P = PS and the message has not yet been sent to PR, then ask S for
a value m′ and output (Sent, PS , sid,m

′) to PR then halt.

Fig. 1. Ideal functionality for the secure message transmission, Fsmt.

system is in a state which consists of a set of users U , a set of roles R, a set of
permissions P , a relation UA ⊆ U ×R which records the assignment of users to
roles and a relation PA ⊆ P ×R which maintains the assignment of permissions
to roles. Intuitively, a user u has the permission p if there exists a role r such
that (u, r) ∈ UA and (p, r) ∈ PA.

The state of an RBAC system changes dynamically. Throughout the paper
we make the simplifying assumption that the set of roles R is fixed (the assump-
tion reflects the reality that in many organizations the role structure is usually
stable). The remaining components of the state change following administrative
commands of the form (U ′, O′, P ′,UA′,PA′)← Cmd((U,O, P,UA,PA), arg). We
summarize the typical commands and their intended semantics in Fig. 2.

Command Semantics Description

AddUser(u) U ∪ {u} Add a new user u to the system

DelUser(u)
U \ {u},

Remove an existing user u
UA \ {(u, r) ∈ UA|r ∈ R}

AddObject(o) O ∪ {o} Add a new object o to the system

DelObject(o)
O \ {o}, P \ {(o, ·)},

Remove an existing object o
PA \ {((o, ·), r) ∈ PA|r ∈ R}

AssignUser(u, r) UA ∪ {(u, r)} Assign the user u to the role r

DeassignUser(u, r) UA \ {(u, r)} Deassign the user u from the role r

GrantPerm(p, r) PA ∪ {(p, r)} Grant the permission p to the role r

RevokePerm(p, r) PA \ {(p, r)} Revoke the permission p from the role r

Fig. 2. Administrative RBAC commands.

At a high-level, a cryptographic implementation of RBAC (cRBAC) consists
of algorithms that implement the administrative commands outlined above, in
a way that enforces the desired access matrix of the system. Formal syntax and
security for such systems have been introduced by Ferrara et al. for the case
where access is only concerned with reading sensitive data [13] and was later
extended to also enforcing writing to sensitive files [12]. As in these works, we



assume a setting that involves three main entities: a manager, a file system and
a set of users. The manager is assumed to be a trusted party and is tasked with
carrying out the administrative commands. The file system is publicly-accessible
and is assumed to support versioning – users are only allowed to append content
to the file system but not to delete any data.

More precisely, a cRBAC scheme CRBAC consists of the following algo-
rithms: Init, AddUser, DelUser, AddObject, DelObject, AssignUser, DeassignUser,
GrantPerm, RevokePerm, Update, Write and Read. As suggested above (and by
their names) most of the algorithms correspond to the different administrative
commands of RBAC. There are three additional algorithms which we describe
below. We assume that they define non-interactive multi-party computations
which proceeds as follows: first, the manager carries out some local computa-
tions according to the RBAC command (including updates to the file system)
and produces a set of update messages, one for each of the users. The messages
are sent over private channels to users who use it to update their local state.
Therefore, these algorithms take as input the locate state of the manager stM ,
the current state of the file system fs and the argument for the command arg as
input and output an updated state fs ′ for file system accordingly, a new state
for the manager and a set of update messages {msgu}u∈U for the users. When
a user u receives an update message msgu from the manager, it then executes
the Update algorithm with its local state st [u] and the message to update its
local state accordingly. The Read and Write are the algorithms that allow users
to read/write from the files. Both algorithms take as input the local state of
the user st [u], a file name o (potentially some content to be written to the file
m) and the state of the file system fs. The Read algorithm should return the
content of the file; the Write algorithm should return the content that should be
appended to the file system.

3 A UC security definition for cRBAC

This section presents a universally composable security definition for cRBAC
systems. We formalize the security requirements by designing an ideal function-
ality Fcrbac.

Functionality Fcrbac. The ideal functionality we present in Fig. 3 captures
the intuitive security properties of cRBAC systems in the way of simply behaving
as a server-mediated access control on the files being protected. Very roughly,
Fcrbac keeps track of every operation performed on the system and maintain the
induced access control matrix within, while it preserves that only the authorized
access requests will be granted. This is achieved by having Fcrbac maintain a
built-in database to store the content of every file, along with a symbolic RBAC
state of the system. Then it handles every access request according to the RBAC
state.

More specifically, Fcrbac embodies the essential interfaces of a cRBAC sys-
tem, including system initialization, RBAC administration and read/write access
to the file system. It proceeds as follows. Having received an initialization request



Functionality Fcrbac

Fcrbac proceeds as follow, with a manager M , users u1, ..., un and an adversary S.

Initialization: Upon receiving an input (Initialization, sid, R) from M where R
is a set of roles, send (Initialization, sid, R) to S, initialize an object-indexed
list FS ← ∅ and the symbolic RBAC state (U,O, P,R,PA,UA)← (∅, ∅, ∅, R, ∅, ∅).
After that, mark the system as initialized and ignore all the inputs of the form
(Initialization, sid, R′) for some R′ from now on.

RBAC administration: Upon receiving an input (RBAC, sid, cmd , arg) from M
where cmd is one of the administrative RBAC commands specified in Fig. 2 and
arg is the command-specific arguments, proceed as follows: If the system has not
yet been initialized, or the execution of cmd with arg is invalid (e.g. it is
considered as invalid if cmd =“GrantPerm” and arg = (p, r), where r /∈ R),
return an error. Otherwise, update the current RBAC state symbolically
(U ′, O′, P ′,UA′,PA′)← cmd((U,O, P,UA,PA), arg) and then send
(RBAC, sid, cmd , arg) to S. If cmd =“DelObject” and arg = o, also delete the
content of FS [o].

Write: Upon receiving an input (Write, sid, o,m) from some user u where o is an
object and m is some content, if the system has not been initialized or there
exists no role r such that both (u, r) ∈ UA and ((o, write), r) ∈ PA are satisfied,
return an error. Otherwise, set FS [o]← m and send (Wrote, sid, o, |m|) to S,
where |m| is the length of m.

Read: Upon receiving an input (Read, sid, o) from some user u where o is an object,
if the system has not been initialized or there exists no role r such that both
(u, r) ∈ UA and ((o, read), r) ∈ PA are satisfied, return an error. Otherwise, set
m← FS [o] (if FS [o] stores no content then set m as an empty value), and return
m to u.

Corruption: Fcrbac is a standard corruption ideal functionality, with the exception
that any request for corrupting M will be ignored.

Fig. 3. The cryptographic Role-Based Access control functionality, Fcrbac.

with a set of roles R from the manager M , Fcrbac initializes an object-indexed
list fs and the symbolic system RBAC state. Then it notices the adversary that
the access control system is initialized with a set of roles R. Once Fcrbac is ini-
tialized, it ignores the other initialization request afterwards. Having received a
request of executing an administrative RBAC command from M , Fcrbac checks
if the command and its arguments specified in the request are valid. If so, it
executes the command symbolically and updates the system RBAC state. The
administrative RBAC command can be either of the commands presented in
Fig. 2. Having received a request to write some content m on a file o from some
arbitrary user u, Fcrbac first checks if u has the write permission. If so, it stores
m in FS [o] and leaks o and the length of m to the adversary. Having received a
request to read the content of a file o from some user u, Fcrbac also checks if u
has the read permission. If so, Fcrbac returns the content stored in FS [o] to u. If
FS [o] stores no content, it returns an empty value. With the use of the built-in



Functionality Fvfs

Fvfs proceeds as follows, running with users u1, ..., un, a file system manager M and
an adversary S. At the first activation Fvfs initializes a list L to be empty.

Status: Upon receiving an input (Status, sid) from a party P , output
(Content, sid, L) to P .

Write (user): Upon receiving an input (Write, sid, o, c) from some user u, if no
record r ∈ L of the form (sid, o, ·, ·) exists, set L← L ∪ {(sid, o, 1, c)}; otherwise,
set L← L ∪ {(sid, o, verm + 1, c)}, where verm = max({ver|(sid, o, ver, ·) ∈ L}).
Then send (Wrote, sid, o, ver, c) to S and send (Updated, sid) to every user.

Write (manager): Upon receiving an input (Write, sid, o, ver, c) from M , if a
record r ∈ L of the form (sid, o, ver, ·) exists, modify r as (sid, o, ver, c);
otherwise, set L← L ∪ {(sid, o, ver, c)}. Then send (Wrote, sid, o, ver, c) to S and
send (Updated, sid) to every user.

Remove: Upon receiving an input (Remove, sid, o, ver) from M , set
L← L \ {(sid, o, ver, c)}. Then send (Removed, sid, o, ver, c) to S and send
(Updated, sid) to every user.

Fig. 4. Ideal functionality for the versioning file storage, Fvfs.

database, Fcrbac guarantees correctness: the content that has been written to
a file by an authorized user will be read by a user who is entitled to read that
file. Fcrbac is a standard corruption ideal functionality, with an exception that
the manager M cannot be corrupted. It captures the reasonable trust on the
manager to administrate the access control system.

Several remarks on Fcrbac are in order. First, Fcrbac is an ideal functionality
for the general cryptographic role-based access controls. Due to the purpose of
studying the relation between the previous game-based security notions, Fcrbac

does not handle any administrative request of adding a new role or removing an
existing role. Second, Fcrbac only guarantees secure access to the file system and
preserves no policy privacy (when handling an administrative request, it simply
reveals the command and the arguments to the adversary). There still exists
some design choices on policy privacy preserving (e.g. only leaks the executed
command but not its arguments), which is left as further study. Third, Fcrbac

makes no explicit restriction on the form of the file system and the file system is
not designed as an individual party of the system. Thus in a real-world cRBAC
system, the file system should be implemented by the protocol itself. It also
captures that the file system does not implement any access control mechanism.
Fourth, Fcrbac does not have any authentication mechanism on the parties’
identities. The authentication is left to the protocols that make calls to Fcrbac.

Before presenting our definition of universally composable cRBAC system,
we first need to transform a cRBAC scheme CRBAC = (Init, AddUser, DelUser,
AddObject, DelObject, AssignUser, DeassignUser, GrantPerm, RevokePerm) into an
associated protocol ΠCRBAC in the UC setting accordingly. Recall that CRBAC
assumes private channels between the manager and the users. To model this,



we let the parties have access to Fsmt, the ideal functionality of secure message
transmission which is presented in Fig. 1. Also, CRBAC makes use of a public-
accessible versioning file system. This is modelled by an appropriate functionality
Fvfs which is presented in Fig. 4. Fvfs proceeds with a set of users and a data
manager. Essentially, it serves as an ideal versioning file system which guaran-
tees the correct ordering of the file versions. The users can “write” to the file
system by appending new versions to the files instead of overwriting existing
contents. The data manager is provided with richer interfaces: it can remove
and even rewrite some existing version of a file. All the users in the system
can check the current state of the file system by providing a status request to
Fvfs. In implementation, the state of the file system would be a bitstring which
consists of an array of (possibly encrypted) files; while in Fvfs, it is presented
as a list of entries with no loss of generality. When any change happens to the
file system, the ideal functionality reveals the change to the adversary and also
notices the users about the change. These reflect the public-accessible feature of
the file system. In addition, any write operation to the file system is done in an
anonymous manner, Fvfs will not reveal information about the identity of the
party who carries out the write operation.

To simplify the protocol presentation, we will also define some shorthand
notations. When a party runs some algorithm, it may generate a set of order-
preserving instructions to be carried out on the file system. We use {infoi}i∈N
to denote this set of instructions. If the party is the manager, each instruction
infoi ∈ {infoi}i∈N can be either (Write, sid, o, ver, c) or (Remove, sid, o, ver),
where sid is the session id of Fvfs. If the party is a user, it can only be the form
(Write, sid, o, c). A party may also need to come up with a set of order-preserving

instructions {infofs→fs′

i }i∈N such that after carrying out the instructions on the
file system in order, the current state of the file system fs would become fs ′.

We say a party sends {infoi}i∈N (or {infofs→fs′

i }i∈N) to Fvfs, it means the party
provides every instruction infoi of the set as the input to Fvfs in order.

We now present the associated protocol ΠCRBAC (in Fig. 5) and define uni-
versally composable cRBAC system.

Definition 1. Let CRBAC = (Init, AddUser, DelUser, AddObject, DelObject,
AssignUser, DeassignUser, GrantPerm, RevokePerm) be a cRBAC scheme, we say
CRBAC is UC-secure if the associated protocol ΠCRBAC securely realizes Fcrbac in
(Fvfs,Fsmt)-hybrid model and in a setting that the manager never gets corrupted.

4 UC security is stronger than game-based security of
cRBAC

Based on the transformation above, we now study the relation between UC
security and game-based security. We treat separately security of read access
from that of write access. The game-based security notions are shown in the
appendix A.



The Protocol ΠCRBAC

The participants: a manger M and a set of users u1, ..., un.

Initialization: Upon receiving an input (Initialization, sid, R) where R is a set of
roles, M computes (stM , fs, {msgu}u∈U )←$ Init(1λ, R). It then invokes an
instance of Fvfs as the data manager with session id (M, sid), parses fs as
{infoi}i∈N and sends {infoi}i∈N to Fvfs. If {msgu}u∈U is non-empty, M sends
msgu to every user u using Fsmt.

Administration: Upon receiving an input (RBAC, sid, cmd , arg) where cmd can be
either of the administrative commands specified in Fig. 2 and arg is the
arguments of the command, M sends (Status, (M, sid)) to Fvfs to obtain
(Content, sid, fs) and then computes (st ′M , fs

′, {msgu}u∈U )←$ Cmd(stM , fs, arg),
where Cmd is the algorithm that implements the administrative command cmd .

M sets stM ← st ′M , and then comes up with {infofs→fs′

i }i∈N. If {infofs→fs′

i }i∈N is

non-empty, M sends {infofs→fs′

i }i∈N to Fvfs. If {msgu}u∈U is non-empty, M
sends msgu to every user u using Fsmt.

Update: Upon receiving a message (Update, sid,msgu) from M , a user u computes
st ′u←$ Update(stu,msgu), where stu is u’s local state (stu is an empty value
when u receives the first update message from M). Then it sets stu ← st ′u.

Write: Upon receiving an input (Write, sid, o,m), a user u sends (Status, (M, sid))
to Fvfs to get (Content, sid, fs) and computes fs ′←$ Write(stu, fs, o,m). Then u

comes up with {infofs→fs′

i }i∈N and sends it to Fvfs.
Read: Upon receiving an input (Read, sid, o), a user u sends (Status, (M, sid)) to
Fvfs to get (Content, sid, fs) and then outputs (Read, sid,Read(stu, fs, o)).

Fig. 5. The Protocol ΠCRBAC in (Fvfs,Fsmt)-hybrid model.

Theorem 1. Any cRBAC scheme CRBAC which is UC-secure (in (Fvfs,Fsmt)-
hybrid model) is secure with respect to write accesses.

Proof sketch. We show that if CRBAC is not secure with respect to write
accesses, then it cannot be UC-secure. Given an adversary AW that breaks
write security of CRBAC, an environment Z can distinguish its interactions with
parties running ΠCRBAC and a dummy adversary, and the interactions with the
ideal process for Fcrbac and a simulator. The idea is, Z runs a local copy of AW
and simulates to it the experiment that defines write security of cRBAC schemes.
Then Z proceeds according AW ’s queries such that the protocol execution is
consistent to AW ’s view. Since AW is a successful adversary by assumption, Z
should be able to write some valid content without having the permission in
the real-world execution with non-negligible probability. But in the ideal world,
from the specification of Fcrbac we can infer that Z will not be able to write any
content to the file system in this case. The full proof can be found in Appendix
B.

Theorem 2. Any cRBAC scheme CRBAC which is UC-secure (in (Fvfs,Fsmt)-
hybrid model) is secure with respect to read accesses.



Proof sketch. The proof idea of this theorem is analogous to Theorem 1’s.
Given an adversary AR that breaks read security of CRBAC, an environment Z
can tell its interactions with the execution of ΠCRBAC and a dummy adversary
from the interactions with the ideal process for Fcrbac and a simulator. Similarly,
Z runs a local copy of AR and simulates to it the experiment that defines read
security. Then Z transforms every query from AR, which will not lead to a trivial
win, into appropriate inputs being provided to the parties and the adversary. By
the assumption on AR, Z would be able to distinguish its interactions in the
two worlds with the help of AR. The full proof of this theorem can be found in
Appendix C.

5 Impossibility of UC-secure cRBAC scheme

In this section we establish our main result. We show that the level of security
demanded by a universally composable cryptographic RBAC system cannot be
achieved, even in a setting where a protocol has access to an idealized file system
and secure channels between all parties. Our impossibility result is in a setting
where the adversary can adaptively corrupt honest protocol participants.

Functionality Fnce

Fnce works as follows. It interacts with a message sender PS , a receiver PR and an
adversary S.

Pre-processing phase: Upon receiving an input (Init, sid, PR) from PS , send
(Init, sid, PS) to PR and send (Init, sid, PS , PR) to S. In addition, mark the
channel as established.

Communication phase: Upon receiving an input (Send, sid, PR,m) from PS , if the
channel has not been established, ignore this input. Otherwise, deliver the
message (Send, sid, PS ,m) to PR and reveal (Sent, sid, PS , PR, |m|) to S, where
|m| is the length of the message.

Corruption: Upon receiving (Corrupt, sid, P ) from S where P ∈ {PS , PR}, reveal
m to S. If P = PS and the message has not yet been delivered to PR, ask S for a
value m′ then output (Sent, sid, PS ,m

′) to PR.

Fig. 6. Ideal functionality for the non-committing encryption, Fnce.

Theorem 3. There exists no UC-secure cRBAC scheme (in (Fvfs,Fsmt)-hybrid
model) with adaptive corruptions.

Proof: The proof of this theorem proceeds in two steps. First, we show that the
existence of any UC-secure cRBAC scheme implies the existence of a universally
composable NICP. Specifically, we provide a generic construction of a NICP that
securely realizes the functionality Fnce of non-committing encryption (which is
presented in Fig. 6), from any UC-secure cRBAC scheme. Next, we argue that



the resulting communication protocol in fact cannot securely realize Fnce – this
step is an extension of a well known result by Nielsen to a setting where parties
have access to a secure file system and secure channels.

The Protocol Πnicp

The participants: a message sender PS , a receiver PR and a trusted party M namely
the manager.

Pre-processing phase. M establishes the communication channel for PS and PR.
In this stage, some content might be written to Fvfs for the channel set-up.

1. Upon receiving an input (Init, sid, PR), PS sends (Init, sid, PR) to M using
Fsmt.

2. Upon receiving a message (Init, sid, PR) from PS , M selects a random role r and
computes (stM , fs, {st [uS ], st [uR]})←$ Init(1λ, {r}), where uS and uR are two
users to be added to the system. It initializes two lists msgS ← st [uS ] and
msgR ← st [uR]. M then invokes an instance of Fvfs with session id (M, sid) as
the data manager and parses fs as {infoi}i∈N. If {infoi}i∈N is non-empty, M
sends {infoi}i∈N to Fvfs. After that, M runs a sequence of algorithms which
implement the related administrative RBAC commands to add two users uS , uR
and an object o to the system, to grant the write permission of o to uS via the
role r and to grant the read permission of o to uR via r. The run of any of the
algorithms might lead to the file system’s current state fs gets updated to fs ′. If

so, M comes up with {infofs→fs′

i }i∈N and sends it to Fvfs. Whenever an update
message msg for uS (uR resp.) is generated, M appends it to the list msgS (msgS
resp.). Finally, after the run of the algorithms M sends (Update, sid,msgS) to PS
and sends (Update, sid,msgR) to PR using Fsmt.

3. Upon receiving a message (Update, sid,msgX) from M where X ∈ {S,R}, the
party PX updates its local state by running the update algorithm
stX ←$ Update(stX ,msg) on each update message msg ∈ msgX in order.

Communication Phase. Once the channel has been established, PS can send
arbitrarily many messages to PR via Fvfs.

1. Upon receiving an input (Send, sid, PR,m), PS sends (Status, (M, sid)) to Fvfs

to get (Content, (M, sid), fs), and then computes fs ′←$ Write(stS , fs, o,m). Next,

PS comes up with {infofs→fs′

i }i∈N and sends it to Fvfs.
2. Upon receiving an subroutine output (Updated, (M, sid)) from Fvfs, PR sends

(Status, (M, sid)) to Fvfs to get (Content, (M, sid), fs), and then outputs
m′ ← Read(stR, fs, o).

Fig. 7. The Protocol Πnicp in (Fvfs,Fsmt)-hybrid model.

We start by describing the generic construction for the universally compos-
able NICP. Recall that based on our transformation, the associated protocol of
a cRBAC scheme works in (Fvfs,Fsmt)-hybrid model and in a setting that the
manager never gets corrupted, the resulting communication protocol therefore



works in the same hybrid model and makes use of such a trusted party in a
restricted way.

The communication protocol involves a message sender, a receiver and a
trusted party namely the manager. We restrict that there exists no direct com-
munication channel between the sender and the receiver. They have to commu-
nicate with each other in an indirect way: after a pre-processing phase in which
the manager interacts with the other two parties over secure channels to estab-
lish the communication, the sender can send messages to the receiver by writing
to the file system and then the receiver performs read operations to get the mes-
sages. Notice that the read operation will not bring any change to the file system
and the manager only works in the pre-processing phase and does not involve
in the communication phase. The communication protocol in fact requires no
interaction between the sender and the receiver. Hence it can be considered as
non-interactive.

More specifically, let CRBAC = {Init, AddUser, DelUser, AddObject, DelObject,
AssignUser, DeassignUser, GrantPerm, RevokePerm, Update, Write, Read} be a
UC-secure cRBAC scheme. We denote the NICP by Πnicp and present it Fig. 7.

Then we show that Πnicp securely realizes Fnce in (Fvfs,Fsmt)-hybrid model.
By assumption, the scheme CRBAC is UC-secure implies that there exists a simu-
lator S such that no environment can tell with non-negligible probability whether
it interacts with the parties running ΠCRBAC in (Fsmt,Fvfs)-hybrid model and
a dummy adversary D, or it interacts with the ideal process for Fcrbac with S.
Then we give the construction of the simulator Snce for Πnicp as follows. Snce
internally runs an instance of S. Then it interacts with S as the environment
and simulates to S the ideal process for Fcrbac. It proceeds as follow.

1. Simulating the pre-processing phase. Upon receiving from Fnce a mes-
sage (Init, sid, PS , PR), Snce selects a random role r. It then simulates the
pre-processing phase by sending messages to S sequentially in the name of
Fcrbac indicating that the cRBAC system is initialized with a role r, two
users uS and uR, an object o are added to the system, uS is granted the
write permission of o via the role r and uR is granted the read permission
of o via r. When the environment requests Snce to provide any informa-
tion that it can obtain during this phase including the length of any final
update message sent by the manager in Πnicp and any content written to
Fvfs, Snce instructs S to provide the related information and hands it to the
environment appropriately.

2. Simulating the communication phase. Upon receiving from Fnce a mes-
sage (Sent, sid, PS , PR, |m|), Snce sends (Wrote, sid′, o, |m|) in the name of
Fcrbac to S, where sid′ = (M, sid). When the environment requests Snce to
report the content written to Fvfs, Snce instructs S to report such content
and forwards it as its output appropriately.

3. Party corruption. When the environment instructs Snce to corrupt PS (PR
resp.), Snce delivers the corruption message to Fnce and also requests S to
corrupt uS (uR resp.). If the corruption happens after PS has ever sent some
message to PR, Snce will also obtain the messages sent so far from Fnce.



Then it provides the obtained information to S in the name of Fcrbac. Once
S outputs the internal state of the corrupt party, Snce forwards it to the
environment. After that, any message provided by the environment to the
corrupt party would be modified as the message for uS (uR resp.) accordingly
and forwarded to S (e.g. if the environment instructs the corrupt sender to
send some message c, Snce then instructs S to write the message c to the
file o on behave of uS). Any request from the environment to corrupt the
manager will be ignored.

We briefly analyse the validity of Snce. Suppose there exists an environment
Z which can tell its interactions with parties running Πnicp in (Fvfs,Fsmt)-hybrid
model and a dummy adversary from the interactions with the ideal process for
Fnce and Snce with non-negligible probability. We show that an environment Z ′

can be constructed to tell whether it is interacting with parties running ΠCRBAC
in (Fvfs,Fsmt)-hybrid model and a dummy adversary or the interactions with
the ideal process for Fcrbac and the simulator S with non-negligible probability.
The main idea is that Z ′ runs an internal copy of Z towards which it simulates
the view of the ideal process for Fnce and the simulator Snce. The simulation
depends the information that Z ′ can obtain during the protocol execution. From
the construction of Snce above, it can be inferred that every instruction for Snce
can be broken down to corresponding instructions to S. Also, for the inputs that
Z provides to the dummy parties in the ideal process for Fnce, Z ′ can modify
them appropriately and provide to the parties it interacts with. Hence we havethe
simulation Z ′ provides to Z is perfectly identical to the view which Z expects
to see. Then by assumption, Z can tell its interactions in the two worlds with
non-negligible probability, and so can Z ′ in this case. Thus, S cannot be a valid
simulator for ΠCRBAC which reaches a contradiction. So if S is a valid simulator
for ΠCRBAC , Snce is also a valid simulator for Πnicp and therefore Πnicp securely
realizes Fnce in (Fvfs,Fsmt)-hybrid model.

Now we argue that in fact such a simulator S does not exist. In [25], it
has been shown that no non-interactive communication protocol that securely
realizes Fnce exists in the plain model. However, we cannot apply directly that
result to complete our proof, since Πnicp makes use of Fvfs, Fsmt, albeit in a
restricted way. Nonetheless, we show that under these usage restrictions, we can
extend Nielsen’s result to our setting.

Since Πnicp securely realizes Fnce in (Fvfs,Fsmt)-hybrid model, it allows the
sender to send arbitrarily many messages to the receiver non-interactively (e.g.
by performing write operations to the file system). Any real-world adversary
that attacks the protocol cannot obtain more than the length of the transmit-
ted message. Consider the following environment Z. After the communication is
established between the message sender PS and the receiver PR, Z activates PS
with an input (Send, sid,m) and requests the adversary to report the content
c that has been written to some file o of Fvfs. Once Z obtains c, it instructs
the adversary to corrupt PR to obtain its internal state stR. Then Z produces
the current state of the file system from the update information provided by the
adversary as fs and computes m′ ← Read(stR, fs, o). By assumption Z should



have m′ = m except for negligible probability. Then we consider the ideal-world
case, the simulator Snce should be able to come up with c given the length of
m by Fnce, and later it should be able to provide the internal state stR which
is consistent to the transmitted message c when m is available by the time PR
is corrupt. Notice that the ideal functionality Fnce guarantees correctness on
the transmitted message, which means for every message sent by the sender,
the receiver should be able to recover the original message except for negligible
probability. Hence for Πnicp, there should not exist any local state of the receiver
that allows it to decrypt any written content to the file system into two different
messages with non-negligible probability each. Otherwise an environment can
distinguish its interactions in the two worlds with non-negligible probability.
Thus if we fix a file version c, there exists an injective mapping from the under-
lying messages to the local state of the receiver, which implies that the number
of possible internal states stR of PR should be at least the same as the number
of the possible messages. Notice that the only way PR can receive the message
from PS is to execute the Read algorithm to retrieve the current content of o
from the file system. The injective mapping will not be affected by executing
read operations since (by assumption) Read updates neither the file system nor
the local state of PS . Therefore it is impossible for PR to use the unchanged
local state to receiver arbitrary many messages from PS . Thus we can conclude
that Πnicp does not securely realize Fnce in (Fvfs,Fsmt)-hybrid model, which
contradicts the existence of the simulator S. Hence there exists no UC-secure
CRBAC (in (Fvfs,Fsmt)-hybrid model) with adaptive corruptions.

6 Conclusion

We present a security definition for cryptographic role-based access control in the
UC framework. We study its relation with existent game-based notions and show
that simulation-based security is strictly stronger. In essence, our results imply
that composable simulation-based security for access control may be difficult
to achieve to the point that it is impractical1 Interestingly, similar results were
derived empirically in a recent study of the efficiency of cryptographic RBAC
based on both standard asymmetric encryption and identity-based encryption
schemes [21].

In future work, we plan to study the efficiency implications of UC security
for cryptographic access control schemes that hide the access policy that is in
place at any given time during the execution of the system.
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A The security notions of cRBAC schemes in [12]

Secure write access. A cRBAC scheme CRBAC = (Init, AddUser, DelUser,
AddUser, AddObject, GrantPerm, RevokePerm, AssignUser, DeassignUser, Update,
Read, Write) is said to be secure with respect to write accesses if no user can write
some content to a file without having the permission. Particularly, in the case
of open-accessible file system, the content wrote by an unauthorized user should
not be considered as valid. It is formalized by the experiment Expwrite

CRBAC,A. The
cRBAC system is initialized with a set of role R. The adversary A is allowed to
request for executing any of the administrative RBAC commands, to corrupt a
user, to request an honest user to write some content to a file and to get access
to the file system. At some point, A must output a target file with an honest
user’s id. It wins if it can write any valid content without the permission(read
by the honest user). To prevent trivial wins, from the point when the last write
operation to the target file is carried out by an honest user who has the per-
mission till A generates its output, no corrupt user can get write access to the
target file. A CRBAC is said to be secure with respect to write accesses if no
adversary can win in the above experiment with non-negligible probability. The
adversarial abilities are captured by the oracles described in Fig. 8.

A predicate HasAccess(u, p) is used to reflect that symbolically a user u has
access to a permission p. It is defined by: HasAccess(u, p) ↔ ∃r ∈ R : (u, r) ∈
UA ∧ (p, r) ∈ PA.

Definition 2. A cRBAC scheme CRBAC is secure with respect to write accesses
if for any probabilistic polynomial-time adversaries A, we have

Advwrite
CRBAC,A(λ) := Pr

[
Expwrite

CRBAC,A(λ)→ 1
]

is negligible in λ, where Expwrite
CRBAC,A is defined as follows:



Cmd(arg)

(U,O, P,UA,PA)

← Cmd((U,O, P,UA,PA), arg)

(stM , fs, {msgu}u∈U )

←$ Cmd(stM , fs, arg)

For all u′ ∈ Cr :

For all o ∈ O:

If HasAccess(u′, (o, write)) then

T [o]← adv

For all u ∈ U \ Cr :

st [u]← Update(st [u],msgu)

Return (fs, {msgu}u∈Cr )

CorruptU(u)

If u /∈ U then Return ⊥
For all o ∈ O:

If HasAccess(u, (o, write)) then

T [o]← adv

Cr ← Cr ∪ {u}; Return st [u]

Write(u, o,m)

If u ∈ Cr then Return ⊥
If ¬HasAccess(u, (o, write))

then Return ⊥
fs ←$ Write(st [u], fs, o,m)

For all u′ ∈ Cr :

If HasAccess(u′, (o, write))

then Return fs

T [o]← m; Return fs

FS(query)

If query =“state” then

Return fs

If query =“append(info)”

and Cr 6= ∅ then
fs ← fs‖info; Return fs

Fig. 8. Oracles for defining the experiment Expwrite
CRBAC,A.

Expwrite
CRBAC,A(λ)

(U,O, P,UA,PA)← (∅, ∅, ∅, ∅, ∅); Cr ← ∅
(stM , fs, {st [u]}u∈U )←$ Init(1λ, R)

(u∗, o∗)←$A(1λ : Ow)

If all of the following are satisfied then return 1:

– u∗ ∈ U \ Cr ∧ HasAccess(u∗, (o∗, read))

– T [o∗] 6= adv ∧ T [o∗] 6= Read(st [u∗], o∗, fs))

Else Return 0

Secure read access. A cRBAC scheme CRBAC = (Init, AddUser, DelUser,
AddUser, AddObject, GrantPerm, RevokePerm, AssignUser, DeassignUser, Update,
Read, Write) is said to be secure with respect to read accesses if no user can
deduce any content of a file without having the read permission. It is formalized
by the experiment Expread

CRBAC,A. In the experiment, a random bit is selected
at the beginning and the cRBAC system is initialized with a set of roles R.
The adversary A is allowed to request for executing any administrative RBAC
command, to take over users, to request an honest user to write some content to
a file and to get access to the file system. A can also specify a file as his challenge
and provides two messages, of which one will be written to the file according to
the random bit. It can specify multiple challenges and finally output his guess
of the bit. To prevent trivial wins, no corrupt user can get read access to any of
the challenge files. We say the adversary wins if its guess is correct. A CRBAC
is said to be secure with respect to read accesses if no adversary can win the



above experiment with probability significantly better than a half. The oracles
to which the adversary has access are specified in Fig. 9.

Definition 3. A cRBAC scheme CRBAC is secure with respect to read accesses
if for any probabilistic polynomial-time adversary A, we have

Advread
CRBAC,A(λ) :=

∣∣Pr[Expread
CRBAC,A(λ)→ true]− 1

2

∣∣
is negligible in λ, where Expread

CRBAC,A is defined as follows:
Expread

CRBAC,A(λ)

b←$ {0, 1}; Cr ,Ch ← ∅
(stM , fs, {st [u]}u∈U )←$ Init(1λ, R)

b′←$A(1λ : Or)
Return (b′ = b)

Cmd(arg)

(U ′, O′, P ′,UA′,PA′)

← Cmd((U,O, P,UA,PA), arg)

For all u ∈ Cr and all o ∈ Ch:

If ∃r ∈ R:

(u, r) ∈ UA′ ∧ ((o, read), r) ∈ PA′

then Return ⊥
(U,O, P,UA,PA)← (U ′, O′, P ′,UA′,PA′)

(stM , fs, {msgu}u∈U )←$ Cmd(stM , fs, arg)

For all u ∈ U \ Cr :

st [u]← Update(st [u],msgu)

Return (fs, {msgu}u∈Cr )

CorruptU(u)

If u /∈ U then Return ⊥
For all o ∈ Ch:

If HasAccess(u, (o, read)) then

Return ⊥
Cr ← Cr ∪ {u}; Return st [u]

Write(u, o,m)

If u ∈ Cr then Return ⊥
If ¬HasAccess(u, (o, write))

then Return ⊥
fs ←$ Write(stM , fs, o,m)

Return fs

Challenge(u, o,m0,m1)

If ¬HasAccess(u, (o, write))

then Return ⊥
For all u′ ∈ Cr :

If HasAccess(u′, (o, read))

then Return ⊥
Ch ← Ch ∪ {o}
fs ←$ Write(stM , fs, o,mb)

Return fs

FS(query)

If query =“state” then

Return fs

If query =“append(info)”

and Cr 6= ∅ then
fs ← fs‖info; Return fs

Fig. 9. Oracles for defining the experiment Expread
CRBAC,A.

B Proof of Theorem 1

We prove this theorem by showing that if any cRBAC scheme is not secure with
respect to write accesses, it cannot be UC-secure. Assumes that a cRBAC scheme



CRBAC is not secure with respect to write accesses, then there exists an adversary
AW can win in Expwrite

CRBAC,AW
with non-negligible probability. We show that

given AW , an environment Z can be constructed such that it can distinguish its
interactions with the associated protocol ΠCRBAC and a dummy adversary D,
and the interactions with the ideal process for Fcrbac and a simulator S with
non-negligible probability, which means CRBAC is not UC-secure.

We now describe how Z works. During its execution, Z maintains three
lists: an object-indexed list T for recording the last valid file contents writ-
ten by users, fs for recording the current state of the file system and Cr for
recording the corrupt users. Z first activates the manager M with an input
(Initialization, sid,R), where sid is an arbitrary string and R is a random
set of roles. It then obtains a sequence of messages regarding the changes on Fvfs

(via the dummy adversary D who just simply delivers the messages) and updates
fs accordingly such that fs is identical to the list L maintained by Fvfs. Then Z
runs a local copy of AW with fs as input and starts to simulate Expwrite

CRBAC,AW

as follows.

1. When AW asks for executing any RBAC command cmd with arguments arg ,
Z activates M with an input (RBAC, sid, cmd , arg) and updates fs according
to the messages received from Fvfs. If the execution of the command will
lead to any user in the list Cr has the write permission of any file o, Z sets
T [o] as a special value adv. If M sends update messages to the corrupt users
when executing the command, Z receives the update messages (via D) and
then sends them to AW . In addition, if AW requests to delete some user
which is in the list Cr , then Z removes this user from Cr after executing
the command. If AW requests to delete some file o, the content in T [o] will
be also deleted. Finally, Z hands fs to AW .

2. When AW requests an honest user u to write some content m to a file o, if
u does not have the write permission of o, Z returns an error; otherwise Z
activates u with an input (Write, sid, o,m) and updates fs according to the
messages received from Fvfs. Then Z hands fs to AW . If there exists no user
in the list Cr that has write access to o, Z sets T [o] as m.

3. When AW requests for corrupting a user u, Z corrupts u (via D) and returns
its local state to AW . For every file o to which u has write access, Z sets
T [o] as the special value adv. Then it adds u to Cr .

4. When AW queries the current state of the file system, Z hands fs to AW .
5. When AW requests to update the file system with some information info,

if Cr is empty, Z then ignores the request; otherwise Z phases info as
(o, c), where o is a file and c is the content to be appended to. Z chooses
a user u from Cr and sends u a message (via D) to let it provide an input
(Write, sid′, o, c) to Fvfs, where sid′ is the session id of Fvfs. Then Z up-
dates the fs according to the messages received from Fvfs and hands it to
AW .

6. When AW outputs a target file o and a user u, where u /∈ Cr and u has the
read permission of o, Z activates u with (Read, sid, o) to obtain an output
m. If T [o] 6= adv and T [o] 6= m, Z outputs 1; otherwise it outputs 0.



We now discuss Z’s outputs in the two worlds separately. In the case that Z
interacts with real-world execution of ΠCRBAC and D, from AW ’s perspective,
Z’s simulation is indistinguishable from the real experiment. Therefore, by as-
sumption AW should have written some valid content to the file system without
having the permission with non-negligible probability. Hence Z will output 1
with the same probability.

If Z interacts with the ideal process for Fcrbac and S, we show that Z will
always output 0 since AW can never win in this case. First recall that, to win
the write security experiment, the following two conditions must hold when AW
terminates with an output (o, u): (1) T [o] must not equal to the special value
adv (the experiment maintains an invariant that if there exists any corrupt user
has the write permission of some file, the related record in T must be set as adv)
and (2) the current content of o (read by u) must be different from the record
in T [o]. Next we discuss that the above two winning conditions cannot be both
satisfied when AW generates its output.

Suppose that condition (1) holds when AW outputs (o, u). Since T [o] 6= adv,
T [o] can only be one of the two possible values, either an empty value or the
content written by the last operation to o by some honest user who has the write
permission (otherwise Z will not record that in T [o]). In the former case, T [o]
is an empty value implies that Z has not yet handled any write request to o
since the recent initialization of o (o might have been deleted before but it is
added back to the system later). Therefore, the value of FS [o] in Fcrbac would
be also an empty value. From the specification of Fcrbac, it is clear that when
Z activates u with the input (Read, sid, o), it will obtain the content stored in
FS [o] which is the empty value here. Thus we have, the content read by u must
equal to the record in T [o] in this case. For the other possibility, if T [o] equals to
the content m which is written by the last write operation to o by some honest
user, Z should have activated that user with an input (Write, sid, o,m) when
AW requests for this write operation. Once Fcrbac receives such an input, it
stored m in FS [o]. Then when Z activates the specified user u with an input
(Read, sid, o), Fcrbac will always return m in this case, Thus the content read
by u also equals to the record in T [o].

So, if T [o] 6= adv, T [o] must equal to the content read by the user u, which
means the two winning conditions can never be both satisfied. Therefore AW
can never win in the experiment and Z outputs 1 with probability 0.

Finally, it can be concluded that Z’s outputs in the two worlds differ by a
non-negligible amount, which means ΠCRBAC does not securely realize Fcrbac

and the theorem is proved.

C Proof of Theorem 2

The proof idea of this theorem is analogous to Theorem 1’s. We show that if
CRBAC is not secure with respect to read accesses, then the associated protocol
ΠCRBAC does not securely realize Fcrbac. Let AR be an adversary that breaks
read security of CRBAC. By definition, AR is supposed to be able to predict



the random bit chosen in Expread
CRBAC,AR

correctly with probability significantly
better than 1/2. Then an environment Z can be constructed from it to tell
its interactions with parties running ΠCRBAC and a dummy adversary D, from
the interactions with the ideal process for Fcrbac with a simulator S with non-
negligible probability.
Z works as follows. It maintains three lists: fs, Cr and Ch to record the

current state of the file system, corrupt users and the challenge files respectively.
Initially, Z selects a random bit b←$ {0, 1} and activates the manager with
an input (Initialization, sid,R), where sid is an arbitrary string and R is a
random set of roles. Z then obtains a sequence of messages regarding the changes
to the file system from Fvfs (via D), and then updates fs accordingly to make
it identical to the list L maintained by Fvfs. After that, Z runs a local copy of
AR and hands it fs. Then Z simulates Expread

CRBAC,AR
by answering AR’s queries

as follows.

1. When AR asks for executing any RBAC command cmd with arguments
arg , Z first checks if the execution of the RBAC command will lead to
any user in the list Cr can get read access to any file in the list Ch. If
this is the case, Z returns an error; otherwise, Z activates M with an input
(RBAC, sid, cmd , arg) and updates fs according to the messages received from
Fvfs. Then Z hands fs to AR. If M sends update messages to the corrupt
users when executing the command, Z receives the messages (via D) and
hands them to AR. If AR requests to delete some user which is in the list Cr ,
then Z removes this user from Cr after executing the command. Similarly, if
AR requests to delete any object which is in the list Ch, then Z also removes
the object from Ch.

2. When AR requests an honest user u to write some content m to a file o, Z
returns an error if u does not have the write permission of o; otherwise, Z
activates u with an input (Write, sid, o,m), and then updates fs according
to the messages received from Fvfs. Then Z hands fs to AR.

3. When AR asks for corrupting a user u, if u has the read permission of any
file in the list Ch, Z then returns an error; otherwise Z corrupts u (via D)
and returns the local state to AR. Then it adds u to Cr .

4. When AR specifies a challenge file o with two messages (m0,m1) and a user
u, if u does not have the write permission of o or there exists some corrupt
user that has the read permission of o, Z returns an error; otherwise, Z
activates u with an input (Write, sid, o,mb) and adds o to Ch. Then Z
updates fs according to the messages received from Fvfs and hands fs to
AR.

5. When AR queries the current state of the file system, Z hands fs to AR.
6. When AR requests to update the file system with some information info,

if the list Cr is empty, Z then ignores the request; otherwise Z chooses
a user u from Cr and sends u a message (via D) to let it provide an input
(Write, sid′, o, c) to Fvfs, where sid′ is the session id of Fvfs. Then Z updates
fs according to the messages received from Fvfs and hands it to AR.

7. Finally, when AR outputs a guess of the random bit b′, Z outputs 1 if b = b′

or 0 otherwise, and then halts.



From the description above, we can infer that if Z is interacting with the real-
world execution of ΠCRBAC and D, from the perspective of AR, the simulation is
identical to the real experiment. Therefore, Z will output 1 with the probability
non-negligibly better than 1/2, since AR is assumed to be able to predict the
random bit b correctly with probability significantly better than 1/2.

It remains to discuss the case that Z is interacting with the ideal process for
Fcrbac and S. Since Fcrbac guarantees that only the users who have the read
permission of a file can read the content of that file, the only way that AR can
learn some partial information about the contents written to the challenge files
is to via the users who have read access to those files. Notice that Z proceeds the
simulation strictly according to Expread

CRBAC,AR
such that no corrupt user can be

granted the read permission of any challenge file. On the other hand, AR does
not have the ability to let any honest user to retrieve the file contents for him.
Hence it is clear that AR would not be able to deduce which of the specified
contents have been written to the challenge files and therefore the best it can do
is to output a random guess. Thus, Z outputs 1 with probability exactly 1/2 in
this case.

Finally, we can conclude that Z’s outputs in the two worlds differ by a non-
negligible amount, which means ΠCRBAC does not securely realize Fcrbac and
the theorem is proved.


