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Abstract

The information ratio of a secret sharing scheme Σ is the ratio between the
length of the largest share and the length of the secret, and it is denoted by
σ(Σ). The optimal information ratio of an access structure Γ is the infimum of
σ(Σ) among all schemes Σ with access structure Γ, and it is denoted by σ(Γ).
The main result of this work is that for every two access structures Γ and Γ′,
|σ(Γ)− σ(Γ′)| ≤ |Γ ∪ Γ′| − |Γ ∩ Γ′|. We prove it constructively. Given any secret
sharing scheme Σ for Γ, we present a method to construct a secret sharing scheme
Σ′ for Γ′ that satisfies that σ(Σ′) ≤ σ(Σ) + |Γ ∪ Γ′| − |Γ ∩ Γ′|. As a consequence of
this result, we see that close access structures admit secret sharing schemes with
similar information ratio. We show that this property is also true for particular
classes of secret sharing schemes and models of computation, like the family of
linear secret sharing schemes, span programs, Boolean formulas and circuits.

In order to understand this property, we also study the limitations of the
techniques for finding lower bounds on the information ratio and other complexity
measures. We analyze the behavior of these bounds when we add or delete subsets
from an access structure.

Key words. Cryptography, Secret sharing, Information ratio, Optimal information
ratio, Monotone span program.

1 Introduction

Secret sharing is a cryptographic primitive that is used to protect a secret value by
distributing it into shares. Secret sharing is used to prevent both the disclosure and
the loss of secrets. In the typical scenario, each share is sent privately to a different
participant. Then a subset of participants is authorized if their shares determine the
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secret value, and forbidden if their shares do not contain any information on the
secret value. The family of authorized subsets is monotone increasing, and it is called
the access structure of the scheme. If every subset of participants is either authorized
or forbidden, we say that the scheme is perfect. In this work we just consider perfect
secret sharing schemes that are information-theoretically secure, that is, schemes whose
security does not rely on any computational assumption.

Secret sharing schemes were introduced by Shamir [44] and Blakley [11] in 1979, and
are used in many cryptographic applications such as secure multiparty computation,
attribute-based encryption and distributed cryptography (see [3] for more details).
These applications require the use of efficient secret sharing schemes. Namely, schemes
with short shares, efficient generation of the shares and efficient reconstruction of
the secret. The information ratio of a secret sharing scheme Σ is the ratio of the
maximum length in bits of the shares to the length of the secret value, and we denote
it by σ(Σ). The information ratio is widely used as a measure of the efficiency of secret
sharing schemes. Linear secret sharing schemes are of particular interest because they
have homomorphic properties, and because the shares are generated by using linear
mappings, simplifying the generation of shares and the reconstruction of the secret.

Ito, Saito and Nishizeki [29] presented a method to construct a secret sharing scheme
for any monotone increasing family of subsets. Viewing access structures as monotone
Boolean functions, Benaloh and Leichter [10] presented a method to construct a secret
sharing scheme from any monotone Boolean formula. However, for almost all access
structures, the information ratios of the schemes constructed using these and other
general methods [10, 29, 32] are exponential on the number of participants. In order to
understand the length of shares required to realize an access structure Γ, we define the
optimal information ratio of Γ as the infimum of the information ratios of all the secret
sharing schemes for Γ, and we denote it by σ(Γ).

The computation of the optimal information ratio of access structures is difficult in
general, and exact values are known only for certain families of access structures, like
particular families of multipartite access structures (e.g. [12, 19, 20]), access structures
with a small number of participants (e.g. [38, 23]), or access structures with small
minimal sets (e.g. [16]). A common method to obtain bounds for this parameter
is to define random variables associated to the shares and to the secret, and then
apply the information inequalities of the Shannon entropy of these random variables.
Csirmaz [15] used a connection between the Shannon entropy and polymatroids to
develop a technique for finding lower bounds. Using this technique, it was possible to
find access structures with n participants for which the optimal information ratio is
Ω(n/ log(n)). Currently, this is the best asymptotic lower bound on the information
ratio.

Monotone span programs over a finite field F are equivalent to linear secret sharing
schemes with secret in F [3, 32]. This connection was very useful to extend bounds
on the complexity of monotone span programs to bounds on the information ratio of
linear secret sharing schemes. Pitassi and Robere [39] showed that there are access
structures that require linear secret sharing schemes with information ratio exponential
in n. This result was obtained using the Razborov rank method [41].

For every perfect secret sharing scheme, the information ratio must be at least 1.
The schemes that attain this bound are called ideal, and their access structures are also
called ideal. Brickell and Davenport [13] showed that the access structure of ideal secret
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sharing schemes determines a matroid. Conversely, entropic matroids determine ideal
access structures, but little is known about the access structures associated to other
families of matroids. The connection between ideal access structures and matroids is a
powerful tool to characterize families of ideal access structures, e.g. [19], and it allows
to transform secret sharing problems into combinatorial ones.

Beyond this connection, we lack of general criteria to determine if an access structure
admits an efficient scheme. For instance, we lack of a criterion to determine if an
access structure admits a secret sharing scheme with information ratio at most r, for
some r > 1. Moreover, we do not know general properties of the family of access
structures admitting efficient schemes. For other models of secret sharing, recent works
provided interesting results on the characterization of the structures accepting efficient
schemes [33, 45], but it is not clear how to extend them to the perfect model.

The main objective of this work is to find properties of the access structures that
admit efficient secret sharing schemes. The specific question we consider is to know if
access structures that are close admit secret sharing schemes with similar information
ratios. Namely, the objective is to bound the difference between the optimal information
ratios of access structures that differ on a small number of subsets. Answers to this
question will help understand the limitations of secret sharing and the behavior of the
optimal information ratio, seen as a function from the set of all the access structures
with a certain number of participants to the real numbers.

Our main result is that |σ(Γ)−σ(Γ′)| ≤ |Γ∪Γ′|−|Γ∩Γ′| for every two access structures
Γ and Γ′. The proof of this result is constructive. From any secret sharing scheme Σ for Γ
we can build a secret sharing scheme Σ′ for Γ′ that satisfies σ(Σ′) ≤ σ(Σ)+|Γ∪Γ′|−|Γ∩Γ′|.
Moreover, if Σ is linear, then Σ′ is linear too. The construction relies on a combinatorial
result that allows the description of Γ′ as a union and intersection of Γ with other
access structures of a particular kind. Then, using an extension of the techniques of
Benaloh and Leichter [10], we generate secret sharing schemes for the desired access
structure.

An immediate consequence of this bound is that the access structures that are close
to access structures with efficient secret sharing schemes also admit efficient schemes.
Analogously, the access structures that are close to access structures requiring large
shares also require large shares. This bound also has consequences on cryptographic
schemes and protocols that use secret sharing. For instance, using the results in [17], we
see that close Q2 adversary structures admit secure multiparty computation protocols
of similar complexity, in the passive adversary case. In the context of access control,
we can build attribute-based encryption schemes [28] of similar complexity for similar
policies.

Using the common terminology for functions between metric spaces, we can say
that the optimal information ratio is a Lipschitz function with constant 1. Moreover,
we prove that this constant is optimal, that is, σ is not Lipschitz for any constant
smaller than 1.

By taking advantage of the combinatorial nature of our main result, we extend this
bound to other models of computation. Therefore, we are able to bound the formula
size, the circuit size, and the monotone span program size for monotone Boolean
functions, obtaining analogous results. In order to understand the considered property,
we also analyze the limitations of the techniques for finding lower bounds on the
information ratio. In this setting, we study the nature of the bounds based on the
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Shannon inequalities [15, 35], the Razborov rank method [40], the critical subfamilies
method [4], and submodular formal complexity measures. We describe the behavior of
each of these bounds when we add or delete subsets from an access structure.

The search for bounds on the information ratios of close access structures was
motivated by a work by Beimel, Farràs and Mintz [5]. They presented a method that,
given a secret sharing scheme Σ for an access structure Γ and an access structure Γ′

with min Γ′ ⊆ min Γ, provides a secret sharing scheme for Γ′ (where min Γ stands for
the family of minimal subsets of Γ). They showed that if Γ and Γ′ are graph access
structures and dist(min Γ,min Γ′) is small, and Σ is efficient then the new scheme is
also efficient. We also revise one of these techniques and we provide an alternative
general combinatorial formulation of a result in [5] that can be further extended to
other models of computation.

In Section 2 we define secret sharing, and in Section 3 we show preliminary results
about secret sharing and access structures. Section 4 is dedicated to our main bound on
the information ratio of secret sharing schemes. In Section 5 we analyze the asymptotic
behavior of the optimal information ratio, and in Section 6 we present other secret
sharing constructions used for bounding the optimal information ratio. In Sections 7
and 8 we analyze the existing techniques for finding lower bounds on the information
ratio. In Section 9 we present results for formulas and circuits. Finally, we state some
conclusions and open problems in Section 10.

2 Definition of Secret Sharing

This work is dedicated to unconditionally secure secret sharing schemes. In this section
we define access structure, secret sharing scheme, and we present the complexity
measures used in this work. The definition of secret sharing is taken from [3]. For an
introduction to secret sharing, see [3, 37], for example.

Definition 2.1 (Access Structure). Let P be a set. A collection Γ ⊆ P(P ) is monotone
increasing if B ∈ Γ and B ⊆ C ⊆ P implies C ∈ Γ. An access structure is a collection
Γ ⊆ P(P ) of non-empty subsets of P that is monotone increasing. The family of
minimal subsets in Γ is denoted by min Γ.

Definition 2.2 (Distribution Scheme). Let P = {1, . . . , n} and let K be a finite set.
A distribution scheme on P with domain of secrets K is a pair Σ = (Π, µ), where µ is a
probability distribution on a finite set R, and Π is a mapping from K ×R to a set of
n-tuples K1 ×K2 × · · · ×Kn. The set R is called the set of random strings and Kj is
called the domain of shares of j.

For a distribution scheme (Π, µ) and for any A ⊆ P , we denote by ΠA(s, r) the
entries of Π(s, r) indexed by elements in A. If A = {i}, we set Πi(s, r) = ΠA(s, r).

Definition 2.3 (Secret Sharing). Let K be a finite set of secrets with |K| ≥ 2. A
distribution scheme (Π, µ) on P with domain of secrets K is a secret-sharing scheme
realizing an access structure Γ if the following two requirements hold for every A =
{i1, . . . , ir} ⊆ P :

• If A ∈ Γ, then there exists a reconstruction function ReconA : Ki1× . . .×Kir → K
such that for every k ∈ K,

Pr [ ReconA(ΠA(k, r)) = k ] = 1. (1)
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• If A /∈ Γ, then for every a, b ∈ K, and for every possible vector of shares
v = (sj)j∈A,

Pr[ ΠA(a, r) = v] = Pr[ ΠA(b, r) = v]. (2)

In a secret sharing scheme, we usually consider that there is an additional participant
p0 not in P called the dealer. The dealer distributes a secret k ∈ K according to Σ
by first sampling a random string r ∈ R according to µ, computing a vector of shares
Π(k, r) = (s1, . . . , sn), and privately communicating each share sj to party j. The
subsets of participants in P satisfying condition (1) are called authorized, and the
ones satisfying condition (2) are called forbidden. In this work we just consider perfect
secret sharing schemes, that is, schemes in which every subset of participants is either
authorized or forbidden.

Definition 2.4 (Linear Secret Sharing Scheme). Let F be a finite field. A secret
sharing scheme Σ = (Π, µ) is (F, `)-linear if K = F`, the sets R, K1, . . ., Kn are vector
spaces over F, µ is the uniform distribution on R, and Π is F-linear.

For a secret sharing scheme Σ on P , the information ratio of Σ is defined as

σ(Σ) =
max1≤j≤n log |Kj |

log |K|
,

and the total information ratio of Σ is

σT(Σ) =

∑
1≤j≤n log |Kj |

log |K|
.

We say that Σ is ideal if σ(Σ) = 1. In this case, we say that its access structure is ideal
as well.

For an access structure Γ, we define the optimal information ratio σ(Γ) as the
infimum of the information ratio of secret sharing schemes for Γ. Also, we define the
optimal total information ratio σT(Γ) as the infimum of the total information ratio of
the secret sharing schemes for Γ. Analogously, for every power of a prime q we define
λq,`(Γ) and λT

q,`(Γ) as the infimum of the information ratios and total information
ratios of the (Fq, `)-linear secret sharing schemes for Γ, respectively. In cases in which
the finite field and the domain of secrets are not relevant, we use λ(Γ) and λT(Γ),
the infimum of the information ratios and total information ratios of the linear secret
sharing schemes for Γ.

If a participant i ∈ P does not receive any share from the dealer in a secret sharing
scheme, we set Ki = {⊥}. In this case, we say that i is not relevant in its access
structure because i is not in any subset of min Γ.

3 Preliminaries

First, we introduce some notation on access structures and we recall some of their
properties. We use some definitions that are common in extremal combinatorics.
See [27] for more details.

Let P be a set. We define the distance between B,B′ ⊆ P(P ) as

dist(B,B′) = |B ∪ B′| − |B ∩ B′|,

5



which is the size of the symmetric difference of the two sets. All through this paper,
we measure the closeness between families of subsets by this distance. Observe that
dist(B,B′) = |B \ B′|+ |B′ \ B|.

A family of subsets B ⊆ P(P ) is an antichain if A * B for every A,B ∈ B. For any
B ⊆ P(P ) we define minB and maxB as the families of minimal and maximal subsets
in B, respectively. Both minB and maxB are antichains. We define the complementary
of B as Bc = P(P ) \ B. The degree of i ∈ P in B, denoted by degi B, is defined as the
number of subsets in B containing i. For every set A ⊆ P , we define the closure of a set
A as cl(A) = {B ⊆ P : A ⊆ B}. We also define the closure of B as cl(B) =

⋃
A∈B cl(A).

The closure of any family of subsets is monotone increasing, and so it is an access
structure. A family of subsets B ⊆ P(P ) is an access structure if and only if cl(B) = B.
If Γ is an access structure, then cl(min Γ) = Γ and Γc is monotone decreasing.

3.1 Some Families of Ideal Access Structures

Now we define three parametrized families of access structures. As we show below,
these access structures admit short formulas and ideal secret sharing schemes. For any
nonempty set A ⊆ P , we define the access structures

FA = {B ⊆ P : B * A}, SA = {B ⊆ P : A ( B}, TA = cl(A).

The access structure TA is the smallest access structure that contains A, and it is
usually called the trivial access structure for A. The access structure SA is TA minus {A},
and minSA = {A∪{p} : p ∈ P \A} is the sunflower of A [27]. The access structure FA
is the biggest access structure not containing A, and it has just one maximal forbidden
subset, that is A. Its minimal access structure is minFA = {{i} : i /∈ A}.

Now we present secret sharing schemes for the families of access structures FA, SA
and TA introduced above. These secret sharing schemes are ideal, and they are valid
for any finite set of secrets K with |K| ≥ 2. Moreover, if K = F` for some finite field F,
then we show that these access structures also admit ideal (K, `)-linear secret sharing
schemes.

Let K = {a0, . . . , am−1} be a set of size m ≥ 2. For the constructions we present
below, we assume that K is a group. In the case that K is not a group, our constructions
will be defined over Zm by using a bijection between K and Zm. Without loss of
generality, let P = {1, . . . , n} and A = {1, . . . , t} for some t ≤ n.

• FA: Since minFA = {{i} : i /∈ A}, the participants in A are not relevant, and so
we just need to define the shares of the participants in P \A. Let Kj = {⊥} for
j ∈ A and Kj = K for j ∈ P \ A. In this case there is no need for randomness.
A secret sharing scheme for FA is defined by the mapping Π with Πj(k) = k for
j ∈ P \A.

• SA: For A ( P , consider Kj = K for j = 1, . . . , n, and µ the uniform distribution
on R = Kt. A secret sharing scheme for SA is defined by the mapping Π with
Πj(k, r) = rj for 1 ≤ j ≤ t and Πj(k, r) = k−

∑t
i=1 ri for t+ 1 ≤ j ≤ n. Observe

that adapting this scheme we can construct an ideal secret sharing for any access
structure Γ with min Γ ⊆ minSA. For A = P , we have SP = FP .

• TA: Since minTA = {A}, we just need to define the shares of the participants
in A. Consider Kj = K for j ∈ A, Kj = {⊥} for j ∈ P \ A, and µ the uniform
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distribution on R = Kt−1. A secret sharing scheme for TA is defined by the
mapping Π with Πj(k, r) = rj for 1 ≤ j < t and Πt(k, r) = k −

∑t−1
i=1 ri.

Given a secret sharing scheme Σ on P and A ⊆ P , we define Σ|A as the secret sharing
scheme on P in which only the participants in A receive the shares from Σ. The access
structure of Σ|A on P is Γ|A = {B ⊆ P : B ∩A ∈ Γ}, and min(Γ|A) = min Γ ∩ P(A).

3.2 ANDs and ORs of Secret Sharing Schemes

For any access structure Γ on P , we can define the Boolean function f : P(P )→ {0, 1}
satisfying f(A) = 1 if and only if A ∈ Γ. This function is monotone increasing because
f(A) ≤ f(B) for every A ⊆ B.

Benaloh and Leichter [10] presented a recursive algorithm that, given a monotone
Boolean formula computing the function f associated to Γ, creates a secret sharing
scheme realizing Γ. The domain of secrets in this construction is Zm, and the scheme
is obtained by translating the AND and OR logic operations into secret sharing
operations [10]. Roughly speaking, the OR of two schemes Σ1 and Σ2 is a scheme in
which the same secret is shared independently by using Σ1 and Σ2. In the case of the
AND operation, the secret s is split into r and s+ r, where r is a random value in Zm,
and then the r is shared by means of Σ1 and r+ s is shared independently by means of
Σ2.

Here we consider an extension of the secret sharing operations defined by Benaloh
and Leichter [10] that is valid for arbitrary secret sharing schemes. We define AND and
OR operations between any secret sharing schemes with the same domain of secrets.
Since we did not find a precise description of these extended operations in the literature,
we prefer to define them rigorously. Notice that the properties of these operations are
crucial for our results in σ and λ. The proof of Lemma 3.1 has the same spirit as the
one in [10], but we show it for the sake of completeness.

Let Σ1 = (Π1, µ1) and Σ2 = (Π2, µ2) be two secret sharing schemes on a set
of participants P that have the same domain of secrets K, satisfying that µ1 and
µ2 are independent probability distributions on some finite sets R1 and R2, and let
Πi : K ×Ri → Ki

1 × . . .×Ki
n for i = 1, 2.

We define the OR of Σ1 and Σ2 as the secret sharing scheme Σ1 ∨ Σ2 = (Π, µ)
where Π : K ×R→ K1 × . . .×Kn is the mapping with R = R1 ×R2, Ki = K1

i ×K2
i

for i = 1, . . . , n, and
Πi(k, r1, r2) = (Π1

i (k, r1),Π2
i (k, r2))

for i = 1, . . . , n; and µ is the product of µ1 and µ2.
To define the AND of Σ1 and Σ2, we need to introduce an additional scheme. Let

Σ3 = (Π3, µ3) be the ideal secret sharing scheme on P ′ = {1, 2} with access structure
Γ = TP ′ = {P ′} described above, with domain of secrets K, set of random strings
R3 = K, and uniform probability distribution µ3 on K. The AND of Σ1 and Σ2 is
the secret sharing scheme Σ1 ∧ Σ2 = (Π, µ) where Π : K ×R→ K1 × . . .×Kn is the
mapping with R = R1 ×R2 ×R3, Ki = K1

i ×K2
i for i = 1, . . . , n, and

Πi(k, r1, r2, r3) = (Π1
i (Π

3
1(k, r3), r1),Π2

i (Π
3
2(k, r3), r2))

for i = 1, . . . , n; and µ is the product of µ1, µ2 and µ3.
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Lemma 3.1. Let Σ1 and Σ2 be two secret sharing schemes on the same set of par-
ticipants and with the same set of secrets. Let Γ1 and Γ2 be their access structures,
respectively. Then the access structures of the schemes Σ1 ∧Σ2 and Σ1 ∨Σ2 are Γ1 ∩Γ2

and Γ1 ∪ Γ2, respectively.

Proof. Let Recon1
A, Recon2

A and Recon3
A be the reconstruction functions of the schemes

Σ1, Σ2 and Σ3, respectively. First we prove that the access structure of Σ1 ∨ Σ2 is
Γ1 ∪ Γ2. For a subset A ∈ Γ1, we define ReconA as Recon1

A over the elements from
Σ1. If A /∈ Γ1 but A ∈ Γ2, we define ReconA as Recon2

A over the elements from Σ2.
Then subsets in Γ1 ∪ Γ2 can recover the secret. If A /∈ Γ1 and A /∈ Γ2, then A is
forbidden in Σ1 ∨Σ2, because for every a, b ∈ K and for every possible vector of shares
(sj)j∈A = (s1

j , s
2
j )j∈A,

Pr[ ΠA(a, r1, r2) = (sj)j∈A ] = Pr[ Π1
A(a, r1) = (s1

j )j∈A ] · Pr[ Π2
A(a, r2) = (s2

j )j∈A ]

= Pr[ Π1
A(b, r1) = (s1

j )j∈A ] · Pr[ Π2
A(b, r2) = (s2

j )j∈A ]

= Pr[ ΠA(b, r) = (sj)j∈A ].

Now we prove that the access structure of Σ1∧Σ2 is Γ1∩Γ2. For a subset A ∈ Γ1∩Γ2,
we can reconstruct the secret by applying Recon3

A to the outputs of Recon1
A and Recon2

A,
and so A is authorized. If A is neither in Γ1 nor Γ2, then A is forbidden in Σ1 ∧ Σ2.
Now suppose that A is in Γ1 but not in Γ2. For every a, b ∈ K and for every possible
vector of shares (sj)j∈A = (s1

j , s
2
j )j∈A,

Pr[ ΠA(a, r1, r2, r3) = (s1
j , s

2
j )j∈A ] =

= Pr[Π1
A(Π3

1(a, r3), r1) = (s1
j )j∈A ] · Pr[ Π2

A(Π3
2(a, r3), r2) = (s2

j )j∈A ]

= Pr[Π1
A(r3, r1) = (s1

j )j∈A ] · Pr[ Π2
A(a− r3, r2) = (s2

j )j∈A ]

= Pr[Π1
A(Π3

1(b, r3), r1) = (s1
j )j∈A ] · Pr[ Π2

A(Π3
2(b, r3), r2) = (s2

j )j∈A ]

= Pr[ ΠA(b, r1, r2, r3) = (s1
j , s

2
j )j∈A ],

and so A is forbidden. For A ∈ Γ2 \ Γ1 the proof is analogous, and for A /∈ Γ2 ∩ Γ1 the
proof is immediate.

In both cases, each participant receives a share from Σ1 and a share from Σ2,
so σ(Σ1 ∧ Σ2) = σ(Σ1 ∨ Σ2) ≤ σ(Σ1) + σ(Σ2), and σT(Σ1 ∧ Σ2) = σT(Σ1 ∨ Σ2) =
σT(Σ1) + σT(Σ2). Therefore, for every two access structures Γ1 and Γ2, σ(Γ1 ∪ Γ2)
and σ(Γ1 ∩ Γ2) are smaller than or equal to σ(Γ1) + σ(Γ2). Both operations preserve
linearity. That is, if Σ1 and Σ2 are (F, `)-linear secret sharing scheme for a finite field
F and ` > 0, then Σ1 ∨ Σ2 and Σ1 ∧ Σ2 are also (F, `)-linear.

Now we present two well-known constructions for every access structure Γ [29].
Since Γ =

⋃
A∈min Γ TA and each TA admits an ideal secret sharing scheme on A, using

the OR operation we can construct a scheme Σ for Γ with σ(Σ) = deg(min Γ) ≤ |min Γ|.
Since Γ =

⋂
A∈max Γc FA and each FA admits an ideal secret sharing scheme on P \A,

we can construct a secret sharing scheme Σ with σ(Σ) ≤ |max Γc|.

Remark 3.2. All the results in this section can be adapted to other kinds of secret
sharing schemes: perfect secret sharing schemes defined by discrete random variables
(see [3]), statistical secret sharing schemes (see [3]), or computational secret sharing
schemes (see [9]). The AND and OR operations can also be defined in these models,
but in some cases they require additional restrictions.
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4 The Main Result

We dedicate this section to the proof and the analysis of the following theorem, which
is the main result of this work.

Theorem 4.1. Let Γ,Γ′ be two access structures on a set P . Then

|σ(Γ)− σ(Γ′)| ≤ dist(Γ,Γ′).

The approach we follow to give an upper bound for |σ(Γ)−σ(Γ′)| for any two access
structures Γ and Γ′ is the following. Given a secret sharing scheme Σ for Γ, we show a
way to construct a secret sharing scheme Σ′ for Γ′ with σ(Σ′) ≤ σ(Σ) + dist(Γ,Γ′). In
order to do so, we find a description of Γ′ in terms of Γ and some ideal access structures,
which is presented in Lemma 4.2. Then, according to this description, we can construct
Σ′ reusing Σ in a special form, according to the description of Γ′. This theorem is a
direct consequence of Proposition 4.3.

The motivation for reusing Σ in the construction of Σ′ is that, if Γ and Γ′ are close,
Σ already satisfies most of the reconstruction and privacy requirements we need for
Σ′. Our construction is an elegant method to delete subsets from Γ, that is, to find
a solution for the case Γ′ ⊆ Γ. In this situation, we have to revoke the right of some
subsets in Γ to know the secret in Σ.

Lemma 4.2. Let Γ,Γ′ be two access structures on P . Then

Γ′ =
(

Γ ∩
⋂
A∈I

FA

)
∪
⋃
A∈J

TA,

where I = max(Γ \ Γ′) and J = min(Γ′ \ Γ).

Proof. Recall that Γ′ = ∪A∈Γ′TA = ∩A/∈Γ′FA. First, consider the following two cases:

1. If Γ ⊆ Γ′, then

Γ′ =
⋃
A∈Γ

TA ∪
⋃

A∈Γ′\Γ

TA = Γ ∪
⋃
A∈J

TA.

2. If Γ′ ⊆ Γ, then

Γ′ =
⋂
A/∈Γ

FA ∩
⋂

A∈Γ\Γ′
FA = Γ ∩

⋂
A∈I

FA.

Suppose that Γ is not contained in Γ′ and vice versa. Then consider their intersection
and observe that Γ ∩ Γ′ ⊆ Γ. Following the arguments used above in case 2 we obtain
that

Γ ∩ Γ′ = Γ ∩
⋂
A∈I′

FA,

where I ′ = max(Γ \ (Γ ∩ Γ′)) = max(Γ \ Γ′) = I. Since Γ ∩ Γ′ ⊆ Γ′, following the
arguments used above in case 1 we obtain that

Γ′ = (Γ ∩ Γ′) ∪
⋃
A∈J ′

TA,

where J ′ = min(Γ′ \ (Γ ∩ Γ′)) = min(Γ′ \ Γ) = J . This concludes the proof.
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Proposition 4.3. Let Γ,Γ′ be two access structures on P . Then

|σ(Γ)− σ(Γ′)| ≤ |max(Γ \ Γ′)|+ |min(Γ′ \ Γ)|.

Proof. Let Σ be a secret sharing scheme for Γ. By Lemma 4.2, the access structure Γ′

is realized by the secret sharing scheme

Σ′ =
(

Σ ∧
∧
A∈I

ΣFA

)
∨
∨
A∈J

ΣTA ,

where I = max(Γ \ Γ′), J = min(Γ′ \ Γ), and ΣFA
and ΣTA are ideal secret sharing

schemes for FA and TA, respectively. Then σ(Σ′) ≤ σ(Σ) + |I|+ |J |.

In the proof of the last theorem we construct a secret sharing scheme for Γ′ in terms
of ANDs and ORs of a scheme for Γ and schemes for access structures of the form TA
and FA. These access structures admit ideal schemes for any set of secrets. Therefore,
this result is also valid if we restrict ourselves to secret sharing schemes for a particular
secret size, for example to secret sharing schemes sharing one bit. In addition, these
access structures also admit ideal (F, `)-linear secret sharing schemes for any finite field
F, for any nonempty A ⊆ P and for any ` > 0. Hence, if we have a (F, `)-linear secret
sharing scheme realizing Γ, we obtain a (F, `)-linear secret sharing scheme for Γ′.

Corollary 4.4. Let Γ,Γ′ be two access structures on P, and let Fq be a finite field. For
every ` ≥ 1,

|λq,`(Γ)− λq,`(Γ′)| ≤ dist(Γ,Γ′).

As a consequence of the previous results, the access structures that are close to
access structures with efficient secret sharing schemes also admit efficient schemes,
and the access structures that are close to access structures requiring large shares also
require large shares.

Some applications of secret sharing schemes do not require a complete definition
of the access structure. They require subsets in a family A ⊆ P(P ) to be forbidden,
and subsets in a family B ⊆ P(P ) to be authorized. We say that an access structure Γ
is compatible with A and B if A ⊆ Γc and B ⊆ Γ. If A ∪ B 6= P(P ), then there is a
certain degree of freedom when choosing the access structure. The number of subsets
that are not required to be authorized or forbidden is r = 2n − (|A|+ |B|). If we know
σ(Γ) for an access structure Γ that is compatible with A and B, then we know that the
smallest optimal information ratio of the access structures compatible with A and B is
at least σ(Γ)− r.

4.1 The Lipschitz constant of the optimal information ratio

Next, we present an example that shows that, for distance equal to one, it is not possible
to improve the general bound in Theorem 4.1 and in Corollary 4.4. Namely, we describe
access structures Γn, Γ′n and Γ′′n with n ≥ 3 such that dist(Γ′′n,Γn) = dist(Γ′′n,Γ

′
n) = 1

and |σ(Γ′′n)− σ(Γn)| = |σ(Γ′′n)− σ(Γ′n)| = 1− 1/(n− 2). For distance greater than one,
we do not know whether the bounds in Theorem 4.1 and in Corollary 4.4 are tight.

Example 4.5. Consider the access structures Γn and Γ′n on P = {1, . . . , n} with
min Γn = {{1, i} : 2 ≤ i ≤ n} and min Γ′n = {{1}, {2, . . . , n}}. These access structures
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admit ideal secret sharing schemes for every set of secrets, and ideal linear secret sharing
schemes for any finite field F. Now consider the access structures Γ′′n with min Γ′′n =
{{1, i} : 2 ≤ i ≤ n} ∪ {{2, . . . , n}}. Observe that Γ′′n = Γn ∪ {{2, . . . , n}} = Γ′n \ {{1}},
and so dist(Γ′′n,Γn) = dist(Γ′′n,Γ

′
n) = 1. By Theorem 4.1 and Corollary 4.4, σ(Γ′′n) ≤ 2

and λ(Γ′′n) ≤ 2. It was proved in [20] that λ(Γ′′n) = σ(Γ′′n) = 2− 1/(n− 2) for n ≥ 3.

Now we use the notion of Lipschitz continuity to describe the properties of the
optimal information ratio. Let f : X → Y be a function mapping a metric space
(X, dX) to a metric space (Y, dY ), where dX and dY denote the distance functions in
the domain X and in the range Y , respectively. We say that f has Lipschitz constant
k if dY (f(x), f(y)) ≤ k · dX(x, y) for every x, y ∈ X. In this case we also say that f is
k-Lipschitz.

In the context of this work, we view the information ratio σ as a function whose
domain is Mn, the collection of access structures on {1, . . . , n}, and whose range is
R≥1. Observe that (Mn,dist) and R≥1 with the Euclidian distance are metric spaces.
Then, we can state the following result, which is in fact equivalent to Theorem 4.1.

Corollary 4.6. The optimal information ratio is 1-Lipschitz.

By the Example 4.5, it is not possible to give a better general Lipschitz constant
for σ. The notion of Lipschitz is often used in continuous domains. However, it has
also been used in discrete domains, for example in the study of differential privacy
(e.g. [30]). The Lipschitz property provides valuable information about the sensitivity
of the function when we vary the input. In this case, it illustrates that close access
structures have similar optimal information ratio. Therefore, in Mn we have regions in
which the access structures admit secret sharing schemes with low information ratio,
for instance around ideal access structures. The distribution of these regions and their
density in Mn is an open problem. Moreover, the characterization of the values of R≥1

that have a preimage by σ is also an open problem.

5 Asymptotic Behavior of the Bound

Our work is focused on the local behavior of the optimal information ratio, and our
results are motivated by the study of the optimal information ratio of access structures
that are close. In this section we analyze the asymptotic behavior of the optimal
information ratio, and the convenience of bounding the difference between the optimal
information ratio of two access structures by the distance between them.

In Section 4.1, we presented pairs of access structures at distance one which satisfy
that the difference between their optimal information ratios tends to one. We did not
find an equivalent result for distance greater than one, but we can show some examples
that suggest that our bounds are still useful for large distances, in general.

First, we analyze the bound in Proposition 4.3. Let f : N → R be a function
satisfying that |σ(Γ)− σ(Γ′)| ≤ f(r) for every two access structures Γ and Γ′, where
r = |max(Γ \ Γ′)| + |min(Γ′ \ Γ)|. Now we consider a well-known family of access
structures defined by Csirmaz in [15], which we denote by F . For every Γ in F ,
σ(Γ) = Ω(n/ log n), where n is the number of participants, n = N + logN , and
N is the number of minimal authorized subsets. Observe that, since x/ log x is an
increasing function for x > e we have that n/ log n ≥ N/ logN for N ≥ 3, and so
σ(Γ) = Ω(N/ logN).

11



If we take Γ to be the empty access structure and Γ′ to be in F , then we see that
|σ(Γ)− σ(Γ′)| = Ω(N/ logN) and |max(Γ \ Γ′)|+ |min(Γ′ \ Γ)| = N . Hence, we obtain
the restriction that f(r) = Ω(r/ log r). Therefore, if it were possible to improve the
bound in Proposition 4.3, it could be improved at most by a logarithmic factor.

Now we analyze the bound in Corollary 4.4. We consider two different families of
access structures, and we analyze the bound using particular results for these families.
Let Fq be a finite field, ` a positive integer, and let g : N → R be a function that
satisfies |λq,`(Γ) − λq,`(Γ′)| ≤ g(d) for every two access structures Γ and Γ′, where
d = dist(Γ,Γ′).

Let H be the family of access structures on a set of n participants, n even, in which
all subsets of size strictly greater than n/2 are authorized, and the ones of size strictly

smaller than n/2 are forbidden. There are 2( n
n/2) access structures in H, including the

n/2-threshold access structure. Observe that for every access structure in H, half of
the access structures in H are at a distance greater than or equal to

(
n
n/2

)
/2.

Linear secret sharing schemes can be represented by matrices (see [3, 37], for
example). In a (Fq, `)-linear secret sharing scheme with information ratio at most s, the
dealer is associated to ` rows, which can be considered to be fixed to any set of linearly
independent vectors in F`q. Each participant is associated to at most `s rows, and so
we have at most s`n+ ` rows. By linear algebra, since P is an authorized subset, we
can always find an equivalent (Fq, `)-linear secret sharing scheme in which the number
of columns is smaller or equal than the number of rows minus `. Hence, the number of
matrices of this kind is at most qs

2`2n2
. Then the number of access structures Γ with

λq,`(Γ) ≤ s is smaller than qs
2`2n2

. Now we take

s =
2n/2−1

`2n5/4
√

log q
.

Using the property that
(
n
n/2

)
∼ 2n√

πn/2
, if we compare qs

2`2n2
with 2( n

n/2), we see that

almost all access structures Γ in H satisfy λq,`(Γ) ≥ s. This counting argument is
similar to the one in [2].

We take Γ to be the n/2-threshold access structure. Then there exists Γ′ in H with
λq,`(Γ

′) ≥ s at a distance d = dist(Γ,Γ′), where
(
n
n/2

)
/2 ≤ d ≤

(
n
n/2

)
. These access

structures satisfy

|λq,`(Γ)− λq,`(Γ′)| ≥ 1 + s = Ω

( √
d

` log(d)
√

log q

)
.

Hence, we obtain the restriction that g(d) = Ω(
√
d/ log d).

Now we consider the family of forbidden graph access structures. Given a graph
G = (V,E), the forbidden graph access structure determined by G is the access structure
on V containing all the pairs in E and all subsets of size at least 3. In this case, the
distance between the access structures determined by G = (V,E) and G′ = (V,E′)
is |E ∪ E′| − |E ∩ E′|. As a consequence of the results in [6], for any two forbidden
graph access structures Γ and Γ′ and for every large enough finite field Fq we have
|λq,1(Γ) − λq,1(Γ′)| = Õ(d1/4), where d = dist(Γ,Γ′). The results in [34] show that
every forbidden graph access structure admits a non-linear secret sharing scheme of

information ratio nO(
√

log logn/ logn) = no(1). This suggests that there may exist a better
bound for |σ(Γ)− σ(Γ′)| for forbidden graph access structures.
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6 Other Constructions for Close Access Structures

In the previous section, we presented a way to describe an access structure Γ′ in terms
of another access structure Γ. This combinatorial result was used to construct, given a
secret sharing scheme for Γ, a secret sharing scheme for Γ′.

In this section we present a method to construct secret sharing schemes that follows
the same strategy, which uses different combinatorial results. As in the previous section,
we are able to provide bounds on the optimal information ratio of access structures.
These bounds are useful for access structures whose minimal access structures are
in a special disposition. We use combinatorial results that are different from the
ones presented in the previous section. In particular, the results are based on a new
combinatorial notion of (B1,B2)-covering, which will be used to construct secret sharing
schemes. The interest in using (B1,B2)-coverings is that we can transform the problem
of finding an efficient scheme into the search of small coverings, and so translate a
secret sharing problem into a combinatorial one.

6.1 (B1,B2)-coverings

We introduce here a notion of covering that will be used to find useful descriptions of
minimal access structures that are close.

Definition 6.1. Let B1,B2 ⊆ P(P ) be two families of subsets satisfying B1∩B2 = ∅. A
family of subsets C ⊆ P(P ) is a (B1,B2)-covering if it satisfies the following properties:

1. for every A ∈ B1 and for every B ∈ C, A * B, and

2. for every A ∈ B2 there exists B ∈ C such that A ⊆ B.

Example 6.2. Let B ⊆ P(P ) be an antichain and let A ∈ B. Then C = {P \ {i} : i ∈
A} is an ({A},B \ {A})− covering.

Next, we present in Lemma 6.3 a necessary and sufficient condition for the existence
of coverings, and we present in Lemma 6.4 a technical result that is used in the proof
of Theorem 6.5.

Lemma 6.3. Let B1,B2 ⊆ P(P ). There exists a (B1,B2)-covering if and only if

A * B for every A ∈ B1 and B ∈ B2. (3)

Proof. Let C be a (B1,B2)-covering. For every A ∈ B1 and B ∈ B2, cl(A) ∩ C = ∅ and
cl(B) ∩ C 6= ∅, so A * B. Conversely, if A * B for every A ∈ B1 and B ∈ B2, then B2

is a (B1,B2)-covering.

Lemma 6.4. Let B1,B2 ⊆ P(P ). A (B1,B2)-covering is also a (B1,B3)-covering for
every B3 ⊆ B2.

Beimel, Farràs and Mintz constructed efficient secret sharing schemes for very dense
graphs [5]. Some of these constructions have been recently improved in [7]. The next
theorem abstracts some of the techniques used in [5, Lemma 5.2] and [5, Lemma 5.4].
The proof of the theorem uses colorings of hypergraphs. A coloring of B ⊆ P(P ) with c
colors is a mapping µ : P → {1, . . . , c} such that for every A ∈ B there exists u, v ∈ A
with µ(u) 6= µ(v).
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Theorem 6.5. Let B1,B2 ⊆
(
P
k

)
be two families of subsets with B1 ∩ B2 = ∅ for

some k > 1. If B1 has degree d, then there is a (B1,B2)-covering of degree at most
2kkkdk−1 lnn.

Proof. Due to Lemma 6.3, if B1 ⊆
(
P
k

)
, the biggest family of subsets B′2 ⊆

(
P
k

)
admitting

a (B1,B′2)-covering is B′2 =
(
P
k

)
\ B1. By Lemma 6.4, it is enough to restrict our proof

to the case B2 =
(
P
k

)
\ B1.

In order to construct a (B1,B2)-covering, we use colorings of B1. Given a coloring
µ of B1, we consider the family of subsets of elements in P of the same color. Observe
that if all the elements in a subset A ⊆ P have the same color by µ, then it implies
that B * A for every B ∈ B1.

The existence of the covering is proved by using the probabilistic method (see [1],
for example). We choose r = 2kkkdk−1 lnn random colorings µ1, . . . , µr of B1 with 2kd
colors. For every coloring µi, we define Ci = {µ−1

i (c) : c is a color of µi}, that is, Ci is
the collection of maximal monochromatic subsets in µi. Now we show that C = ∪ri=1Ci
is a (B1,B2)-covering with probability at least 1− 1/(k!).

Let A = {v1, . . . , vk} ∈ B2. We fix i and compute the probability that A ⊆ B
for some B ∈ Ci, which is equivalent to say that A is monochromatic in µi. Fix an
arbitrary coloring of B1 ∩ P(P \ A) with domain P \ A. We prove that conditioned
on this coloring, the probability that A is monochromatic in an extended coloring of
B1 is at least 1

2(2kd)k−1 . Let B ∈ B1 with v1 ∈ B. If B \ {v1} is monochromatic, then

the color of v1 must be different from the color of B \ {v1}. Thus, there are at most d
colors that v1 cannot take. Extending this argument, there are at most kd colors that
do not allow A to be monochromatic. Thus the probability that v1 is colored by one of
the remaining 2kd− kd colors is at least one half, and the probability that in this case
v2, . . . , vk are colored in the same color as v1 is at least 1/(2kd)k−1. Then A ⊆ B for
some B ∈ Ci with probability at least 1/(2(2kd)k−1).

The probability that A * B for every B ∈ C is(
1− 1

2(2kd)k−1

)r
≤ e−

r

2(2kd)k−1 =
1

nk
.

Thus, the probability that C is not a (B1,B2)-covering is less than
(
n
k

)
/nk ≤ 1/k!. In

particular, such covering exists.

This result has also consequences in graph theory, which corresponds to the case
k = 2. It implies that every graph G = (V,E) with E ⊆

(
V
2

)
admits an equivalence

cover of degree 16d lnn, where d is the degree of the complementary graph (V,
(
V
2

)
\E)

(see [5] for more details).
The next proposition allows us to construct formulas, circuits and secret sharing

schemes for access structures.

Proposition 6.6. Let Γ,Γ′ be two access structures with min Γ′ ⊆ min Γ. If C is a
(min Γ \min Γ′,min Γ′)-covering, then

min Γ′ = {A ∈ min Γ : A ⊆ B for some B ∈ C}.

Proof. For every subset A ∈ min Γ′, there exists B ∈ C with A ⊆ B. For every
A ∈ min Γ \min Γ′, A * B for every B ∈ C, and so the equality holds.
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6.2 Secret Sharing Constructions Using Coverings

The main result of this subsection is Theorem 6.9. The quality of the bounds in this
theorem depends on the degree of a covering. In Theorem 6.5, we provide a bound on
the degree of coverings. In Example 6.10, we show an access structure for which this
technique provides optimal secret sharing schemes.

Lemma 6.7. Let Γ,Γ′ be two access structures with min Γ′ ⊆ min Γ. Let Σ be a secret
sharing scheme for Γ. If there exists a (min Γ \ min Γ′,min Γ′)-covering of degree d,
then there exists a secret sharing scheme Σ′ for Γ′ with

σ(Σ′) ≤ dσ(Σ) and σT(Σ′) ≤ dσT(Σ).

Proof. Let C be a (min Γ \ min Γ′,min Γ′)-covering of degree d. We define a secret
sharing scheme Σ′ as the OR of all the secret sharing schemes Σ|A for A ∈ C. By
Proposition 6.6, Σ′ realizes Γ′. In this scheme, each i ∈ P receives degi(C) shares. Since
degi(C) ≤ d, σ(Σ′) ≤ dσ(Σ), and σT(Σ′) =

∑
A∈C σ

T(Σ|A) ≤ dσT(Σ).

Example 6.8. Let Γ,Γ′ be two access structures with dist(min Γ,min Γ′) = 1 and
min Γ′ ⊆ min Γ. Observe that in this case dist(Γ,Γ′) can be much bigger than 1. As
we saw in Example 6.2, there exists a (min Γ \min Γ′,min Γ′)-covering C of degree at
most n− 1. Hence, given a secret sharing scheme Σ for Γ we can construct a secret
sharing scheme for Γ′ whose information ratio is less than (n− 1)σ(Σ).

Theorem 6.9. Let Γ,Γ′ be two access structures on P . If there exists a (min Γ \
min Γ′,min Γ′)-covering of degree d, then

σ(Γ′) ≤ dσ(Γ) + t and σT(Γ′) ≤ dσT(Γ) + nt,

where t = deg(min Γ′ \min Γ).

Proof. Let Γ′′ be the access structure defined by min Γ′′ = min Γ′∩min Γ. Observe that
min Γ \min Γ′ = min Γ \min Γ′′, and that every (min Γ \min Γ′,min Γ′)-covering is also
a (min Γ \min Γ′′,min Γ′′)-covering by Lemma 6.4. Given a secret sharing scheme Σ for
Γ, there is a secret sharing scheme Σ′′ for Γ′′ with σ(Σ′′) ≤ dσ(Σ) and σT(Σ′′) ≤ dσT(Σ)
by Lemma 6.7. Then, using the construction in the proof of Proposition 4.3, we can
construct a secret sharing scheme Σ′ with access structure Γ′ as Σ′ = Σ′′ ∨ Σ′′′, where
Σ′′′ =

∨
A∈I ΣTA and I = min(Γ′ \ Γ′′) = min Γ′ \min Γ.

In Example 6.8, we studied the case of two access structures Γ and Γ′ with
dist(min Γ,min Γ′) = 1, and the technique we described can be extended to distances
greater than 1. By Theorems 6.5 and 6.9, if min Γ′ ⊆ min Γ, |A| ≤ k for every A ∈ min Γ,
and the degree of min Γ \min Γ′ is d, then σ(Γ′) ≤ (2kkkdk−1 lnn)σ(Γ). This result
was proved in [5], and it was improved for the case k = 2 [5, Theorem 6.1].

In the following example, we use a technique involving coverings to construct an
optimal secret sharing scheme.

Example 6.10. Let P be a set of n = 2`+ 1 participants for some ` > 0. We consider
a partition P = {a} ∪ P1 ∪ P2, where |P1| = |P2| = `. Let Γ be the 2-threshold access
structure on P and let Σ be an ideal secret sharing scheme for Γ. Let Γ′ be the access
structure on P with min Γ′ =

(
P
2

)
\ {{a, b} : b ∈ P2}. By [5, Theorem 7.1], we know

that σT(Γ′) ≥ n+ ` = 3`+ 1. Now we prove that this bound is tight.
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Let C = {C1, C2} be the (min Γ \ min Γ′,min Γ′)-covering with C1 = {a} ∪ P1

and C2 = P1 ∪ P2. Using the construction described in Lemma 6.7, we obtain that
Σ′ = Σ|C1 ∨ Σ|C2 is a secret sharing scheme for Γ′. It satisfies σT(Σ′) = σT(Σ|C1) +
σT(Σ|C2) = `+ 1 + 2` = 3`+ 1. Therefore we can conclude that σT(Γ′) = n+ `.

6.3 A Construction Using Sunflowers

In Proposition 6.12, we present another secret sharing construction that follows a
procedure analogous to the one in Theorem 4.1, which uses a different description of
the access structures.

Lemma 6.11. Let Γ,Γ′ be two access structures on P . Let Γ̃ be the access structure
with min Γ̃ = (min Γ) ∩ Γ′. Then

Γ′ = Γ̃ ∪
⋃

A∈Γ\Γ′
GA ∪

⋃
A∈J

TA,

where GA = cl((minSA) ∩ Γ′) and J = min(Γ′ \ Γ).

Proof. Let Γ′′ = Γ ∩ Γ′. According to Lemma 4.2, we can describe Γ′ as Γ′ =
Γ′′ ∪

⋃
A∈J TA. We dedicate the rest of the proof to show that Γ′′ = Γ̃ ∪

⋃
A∈Γ\Γ′ GA.

Since Γ = min Γ ∪
⋃
A∈Γ minSA, we have that

Γ′′ = cl(Γ′′) = cl(Γ ∩ Γ′) = cl((min Γ ∪ (Γ \min Γ)) ∩ Γ′)

= cl((min Γ) ∩ Γ′) ∪
⋃
A∈Γ

GA = Γ̃ ∪
⋃
A∈Γ

GA.

Let B1 = Γ \Γ′, B2 = min(Γ∩Γ′), and B3 = (Γ∩Γ′) \min(Γ∩Γ′). Let Ai =
⋃
A∈Bi GA

for i = 1, 2, 3. Observe that B1 ∪ B2 ∪ B3 = Γ, that Γ′′ = Γ̃ ∪ A1 ∪ A2 ∪ A3 and that
A3 ⊆ A2.

We claim that A2 ⊆ Γ̃∪A1. Let A ∈ B2. If A ∈ min Γ, then A ∈ Γ̃ because B2 ⊆ Γ′,
and so minSA ⊆ Γ̃. Suppose that A /∈ min Γ. Then there exists B ∈ Γ satisfying
A ∈ minSB, and in particular A ∈ (minSB) ∩ Γ′. Since A ∈ min(Γ ∩ Γ′), we have that
B ∈ Γ \ (Γ∩Γ′) = Γ \Γ′ = B1. Then cl(minSA) ⊆ cl(A) ⊆ GB . Therefore A2 ⊆ Γ̃∪A1

and so Γ′′ = Γ̃ ∪ A1, which concludes the proof.

Proposition 6.12. Let Γ,Γ′ be two access structures. Let Γ̃ be the access structure
with min Γ̃ = (min Γ) ∩ Γ′. Then

σ(Γ′) ≤ σ(Γ̃) + dist(Γ′,Γ).

Proof. Let Σ and Σ̃ be secret sharing schemes for Γ and Γ̃, respectively. We use
Lemma 6.11 to construct a secret sharing scheme for Γ′. Observe that for every A ∈ Γ,
(minSA) ∩ Γ′ ⊆ minSA. Hence, using the scheme described for SA in Section 3 we can
construct an ideal secret sharing scheme for GA, which we call Σ′′A. Then the access
structure Γ′ is realized by the secret sharing scheme

Σ′ =
(

Σ̃ ∨
∨

A∈Γ\Γ′
Σ′′A

)
∨

∨
A∈Γ′\Γ

ΣTA ,

where ΣTA is an ideal secret sharing scheme for TA. It satisfies σ(Σ′) ≤ σ(Σ̃) + |Γ \
Γ′|+ |Γ′ \ Γ| = σ(Σ̃) + dist(Γ,Γ′).

Theorem 4.1 and Proposition 6.12 are based on constructions of the same spirit,
but they cannot be compared, in general.
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7 Lower Bounds on the Information Ratio

In this section and in the following one, we study techniques for finding lower bounds
on the information ratio. For these bounds, we analyze the effect of adding and deleting
subsets in the access structure

If we view the secret and the shares of a scheme as random variables, we can
compute the entropy of the secret and of the shares. Then, we can obtain bounds on
the information ratio using the Shannon information inequalities and other information
inequalities (see [3, 35, 23], for example). We study the lower bound on σ(Γ) introduced
by Mart́ı-Farré and Padró [35], which is denoted by κ(Γ). The bound κ exploits the
connection between secret sharing schemes and polymatroids, which is presented below.
The value of κ for an access structure can also be obtained by requiring the Shannon
inequalities on the entropies of the shares and the secret (see [15, 37] for more details).

The main result in this section is Theorem 7.3, which shows a property of κ that
is analogous to the one in Theorem 4.1. We dedicate Section 7.1 to the proof of this
theorem.

Definition 7.1. A polymatroid is a pair S = (Q, f) formed by a finite set Q, the
ground set , and a rank function f : P(Q)→ R satisfying the following properties.

• f(∅) = 0.

• f is monotone increasing : if X ⊆ Y ⊆ Q, then f(X) ≤ f(Y ).

• f is submodular : f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for every X,Y ⊆ Q.

Additionally, if f(X) ≤ |X| for every X ⊆ Q and f is integer-valued, then we say that
S is a matroid.

Definition 7.2. Let Γ be an access structure on P and let S = (Q, f) be a polymatroid
with Q = P ∪ {p0}. Then S is a Γ-polymatroid if f({p0}) = 1 and it satisfies the
following properties for every A ⊆ P :

• If A ∈ Γ then f(A ∪ {p0}) = f(A).

• If A /∈ Γ then f(A ∪ {p0}) = f(A) + 1.

For every access structure Γ on P , we define κ(Γ) as the infimum of maxp∈P f(p)
over all Γ-polymatroids S = (Q, f). It satisfies σ(Γ) ≥ κ(Γ) [35]. Most of the known
lower bounds on the optimal information ratio have been obtained by computing the
exact value of κ, or by computing lower bounds on κ. The exact value of κ can be
obtained by solving a Linear Programming problem. More details about this technique
can be found in [23], for example. Next, we present the main result of this section.

Theorem 7.3. Let Γ,Γ′ be two access structures on P . Then

|κ(Γ)− κ(Γ′)| ≤ dist(Γ,Γ′).

The proof of this theorem is constructive, and has the spirit as the proof of
Theorem 4.1. In this case, we show that given a Γ-polymatroid, we can construct a
Γ′-polymatroid in which the rank of the singletons increases at most by dist(Γ,Γ′).
The proof requires new technical lemmas and constructions on polymatroids and so we
defer it to Section 7.1.
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The access structures presented in Example 4.5 have the property that σ and κ
coincide, and so we have the same asymptotic behaviour for κ. That is, κ is 1-Lipschitz
and it is not possible to give a better general Lipschitz constant for κ.

An access structure Γ is a matroid port if there exists a Γ-polymatroid S that
is a matroid. If Γ is a matroid port, then κ(Γ) = 1 [13, 35]. As a consequence of
Theorem 7.3, the value of κ of access structures that are close to matroid ports is small.
Mart́ı-Farré and Padró [35] showed that if an access structure Γ is not a matroid port,
then κ(Γ) ≥ 3/2. In this case, if Γ is at distance 1 of a matroid port, now we can say
that then 3/2 ≤ κ(Γ) ≤ 2.

Csirmaz [15] proved that κ(Γ) ≤ n for every access structure Γ. Therefore, the
previous theorem only provides useful bounds for access structures that are very close.
However, it illustrates the nature of the optimization problems with restrictions derived
from Shannon inequalities and the access structure, which may be interesting for other
results of information theory.

Recently, this method has been extended to non-Shannon inequalities, for instance
in [8, 23, 36]. For an access structure Γ on P and for a family of information inequalities
or rank inequalities I, we can define κI(Γ) as the infimum of maxx∈P f(p) over all
Γ-polymatroids satisfying the restrictions of I. An interesting open problem is to study
for which restrictions I Theorem 7.3 can be extended to κI .

7.1 Proof of Theorem 7.3

This subsection is dedicated to the proof of Theorem 7.3. Here we use notation
introduced in [18, 36] to describe polymatroids and some technical results in [18] For a
function F : P(Q)→ R and subsets X,Y, Z ⊆ Q, we denote

∆F (Y :Z|X) = F (X ∪ Y ) + F (X ∪ Z)− F (X ∪ Y ∪ Z)− F (X) (4)

and ∆F (Y :Z) = ∆F (Y :Z|∅). Observe that ∆F (Y :Z|X) = ∆F (Y :X ∪ Z)−∆F (Y :X).
In order to simplify the notation, we write F (x) instead of F ({x}) for any x ∈ Q.

Proposition 7.4 ([18]). A map f : P(Q)→ R is the rank function of a polymatroid
with ground set Q if and only if f(∅) = 0 and ∆f (y :z|X) ≥ 0 for every X ⊆ Q and
y, z ∈ Q \X.

If S = (Q, f) is a Γ-polymatroid, then ∆f (p0 :A) = 1 if A ∈ Γ and ∆f (p0 :A) = 0
if A /∈ Γ. In this case, f(A ∪ {p0}) = f(A) + 1 −∆f (p0 :A) for every A ⊆ P . Next,
we enumerate some properties of Γ-polymatroids that will be used in the proof of
Proposition 7.6.

Lemma 7.5. Let Γ be an access structure an let S = (Q, f) be a Γ-polymatroid. Then
for every A ⊆ Q and p, q ∈ Q \A we have

p1) ∆f (p:p|A) = f(p ∪A)− f(A) ≥ 0.

p2) ∆f (p:A ∪ {q}) ≥ ∆f (p:A)

p3) ∆f (p:q|A ∪ {p0})−∆f (p:q|A) =
= ∆f (p0 :A ∪ {p, q}) + ∆f (p0 :A)−∆f (p0 :A ∪ {p})−∆f (p0 :A ∪ {q}).
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Below we define the AND and OR operations on Γ-polymatroids. We show in
Proposition 7.6 that these operations are well defined and that the resulting polymatroids
are associated to the intersection and union of access structures, respectively.

Proposition 7.6. Let Γ1 and Γ2 be two access structures on P . Let S1 = (Q, f1) be a
Γ1-polymatroid and S2 = (Q, f2) a Γ2-polymatroid. Let f1 ∨ f2 and f1 ∧ f2 be the real
functions on Q satisfying that for every A ⊆ P

• (f1 ∨ f2)(A) = f1(A) + f2(A)−min{∆f1(p0 :A),∆f2(p0 :A)}

• (f1 ∨ f2)(A ∪ {p0}) = f1(A ∪ {p0}) + f2(A ∪ {p0})− 1

• (f1 ∧ f2)(A) = f1(A) + f2(A)

• (f1∧f2)(A∪{p0}) = f1(A∪{p0})+f2(A∪{p0})+max{∆f1(p0 :A),∆f2(p0 :A)}−1

Then the pair (Q, f1 ∨ f2) is a Γ1 ∪ Γ2-polymatroid, and (Q, f1 ∧ f2) is a Γ1 ∩ Γ2-
polymatroid. These polymatroids are denoted by S1 ∨ S2 and S1 ∧ S2, respectively.

Proof. First we prove that S1 ∨ S2 and S1 ∧ S2 are polymatroids using Proposition 7.4.
We show that ∆f1∨f2(p:q|A) ≥ 0 and ∆f1∨f2(p:q|A ∪ {p0}) ≥ 0 for every p, q ∈ Q and
A ⊆ P ; and then we show the same property for f1 ∧ f2. By p1) in Lemma 7.5, it is
enough to check it for p 6= q, and so we can split the proof into the following 6 different
cases.

Let A ⊆ P and let p, q ∈ P . In order to simplify the notation, we define the set
Ap = A ∪ {p} and, analogously, Ap0, Aq and Apq.

1. ∆f1∨f2(p:q|A) = ∆f1(p:q|A) + ∆f2(p:q|A) + a− b, where

a = min{∆f1(p0 :Apq),∆f2(p0 :Apq)}+ min{∆f1(p0 :A),∆f2(p0 :A)}, and

b = min{∆f1(p0 :Ap),∆f2(p0 :Ap)}+ min{∆f1(p0 :Aq),∆f2(p0 :Aq)}.

Suppose that a < b. If a = 0 then ∆f1(p0 :Apq) = 0 or ∆f2(p0 :Apq) = 0. By
p2) of Lemma 7.5, it implies that b = 0. Hence, we can restrict ourselves to
the case a = 1 and b = 2. In this case, there exists some i ∈ {1, 2} for which
∆fi(p0 :Apq) = ∆fi(p0 :Ap) = ∆fi(p0 :Aq) = 1 and ∆fi(p0 :A) = 0. Using p3) of
Lemma 7.5, we have that

a− b =∆fi(p0 :Apq) + ∆fi(p0 :A)−∆fi(p0 :Ap)−∆fi(p0 :Aq)

=∆fi(p:q|Ap0)−∆fi(p:q|A)

Therefore ∆f1(p:q|A) + ∆f2(p:q|A) + a− b ≥ 0.

2. ∆f1∨f2(p:p0|A) = ∆f1∨f2(p0 :Ap)−∆f1∨f2(p0 :A)

= max{∆f1(p0 :Ap),∆f2(p0 :Ap)} −max{∆f1(p0 :A),∆f2(p0 :A)}.

It is nonnegative by property p2) of Lemma 7.5.

3. ∆f1∨f2(p:q|Ap0) = ∆f1(p:q|Ap0) + ∆f2(p:q|Ap0) ≥ 0.

4. ∆f1∧f2(p:q|A) = ∆f1(p:q|A) + ∆f2(p:q|A) ≥ 0.
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5. ∆f1∧f2(p:p0|A) = ∆f1∧f2(p0 :Ap)−∆f1∧f2(p0 :A)

= min{∆f1(p0 :Ap),∆f2(p0 :Ap)} −min{∆f1(p0 :A),∆f2(p0 :A)}.

It is nonnegative by property p2) of Lemma 7.5.

6. ∆f1∧f2(p:q|A ∪ {p0}) = ∆f1∨f2(p:q|A) because f1 ∧ f2(Ap0) = f1 ∨ f2(A) + 1.
Hence, it is also nonnegative.

Therefore, S1∨S2 and S1∧S2 are polymatroids. Observe that f1∨f2(p0) = f1∧f2(p0) =
1. Since ∆f1∨f2(p0 :A) = max{∆f1(p0 :A),∆f2(p0 :A)}, we have that ∆f1∨f2(p0 :A) = 1
if and only if A ∈ Γ1 or A ∈ Γ2, and so S1 ∨ S2 is a Γ1 ∪ Γ2-polymatroid. Since
∆f1∧f2(p0 :A) = min{∆f1(p0 :A),∆f2(p0 :A)}, we have that ∆f1∧f2(p0 :A) = 1 if and
only if A ∈ Γ1 and A ∈ Γ2, and so S1 ∧ S2 is a Γ1 ∩ Γ2-polymatroid.

Proof of Theorem 7.3. The proof of this theorem is analogous to the proof of Theo-
rem 4.1. Let A ⊆ P . We define the TA-polymatroid STA = (Q, h) as the one with
h(B) = |B ∩A| for every B ⊆ P , and ∆h(p0 : B) = 1 if and only if A ⊆ B. We define
the FA-polymatroid SFA

= (Q, h) as the one with h(B) = 1 if |B ∩ (P \ A)| 6= 0 and
h(B) = 0 otherwise, and ∆h(p0 : B) = 1 if and only if |B ∩ (P \A)| > 0.

Let S be a Γ-polymatroid. By Lemma 4.2, the following construction is a Γ′-
polymatroid:

S ′ =
(
S ∧

∧
A∈I
SFA

)
∨
∨
A∈J
STA ,

where I = max(Γ \ Γ′) and J = min(Γ′ \ Γ). Then κ(Γ′) ≤ κ(Γ) + |Γ \ Γ′|+ |Γ′ \ Γ| =
κ(Γ) + dist(Γ,Γ′).

8 Bounds for Linear Secret Sharing Schemes

For any finite field F, every (F, 1)-linear secret sharing scheme Σ is equivalent to a
monotone span program of size σT(Σ) (see [3] for more details). Since the bounds
studied in this section are bounds on the total information ratio of (F, 1)-linear secret
sharing schemes, we have the same results for the size of monotone span programs.
Next, we present a formulation of the Razborov rank measure [40] that is adapted to
the context of secret sharing and access structures.

8.1 Razborov’s Rank Measure

Let Γ be an access structure on P , and let U ⊆ Γ and V ⊆ Γc be two families of
subsets. For any U0 ⊆ U and V0 ⊆ V , we say that the Cartesian product U0 × V0 is a
(U, V )-rectangle. For each i ∈ P , define the (U, V )-rectangle Ri = (U×V )∩(T{i}×F{i}).
Denote the set of all such rectangles by RΓ(U, V ) = {R1, . . . , Rn}.

Let F be a field and let A be any |U | × |V | matrix over F with rows indexed by
elements of U and columns indexed by elements of V . The restriction of A to the
rectangle R = U0 × V0 is the submatrix A �R obtained by setting to 0 all entries not
indexed by R.
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Definition 8.1 ([40]). Let Γ ⊆ P(P ) be an access structure, U ⊆ Γ, V ⊆ Γc. Let F
be a field and let A be a |U | × |V | matrix over F. If rank(A) > 0, the rank measure of
Γ with respect to A is given by

µA(Γ) =
rank(A)

maxR∈RΓ(U,V ) rank(A �R)
.

If rank(A) = 0, we set µA(Γ) = 0. We accordingly define the rank measure of Γ as

µ(Γ) = max
A

µA(Γ),

where the maximum is taken over all families of subsets U ⊆ Γ, V ⊆ Γc and all matrices
A of the form stated above.

Razborov [40] showed that the rank measure of a monotone Boolean function is a
lower bound on the size of the shortest formula for this function (see Section 9). Later,
Gál [26] proved that the rank measure is also a lower bound on the size of monotone
span programs. Taking into account the connection between monotone span programs
and linear secret sharing schemes mentioned above, we obtain that the rank function
is a lower bound on the optimal information ratio for linear secret sharing schemes.
Namely, we have the following result.

Theorem 8.2. Let Γ ⊆ P(P ) an access structure, U ⊆ Γ, V ⊆ Γc. Let Fq be a field
and let A be a |U | × |V | matrix over Fq. Then,

µA(Γ) ≤ λTq,1(Γ).

In the following theorem, we study the behavior of the rank measure when we add
or delete subsets from an access structure.

Proposition 8.3. Let Γ,Γ′ ⊆ P(P ) be access structures, U ⊆ Γ, V ⊆ Γc. Fix a field
F and let A be a |U | × |V | matrix over F. Then, there exist U ′ ⊆ Γ′, V ′ ⊆ Γ′c and a
|U ′| × |V ′| matrix A′ such that

µA(Γ) ≤ µA′(Γ′) + dist(Γ,Γ′).

Proof. Set U ′ = U ∩ Γ′ and V ′ = V ∩ Γ′c, and let A′ be the restriction of A to U ′ × V ′.
Then, observe that |U\U ′| ≤ |Γ\Γ′|, since U\U ′ = U\Γ′ and U ⊆ Γ. Similarly, we see
that |V \V ′| ≤ |Γ′\Γ| by using Γc\Γ′c = Γ′\Γ. Since A′ is the submatrix obtained by
setting to 0 all rows in A indexed by U\U ′ and all columns indexed by V \V ′, we have

rank(A) ≤ rank(A′) + |U\U ′|+ |V \V ′| ≤ rank(A′) + dist(Γ,Γ′).

Let RΓ(U, V ) = {R1, . . . , Rn} and RΓ′(U
′, V ′) = {R′1, . . . , R′n}. Since R′i = Ri ∩ (U ′ ×

V ′), we have that A′ �R′i is a submatrix of A �Ri , and thus rank(A �Ri) ≥ rank(A′ �R′i).
Hence,

max
R∈RΓ(U,V )

rank(A �R) ≥ max
R′∈RΓ′ (U

′,V ′)
rank(A′ �R′).

Given a rectangle R ∈ RΓ(U, V ), let R′ = R ∩ (U ′ × V ′). Note that A′ �R′ is a
submatrix of A �R, and thus rank(A �R) ≥ rank(A′ �R′). Since the map RΓ(U, V )→
RΓ′(U

′, V ′) given by R 7→ R ∩ (U ′ × V ′) is exhaustive, we get the inequality

max
R∈RΓ(U,V )

rank(A �R) ≥ max
R′∈RΓ′ (U

′,V ′)
rank(A′ �R′).
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By using the previous inequalities, we see that

µA(Γ) =
rank(A)

maxR∈RΓ(U,V ) rank(A �R)
≤ rank(A′) + dist(Γ,Γ′)

maxR′∈R′Γ′ (U ′,V ′) rank(A′ �R′)

≤ µA′(Γ′) + dist(Γ,Γ′).

Theorem 8.4. Let Γ,Γ′ ⊆ P(P ) be access structures. Then

|µ(Γ)− µ(Γ′)| ≤ dist(Γ,Γ′).

Proof. Let A be the |U | × |V | matrix such that µ(Γ) = µA(Γ), and let A′ be the
restriction of A to U ′ × V ′, where U ′ = U ∩ Γ′ and V ′ = V ∩ Γ′c. By Proposition 8.3
we have µ(Γ) ≤ µA′(Γ

′) + dist(Γ,Γ′). Now, by definition µA′(Γ
′) ≤ µ(Γ′), so µ(Γ) ≤

µ(Γ′) + dist(Γ,Γ′).

Note that the behavior of the rank function bound is different from that of λT
q,1. If we

extend the bound on Corollary 4.4 to λT we have that |λT
q,`(Γ)−λT

q,`(Γ
′)| ≤ n ·dist(Γ,Γ′)

for every two access structures Γ and Γ′.
Recently, in [39], the rank function bound has been used to prove that for every

prime p there exist access structures Γp for which λT
q,1(Γp) = 2Ω(n) for every finite field

Fq of characteristic different from p. Let P = P2 ∪ P3, where P2 = {1, . . . , n} and
P3 = {n+ 1, . . . , 2n}. Let Γ be the access structure P with Γ|P2 = Γ2 and Γ|P3 = Γ3

satisfying that for every A ∈ min Γ either A ⊆ P2 or A ⊆ P3. This access structure
satisfies λT

q,1(Γ) = 2Ω(n) for every finite field Fq.

8.2 Critical subfamilies

The next technique provides lower bounds on the size of the shares for linear secret
sharing schemes. It was first introduced in [4].

Definition 8.5. Let Γ be an access structure and let H ⊆ min Γ. We say that H is a
critical subfamily for Γ, if every H ∈ H contains a set TH ⊆ H, |TH | ≥ 2, such that the
following two conditions are satisfied

1. The set TH uniquely determines H in the subfamily H: No other set in H contains
TH .

2. For any subset Y ⊆ TH , the set SY = ∪A∈H, A∩Y 6=∅A \ Y does not contain any
member of min Γ.

Theorem 8.6. Let Fq be a finite field. Let Γ be an access structure and let H be a
critical subfamily for Γ. Then λTq,1(Γ) ≥ |H|.

Given a critical subfamily for an access structure Γ, it is easy to construct a critical
subfamily for an access structure Γ′ obtained by deleting some subsets from Γ or from
min Γ. However, it is not easy to find a critical subfamily for access structures that are
obtained by adding subsets to Γ or to min Γ.
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Lemma 8.7. Let H be the critical subfamily for an access structure Γ. Let Γ′ be an
access structure with min Γ′ ⊆ min Γ and |min Γ \min Γ′| = `, and let Γ′′ be an access
structure with Γ′′ ⊆ Γ and |Γ \ Γ′′| = `. Then there exist two critical subfamilies H′
and H′′ for Γ′ and Γ′′, respectively, with |H′| ≥ |H| − ` and |H′′| ≥ |H| − `.

Proof. The families of subsets H′ = H∩min Γ′ and H′′ = H∩Γ′′ are critical subfamilies
for Γ′ and Γ′′, respectively.

9 Formulas for Monotone Boolean Functions

In this section, we apply the approach of Section 4 to study the behavior of the
complexity measures associated to monotone Boolean functions. Informally, our results
show that similar monotone Boolean functions have close complexity measures. In
particular, we aim to give similar bounds as those in Theorems 4.1 and 6.9 and to
Proposition 6.12 for the leafsize and the size of monotone Boolean functions. For an
introduction to Boolean functions, see [31, 46], for example.

9.1 Definitions

A Boolean function is a function of the form f : {0, 1}n → {0, 1} for some n ≥ 1.
We also see the domain of a Boolean function as the power set of P = {1, . . . , n}
via the bijection {0, 1}n → P(P ) given by (xi)i∈P 7→ {i ∈ P : xi = 1}. Then we
denote by Γf the collection of elements A ∈ P(P ) such that f(A) = 1. A Boolean
function f is called monotone if Γf is an access structure. In this case, we denote
min f = min Γf . If the domain of a Boolean function f is {0, 1}n, we say f is fanin-n.
For two monotone fanin-n Boolean functions f, f ′, we define the distance between f
and f ′ as dist(f, f ′) = dist(Γf ,Γ

′
f ).

Given a Boolean function f : P(P ) → {0, 1} and a set B ⊆ P , we define the
restriction of f to B as the Boolean function f |B : P(P )→ {0, 1} given by f |B (A) =
f(A ∩B). We have that Γf |B = Γf |B.

If Φ, g1, . . . , gm are Boolean functions and Φ is fanin-m, we can define a Boolean
function Φ(g1, . . . , gm) by applying all the outputs of g1, . . . , gm to Φ in an orderly
manner. For i ∈ P , we denote the i-th input variable by xi. Note that xi can be seen
as the monotone Boolean function satisfying Γxi = T{i}.

We now define formulas and some related concepts.

Definition 9.1. Let Ω be a set of Boolean functions. A formula S over Ω is a sequence
(g1, . . . , gm) of Boolean functions such that

• the first k Boolean functions g1, . . . , gk are input variables,

• for every gj that is not an input variable, there exists Φ ∈ Ω and `1, . . . , `dj < j
such that gj = Φ(g`1 , . . . , g`dj ), and

• for every gj other than gm, there exists a single function in S that is computed
using gj (i.e., gj is fanout-1).

We say a formula S = (g1, . . . , gm) computes a Boolean function f if f = gm. We
say that a formula over Ω is monotone if Ω = {∧,∨}. Similarly, we say it is deMorgan
if Ω = {∧,∨,¬} and the gate ¬ can only be applied to input variables.
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Let Ff and Fg be formulas computing monotone Boolean functions f and g,
respectively. Then, Ff ∧ Fg denotes the formula computing the Boolean function
h = f ∧ g = max{f, g} built by appending the AND of the outputs of Ff and Fg. We
then have Γh = Γf ∩Γg. Similarly, Ff ∨Fg denotes the formula computing the Boolean
function h′ = f ∨ g = min{f, g} built by appending the OR of the outputs of Ff and
Fg, and we have Γh′ = Γf ∪ Γg. For every formula F and B ⊆ P , we define F |B as the
formula that is obtained by replacing xi by 0 for every i /∈ B. If F computes a function
f , then F |B computes f |B.

9.2 Bounds on the Size of Formulas and Circuits

We now analyze the minimal leafsize L, which is a complexity measure attached to
monotone Boolean functions. The leafsize of a formula is defined as the number of
input variables in it. We define the deMorgan (resp. monotone) minimal leafsize L(f)
(resp. L+(f)) of a Boolean function f as the smallest leafsize over all deMorgan (resp.
monotone) formulas computing f . We state our results here in terms of L, but they
all hold verbatim for L+. Moreover, our results can be adapted to other complexity
measures, such as the size of circuits.

Before stating our results, we give formulas and complexity measures for particular
families of Boolean functions. We start with the Boolean functions associated to the
access structures TA, RA, SA defined in Section 3, and we proceed with the restriction
f |B of a Boolean function f to B ⊆ P .

The functions fTA and fFA
admit the formulas

∧
i∈A xi and

∨
i∈P\A xi of leafsizes

|A| and n−|A|, respectively. Since SA = TA∩FA, we have that
(∧

i∈A xi
)
∧ (
∨
i∈P\A xi)

is a formula for fSA
of leafsize n.

We now consider the restriction f |B : {0, 1}n → {0, 1} of a Boolean function f .
By applying the restriction xi = 0 for all i /∈ B to a minimal monotone or deMorgan
formula for f , and removing redundant input variables and Boolean functions, we get
a formula for f |B. Therefore L(f |B) ≤ L(f).

Next, we present analogous results to Theorems 4.1 and 6.9 and Proposition 6.12
for the minimal leafsize of monotone Boolean functions. The following proposition
shows that close monotone Boolean functions have similar minimal leafsizes.

Proposition 9.2. For every two monotone Boolean functions f and f ′,

|L(f)− L(f ′)| ≤ n · dist(f, f ′).

Proof. Let F be a formula computing f . Let I = max(Γ \ Γ′) and let J = min(Γ′ \ Γ).
Using Lemma 4.2 with Γ = Γf and Γ′ = Γf ′ we see that

F ′ = (F ∧
∧
A∈I

GA) ∨
∨
A∈J

HA

is a formula computing f ′, where GA and HA are the formulas for FA and TA described
above, respectively. Hence,

L(f ′) ≤ L(f) +
∑
A∈I
|P\A|+

∑
A∈J
|A| ≤ L(f) + n · dist(Γ,Γ′).
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The proofs of the next results are omitted because they are analogous to the proofs
of Theorem 6.9 and Proposition 6.12.

Proposition 9.3. Let f, f ′ : {0, 1}n → {0, 1} be two monotone Boolean functions. If
there exists a (min f \min f ′,min f ′ ∩min f ′)-covering of degree d, then

L(f ′) ≤ dL(f) + nt,

where t = deg(min f ′\min f).

Proposition 9.4. Let f, f ′ be two monotone Boolean functions, and let f̃ be the
monotone Boolean function with min f̃ = min f ∩ Γf ′. Then

L(f ′) ≤ L(f̃) + n · dist(f, f ′).

9.3 Submodular Formal Complexity Measures

A nonnegative real-valued function µ defined on the set of monotone Boolean functions
in n variables is a submodular formal complexity measure if

• µ(xi) ≤ 1 for i = 1, . . . , n,

• µ(f ∧ g) + µ(f ∨ g) ≤ µ(f) + µ(g) for all monotone Boolean functions f, g.

For every submodular formal complexity measure µ and for every monotone Boolean
function f , µ(f) ≤ L(f) [41]. See [31, 41] for more details about submodular formal
complexity measures.

Proposition 9.5. Let µ be a submodular formal complexity measure. Then for every
two monotone Boolean functions f and f ′,

|µ(f)− µ(f ′)| ≤ n · dist(f, f ′)

Proof. Let Γ = Γf and Γ′ = Γf ′ . Let I = max(Γ \ Γ′), let J = min(Γ′ \ Γ), and let g
and h be the monotone Boolean functions associated to the access structures ∩A∈IFA
and ∪A∈JTA, respectively. Since f ′ = (f ∧ g) ∨ h and µ is submodular,

µ(f ′) = µ((f ∧ g) ∨ h)

≤ µ(f ∧ g) + µ(h)− µ((f ∧ g) ∧ h)

≤ µ(f) + µ(g)− µ(f ∨ g) + µ(h)− µ((f ∧ g) ∧ h)

≤ µ(f) + µ(g) + µ(h).

Since µ is submodular, the size of the monotone formulas described above for TA and
FA are upper bounds on µ(fTA) and µ(fFA

) (see [41]). Then

µ(g) + µ(h) = µ(
⋂
A∈I

FA) + µ(
⋃
A∈J

TA) ≤
∑
A∈I

(n− |A|) +
∑
A∈J
|A|

≤ n · |I|+ n · |J | ≤ n · dist(f, f ′).
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The Razborov rank measure we introduced in Section 8.1 was originally defined over
Boolean functions, and it is submodular (see [41]). Note that the bound we obtained
for the Razborov rank measure in Theorem 8.4 is much better than the one in the
previous proposition.

The behavior of µA and L for close monotone Boolean functions is different. Let f
and f ′ be two monotone Boolean functions at a distance `. Let A and A′ be matrices
over a finite field F that maximize µA(f) and µA′(f

′), respectively. By Theorem 8.4,
the difference µA(f)−µA′(f ′) is at most `, but the difference L(f)−L(f ′) can be much
bigger than `.

The following examples show that the functions κ, σ, σT, λ, and λT are neither sub-
modular nor supermodular. Let Γ and Γ′ be the access structures on P = {1, 2, 3, 4} with
min Γ = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}} and min Γ′ = {{1, 2}, {1, 4}, {2, 3}, {3, 4}}.
Both Γ and Γ′ admit ideal linear secret sharing schemes, but κ(Γ ∩ Γ′) = 3/2. Hence
none of the functions is submodular. Now let Γ and Γ′ be the access structures on P
with min Γ = {{1, 2}, {2, 3}, {3, 4}} and min Γ′ = {{1, 2}, {1, 4}, {3, 4}}. Both Γ ∩ Γ′

and Γ ∪ Γ′ admit ideal linear secret sharing schemes, but κ(Γ) = κ(Γ′) = 3/2. Hence
none of the parameters is supermodular.

10 Conclusions and open problems

The main objective of this work was to discover properties of the access structures that
admit efficient secret sharing schemes. We showed that access structures that are close
admit secret sharing schemes with similar information ratio. We bounded the difference
between information ratios by the distance between the access structures. Our results
are constructive: we presented a method which, given a secret sharing scheme for a
particular access structure, allows to create secret sharing schemes for nearby access
structures. This method is simple, but it apparently provides good bounds for both
short and large distances (Sections 4.1 and 5).

Since access structures that are close admit secret sharing schemes with similar
information ratio, in the domain of access structures we have regions in which the
access structures admit secret sharing schemes with low information ratio, for instance
around ideal access structures. An interesting line of research is to study these regions,
analyze their distribution and their density in the domain of access structures.

We also provide a combinatorial result that leads to general bounds for the optimal
information ratio of access structures whose minimal access structures are close. We
translate the search of efficient secret sharing scheme to a combinatorial problem. For
graph access structures, better constructions are known [5, 7], but for general access
structures our approach is still valid.

Our techniques are general, and we extended them to other models of computation,
bounding the formula size, the circuit size, and the monotone span program size for
monotone Boolean functions. Moreover, we believe that our approach can also be
useful in information theory and coding theory, in particular in network coding and
index coding. Our problem can be seen as an information-theoretic problem as follows.
Suppose that we have a family of random variables, satisfying certain dependence
conditions. Then, we modify these conditions and we aim at constructing new random
variables with low entropy satisfying the new conditions.

We extended these results in order to analyze the techniques for finding lower
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bounds on the optimal information ratio, and we studied the behavior of these bounds
when we add or delete subsets from an access structure. We studied bounds based
on the Shannon inequalities, the Razborov rank measure, critical subfamilies, and
submodular formal complexity measures. These bounds are used for other models of
computation and information theoretic schemes, and so the results are useful in other
areas.

In the information theoretic setting, another interesting problem is to know the effect
of small changes in the dependence conditions. For instance, given an access structure,
to study the change in the optimal information ratio if we allow some forbidden subsets
to have a certain amount of information about the secret. In this case, we are dealing
with non-perfect secret sharing schemes. Using access functions [18], we can quantify
the knowledge about the secret with real numbers, and extend the optimal information
ratio to a continuous domain [18]. Then, a natural open question is to know if the
optimal information ratio is a continuous function.
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Bipartite Secret Sharing Schemes. Des. Codes Cryptogr. 63(2) (2012) pp. 255–271.
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