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Abstract

Given a set S = {C1, ..., Ck} of Boolean circuits, we show how to construct a universal for S circuit C0,
which is much smaller than Valiant’s universal circuit or a circuit incorporating all C1, ..., Ck. Namely,
given C1, ..., Ck and viewing them as directed acyclic graphs (DAGs) D1, ..., Dk, we embed them in a
new graph D0. The embedding is such that a secure computation of any of C1, ..., Ck is possible by a
corresponding secure computation over C0.

We show how to improve Garbled Circuit (GC) and GMW-based secure function evaluation (SFE)
of circuits with if/switch clauses using such S-universal circuit.

The most compelling case here is the application to the GMW approach. We provide a novel ob-
servation that in GMW the cost of processing a gate is almost the same for up to 8 Boolean inputs,
as it is for the usual case of 2 Boolean inputs. While we expect this observation to greatly improve
general GMW-based computation, in our context this means that GMW gates in C0 can be implemented
particularly efficiently.

Our approach naturally and cheaply supports nested clauses. Our algorithm is a heuristic; we show
that solving the circuit embedding problem is NP-hard. Our algorithms are in the semi-honest model
and are compatible with Free-XOR.

We report on experimental evaluations and discuss achieved performance in detail. For 32 diverse
circuits in our experiment, our construction results 6.1× smaller circuit C0 than prior techniques. This,
in particular, implies ≈ 6.1× improvement of state of the art GMW-based computation and of certain
GC computations of a switch of these 32 clauses.

Keywords: set-universal circuit, secure computation, garbled circuit, GMW

1 Introduction

Eliminating costs imposed by the circuit representation of Garbled Circuits (GC) and Goldreich,
Micali and Wigderson (GMW) techniques has been an important open problem since the introduction of
GC/GMW, with little success to date. There are two natural redundancies: GC/GMW must unroll the loops
and duplicate all if/switch clauses. (There is a third redundancy, protecting memory access patterns at
the expense of processing entire input/array/data structure, which is applicable to both circuit and random-
access representation. It is addressed by the influential work on Oblivious RAM (ORAM), started by [13]
with then-“impractical” log4 n factor overhead.)

Our work aims to solve the second kind of circuit redundancy. Constructing a small circuit C0, universal
for k given circuits, will allow to garble, transfer and evaluate just C0, when computing switch on the k
circuits. Our solution is very practical even today even in its unoptimized state. That is, there are reasonable
use cases where our solution would improve upon the state-of-the art GC and GMW.

We believe that some good implementation of this approach will be a staple of Secure Function Evaluation
(SFE) compilers of the near future. Indeed, our heuristic algorithm does not need to work always to be useful.
Even if it brings improvement only sometimes, this is enough to justify its inclusion in an SFE compiler, as
this is an automated process. Hence, we invite further investigation to greatly improve upon our solution.
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The current state of SFE research is sophisticated. Particularly in the semi-honest model there
have been few asymptotic/qualitative improvements since the original protocols of Yao [33] and Goldreich
et al. [12]. Possibly the most important development in the area of practical SFE since the 1980s was the
very efficient oblivious transfer (OT) extension technique of Ishai et al. [14]. This allowed the running of an
arbitrarily large number of OTs by executing a small (security parameter) number of (possibly inefficient)
“bootstrapping” OT instances and a number of symmetric key primitives. The cheap OTs made a dramatic
difference for securely computing functions with large inputs relative to the size of the function, as well as
for GMW-like approaches, where OTs are performed in each level of the circuit. As we rely on efficient OT
in this work, OT extension will play an important role in this paper as well. Another important GC core
improvement is the Free-XOR algorithm [18], which allowed for the evaluation of all XOR gates of a circuit
without any computational or communication costs.

As SFE moves from theory to practice, even “small” improvements can have a significant effect. Especially
in the semi-honest model, they are quite rare.

On the cost of SFE and OT rounds. Our GC protocol for internal variable-based clause selection
will add a round of communication for each switch statement. We argue that this cost is negligible in many
practical scenarios. Indeed, many SFE protocols allow for significant precomputation and streaming, where
message transmission may begin (and even a response may be received) before the sender completes the
computation and transmission of the message. Further, SFE will probably often be executed in batches, and
the computation and communication will naturally overlap there and round-related latency will usually not
cause extra delays. Most importantly, with the speed of the CPU advancing faster than that of communica-
tion, the true bottleneck for SFE already is the channel transmission capacity, even for high-speed gigabit
LAN.

1.1 Motivating applications

We give a real-life example of a function with a large switch. Of course, this is but an example and many
other functions will benefit from our work. Second, we discuss semi-private function evaluation (SPF-SFE)
and show how our work greatly improves state-of-the-art there.

Functions with switch statements. In Blind Seer [25, 7], a GC-based private database (DB) system,
private DB search is achieved by two players jointly securely evaluating the query match function on the
search tree of the data. Blind Seer does not fully protect query privacy: it leaks the query circuit topology
as the full universal circuit is not practical, as admitted by the authors. Applying our solution to that work
would hide this important information, cheaply. Indeed, say, by policy the DB client is allowed to execute
one of several (say, 2-50) types of queries. The privately executed SQL query can then be a switch of
the number of clauses, each corresponding to an allowed query type. In Blind Seer the clause is selected
by client’s input, omitting some of the machinery. As a result, our Blind Seer application is particularly
effective bringing improvements with as little as two clauses. Most of the cost of this DB system is in running
SFE of the query match function at a large scale, so improvement to the query circuit will directly translate
to overall improvement. We note that the core of the Blind Seer system is in the semi-honest model, but a
malicious client is considered in [7].

(Part of) our work can be viewed as constructing a circuit universal for a set of functions S = {C1, ..., Ck}
(S-universal circuit) at the cost much less than that of full universal circuit. Thus (cf. next motivating ex-
ample), our work greatly improves any application where we want to evaluate and hide which function/query
was chosen by a player (say, which one of several functions allowed by policy or known because of auxiliary
information). Same performance improvement is brought to our GMW protocol. The break-even point for
GC for applications where clause is selected by an internal variable is higher, but it too can be practical
today.

SFE of semi-private functions (SPF-SFE) (see additional discussion in Sect 1.3) is a notion intro-
duced in [26], motivated by the desire to bridge the gap between expensive private function SFE (PF-SFE)
based on Universal Circuit [30, 19, 15, 22], and regular SFE (via GC) which does not hide the evaluated
function. SPF-SFE is a valuable trade off, since it is often unnecessary to hide all information about the
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function. Indeed, often only specific subroutines are sensitive, and it is they that might be sufficiently pro-
tected by S-universal circuit for an appropriate set of circuits S. [26] presents a convincing example of
privacy-preserving credit checking, where the check function itself needs to be protected, and shows that
using S-universal circuits as building blocks is an effective way of approaching this. Further, [26] builds
a compiler which will assemble GC from the S-universal building blocks (which they call Privately Pro-
grammable Blocks). While [26] provides only a few very simple hand-designed blocks (see our discussion
in Sect. 1.3), our work can be viewed as an efficient general way of constructing such blocks. We stress
that in the SPF-SFE application, GC generator knows the computed function (clause selection), and our
contructions are particularly efficient, bringing benefit for S-universal circuits for |S|≥ 2.

CPU/ALU emulation. Extending the idea of SPF-SFE, one can imagine a general approach where the
players privately emulate the CPU evaluating a sequence of complex instructions from a fixed instruction
set (instruction choice implemented as a GC switch). Additionally, if desired, instructions’ inputs can
be protected by employing the selection blocks of [19]. Such an approach can be built within a suitable
framework (e.g., that of [26]) from S-universal circuits provided by this work. We note that circuit design
and optimization is tedious, and not likely to be performed by hand except for very simple instances, such
as those considered in [26]. Instead, a tool, such as the one we are proposing, will be required.

In a very recent work [32], a secure and practically efficient MIPS ALU is proposed, where the ALU is
implemented as a switch over 37 currently supported ALU instructions evaluated on ORAM-stored data.
Our work would improve on [32] in a drop-in replacement manner.

We believe this is indeed a very promising new research direction, where a complete generic solution
would involve an interplay of information flow analysis (to understand information leakage to the evaluator),
compiler framework, choice of sets S and the design efficient S-universal circuits.

1.2 Technical Contribution

Our contribution consists of several complementary technical advances. Our most technically involved con-
tribution is a novel algorithm to embed any k circuits in a new circuit/graph C0. The embedding is such
that a GC/GMW evaluation of any of C1, ..., Ck could be implemented by a corresponding evaluation of C0.
The size of C0 is much smaller (6.1× smaller in our experiments) than the sum of the sizes of C1, ..., Ck.

In the SPF-SFE case, when the evaluated clause Ci is circuit generator’s private input, generator G
simply sends the garbling implementing Ci.

For the general GC case, where clause is selected by an internal variable, we construct a new GC protocol
with total communication cost 3kn0 +22n0s, where s is the computational security parameter and n0 = |C0|.
For efficient embeddings, this compares favorably to state-of-the-art GC. The half-gates GC [34] of the above
k clauses will cost 2ns, where n =

∑
j |Cj |. We show how GC branches can be nested, and we can apply our

construction on each nesting level.
The much more interesting case is the GMW case. In this work, we make a novel observation that the

cost of evaluation of the GMW gates is almost the same for a moderate number of boolean inputs, as that of
a two-input gate. We exploit this to obtain an efficient GMW protocol for circuits with clauses whose cost
per gate is about the same as that of standard GMW.

Our approach is heuristic. We show that solving the graph embedding problem exactly is NP-hard.
Experimental validation and performance. For our experiments we considered 32 circuits imple-

menting basic functions and generated an embedding 6.1× smaller than the standard circuit implementing
the clauses.

This implies SPF-SFE and GMW performance improvement of 6.1× compared to state of the art.
For the GC case when clause is selected by internal variable, our 6.1× smaller embedding results in

communication cost about the same as classical Yao [33, 20], due to per-gate overheads. We note that
our approach behaves better asymptotically, and we expect our protocol to overtake optimal GC [34] for
embeddings of slightly greater number of circuits or with further heuristic improvements.
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1.3 Background and Related Work

Garbled Circuit, GMW, OT and Universal Circuit. The GC construction can be viewed as encryption
of the boolean circuit implementing the computed function. The circuit encryption includes encrypting all
of the gates’ truth tables and the signals on each of the circuit’s wires, including input and output wires.
The circuit encryption has the property that each of the encrypted circuit gates can be evaluated “under
encryption,” given encryptions of its inputs. Clearly, this allows for the computation of the encryption of
the output, which can then be decrypted among the two players, achieving secure computation.

Great effort has been expended in minimizing the size of the basic GC of Yao [33, 20]. By far the most
impactful is the Free-XOR approach [18], which allows for the evaluation of all XOR gates in the circuit
at virtually no cost, and its enhancements FleXOR [17] and half-gates [34]. In contrast, in this work, we
effectively eliminate the need for evaluation of entire subcircuits.

The GMW protocol [11, 12] had received much less attention in the 2-party SFE literature than GC. In
GMW, the two parties interact to compute the circuit gate-by-gate as follows. Players start with 2-out-of-2
additively secret-shared input wire values of the gate and obtain corresponding secret shares of the output
wire of the evaluated gate. Addition (XOR) gates are done locally, simply by adding the shares. Multipli-
cation (AND) gates are done using 1-out of-4 OT. For binary circuits, there are four possible combinations
of each of the player’s shares. Thus an OT is executed, where one player (OT receiver) selects one of the
four combinations, and the other player (OT sender) provides/OT-sends the corresponding secret shares of
the output wire. In the semi-honest model, the secret shares can be as short as a single bit. As in the GC
approach, our work greatly reduces the size of the evaluated circuit.

Asymptotically, the best way to embed a large number of sub-circuit graphs into one circuit graph would
be using the universal circuits [30, 19]. Respectively, for sub-circuits of size n, the size of the universal circuit
generated by [30, 19] is ≈ 19n log n, and ≈ 1.5n log2 n + 2.5n log n. Very recent works [22, 15] polish and
implement Valiant’s construction. They report a more precise estimate of the cost (in universal gates) of
Valiant’s UC of between ≈ 5n log n and 10n log n. Programming of universal gates may each cost 3 AND and
6 XOR gates (but will not be needed in PFE and applications we discuss in this work). In sum, universal
circuit approach becomes competitive for a number of clauses far larger than a typical switch. In a universal
circuit embedding [30, 19, 22, 15], gates are embedded in gates and wires are embedded in pairwise disjoint
chains of wires (with possible intermediate gates). Our embedding is more general allowing the chains of
wires to overlap in a controlled way, leading to smaller container circuits.

Another technique for Private Function Evaluation (PFE) was proposed by Mohassel and Sadeghian [23].
They propose an alternative (to the universal circuit) framework of SFE of a function whose definition is
private to one of the players. Their approach is to map each gate outputs to next gate outputs by considering
a mapping from all circuit inputs to all outputs, and evaluate it obliviously. For GC, they achieve a factor
2 improvement as compared to Valiant [30] and a factor 3− 6 improvement as compared to Kolesnikov and
Schneider [19]. Similarly to [30, 19], [23] will not be cost-effective for a small number of clauses.

Thus, (part of) our work can be viewed as constructing a circuit universal for a set of functions S =
{C1, ..., Ck} at the cost much less than that of full universal circuit.

One of our contributions is an improved 1-out of-k OT algorithm for garbled gates programming, which is
a special case of PIR (private information retrieval). We note existing sublinear in k work on computationally
private information retrieval (CPIR) of 1 out of k `-bit strings, e.g., [2, 21, 24]. Note, a symmetric CPIR
(CSPIR) is needed for our application. CSPIR of [21] achieves costs Θ(s log2 k+` log k), where s is a possibly
non-constant security parameter. However, the break-even points where the OT sublinearity brings benefit
are too high. For example, [2] costs more in communication than the naive linear-in-k OT for k ≤ 240.
Further, known CPIR protocols heavily (at least linearly in k) rely on expensive public-key operations, such
as, in case of [21], length-flexible additive-homomorphic encryption (LFAH) of Damg̊ard and Jurik [4, 3].

We also mention, but do not discuss in detail, that hardware design considers circuit minimization
problems as well. However, their goal is to minimize chip area while allowing multiple executions of the
same (sub)circuit. Such techniques will not work for secure computation, where multiple executions of the
same circuit incur corresponding multiplicative overhead.
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Semi-private function SFE (SPF-SFE) [26]. As discussed in the Introduction, SPF-SFE is a con-
vincing trade-off between efficiency and the privacy of the evaluated function. Our work on construc-
tion of container circuits corresponds to that of privately programmable blocks (PPB) of [26], which were
hand-optimized in that work. In our view, the main contribution of [26] is in identifying and motivating
the problem of SPF-SFE and building a framework capable of integrating PPBs into a complete solu-
tions. They provide a number of very simple (but nevertheless useful) PPBs. In our notation, they con-
sider the following sets for S-universal circuit: SCOMP = {<,>,≤,≥, 6=},SADD,SUB = {+,−}, SMULT =
{input ∗ constant}, SBOOLGATE = {∨,∧,⊕, NAND,NOR,XNOR}, SUC = {all circuits}, as well as the
following sets recast from [19]: SSEL = {input select circuits},SIN PERM = {input permute circuits},
SSEL = {Y bit selector},SSEL = {X bit selector}. Each of these sets only consists of functions with al-
ready identical or near-identical topology; this is what enabled hand-optimization and optimal sizes of the
containers. Other than the universal circuit PPB, no attempt was made to investigate construction PPBs
of circuits of a priori differing topology.

In contrast, we can work with any set S of circuits for S-universal circuit and achieve results much better
than full universal circuit, and greatly improving on the the standard option of evaluating of all S circuits
and selecting the output. Because of automation and the promise of further significant improvement, our
work can serve as a basis for a general SPF-SFE compiler.

Graph Isomorphism. The problem of embedding graphs addressed in this paper is clearly related to
the directed graph isomorphism problem and perhaps even more closely related to the directed subgraph
isomorphism problem. The complexity of (directed) graph isomorphism remains one of two of the twelve
open problems listed in Garey& Johnson [10] whose complexity remains unknown. As will be shown for our
graph embedding problem, the directed subgraph isomorphism problem is known to be NP-complete even
in the case where the subgraph is an arborescence and the larger graph is a DAG [10] but can be solved in
polynomial time if both graphs are directed trees [31]. This, in particular, implies (and we achieve) optimal
embedding for clauses which are formulas.

GMW for multi-input gates. In independent and concurrent work, Dessouky et al. [35, 6] discovered
the same method of obtaining cheap GMW gates with multi-valued inputs by using the OT extension of [16]
(multiple boolean inputs and multi-valued inputs are easily interchangeable due to [16]). In their work,
Dessouky et al. make several performance optimizations to the usage of [16]. They also show in detail
that for some functions, (e.g., AES), multi-input GMW gates are advantageous. In their notation, this
approach is called lookup-table (LUT)-based secure computation. Our work focuses on different application
of LUT-based computation, circuit clause overlay, and achieves, in its domain, a much higher performance
improvement factor.

1.4 Notation

Let f be the function we want to evaluate and C a boolean circuit representing f . We consider a switch

statement inside f , evaluating one of k clauses depending on the internal variable or input of f . Let
C1, ..., Ck be the subcircuits of C corresponding to the k clauses of f . We will often use the terms “clause”
and “subcircuit” interchangeably, and their meaning will be clear from the context. For simplicity we will
often discuss clauses of the same size n, although in the evaluation section we consider concrete examples
with different clause sizes.

We define directed acyclic graphs (DAGs) D1, ..., Dk from circuits C1, ..., Ck where, with the exception
of auxiliary nodes representing circuit inputs and outputs, the graph’s nodes represent circuit gates and
the graph’s directed edges represent circuit wires. These graphs represent the topology or the wiring of the
corresponding circuits. When the meaning is obvious from context we may interchangeably refer to these
graphs/circuits as Di or Ci. From DAGs D1, ..., Dk we will build a container DAG D0, with the property
that any of C1, ..., Ck can be implemented from D0 by assigning corresponding gate functions to the nodes
of D0. We will usually call this programming of D0. We note that for efficiency we may produce partially

5



programmed D0, i.e. one where some of the gates are already fixed. We will interchangeably refer to
this container graph/circuit as D0 and C0. Circuits C0 are, of course, generated for circuit-based secure
computation. We specifically discuss GC and GMW protocols. We will often unify our references to the use
of GC and GMW. For example, when clear from the context, by “garbling C0” we will mean using C0 in
either GC or GMW.

Other standard variables we will use are s, which is the computational security parameter, and n0,
which is the size of D0. Circuits C0 will then be evaluated In the GC protocols there are two players, GC
constructor, which we will denote P1, and GC evaluator, or P2.

2 Technical Solution Overview

In this section, our goal is to describe the complete intuition behind our approach. Having this big-picture
view should help put in perspective the formalizations and details that follow in the next sections.

Consider the SFE of a circuit C, and inside it a switch statement with k clauses/subcircuits C1, ..., Ck,
only one of which is evaluated based on a player’s input or an internal variable. In this overview we focus on
the more complex and more general second scenario (internal variable), while pointing out the very efficient
solution to the first scenario as well.

Our starting point is the widely known observation that in some GC variants (e.g. in classical Yao [33, 20]),
the evaluator will not learn the logic of any gate, but only the structure of the wiring of the circuit. We
start by supposing that all our subcircuits already have the same wiring, i.e. the underlying DAGs are the
same. We provide intuition on how to unify the wiring in the following Section 2.3.

2.1 Improved GC for switch of Identically-Wired Clauses

If all k clauses/subcircuits had the same topology/wiring, all that is needed is for the circuit generator to
generate and deliver to the evaluator the garbling of the right subcircuit.

SPF-SFE. In the important special case where switch clause is selected by a player’s private input, this
is trivial and has no extra overhead: this player will be the GC generator and he simply sends the set of
garbled tables programming the clause which corresponds to his input.

General case. Consider the case where switch is selected by an internal variable. One natural way
to deliver the garbling would be to execute a 1-out-of-k OT on the clauses. Unfortunately, this, under the
hood, would require sending garblings of each of C1, ..., Ck to the evaluator1, which would not improve over
the standard GC.

We can do better. To sketch the main idea we let each Ci be a {∨,∧,⊕}-circuit. (As all Ci are identically
wired, their DAG representations Di are the same, and the container DAG D0 is equal to Di. Recall, in our
notation, |D0|= n0.) For now do not consider Free-XOR; it will be clear later that our approach works with
Free-XOR. Now, enumerate the gates in each Ci and let di be a string of length n0 defining the sequence of
gates in Ci (in our construction, each symbol in di will denote one of a five possible gates – {∨,∧,⊕}, as
well as an auxiliary left and right input wire pass-through gates L and R). Perform 1-out-of-k OT on the
strings di to deliver to the evaluator the right circuit definition string. Then for each gate, the players will
run 1-out-of-5 OT, where the generator’s input will be the five possible gate garblings, and the evaluator
will use the previously obtained di to determine its OT choices.

Notice that each string di reveals to the evaluator precisely which circuit has been transferred. This is
easy to hide: for each gate gj , the GC constructor selects a random permutation πj on the five types of
gates and applies πj to the j-th symbol of di during di construction. He also applies πj to permute his OT
input of five garbled tables. Finally, sending to the evaluator di based on the internal state is easy. For a
switch with two clauses, the generator simply sends d1 encrypted with the 0-key of the selection wire, and
d2 encrypted with the corresponding 1-key. For a switch with k clauses, each string di will be encrypted
with the key derived from the wire labels corresponding to the choice of the i-th clause.

1See related work in Section 1.3 for discussion on the high costs of sublinear PIR for smaller-size DBs.

6



For the reader familiar with the details of standard GC, it should be clear that the above switch-
evaluation algorithm can be readily plugged into the standard GC protocol. Let s be the computational
security parameter. Following calculations in Observation 4 and Section 8, the communication cost of
evaluating the switch on the k clauses will be approximately 3kn0 + 22n0s. In contrast, standard GC
would require sending all k garblings at the cost of 4ns (2ns using recent half-gate garbling [34]), where
n =

∑
i|Ci|. The 4ns term is the most expensive term; reducing it to 22n0s and making it independent of

n is the contribution of our GC protocol. We again stress that if clause is selected by GC generator, we
can use all GC optimizations, and our GC cost is 2n0s. Finally, we note that in above calculations we did
not account for the cost of circuitry selecting the output of the right clause and ignoring outputs of other
clauses. This circuit is linear in ko, where o is the number of outputs in each clause. This circuit needs to
be evaluated in the state-of-the-art GC, but not in our solution.

We further note that switch clauses can be nested. We discuss this in Sect. 4.1.

2.2 Improved GMW for switch of Identically-Wired Clauses

An approach similar to the one described above in Section 2.1 can be very efficiently applied in the GMW
setting. We will take advantage of our novel observation on the cost of multi-input GMW gates under the
OT extension of Kolesnikov and Kumaresan [16].

As in our GC protocol above, we consider the circuit definition strings di. As in the GC protocol, for
each gate gj , one player selects a random permutation (or mask) πj on the five types of gates and applies
πj to the j-th symbol of di during di construction. This masked definition string is transferred to the other
player via OT.

In contrast with GC, we will not do the expensive 1-out of-5 OT on garbled gates. In GMW, we will
evaluate gates on three input wires: two circuit wires and one 5-valued wire selecting the gate function
({∨,∧,⊕, L,R}). The players thus will run 1-out of-20 OT (the 20 possibilities are the five gate functions,
each with four wire input possibilities) to obtain the secret share of the output.

Our simple but critical observation is that with using [16] OT, and because the GMW secret shares are a
single bit each, the evaluation of multi-input gate, for moderate number of inputs, costs almost the same as
that of the two-input gate. Indeed, the main cost of the OT is the [16] rows transfer. Sending the encryptions
of the actual secrets, while exponential in the number of inputs, is dominated by the OT matrix row transfer
for gates with up to about 8 binary inputs. In our case, sending of 20 secrets requires only 20 bits (one bit
per secret) in addition to the OT matrix transfer. Thus, additional communication as compared to standard
1-out of-4 GMW OT extension (also implemented via [16]) is only 20− 4 = 16 bits!

As a result, the circuit reduction achieved by embedding several clauses into one container is directly
translated into the overall improvement for semi-honest GMW protocol.

2.3 Efficient Circuit Embedding to Obtain Identically-Wired Clauses

We now describe the intuition behind our graph/circuit embedding algorithm, as well as summarize its
performance in terms of the size of the embedding graph. In Section 3, we describe a circuit embedding
algorithm, which takes as input the set of k circuits C1, ..., Ck and returns an (unprogrammed) container
circuit C0 capable of embedding each of these circuits, as well as the programming strings needed to generate
the garblings of C0 which implement/garble each Ci.

Our approach is graph theoretic. Assume for simplicity that we have exactly two input circuits. As a
first step, we translate each circuit Ci to a directed acyclic graph (DAG) Di (see Figure 1 for example and
Section 3 for a formal definition). The problem of finding a “small” container circuit embedding both C1 and
C2 is now reduced to finding a “small” DAG which “contains” D1 and D2. Informally, a DAG D ‘contains’
another DAG D′ if through a series of node deletions, edge deletions and replacing each 3-node path uvw
where v has in-degree and out-degree 1 with a 2-node path, i.e., an edge, uw in D, one can recover a graph
isomorphic to D′.

We start by showing that if the input DAGs are restricted to have out-degree at most one, then there
exists a polynomial time algorithm (Algorithm 1) to find a DAG D0, also of out-degree at most one, of
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Figure 1: A 2-bit adder circuit C and corresponding circuit DAG D.

minimum size. We remark that our approach is closely related to the classical polynomial time algorithm
for testing whether or not two trees are isomorphic [31], though it is more difficult than this. Indeed, the
operation which replaces 3-node paths with 2-node paths is closely related to edge contraction of graph
minors [28].

Restricting DAGs to having out-degree at most one corresponds to restricting circuits to having fan out
at most one and is, of course, unrealistic. To develop a general algorithm (see Figure 2 for a toy example),
we observe that the nodes of every DAG D with r sinks can be covered by a set of r DAGs each with
out-degree at most one, i.e. subtrees. For each pair of such subtrees (one from D1 and one from D2) we
first apply Algorithm 1 to determine the minimum cost (roughly, the minimum |D0|) of co-embedding the
pair. We use these costs to weight an auxiliary complete bipartite graph: roughly, one part is labeled by the
subtrees of D1, one part is labeled by the subtrees of D2, and the weight of the edge is the minimum cost of
co-embedding the subtrees corresponding to the edge’s endpoints. The minimum weight perfect matching
in this graph corresponds to a valid container circuit that can be easily constructed. In generality, only
considering subtrees covering the nodes of D1, D2 may leave out some edges, which we then appropriately
reinsert into D0 to guarantee that D0 will be universal for both D1, D2.

We now turn to the performance of our algorithm. Clearly any circuit embedding of circuits |C1| and |C2|
has size at least max{|C1|, |C2|} and needs have size at most |C1|+|C2|. Our experimental validation (see
Section 8) embeds two circuits into a circuit whose size is on average 15.1 percent of the way between these
trivial lower and upper bounds. Assuming this embedding performance, by divide-and-conquer repeated
embedding we would obtain an embedding k circuits of size n into a circuit of size 1.151log kn = k0.203n
(Lemma 1).
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B

(a) D1 with A
and B subtrees.

C

D

(b) D2 with C
and D subtrees.

128
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12A
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(c) Cost of
matching pair-
wise subtrees.

A

C

B

D

(d) Low cost D0 em-
bedding both D1 and
D2.

Figure 2: Determining a low cost (circuit) DAG embedding two input (circuit) DAGs.

2.4 NP-hardness of Graph Embedding

In Section 7 we show that the problem of finding a minimum-cost circuit C0 into which two given circuits
C1 and C2 can be embedded is NP-complete. The proof uses a reduction from the well-known NP-complete
problem 3-sat [10]. In fact, the reduction shows the somewhat stronger result that says that the problem
remains NP-complete even when one of C1 or C2 is a tree (and the other a DAG) and both have bounded
in-degree and out-degree.
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Intuitively, the idea of the reduction is that the DAG, say C1, represents all possible truth assignments of
the variables and all possible ways to satisfy each clause in the 3-sat instance while the tree C2 represents
the requirement that each variable must be set to true or false and the requirement that each clause has (at
least) one resulting literal that is true. Then we show that an embedding of C2 into C1 is possible if and
only if there is a satisfying assignment for the 3-sat instance. Clearly such an embedding has minimum
cost. When such an embedding exists, it can easily be interpreted as a particular truth assignment to the
variables and an “assignment” of one resulting true literal to each clause.

3 Circuit Embedding Algorithm

In this section, we bridge circuit-based SFE and graph theory. In particular, we describe the Circuit
Embedding Algorithm, which takes as input the set of k circuits C1, ..., Ck and returns the desired n0-
gate container circuit C0 together with definition (programming) strings d1, ..., dk. Specifically, a container
circuit is an unprogrammed circuit, that is, a collection of gates each of whose function is unspecified, though
the wire connections between these gates are fixed. The function of these gates is then specified by choosing a
programming stream, which is a mapping from the gates to the functions {∨,∧,⊕, L,R}, where L (resp. R)
is the left (resp. right) wire passthrough gate. To describe the Circuit Embedding Algorithm, we start
by describing a mapping between circuits and a specific type of weighted directed acyclic graphs (DAGs)
and the graph theoretic equivalent of the Garbled Circuit approach we are proposing.

Let C be a circuit defined by gates g1, ..., gn and wires w1, ..., wm. We use the following weighted directed
acyclic graph (DAG) D = (V,A,w) to represent it. The node set V has three parts: for each wire wi that
is an input to C we add an “input” node ni, for each output wire wi, we add an “output” node ni, and
for each gate gi, we introduce a “gate” node ni. All directed edges in E are directed in the direction of
evaluation. Specifically, for each input wire to gate gi there is an edge from its corresponding “input” node
to the “gate” node ni. For each output wire from gate gi there is an edge from the “gate” node ni to its
corresponding “output” node. For each wire from gate gi to gate gj , there is an edge from ni to nj . Finally,
for simplicity in dealing with free-XORs and the cost of circuit, we give each edge a weight. For a gate node
gi corresponding to an XOR-gate, we give all in-edges e of gi weight we = 0; for output nodes ni, we give
all in-edges e of ni weight we = 0; for all other edges e receive weight we = 1. See Figure 1 for an example.
We call such a DAG, the circuit DAG. We remark that given a circuit DAG we can always determine an
unprogrammed circuit corresponding to it.

The cost of a circuit is the total size of the truth tables needed to represent it, i.e.,∑
non-XOR gi

2{fan in of gate gi}, where XOR-gates add zero addition cost [18]. This translates to the cor-

responding circuit DAG as cost(D) :=
∑

u∈D 2
∑

v∈N−
D

(u)
wvu

, where N−D (u) is the set of in-neighbours of node
d ∈ D.

We are interested in the minimum cost container circuit C0 that can be used to embed circuits C1, ..., Ck.
Necessarily, this requires that for each Cj there is a 1-1 mapping f from the gates of Ci to C0, such that,
for each wire of Cj between gate gi and gi′ there is a set of wires linking f(gi) and f(gi′). Moreover and as
we now describe, the flow of information of Cj must be preserved in C0.

An out-arborescence is a directed acyclic graph that is weakly connected2 and every node has in-degree
at most one. We define the source of an out-arborescence T , denoted source(T ), as the unique vertex with
in-degree zero. Let D′ = (V ′, A′, w′) and D = (V,A,w) be DAGs.

Definition 1 An embedding of D′ into D is a mapping f from nodes of V ′ to out-arborescences of D
and from (weighted) directed-edges of A′ to (weighted) directed-edges of A satisfying

1. for all u′ 6= v′ ∈ V ′, f(u′) ∩ f(v′) = ∅,
2. for u′v′ = e′ ∈ A′, ∃x ∈ f(u′) such that f(e′) starts at x and ends at the source of f(v′), and

3. for u′v′ = e′ ∈ A′, w′e′ ≤ wf(e′).

2A directed graph is weakly connected if replacing all edges with undirected edges yields a connected graph, that is, every
pair of nodes in the graph is connected by some path.
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It follows immediately from the definition that there is a 1-1 mapping between nodes of D′ and the sources
of the out-arborescences in D specified by f . Moreover, for every node n′ of D′ and source of f(n′) = n,
f is a mapping such that for each in-edge e′ of n′ and there is a unique in-edge e = f(e′) of n such that
w′e′ ≤ we. From this it follows that the sum of the weights on the in-edges of n is at least as large as the
sum of the weights on the in-edges of n′. Hence, we have the following observation.

Observation 1 cost(D) ≥ cost(D′).
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Figure 3: An example embedding f of D′ in D.

We now are in a position to describe the Circuit Embedding Algorithm. Let C1, ..., Ck be the set of
k-input circuits. First, we find the corresponding circuits DAGs D1, ..., Dk. Second, given this set of circuits
DAGs, we determine a low cost circuit DAG D0 that embeds each of D1, ..., Dk with functions f1, ..., fk.
The heuristic we describe in Section 6 is one approach to solve this second step. Third, we determine the
container circuit C0 as the circuit corresponding to D0. Finally, we determine the programming string di
for each i. To do so, we need only specify the function of each gate node in D0. For a specific embedding
fi, each gate node v of D0 is either A) a source or B) a non-source node of some out-arborescence. In the
former case, di(v) is equal to either AND, OR or XOR depending on the function of the pre-image of the
out-arborescence rooted at v. In the latter case, di(v) is equal to L as the left input wire pass-through.

4 GC Protocol for Overlaying Subcircuits

In this section we will formalize the intuition of Section 2.1. Namely, we will present a full GC protocol with
processing of k identically wired switch clauses at approximately the cost of one such clause, and prove its
security. Of course, identically wired clauses are not typical in circuits. In Section 6 we show how to embed a
number of arbitrary circuits into a single container circuit, so that each of the circuits could be implemented
by a corresponding programming of the gates of the container circuit.

Our approach can be instantiated using a number of GC garbling techniques. For simplicity of presenta-
tion, and because it is a standard GC trick, in the following presentation we omit assigning and processing
the wire key pointers which will tell the evaluator which garbled table row to decrypt. Also, we don’t in-
clude Free-XOR in this algorithm. We will argue later that our construction allows to take full advantage
of Free-XOR. Finally, for ease of presentation and w.l.o.g., our construction is for functions with a single
switch.

Consider an {∨,∧,⊕} circuit C with a switch (C1, ..., Ck) statement, which evaluates one of subcircuit
clauses C1, ..., Ck based on an internal variable. Let Enc,Dec be a semantically secure encryption scheme.

Protocol 1 (GC with switch statements)

1. Once-per-function Precomputation. Parse C, identify switch (C1, ..., Ck), and call the graph
embedding algorithm on C1, ..., Ck. Obtain the container circuit C0 of size n0 as well as k circuit
programming strings d1, ..., dk, each of size n0. Each di will consist of symbols {∨,∧,⊕, L,R}, where
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L (resp. R) is the left (resp. right) input wire pass-through gate. Denote the j-th symbol of di by di,j.
Let C ′ be the C with the switch (C1, ..., Ck) replaced with C0. C ′ is assumed known to both players
before the computation.

2. For each wire Wi of C ′, GC generator randomly generates two wire keys w0
i , w

1
i .

3. For each gate gi of C ′ \C0 in topological order, GC generator garbles gi to obtain the garbled gate table.
For each of 22 possible combinations of gi’s input values va, vb ∈ {0, 1}, set

eva,vb = H(kvaa ||k
vb
b ||i)⊕ w

gi(va,vb)
c

Garbled table of gi is a randomly permuted set {eva,vb}, va, vb ∈ {0, 1}.
4. GC generator sends all generated garbled tables to GC evaluator. Garblings of inputs of C ′ are sent to

GC evaluator directly and via OT, as is standard in GC.

5. GC generator generates n0 random permutations πi over {∨,∧,⊕, L,R}.
6. GC generator computes the following. Let Wj1 , ...Wjt be the wires defining the switch choice, t =

dlog ke. For i = 1 to k, set d̃i = π1(di,1), ..., πn0
(di,n0

). Now, each d̃i looks random as an independent

random permutation πj was applied to each symbol di,j. Let ED = Enckey1(d̃1), ..., Enckeyk(d̃k).
Here key keyi is derived from wire keys of Wj1 , ...Wjt , corresponding to switch selection i, by setting
keyi = H(“switchkey′′, witj1 , ...w

it
jt

).

7. GC generator sends encrypted circuit definition strings ED to GC evaluator, in a random order.

8. GC evaluator evaluates in topological order all gates that are possible3; in particular, the wire keys
defining the values of the switch statement will be known to GC evaluator.

9. GC evaluator derives the decryption key for Enckeyi(d̃i) and decrypts to obtain d̃i, the (permuted)
definition string for the clause to be evaluated. Evaluator will know which string to decrypt by including
an additional pointer bit in the wire labels of Wj1 , ...Wjt (point-and-permute).

10. For each gate gi ∈ C0, in topological order

(a) GC generator prepares five garbled tables, {T∨, T∧, T⊕, TL, TR} implementing one each of gate
functions {∨,∧,⊕, L,R}, i.e. OR, AND, XOR, Left wire pass-through, Right wire pass-through.
Note that all five garbled tables are constructed with respect to the same input/output wire labels
of gate gi.

(b) The two players execute in parallel n0 semi-honest 1-out-of-5 OT protocols, for j from 1 to n0.
Here GC generator’s input is πj({T∨, T∧, T⊕, TL, TR}), and GC evaluator’s input is the symbol of
the programming string obtained in Step 9, i.e. πj({∨,∧,⊕, L,R}). As a result, GC evaluator
receives garbled gate tables of the remaining gates.

11. GC evaluator evaluates in topological order all remaining gates of C ′ and sends output wire keys to
generator for decryption.

Observation 2 For simplicity of presentation and to focus on the novel contribution, we omitted explicitly
writing out some standard GC techniques, such as permute-and-point.

Observation 3 (Free-XOR compatibility) We presented the protocol without regard to free-XOR. How-
ever, it is easy to see that our construction is compatible with it. Indeed, as is also argued in discussion on
the circuit embedding heuristic in Section 6, the generated container circuit will have many gates fixed to be
XOR gates, rather than placeholders for one of {∨,∧,⊕, L,R}. It is easy to see that since any of k clauses
could be implemented in the container circuit, and “permanently” fixing some of its gates to be XOR is done
in circuit pre-processing, this will not affect security.

In our circuit embedding heuristics, we aimed to maximize the number of such gates so as to take the full
advantage of free-XOR.

3Recall, for simplicity we did not explicitly include the standard permute-and-point table row pointers in our protocol. We
assume the evaluator knows decryption of which row to use, e.g. via using the standard permute-and-point technique.
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We note that it is not immediately clear how to use the 3-row garbled-row reduction (GRR3) of [27] in
our approach. This is because the GRR3 idea is to define one of the garbled rows as a function of garbled
values of the two input wires which result in this output value (and omit that row from the table). However,
in our setting, we don’t know which gate function will be used. Hence, the 0-1 semantics of the implicitly
defined gate output label may be different for different gate functions which may program this specific gate
of C0. This will cause problems for garbling subsequent gates. We thus do not use GRR3, and use standard
4-row tables. We discuss optional inclusion of NOT gates in our circuits in Supplementary Material A.

Theorem 1 Let OT protocol be secure in the semi-honest model. Let Enc be semantically-secure encryption.
Let H be a hash function modeled by a random oracle. Then Protocol 1 is secure two-party computation
protocol in the semi-honest model.

The proof (with respect to the standard security definition of secure computation) is presented in Sup-
plementary Material, Section D.

Observation 4 (Cost calculation) As compared to plain GC of C, our protocol uses additional OT in-
stances. This comes cheap due to the Ishai et al.’s OT extension [14] and follow-up optimizations, such
as [1, 16]. Further, an extension of [14] for 1-out of-k OT of Kolesnikov and Kumaresan [16] can be very
effectively used for our 1-out of-5 OTs.

In detail, let s be the computational security parameter, and take the size of each garbled table as 4s.
Then the communication cost of evaluating the switch on the k clauses embedded in container C0 of size n0

will be approximately 3kn0 + 22n0s.
Indeed, 1-out of-k OT of circuit programming strings will take about 3kn0 bits (k encryptions of 3n0-bit

long strings, plus a 1-out of-k OT on short decryption keys of size s, whose cost is small and is ignored.)
Running 1-out of-5 OT on gate tables of size 4s is done via [16]. (Recall, [16] shows how to do 1-out of-5
OT for only double the cost of 1-out of-2 OT.) The cost consists of sending 5 encryptions each of length 4s,
and running 1-out of-4 OT on random secrets of size s, which costs about 2s, i.e. one OT extension matrix
row of [16]. Summing up, we get our cost approximately 3kn0 + 22n0s.

Ignoring lower order term 3kn0, we can view our communication cost per gate as approximately factor
5.5 of that of the standard Yao-gate, and factor 11 of that of the optimal garbling of Zahur et al. [34]. We
note that in cases where clause is selected by the input of a player (GC generator), our cost of each gate is
the same as that of [34]. We finally note that we, in contrast with all prior GC protocols, do not need to
include the circuitry selecting the output of the right clause and ignoring outputs of other clauses.

We discuss experimental results, which depend on the quality of embedding, in Section 8.

4.1 Nesting switch statements

We observe that a natural implementation of switch nesting will be secure and cheap. Intuitively, this is
because the vast majority of the cost – OTs of the gates – will remain unaffected by sub-switches, and only
the programming strings management will need to be adjusted.

For simplicity, we describe the nesting approach by considering a special case, and then noting that it
can be extended to an arbitrary nesting configuration.

Consider a GC with a switch with two clauses, A and B, where B has sub-clauses B1 and B2. (Note, in
particular, our evaluation must hide which of A,B/B1, B/B2 is evaluated). We first find a container B0 for
B with its sub-clauses and two programming strings b1, b2 for B/B1 and B/B2, and then find a container
C0 for DAGs A,B0. Fig. 4 shows the evaluation flows of the original GC, and our container circuit C0.

Let W1 and W2 be wires in C0, such that W1 selects between clauses A and B, and W2 selects between
B1, B2 for B. Encrypted programming strings ED for A,B will consist of two parts. The first part will
program gates leading to evaluation of W2, and the second part will program the rest of the clauses. (In our
example, W1 and other wires outside of clauses is evaluated in the standard GC manner.)

Let Wi,j is the wire label for plaintext value j of wire Wi, and H is a random oracle.
Then the encrypted programming strings ED are set as follows (and sent in the random order within

each batch),
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ED21
ED22
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Original GC evaluation flow
Our evaluation flow

B2

(
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)

Figure 4: Evaluation flows in original and container circuits with nesting.

(
ED1 = EncW1,0(programming of A up to W2)
ED2 = EncW1,1(programming of B up to W2)

)
and  ED1∗ = Enck1∗(programming of remainder ofA)

ED21 = Enck2,1(programming ofB1)
ED22 = Enck2,2(programming ofB2)


where keys k1∗, k2,1, k2,1 ∈R {0, 1}s are sent encrypted to the evaluator as: EncH(W1,0,W2,0)(k1∗),
EncH(W1,0,W2,1)(k1∗), EncH(W1,1,W2,0)(k2,1), EncH(W1,1,W2,1)(k2,2).

In this example, the first batch of programming strings will let the GC evaluator proceed and obtain
W2, and the second batch will allow to complete the evaluation. Specifically, GC evaluator will evaluate GC
up to W1, then decrypt one of the two {ED1, ED2}, then run gate OTs, evaluate gates that lead to W2,
and obtain the W2 label. Then decrypt the correct kij and one of {ED1∗, ED21, ED22}, run gate OTs and
complete circuit evaluation. We note that GC evaluator must know which encryption to use. This can be
achieved, e.g. by adding pointers into the selection wire labels, a la permute-and-point of GC.

It is now easy to see that this can be naturally extended to arbitrary nesting configurations. Firstly,
both clauses A and B can have sub-clauses – we will simply have an additional clause selection wire, as
well as programming strings. The number of clauses at each level can also be arbitrary, again, resulting in
additional selection wires and programming strings.

We already noted above that nesting will not increase the number of gate OTs. Still, only one gate OT
will be performed for each gate of C0. We also stress that the total length of programming strings remains
linear in the total size of the circuit. It is easiest to see as illustrated on Fig. 4: in the C0 evaluation flow,
the programming strings for each segment are of total length just sufficient to define the original circuit GC.

5 GMW Protocol for Overlaying Subcircuits

Our GMW protocol is a natural recasting of our GC protocol into the GMW approach, with the exception
of us making and exploiting the novel observation that multi-input gates in GMW are cheap. In GMW,
we will program a gate simply by viewing it as having an additional 5-ary function definition input. The
circuit programming string will be secret-shared among the players with a (2, 2) secret sharing, just like
regular GMW wire values. Thus our programmable gate evaluation is just a slight generalization of the
GMW evaluation.

Protocol 2 (GMW with switch statements, sketch)
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1. Once-per-function Precomputation. Parse C, identify switch (C1, ..., Ck), and call the graph
embedding algorithm on C1, ..., Ck. Obtain the container circuit C0 of size n0 as well as k circuit
programming strings d1, ..., dk, each of size n0. Each di will consist of symbols {∨,∧,⊕, L,R}, where
L (resp. R) is the left (resp. right) input wire pass-through gate. Denote the j-th symbol of di by di,j.
Let C ′ be the C with the switch (C1, ..., Ck) replaced with C0. C ′ is assumed known to both players
before the computation.

2. Beginning with the secret sharing of the inputs, for each gate gi of C ′ \C0 in topological order, players
evaluate the gates according to the GMW protocol.

3. Let Wj1 , ...Wjt be the wires defining the switch choice, t = dlog ke. Players use OT to generate a (2, 2)
secret sharing of the selected programming string as follows.

(a) GC generator generates n0 random permutations π = {πj} over {∨,∧,⊕, L,R}.
(b) GC generator computes the following. For i = 1 to k, set d̃i = π1(di,1), ..., πn0

(di,n0
). Now, each

d̃i looks random as an independent random permutation πj was applied to each symbol di,j.

Player P2 uses his shares of Wj1 , ...Wjt to obtain (via OT with P1) the permuted programming string

d̃i.

4. Players proceed to evaluate all remaining gates of C ′. The gates in C0 have an additional input
specifying the gate function. This input is taken from the circuit programming string d. Note that d is
already secret-shared among the two players: P1 has π, P2 has d̃i. Each (two-input Boolean) gate of
C0 is evaluated by a slight generalization of GMW, where 1-out of-4 · 5 OT is run by the players.

Specifically, for each of the five possible gate functions {∨,∧,⊕, L,R} for gate gj ∈ C0, P1 prepares
four corresponding GMW OT secrets. Then P1 permutes the five groups of four GMW OT secrets
according to πj. Then P1 and P2 run 1-out of-4 · 5 OT, where P2’s input is d̃i,j and the GMW shares
of the wire values.

5. Players combine their shares on the output wires of C ′ and reconstruct the output.

Theorem 2 Let OT protocol be secure in the semi-honest model. Then Protocol 2 is a secure two-party
computation protocol in the semi-honest model.

Proof. The proof of security of this protocol in the semi-honest model is trivial. Indeed, assuming the
security of OT, it is easy to check that players ever receive only secret shares of the wire values. We omit
this simple proof.

Observation 5 (Cost calculation) As compared to standard GMW protocol, our protocol requires OT
of the programming strings. Additionally, it evaluates multi-input gates, resulting in 1-out of-20 OT. As
discussed above, in particular in Observation 4, the OT of programming strings is a low-order cost term
and can be ignored. Further, as discussed above in Section 2.2, the cost of 1-out of-20 OT using [16] is
only 16 bits greater than that of the 1-out of-4 OT, and hence this difference can also be swept under the
rug. We conclude that the above Protocol 2 (GMW with switch statements) implements the oblivious circuit
programming almost at no cost overhead, as compared with the standard GMW protocol.

Nesting switch statements. The discussion and results of GC-based nesting (Section 4.1) directly
applies to the GMW setting.

6 Embedding Circuits of Bounded Fan In

In this section, we sketch a heuristic algorithm which given a set of k circuit DAGs, D1, ..., Dk, returns a
circuit DAG D0 such that for each Di there exists an embedding fi into D0, and D0 has as small of cost as
possible. The full proof can be found in Supplementary Material, Section C. We proceed in two main steps.
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First, in Section 6.1, we restrict our attention to circuits that have fan out one and fan in bounded by
2, though a straightforward generalization leads to fan in bounded by any constant. These are commonly
referred to as in-arborescences of bounded in-degree 2, but for ease of exposition we will call them tree circuits.
We describe a polynomial time exact algorithm that given two circuit trees T1 and T2 finds a circuit tree T
of minimum cost embedding both T1 and T2. Specifically, we prove the following.

Definition 2 The cost of embedding a set of circuit DAGs D1, ..., Dk, denoted cost(D1, ...,Dk), is the cost
of a circuit DAG D0 of minimum cost such that there is an embedding of Di into D0 for all i = 1..k.

Theorem 3 Let T1 and T2 be tree circuits. There exists an O(|T1||T2|) algorithm to determine an optimal,
i.e. minimum cost, tree circuit T embedding both T1 and T2.

Second, in the Supplementary Materials, we remove the bound on the fan out, only requiring that the
input circuits have fan in bounded by 2. We describe an algorithm which relies on the algorithm of Section
6.1 as a subroutine. Letting D1 and D2 be circuit DAGs of fan out 2, we describe a polynomial time heuristic
algorithm to a determine circuit DAG D0 embedding both D1 and D2.

A straightforward approach, using this heuristic as a subroutine, then allows for k-circuit inputs. The
following lemma describes an algorithm which returns a circuit whose size grows sublinearly in the number
of input circuits. We use this fact to show in Section 8 that the overall cost of our GC protocol will be
smaller than separately transmitting the subcircuits.

Lemma 1 Let τ > 1. Assume there exists an algorithm which takes as input circuit DAGs D′ and D′′, each
of size exactly n, and returns a circuit DAG D0 embedding both D′ and D′′ whose size is at most τn. Then
there exists an algorithm which takes as input circuit DAGs D1, ..., Dk, each of size exactly n, and returns
D0 of size at most klog2 τn.

Proof: Let D1, .., Dk be a set of circuit DAGs and assume k = 2`. We first apply the heuristic of Section
6 to determine a circuit DAGs D2

i embedding both D2i−1 and D2i for each i = 1, ..., k/2. Iterating this for

j ≥ 2, for each i = 1, ..., k/2j we determine Dj
i from Dj+1

2i−1 and Dj+1
2i . We then return D = D`

1.
We prove the size bound by induction, where the base case is assumed. By induction, assume that the

algorithm returns Dj−1
i , i = 1, ..., k/2j , each of whose size is at most τ j−1n. Hence, the size of Dj

i′ is at most
(τ) ∗ τ j−1n = τ jn. Setting j = ` = log k yields the desired result. �

In Section 8, we show experimentally that the heuristic presented in Supplementary Materials on average
achieves a τ value of 1.151. Here we would expect the k-circuit size is at most k0.203×max{|D1|, |D2|, ..., |Dk|}.

6.1 Tree Circuits

In order to prove Theorem 3, we use dynamic programming and match pairs of vertices of T1 and T2 as
follows. For simplicity,we omit dealing with Free-XOR for now. Let δ−(v) be the in-degree of a node.

Definition 3 For circuit DAG D and t ∈ D, let D[t] be the circuit DAG induced on vertices v such that
there exists a directed path from from v to t in D.

Definition 4 Define the matchcost of a ∈ T1 and b ∈ T2 as the minimum cost of a tree T such that there
exists a mapping f1 that embeds T1[a] into T and a mapping f2 that embeds T2[b] into T where f1(a) = f2(b).
Denote this minimum cost by match(a,b).

Consider computing cost(T1,T2) where a is the root of T1 and b is the root of T2. Clearly, there is no
advantage, with respect to cost, to mapping a and b to disjoint subtrees of T and so either (i) f1(a) ∈ T [f2(b)],
or (ii) f2(b) ∈ T [f1(a)]. From this it follows that we can compute cost(T1,T2) by considering O(|T1|+|T2|)
matchcosts.

Definition 5 Let T1 and T2 be tree circuits with roots a and b, respectively. Define:

(i) cost2(T1,T2) := mint∈T2
(cost(T2)− cost(T2[t]) + match(a, t)) .
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(ii) cost1(T1,T2) := mint∈T1 (cost(T1)− cost(T1[t]) + match(t,b)) .

Lemma 2 Let T1 and T2 be tree circuits with roots a and b, respectively. Let T be a minimum cost tree
circuit with f1 embedding T1 and f2 embedding T2.

(i) If f1(a) ∈ T [f2(b)], then cost(T1,T2) = cost2(T1,T2),

(ii) If f2(b) ∈ T [f1(a)], then cost(T1,T2) = cost1(T1,T2).

Proof: Without loss of generality, assume that f1(a) = t′ ∈ T [f2(b)] and consider the minimum cost and
minimum edge tree circuit T . The root r of T is equal to f2(b) (by minimality) and there exists t ∈ T2 such
that f2(t) = t′. We have that cost(T1,T2) is equal to the cost of embedding the tree T2 − T2[t] plus the
minimum cost of a tree T ′ that embeds both T2[t] and T1 given that a and t are mapped to the root of T ′.
Hence, cost(T1,T2) = cost(T2 −T2[t]) + match(a, t) = cost(T2)− cost(T2[t]) + match(a, t) = cost2(T1,T2).
The lemma follows. �

Corollary 1 cost(T1,T2) is equal to the minimum of cost1(T1,T2), and cost2(T1,T2).

In order to achieve the runtime of Theorem 3, we observe that we can determine these costs using the children
of a and b together with a single match.

Lemma 3 Let T1 and T2 be tree circuits with roots a and b, respectively. Then,

cost1(T1,T2) = min

{
match(a,b),

min
a′∈N−T1

(a)
(cost(T1)− cost(T1[a′]) + cost1(T1[a′])(T2))

}
,

cost2(T1,T2) = min

{
match(a,b),

min
b′∈N−T2

(b)
(cost(T2)− cost(T2[b′]) + cost2(T1)(T2[b′]))

}
.

Proof: We have that

min
t∈T1[a′]

(cost(T1)− cost(T1[t]) + match(t,b))

= cost(T1)− cost(T1[a′]) + min
t∈T1[a′]

(cost(T1[a′])cost(T1[t]) + match(t,b))

= cost(T1)− cost(T1[a′]) + cost1[T1[a′]][T2].

Hence, cost1(T1,T2)

= min
t∈T1

(cost(T1)− cost(T1[t]) + match(t,b))

= min{match(a, t), min
a′∈N−T1

(a)
min

t∈T1[a′]
(cost(T1)− cost(T1[t]) + match(t,b))}

= min{match(a,b), min
a′∈N−T1

(a)
(cost(T1)− cost(T1[a′]) + cost1[T1[a′]][T2])},

completing the proof of the lemma. �
From Lemma 2, in order to determine cost(T1,T2), it remains to show how to determine match(a,b).

Since the mapping of a and b are fixed, matchcosts are easier to compute. Indeed, we can assume f1(a) = f2(b)
is the root of T . Moreover, if either T1[a] or T2[b] is a singleton then match(a,b) can be determined in a
straightforward way.
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Observation 6 If T1[a] is a singleton, then for all b ∈ T2, match(a,b) = cost(T1[a],T2[b]) = cost(T2[b]).
If T2[b] is a singleton, then for all a ∈ T1, match(a,b) = cost(T1[a],T2[b]) = cost(T1[a]).

From Observation 6 it is trivial to determine match(a,b) whenever either a is a leaf of T1 or b is a leaf of T2.

Specifically, in the case that b is a leaf, we have match(a,b) =
∑

t∈T1[a] 2

∑
v∈N−

T1
(t)

wvt

and when a is a leaf,

match(a,b) =
∑

t∈T2[a] 2

∑
v∈N−

T2
(t)

wvt

.

We therefore can assume that T1[a] and T2[b] each have at least three vertices. To determine match(a,b)
we simply consider all possible pairings of the children.

Lemma 4 For a ∈ T1 with in-neighbours a0, a1 and b ∈ T2 with in-neighbours b0, b1 we have

match(a,b) = 22 + min
i∈{0,1}

min
j∈{0,1}

(cost(T1[ai],T2[bj]) + cost(T1[a1−i],T2[b1−j])).

Proof: Since δ(a) = δ−(b) = 2, the minimum cost of a tree circuit T embedding both a and b is 22 plus
the minimum cost of embedding the subtrees T1[a0], T1[a1], T2[b0], and T2[b1]. We only need to check which
of the four possible feasible combinations achieves the minimum. �

We now can finish the proof of Theorem 3 whose pseudo code is given as Algorithm 1.
Proof: [Proof of Theorem 3] Consider Algorithm 1. We note that by proceeding in a reverse BFS-ordering of
both V (T1) and V (T2) we ensure that we can compute cost1, cost2 and match in Lines 7,8 and 9. Hence, the
correctness of this algorithms follows from Lemmas 3 and 4 and Corollary 1. Clearly the run time is equal to
O(|T1||T2|) times the runtime of determining M [ai, bj ] and C[ai, bj ]. We consider these two parts separately.
First, by Observations 6 and Lemma 4, determining M [ai, bj ] takes constant time. Hence, the total time
taking determining the |T1|×|T2| array is O(|T1||T2|). By Lemma 3, determining C1[ai, bj ] takes O(δ−(a)+1)
time. Hence, the total time determining C1 is

∑
ai

∑
bj
O(δ−(ai)+1) = |T2|

∑
ai
O(δ−(ai)+1) = O(|T2||T1|).

Similarly, the total time determining C2 is O(|T1||T2|). The runtime now follow. Finally, determining an
optimal tree is now trivial given the choices made by Algorithm 1. �

1 Input: Binary tree circuits T1, T2

2 Output: cost(T1,T2)

3 let a1, ..., an1
be a BFS-ordering of V (T1)

4 let b1, ..., bn2 be a BFS-ordering of V (T2)
5 for i = n1 down to 1:
6 ... for j = n2 down to 1:
7 ...... determine M [ai, bj ] = match(ai,bj).
8 ...... determine C1[ai, bj ] = cost1(T1[ai],T2[bj]).
9 ...... determine C2[ai, bj ] = cost2(T1[ai],T2[bj]).

10 ...... set C[ai, bj ] = min(C1[ai, bj ], C1[ai, bj ]).
11 return C(T1[a1], T2[b1])

Algorithm 1: Determining cost(T1,T2)

We finish this section by noting that to deal with XOR-gates, which are free, when two XOR gates are
mapped to the same node in T , we ensure zero addition cost is added. With these modifications, it follows
that Algorithm 1 can also be used to compute cost(T1,T2) in this more general case.

7 Optimally embedding graphs is NP-complete

Here we consider the complexity of the problem of finding a minimum sized container digraph D0 embedding
two digraphs D1 and D2. The problem is seen to be NP-complete via a reduction from 3-sat. The full
details of the proof can be found in Supplementary Material, Section E.
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Theorem 4 The problem of finding a digraph D0 such that embedding two digraphs D1 and D2 into D0 has
cost at most k is NP-complete even when the in-degree and out-degree of each node in D1 and D2 is bounded
by 2 and at most one of D1 or D2 is a tree.

8 Experimental Evaluation and Validation

In this section, we report on our experimental evaluation of the heuristic given in Section 6, Algorithm
2, as well as on the resulting efficiency of Protocol 1 in comparison with standard GC and Protocol 2 in
comparison with standard GMW. We discuss both concrete and asymptotic improvements.

Evaluation methodology. The main metric we use to compare our approach to GC is the total
bandwidth required, consumed by all OT instances and garbled gates transfers. We do not penalize ourselves
for the potential increase in latency due to additional round per switch, associated with our approach. As
discussed in detail in the Introduction, this is because in large circuit/batch execution roundtrip delays will
overlap with data transmission, and thus will not impact performance. Of course, in some scenarios (e.g. very
large network latency, small circuit/single execution) latency may dominate. We leave full implementation
and parameters tuning as important future work to address these settings.

We stress that for the SPF-SFE and GMW case, where we obtain significant concrete improvement, we
do not require additional rounds as compared to standard GC.

We validate our approach with the experiments on a set of circuits which we built using circuit compiler
CBMC-GC [8], summarized in Table 1. These circuits are not hand-optimized for the functions they compute.
Indeed, our goal is not to find the best circuit for a specific function, but to validate our heuristic and to
understand its behavior. We do this by running it on a set of diverse circuits of varying sizes and similarity
for our experiments. In many applications (e.g., private DB policies) the clauses would be more similar, and
we expect even better performance.

Results. Firstly, we stress that our heuristics are still highly unoptimized. Even with this, we are
able to determine container circuit C0 containing all 32 input circuits C1, ..., C32 whose size is 0.1637 times
the size of all circuits taken together. To explain further, we note that the size of C0 is trivially at least
maxi=1..32{|Ci|} and at most

∑32
i=1|Ci|. Here |Ci| denotes the cost of a circuit including free-XOR4. As we

will explain, the size of C0 compared to these bounds yields an important metric for the performance of the

algorithm. Formally, we define the expansion metric, or EM as m = |C0|−maxi=1..32{|Ci|}∑32
i=1|Ci|

5. Clearly, m ∈ [0, 1]

where values closer to 0 indicate better performance of the algorithm.
Starting with the 32 input circuits, we first heuristically determine over 100 random trials the smallest

circuit containing each of the
(

32
2

)
pairs. For a particular pair of circuits Ci, Cj , we define the round EM

to be the minimum over all random trials of
|C0|−max{|Ci|,|Cj |}

|Ci|+|Cj | . Table 3 found in the appendix reports the

corresponding round EM for each pair. Given all these container circuits, we choose the pairing of circuits
of minimum total size. We use these 16 resultant circuits as the input circuits for the next round and repeat
the process.

Table 2 compares the total number of non-free gates for a S-Universal Circuit, S = {C1, ..., C32}, using
existing approaches and our work. In Figure 5, we report the the total size of circuits in each of the five
rounds, resulting in total size reduction of 6.1×.

8.1 Discussion

Note that there is significant variation in Table 3, the best value reported is 0.00, a perfect embedding, and
the worst is 1.00. It is intuitive and apparent from our experiments that topological variations in circuits

4We remark that in all our experiments we use circuits that have fan in at most 2. A standard reduction allows us to
eliminate gates of fan in exactly 1. In our experiments we use cost and size interchangeably, since they are closely related.

5It would be more general to include the size of Valiant’s universal circuit in the expansion metric definition. For s defined

as the size of a universal circuit for all circuits of size up to max{|Ci|}, set EM m =
|C0|−max{|C1|,..,|C32|}

min{s,|C1|+..+|C32|}
. However, in our

experiments and clause numbers, s is much larger than |C1|+.. + |C32|, so we omit this complication in this writeup.
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Circuit Test # Function Total # of Gates # XOR Gates

C1 A + B (32bit) 154 123

C17 A + B (16bit) 74 59

C16 A − B (16bit) 103 74

C32 A − B (32bit) 215 154

C18 A < B (32bit) 191 127

C19 A < B (16bit) 74 63

C2 A ≤ B (32bit) 191 127

C3 A ≤ B (16bit) 95 63

C4 Hamming (32 bit) 1610 1223

C20 Hamming (16bit) 775 587

C5 Integer Division (32bit) 3283 1925

C21 Integer Division (16bit) 3225 1830

C7 A ∗ B (32bit) 3283 1925

C22 counting loop (16bit) 1490 494

C25 A + B < 230 and A − B > 20 (32bit) 487 333

C9 A + B < 230 and A − B > 20 (16bit) 231 157

C27 A ∗ B > 200 (32bit) 3368 1982

C11 A ∗ B > 200 (16 bit) 904 478

C23 A ∗ B (16bit) 867 453

C24 A + B < 100 (32bit) 183 122

C8 A + B < 100 (16bit) 87 58

C26 B > 1020 and A ∗ B > 10 (32bit) 3458 2037

C10 B > 1020 and A ∗ B > 10 (16bit) 946 501

C28 A ∗ B > B + 10 ∗ A (32bit) 3881 2311

C12 A ∗ B > B + 10 ∗ A (16bit) 1145 631

C29 B ∗ A + 555 (32bit) 3343 1956

C13 B ∗ A + 555 (16bit) 895 468

C30 B2 + A2 > 1 (32bit) 5613 3881

C14 B2 + A2 > 1 (16bit) 1373 905

C31 B2 + A ∗ B + A2 (32bit) 8660 5809

C15 B2 + A ∗ B + A2 (16bit) 2132 1361

C6 leading bit (16bit) 221 74

Table 1: Circuits used for heuristic evaluation.

Table 2: Total non-free gate counts for a S-Universal Circuit, S = {C1, ..., C32}.

Combined Circuit Valiant Universal Circuit Our construction
20543 1125800 3363

have a huge effect on the size of the resultant embedding. As a worst-case example, consider the DAG D1

a star graph with 1 sink and n − 1 sources, a single sink DAG D2 comprised of a direct path of n nodes.
It is not hard to convince oneself that a minimum DAG D embedding both has 2n − 2 nodes. Hence,
|D|−max{|D1|,|D2|}

|D1|+|D2| = n−2
n which approaches 1 as n goes to infinity. Hence, given the topological diversity of

the circuits we consider, it is not surprising that the size of the determined embedding will vary.
Comparison to SPF-SFE. In SPF-SFE, the garbler knows the clause selection; we will not do circuit OT,
and will immediately see improvement, even for 2 clauses. In particular, in the above 32-circuit experiment,
this is a reduction from 20,543 to 3,363 gates, a reduction of 6.11×, resulting in 6.11× performance improve-
ment over state-of-the-art SPF-SFE. As we discussed in Sect. 1.3, prior work on SPF-SFE considered only
very simple hand-crafted circuits of clauses with near-identical topology. Our approach works for a broad
range of functions, for which manual crafting will not be feasible.
Comparison to General State-of-the-Art GC. If the clause is selected by an internal variable, our
6.1× smaller embedding results in communication cost about the same as half-gates GC [34], due to per-
gate overheads. We briefly discuss the projected asymptotic behavior of our protocol in Supplementary
Material F.

We finally note that we, in contrast with all prior GC protocols, do not need to include the circuitry
selecting the output of the right clause and ignoring outputs of other clauses. These savings are additional.
Comparison to GMW. As noted above, our gate costs are almost the same as the standard GMW.
Therefore the improvement gained by reducing the total circuit size is directly translated into the overall
GMW improvement (6.1× in our experiments).
On GMW vs. Yao. Our observation on the “free” extra inputs to the GMW gates, and the clause overlay
beneficiary application contribute to the performance comparison of the two main approaches to secure
computation. Continuing the “GMW vs Yao” discussion started by Schneider and Zohner [29], our work
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Figure 5: Determining a container circuit C0 containing all 32 input circuits C1, ..., C32. Reported is the
total non-XOR gates in the intermediate container circuits. Figure 6 reports the actual pairings of circuits
in each round.

𝐶"" 𝐶"# 𝐶"$

𝐶"%

𝐶"&

𝐶"'𝐶"(𝐶")𝐶"*

𝐶#+ 𝐶#"

𝐶##𝐶#$ 𝐶#%

𝐶#& 𝐶#'𝐶#(𝐶#)𝐶#*

𝐶$+𝐶" 𝐶#𝐶$

𝐶%𝐶&

𝐶'

𝐶(

𝐶)

𝐶* 𝐶"+

𝐶$" 𝐶$#
round	1

round	2

round	3

round	4

output

input

round	1

round	2

round	3

round	4

input

Figure 6: The circuit pairing found.

tilts the scale in favor of the GMW approach.
Future work. With the number of clauses growing very high, Valiant’s universal circuit construction may
become more efficient than our approach. We leave it as exciting future work to explore fine tuning of our
approach and its relationship to universal circuit in technique and performance. We expect much better
numbers with future careful optimizations of our protocols. Indeed, there are several keys areas which lead
to inefficiencies in the size of the output container circuit, such as random tree choice and cycle elimination in
the container. Addressing these challenges are a key next step in this research program. Further, we project
that embedding larger number of circuits will also improve the embedding efficiency. Intuitively, this is
because the embedding procedure embeds even different-looking circuits into containers with similar-looking
topology, thus simplifying subsequent embeddings. This is evidenced by the eventual increase of the ratio of
the cost of Round i+ 1 to the cost of Round i. In particular, the five rounds have ratios of 1.38, 1.12, 1.44,
1.50 and 1.82 showing that Round 2 presented the most difficulty.

In terms of applications, we envision that our work could be plugged in to a SFE compiler along with other
opportunistic heuristics and optimizations such as choosing the right SFE primitive (ORAM vs reading-in
entire array), or the ABY compiler [5]. We also believe that it is promising to consider a general SPF-SFE
framework which builds on [26] (or a similar system) and this work.
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Supplementary Material

A Handling NOT gates in GC clauses

This section complements the presentation of Section 4, which constructs a GC scheme for circuit-based
SFE.

Circuits generated by many tools, including our evaluation circuits, may additionally have NOT gates,
which are “free” in all standard GC implementations. We show how to handle NOT gates cheaply with
our approach. Firstly, note that NOT gates are still free for the case where GC generator knows the clause
selection as they can be included in the gate function/garbled table. To address this for clauses selected
by internal variables, we will add a unary gate, “NOT OPTION” (NOP) to each incoming wire for each
(non-free) gate of the container circuit.

The NOP gate will be programmed by the programming string di. Namely, for each gate in C0, in
addition to the bits defining gate function ({∨,∧,⊕, L,R}), we will add two bits, each defining whether
NOT should be applied to left/right input wires. Additionally, we will execute two 1-out of-2 OTs to
transfer the corresponding garbled tables to evaluator. It is easy to see that a corresponding modification
to Protocol 1 results in a secure protocol, and the proof closely follows the proof of Theorem 1.

There is an additional small cost (one garbled table row per input wire sent in OT). The garbled table
of NOP gate can indeed consist of a single row: one output label set as a hash of one input label, and the
second output label is computed as a hash of the second input label XORed with the garbled table row,
allowing to keep the global ∆ required for free-XOR.) We run a 1-out of-2 OT to transfer. The cost is 2s (4s
for both input wires’ NOP gates), where s is the computational security parameter. Finally, we will need to
account for an additional cost of 2kn0 bits in transferring the programming string.

Altogether, for circuits with NOT gates, our cost per gate will be 5kn0 + 26n0s.

B Round EM data table

Table 3 reports the corresponding round EM for each pair.

C Details omitted from Section 6

We give the formal details omitted in Section 6. In particular, letting D1 and D2 be circuit DAGs of fan
out 2, we describe a polynomial time heuristic algorithm to a determine circuit DAG D0 embedding both
D1 and D2.

Heuristic Algorithm We develop a polynomial time heuristic algorithm using the machinery of Section
6.1. We then finish by sketching the proof of correctness. In Section 8, we present the results of our
experimental validation for this algorithm. For simplicity, assume every non-leaf node of T1 and T2 has
weighted in-degree exactly two and we omit dealing with Free-XOR for now. We remark that again the ideas
are easily extended to the general case.

We start by considering a related question. Let D1 = (V1, E1) and D2 = (V2, E2) be input circuit DAGs,
each with exactly one output wire node. Let T1 be a spanning in-arborescence subgraph of D1 and let T2

be a spanning in-arborescence subgraph of D2. We determine a minimum cost circuit DAG D0 embedding
both D1 and D2 subject to the restriction that there must be a spanning in-arborescence subgraph T of
D0 such that (A) both T1 and T2 embed in T , and (B) leaves of T1, resp. T2, map to leaves of T . Denote
the minimum cost of such a DAG by cost(D1|T1

,D2|T2
) We remark that there always exists an appropriate

choice of T1 and T2 such that D0 will be a optimal embedding of D1 and D2. Further we remark, that we
can essentially ignore Condition (B), since given any embedding of Ti, it is always possible to extend the
out-arborescence of any leaf node of Ti down to a leaf node of T .
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C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
C2 0.90

C3 0.94 0.12

C4 0.68 0.97 0.94

C5 0.10 0.38 0.02 0.03

C6 0.10 0.80 0.20 0.31 0.04

C7 0.06 0.39 0.48 0.01 0.39 0.01

C8 0.93 0.89 0.89 0.93 0.04 0.21 0.11

C9 0.81 0.94 0.86 0.93 0.44 0.33 0.30 0.82

C10 0.97 0.58 0.45 0.55 0.03 0.54 0.08 0.68 0.27

C11 1.00 0.86 0.23 0.70 0.00 0.62 0.06 0.86 0.70 0.77

C12 1.00 0.91 0.66 0.71 0.01 0.57 0.06 0.86 0.00 0.60 0.47

C13 0.29 0.02 0.00 0.78 0.00 0.57 0.01 0.04 0.00 0.57 0.64 0.62

C14 0.23 0.92 0.97 0.90 0.09 0.90 0.01 0.21 1.00 0.69 0.94 0.70 0.93

C15 0.16 0.00 0.00 0.09 0.05 0.20 0.06 1.04 0.00 0.54 0.42 0.43 0.32 0.64

C16 1.00 0.95 0.95 0.84 0.30 0.07 0.07 0.96 0.95 0.97 0.00 0.08 0.21 1.00 1.20

C17 0.07 0.93 0.87 0.67 0.33 0.13 0.00 0.80 0.87 0.93 0.93 1.07 0.47 0.93 1.33 1.07

C18 0.90 0.53 0.53 0.75 0.66 0.97 0.00 0.89 0.88 0.91 0.94 0.84 0.97 0.94 1.03 0.94

C19 0.87 0.62 0.69 0.88 0.53 0.38 0.84 0.89 0.88 0.72 0.88 0.88 0.72 0.97 1.06 0.91

C20 0.94 0.94 0.94 0.98 0.05 0.29 0.05 0.93 0.95 0.00 0.28 0.35 0.59 0.66 1.16 1.05

C21 0.00 0.36 0.41 0.07 0.70 0.14 0.74 0.11 0.08 0.42 0.40 0.24 0.35 0.23 1.00 1.02

C22 0.55 0.80 0.09 0.56 0.12 0.50 0.10 0.86 0.92 0.67 0.50 0.66 0.49 0.45 1.20 1.25

C23 0.06 0.03 0.02 0.74 0.02 0.21 0.01 0.14 0.21 0.60 0.55 0.58 0.67 0.79 1.05 1.00

C24 0.90 0.92 0.95 0.95 0.42 0.08 0.40 0.21 0.93 0.57 0.70 0.95 0.28 0.98 1.13 1.00

C25 0.94 0.94 0.86 0.95 0.05 0.54 0.10 0.82 0.86 0.04 0.07 0.10 0.24 0.10 1.05 0.98

C26 0.90 0.95 0.20 0.02 0.35 0.12 0.36 0.82 0.23 0.21 1.00 0.21 0.09 0.04 1.00 1.10

C27 1.03 0.11 0.06 0.11 0.39 0.05 0.38 0.29 0.81 0.92 0.14 0.01 0.02 0.05 1.00 1.08

C28 1.00 0.94 0.95 0.02 0.70 0.16 0.31 0.00 0.30 0.00 0.12 0.82 0.04 0.02 1.00 1.02

C29 0.19 0.78 0.91 0.11 0.38 0.07 0.40 0.18 0.12 0.30 0.04 0.14 0.10 0.19 1.00 1.07

C30 0.94 0.95 0.89 0.11 1.00 0.37 1.00 0.61 0.15 0.00 0.53 0.48 0.02 0.09 1.00 1.00

C31 0.35 0.83 0.81 0.81 1.00 0.32 1.00 1.00 0.49 0.08 0.17 0.48 0.31 0.03 1.00 1.00

C32 1.03 0.93 0.97 0.86 0.21 0.07 0.17 0.96 0.86 0.62 0.97 0.28 0.00 0.97 1.17 0.90

C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31
C17
C18 0.80

C19 0.87 0.47

C20 0.73 0.94 0.88

C21 0.07 0.19 0.53 0.05

C22 1.00 0.91 0.81 0.01 0.63

C23 0.07 0.12 0.09 0.43 0.04 0.19

C24 0.93 0.75 0.84 0.93 0.15 0.92 0.30

C25 0.87 0.81 0.78 0.97 0.12 0.33 0.15 0.90

C26 0.87 0.16 0.53 0.27 0.40 0.14 0.00 0.93 0.73

C27 1.07 0.81 0.53 0.20 0.82 0.08 0.00 0.67 0.90 1.00

C28 1.00 0.84 0.81 0.42 1.01 0.17 0.02 0.50 0.67 1.00 1.00

C29 0.00 0.97 0.88 0.02 0.72 0.16 0.01 0.52 0.03 0.39 1.02 1.00

C30 0.93 0.78 0.44 0.05 1.00 0.42 0.46 0.98 0.08 1.00 1.00 1.00 1.00

C31 0.80 0.81 0.75 0.03 1.00 0.05 1.00 1.03 0.03 1.00 1.00 1.00 1.00 1.00

C32 1.00 0.93 0.93 0.83 0.03 1.07 0.00 1.00 0.90 0.17 0.86 0.07 0.34 0.93 0.31

Table 3: Results of applying Algorithm 2 to circuits Ci, i = 2..32 and Cj , j = 1..31. For each pair of circuits
(Ci, Cj), with i > j we run the heuristic 100 times, take the smallest obtained container C0, and report the
corresponding expansion metric.

Analogous to Lemma 2, we can determine cost(D1[a]|T1[a],D2[b]|T2[b]) for a ∈ T1 and b ∈ T2 by considering
O(|T1|+|T2|) matchs.

Definition 6 Define the match∗ of a ∈ D1 and b ∈ D2 as the minimum cost of a circuit DAG D0 such that
there exists a mapping f1 that embeds D1[a] into D0 and a mapping f2 that embeds D2[b] into D0 such that
f1(a) = f2(b) and there exists a spanning in-arborescence subgraph T of D0 such that (A) and (B) hold.

Definition 7 Let r be the root of circuit DAG D with gate nodes G. Further assume T is an in-arborescense
subgraph of D containing r. Define the cost of D on vertices of T as costT(D) :=

∑
v∈V(T)∩G 2ffi−(v).

Definition 8 Let T1 and T2 be circuit DAGs with roots a and b, respectively. Define:

(i) cost2(D1|T1
,D2|T2

) := mint∈T2
(costT2

(D2)
− costT2[t](D2[t]) + match∗(a, t)).

(ii) cost1(D1|T1 ,D2|T2) := mint∈T1(costT1(D1)
− costT1[t](D1[t]) + match∗(t,b)).
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Lemma 5 Let D1 and D2 be circuit DAGs. For a ∈ D1 let T1 be an in-arborescense subgraph of D1[a]
containing a and for b ∈ D2 let T2 be a in-arborescense of D2[b] containing b. Then,

cost(D1[a]|T1[a], D2[b]|T2[b])

= min{cost1(D1|T1
,D2|T2

), cost2(D1|T1
,D2|T2

)}.

From Lemma 5, in order to determine cost(D1[a]|T1[a],D2[b]|T2[b]), it remains to show how to determine
match∗(a,b). As before, if either T1[a] or T2[b] is a singleton then match∗(a,b) is as follows.

Observation 7 If T1[a] is a singleton, then for all b ∈ T2, match∗(a,b) = costT2[b](D2[b]). If T2[b] is a
singleton, then for all a ∈ T1, match∗(a,b) = costT1[a](D1[a]).

When neither T1[a] nor T2[b] is a singleton then whenever δ−(a) = δ−(b) = 2 we determine match∗(a,b) as
follows. For a ∈ T1 with in-neighbours a0, a1 and b ∈ T2 with in-neighbours b0, b1 we have match∗(a,b) is
equal to:

22+ min
i∈{0,1}

min
j∈{0,1}

(cost(D1[ai]|T1[ai],D2[bj]|T2[bj])

+ cost(D1[a1−i]|T1[a1−i],D2[b1−j]|T2[b1−j])).

The case when the degrees do not match up is more complicated. Indeed, either the node a is incident to
an edge which goes between two subtrees of F1 or the node b is incident to an edge which goes between two
subtrees of F2. In this case the match∗ is undefined. To get beyond this, we consider two cases separately.
First, if a is a leaf node in T1 and b is a leaf node in T2 then we need to create a dummy gate node which
takes as input f1(a) and f2(b). Such a construction has match∗ = 12 since we suffer cost 4 for each of f1(a),
f2(b) and the dummy gate. Second, assume a is not a leaf node in T1, the case when b is not a leaf in T2 is
symmetric. Our heuristic then sets match∗ equal to the minimum cost of a tree such that f1(a) to be the
in-neighbour of f2(b).

We now can determine D0 using the following variant of Algorithm 1.

1 Input: D1, D2, T1 and T2

2 Output: cost(D1|T1
,D2|T2

)

3 let a1, ..., an1
be a BFS-ordering of V (T1)

4 let b1, ..., bn2
be a BFS-ordering of V (T2)

5 for i = n1 down to 1:
6 ... for j = n2 down to 1:
7 ...... determine M [ai, bj ] = match∗(ai,bj).
8 ...... determine C[ai, bj ] = cost(D1[ai]|T1[ai],D2[bj]|T2[bj]).

9 return C(T1[a1], T2[b1])
Algorithm 2: Determining cost(D1|T1 ,D2|T2)

Circuit DAG Embedding Algorithm

1. Chose a spanning in-arborescense forest F1 of D1 such that one in-arborescense of F1 contains each
output node of D1. Similarly, choose F2 of D2. In our implementation, we will focus on choosing such
forests uniformly at random. Such forests can be found by choosing a single edge from each of the
out-edges for each node of D1 and D2; we omit further details.

2. For each T1 ∈ F1 and T2 ∈ F2 compute cost(D′1|T1
,D′2|T2

), where D′1, respectively D′2, is DAG found
by taking the union of all edges of D1, respectively D2, with at least one end-point in T1, respectively
T2. Here we can apply Algorithm 2 directly.
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3. Using the costs computed in Step 2, we compute an optimal pair of in-arborescenses as follows. Let G
be the weighted bipartite graph with bipartition (A,B) defined as follows. Let m := max{|F1|, |F2|}.
The set A contains a node labelled by each in-arborescenses of F1 plus m − |F1| ‘dummy’ nodes.
Similarly, the set B contains a node labelled by each in-arborescenses of F2 plus m − |F2| ‘dummy’
nodes. G is a complete bipartite graph, where an edge between a node of A labelled by T1 and node
B labelled by T2 has weight cost(D′1|T1 ,D

′
2|T2), and an edge between a dummy node and node of A

labelled by T1 has weight costT1(D′1), respectively node of B labelled by T2 has weight costT2(D′2).

Since G is complete, it has a perfect matching. Moreover, any perfect matching corresponds to a
pairing of output nodes in D1 with output nodes in D2, where nodes matched to ‘dummy’ nodes have
no partner and are embedded as a copy of themselves. Hence, it follows that a minimum cost matching
in B corresponds to a minimum cost pairing of output nodes. We remark, that computing such a
minimum cost perfect matching in time polynomial in |A|+|B| is a classical result (see for e.g. [9]).

4. We now determine the final circuit DAG. For each T i1 − T
j
2 pairing from the minimum cost perfect

matching, we construct a tree circuit T i−j and embeddings f i−j1 : T i1 → T i−j and f i−j2 : T j2 → T i−j ,
where ‘dummy’ pairings are the identity embedding.

Let T =
⋃
i,j T

i−j . An embedding f1 of F1 into T is found by taking the union of the f i−j1 over all

T i1 − T
j
2 pairings (including ‘dummy’ nodes). An embedding f2 of F2 into T is found in a similar way.

Let D0 be the DAG found by taking a copy of T . First, we add an edge from the source of f1(x) to
the source of f1(y) of weight w′xy for each edge xy ∈ E1 − E(F1). For each edge xy ∈ E2 − E(F2) we
do the same though adding these edges might cause cycles. Before adding xy, we test if there exists
a directed path from y to x in D0. If such a path P exists, then there must exists an edge of P only
used by the circuit D1. By splitting the path up to this edge, we can insure that D0 plus xy is acyclic.
We then update f1 and f2 to include these additional edge mappings.

We complete the proof by showing that D0 is a feasible solution.

Theorem 5 The Circuit DAG Embedding Algorithm finds a feasible circuit DAG.

Proof: Without loss of generality, it is enough to show that f1 is a valid embedding of D1 into D0. By
construction f1 is a mapping from nodes of D1 to out-arborescences of D0 and from edges of D1 to edges of
D0. We need only verify that Conditions 1, 2 and 3 of Defintion 1 hold. Since Condition 1 holds for f i1 and
the perfect matching ensures that every vertex of D1 is in exactly one paired embedding, Condition 1 holds
for f1. Conditions 2 and 3 hold, since either an edge is mapped by some f i1, satisfying Conditions 2 and 3,
or the edge goes between trees of F1, where Step 4 adds these edges between sources of out-arborescences
of weight satisfying Condition 3. It now follows that D0 is a feasible solution. �

D Proof of Theorem 1

We now present the proof of Theorem 1.
Proof: (Sketch.) To prove security, we will need to show simulators of the views of GC constructor P1
and GC evaluator P2.

Consider the view of P1. P1 generates its randomness, receives its input x and messages from P2
associated with the OT protocols, as well as the garblings of the output wires corresponding to the function
output. This is easy to simulate. SimP1

(x, f(x, y)) follows Protocol 1 to generate the wire garblings and
other internal variables. Let SimOTSender

be an OT simulator simulating the view of OT sender. SimP1

calls SimOTSender
and provides it with the corresponding inputs, such as input wire secrets and permuted

garbled gate table sets, to simulate the view resulting from the execution of all the OTs. Finally, SimP1

outputs the views received from calls to SimOTSender. It also outputs the wire keys of the output wires which
correspond to the value of the function f(x, y), to simulate the last message from P2. Finally, SimP1 outputs
the randomness it used in following the steps of Protocol 1 (randomness, if any, used in OT protocols will be
simulated by OT simulators and output as part of what they produce). Following through the description
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of the simulator, it is not hard to see that the output of SimP1 is indistinguishable from the view obtained
in the real execution.

Consider the view of P2. P2 uses no randomness in Protocol 1 (except possibly as part of OT, but that
would be simulated to OT simulators). P2 receives from P1 garblings of C ′ \ C0 and input labels of P1’s
wires. It sees OT transcript for OT of input labels of P2’s inputs. It receives k encrypted strings ED and
decrypts one, which looks random; others he is unable to decrypt. It runs and sees transcripts of n OTs
where it receives garbled tables of C0. P2 is also easy to simulate. SimP2(y, f(x, y)) will first choose at
random all (simulated) active wire labels. It will then generate a simulation of all the garbled tables in C ′.
This is done by generating the active garbled table row and placing it in the random location in the table,
and then filling the remaining garbled table rows with random-key encryptions of random strings (it is easy
to see that this simulation is indistinguishable from real). It will then emulate the strings ED P2 receives.
This is done by generating a random string d′ consisting of symbols {∨,∧,⊕, L,R} and encrypting it with
the key derived from the active keys on the wires defining the switch value. The other k − 1 ED strings
are simulated by encrypting random values with random keys. To simulate the OT of the switch clauses,
SimP2

will call SimOTReceiver
on the following input and output. The input would be the symbol from d′,

and the output would be the garbled table for the corresponding gate, which SimP2
has already generated.

To simulate the OT of the inputs, SimP2
will call SimOTReceiver

on the following input and output. The
input would be the P2 input on the corresponding wire, and the output would be the active wire label on
that wire, which SimP2 has already generated. To simulate receiving the wire labels corresponding to P1’s
inputs, P2 will output active wire labels on the corresponding wires. In the end, SimP2

outputs an ensemble
of all the OT transcripts, active wire labels on P1’s wires, and the simulated ED string. Following through
the description of the simulator, it is not hard to see that the output of SimP2

is indistinguishable from the
view obtained in the real execution. �

E Proof of Theorem 4

We now present the proof of Theorem 4.
Proof: We will say that we have a zero cost embedding if one graph can be embedded in the other.

Clearly determining if mappings of D1 and D2 into D0 is a valid embedding and computing the cost of
D0 are both easily done in polynomial time. Therefore our problem is in NP.

We now argue that the problem is NP-hard. The proof is via a polynomially bounded reduction from
3-sat. The idea will be that D1 contains all choices of setting a variable to true or false as well as a choice
for each clause of which literal to be used as a witness of truthfulness of the clause. The graph D2 will be
embedded in D1 to indicate a truth setting for each variable and a choice of witness for each clause if such
a witness exists. We will show that such a zero cost embedding exists if and only if a satisfying assignment
to the 3-sat instance exists.

Suppose we have an instance of 3sat with n variables and m clauses. We now describe how to construct
in polynomial time an instance of our problem.

In Figure 7 we show the general structure of D1. In the figure, the circles represent subgraphs that are
shown in subsequent figures. Notice that there is subgraph for each variable, say xi, that is represented by
one circle labeled x1

i having two directed paths Ti and Fi to a circle labeled x2
i . Each of the paths Ti and

Fi has consecutive nodes z1
ti and z2

ti for every clause Ct in which xi or ¬xi appears. Therefore |Ti|= |Fi|.
Each clause, say Ct, has a subgraph associated with it having circles C1

t , C2
t and C3

t with paths to C0
t . For

1 ≤ s ≤ 3, the path from Cst to C0
t shares the two consecutive nodes z1

th and z2
th on Th if xh is a literal in Ct

or on Fh if ¬xh is a literal in Ct.
Figure 8 shows the detailed construction of the subgraph for variable xi. For 1 ≤ y ≤ p = m+ n+ 1 the

lengths of paths P 1
iy and P 2

iy is 3 if y = i and 2 otherwise.
We show the construction of the subgraph for a clause Ct in Figure 9. The parts of the subgraph labeled

C2
t and C3

t are identical to C1
t . For 1 ≤ y ≤ p = m+ n+ 1, the length of paths Q0

ty, Q1
ty, Q2

ty and Q3
ty is 3

if y = n+ t and 2 otherwise.
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Figure 7: Partial example of D1 where Ct = xi ∨ ¬xj ∨ ¬xk.

Figure 10 shows the general form of D2. The subgraph labeled C123
t is identical in structure to C1

t (and
C2
t and C3

t ) as shown in Figure 9. The node denoted by qrst is any of qt, rt or st and the nodes labeled
bdi (and bdj and bdk) are either bi or di (and bj or dj and bk or dk respectively) as shown in Figure 9. For
h = i, j, k, the path Xh has the same length as Th and Fh as described earlier.

For completeness, Figure 11 shows the structure of the subgraph R. For 1 ≤ y ≤ p = m + n + 1, the
length of path Zy is 3 if y = p and 2 otherwise.

Let Ct(1), be the subgraph of D1 consisting of C1
t , C0

t and the path between them through z1
ti and z2

ti

where i is the index of the first literal in Ct. Define Ct(2) and Ct(3) analogously where j and k are the indices
of the second and third literals in Ct respectively. Then define Ct to be the subgraph of D2 consisting of
C123
t , C0

t and the path between them through z1
t and z2

t .
Define Xi(T ) to be the subgraph of D1 consisting of x1

i , x
2
i and the path Ti between them. Similarly, let

Xi(F ) to be the subgraph of D1 consisting of x1
i , x

2
i and the path Fi between them. Let Xi be the subgraph

of D2 made up of x1
i , x

2
i and the path between them through wi.

In what follows, the intuition is that embedding Xi in Xi(T ) (or Xi(F )) is to be interpreted as setting xi
to True (or False respectively). Also, we will see that a clause is satisfiable if and only if it can be embedded
in D1 at zero cost for a set of choices of such embeddings for the variable subgraphs Xi.

It is straightforward to check that the only way to embed R from D2 into D1 with no cost is to embed
it in R of D1. Similarly, Ct can only be embedded into D1 at zero cost if it is embedded into one of Ct(i),
1 ≤ i ≤ 3. Also, each Xi can only be embedded in D1 with zero cost if it is embedded in either Xi(T ) or
Xi(F ).

Notice that by construction of D1, for Ct = xi ∨ ¬xj ∨ ¬xk, Ct can only be embedded in Ct(1) for zero
cost if Xi is not embedded in Xi(F ) (or equivalently if Xi is embedded in Xi(T )). This follows since if Ct
is embedded in Xi(F ) then along the path Ti there will be overlap from the embedded x1

i to the embedded
x2
i and the path from the embedded C123

t to the embedded C0
t although these paths in D2 are disjoint. In

other words, Ct can be embedded at zero cost if and only if Xi is embedded in Xi(T ) or Xj is embedded in
Xj(F ) or Xk is embedded in Xk(F ). Therefore, it follows that D2 can be embedded at zero cost into D1 if
and only if the instance of 3sat has a satisfying assignment. �
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sub-gadget to the top xi sub-gadget.
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Figure 9: Structure of Ct gadget used in D1. In D2 it is similar except only one lower Ct sub-gadget attached
to upper Ct sub-gadget.

F Discussion on Asymptotic Behavior of Our Protocol

Recall, assuming expansion metric m < 1 for each embedding of the k clauses of size n, by Lemma 1, the
total size of embedding of the k circuits is ≤ klog2(1+m)n. Our experiments indeed suggest that the expansion
rate diminishes with the number of circuits. From the experiments, in Round 1 the best pairing of circuits
with respect to expansion metric has average expansion metric of m = 0.151.

Assume for simplicity that (unlike our experiments) all clauses have size n. The classic Yao GC requires
the transmission of kn gates (i.e. 4kn garbled rows), whereas our protocol requires at most 26× klog2(1+m)n
rows (see Observation 4 and Supplementary Material A for detailed total protocol cost evaluation). Hence,
(optimistically) assuming average paired expansion metric of m = 0.151, we get protocol cost 6.5× k0.203n.
In this idealized environment, it is easy to calculate that in this case our protocol would outperform standard
GC for k ≥ 11 clauses. Our experiments show that even with drastically different clause sizes the 32-circuits
container circuit nearly achieves this promised size. Finally, the half-gate GC [34] transmits half as many
rows as Yao GC, and so our protocol would outperform [34] for k ≥ 26 clauses, assuming m = 0.151 and
equal-size clauses (the latter does not hold in our experiments).
Heuristic performance speculation. Our heuristic represents circuits as arborescences and then heuris-
tically constructs containers for simpler objects – trees. Consider circuits with similar topology. If our
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Figure 10: Partial example of D2 where Ct = xi ∨ ¬xj ∨ ¬xk.
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Figure 11: Structure of R in D1 and D2 where A is a binary in-arborescence.

algorithm is “lucky”, it will find trees with close or identical topology. However, this does not occur too
often in the first round, in part because we only make 100 random attempts at matching trees in two given
arborescences. As the container circuit/arborescence grows by incorporating more and more circiuts Ci, it
will contain richer and richer set of trees, and cheaper embeddings become more likely. This is illustrated in
and supported by Figure 5, and leads us to project that the performance of our technique will continue to
improve with the increase of the number of circuits Ci.
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