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Abstract. We consider a new adversarial goal in multiparty protocols, where the adver-
sary may corrupt some parties. The goal is to manipulate the view of some honest party
in a way, that this honest party learns the private data of some other honest party. The
adversary itself might not learn this data at all. This goal, and such attacks are significant
because they create a liability to the first honest party to clean its systems from second
honest party’s data; a task that may be highly non-trivial.
Protecting against this goal essentially means achieving security against several non-
cooperating adversaries, where all but one adversary are passive and corrupt only a single
party. We formalize the adversarial goal by proposing an alternative notion of universal
composability. We show how existing, conventionally secure multiparty protocols can be
transformed to make them secure against the novel adversarial goal.

1 Introduction

Data is a toxic asset [1]. If it has been collected, then it has to be protected from leaking. Hence
one should not collect data that one has no or a little use of. To make sure that one is not
collecting such data, one should try to never learn that data in the first place. In existing models
of multiparty protocols, the security goals of a party are not violated if it learns too much:
according to the model, an honest party may simply ignore the messages not meant to it or the
data it has learned because of the misbehaviour of some other party. In practice, such forgetting
of data may be a complex and expensive process, involving thorough scrubbing or destruction
of storage media.

An honest party’s attempt to not learn the data that it is not supposed to learn, brings about
an adversarial goal that has not been considered so far. The adversary may deliberately try to
cause an honest party to learn some other honest party’s private data, i.e. make the second
honest party’s data to be derivable from the first honest party’s view. The adversary’s inability
to learn such data itself does not imply the impossibility of such attacks.

When formalizing security against such attacks, we have to be careful to not make this
property unachievable. There are certain related attacks that cannot be excluded. For example,
we cannot prevent the adversary from publishing secrets or their parts through some side channels
that are not related to the protocol. Hence it would be more interesting to study the attacks
where the adversary is able to force one party to leak a secret to another party even without
seeing this secret himself.

The security of protocols is usually proved in the universal composability (UC) framework [2]
which ensures that the protocol is secure not only in stand-alone model, but also when run in
several sessions or in parallel with some other protocols. This framework assumes that there is a
single monolithic adversary that controls all the corrupted parties. Construction of a simulator
for a UC security proof often relies on the assumption that a value may indeed be leaked since the
adversary knows it anyway. In practice, it may be still unpleasant to leak a secret value to some
honest party even if some other corrupted party has already seen it. If an attacker has broken
into a user’s mailbox, it still does not imply that the user is now ready to publish his e-mails
to everyone since some attacker has seen them anyway. Moreover, if some secret leaks from one
honest user to another honest user, this secret may just remain unnoticed by the adversary.
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If we care about the views of honest parties, we could treat each honest party as some kind
of independent adversary. There exist some alternative definitions of UC that support multiple
adversaries, such as CP (Collusion Preserving) computation [3] or LUC (Local UC) [4]. However,
these models are too strong, and they are used to prove strong properties that are not necessary
for our purposes. If we treat each honest party as an adversary, we get a setting in which all the
parties (except the one that we are formally protecting) are corrupted, and we will quite unlikely
come up with a reasonable multiparty protocol whose security we will be able to prove in this
model.

Our contribution In this work, we define a “weak CP” (WCP), which splits the adversary
into mutually exclusive coalitions. Instead of bounding the total number of corrupted parties,
we only bound the the sizes of coalitions. Our model does not focus on preventing the malicious
parties from sending their secrets directly to other parties, but rather on detecting the flaws in
protocols where it may happen that an honest party is obliged to leak its secret to another honest
party at some point. More formally, we split the adversary A into two parts {AH1 , . . . ,AHn } and
AL, each AHi representing a separate adversarial coalition. Only AHi may get messages from
the corrupted parties, but the attacks on the protocol are performed by AL. We are interested
in attacks that can be performed by AL without taking into account the messages that AHi
received from the protocol. We see if AL succeeds in leaking information received by AHi to
another adversary AHj which may represent the view of a coalition of corrupted parties as well
as the view of an honest party.

After reviewing related work in Sec. 2 and giving some preliminaries in Sec. 3, we give a
formal definition of WCP and prove its composability in Sec. 4. We discuss the applicability of
WCP in Sec. 5. We show that, although UC emulation implies WCP emulation in presence of
a passive adversary, it is not the case for fail-stop, covert, and active adversaries. In Sec. 6 we
present some transformations that make a protocol that is secure in UC model also secure in
WCP model.

2 Related Work

The problem of leaking a secret to an honest party is not new. The multiparty computation
protocol of [5] is provided with a description of an attack that allows the malicious party to leak
a secret value of one honest party to a different honest party. This attack remains unnoticed by
the traditional UC framework [2], and it could be detected using some other model that assumes
the existence of two distinct adversaries: the malicious one and the semihonest one.

The abstract cryptography framework [6] does take into account multiple adversaries. The
more concrete frameworks [7–9] study the collusion-freeness property of protocols whose main
goal is to prevent smaller adversarial coalitions from forming larger coalitions using subliminal
channels. A collusion-free protocol prevents the parties from any communication. A collusion-
preserving protocol ensures that the parties cannot exchange more information that they could
without executing the protocol.

Extending the traditional UC framework [2] to multiple adversaries have been considered
in [3,4]. In CP (Collusion Preserving computation) [3], there is a separate adversary Ai for each
party Pi. The adversaries communicate with the protocol π using a communication resource
R which in turn contributes to defining the adversarial behaviour. The idea is that, in the real
protocol, the adversaries should be able to exchange only as much information as they could in the
ideal protocol. In LUC (Local UC) [4], each party Pi may be corrupted by n−1 adversaries A(i,j)

that can deliver messages to the party Pi where the sender identity of the delivered messages
must be Pj . This model can be used to express more interesting properties than CP allows.

Unfortunately, these security models are too strong for our problem. In [3, 4], all the adver-
saries eventually send all their data to the environment. Therefore, even if we know that there
are no coalitions of size larger than t, we still cannot use (t + 1)-threshold sharing (a sharing
where at least t+ 1 parties need to collaborate to reconstruct the secret) since the environment
may combine the shares of different coalitions.

One way to solve this issue is to assume that the environment is split into pieces with con-
strained information movement. For example, [10] formalizes information confinement property
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of a protocol. It splits the environment Z into high and low subenvironments ZH and ZL where
data is allowed to move from ZL to ZH, but not the other way around. The confinement property
is formally achieved if ZL cannot guess a bit generated by ZH with non-negligible advantage.
However, this property needs to be checked in addition to ordinary UC security, and the (t+ 1)
secret sharing with t adversaries would be insecure anyway. We use a bit simpler solution in our
protocol, and instead of putting constraints on the environment, we put constraints onto the
adversary. This allows to embed the confinement property into the definition of emulation.

3 Basics of Universal Composability

First of all, we give a brief review of the basic UC model [2]. UC considers systems of Interactive
Turing Machines (ITM) connected to each other by input and output communication tapes. On
the figures, ITMs are represented by boxes, and the communication tapes by arrows.

A protocol π consists of ITMs Mi (i is a unique identifier in the given protocol session) that
mutually realize some functionality F . They may be connected to each other, and may also use
some “trusted” resource ITM R to mediate their communication or even compute something for
them. A special ITM A represents the adversary that may corrupt some Mi and get access to
their internal states. There is a special ITM Z, the environment, that chooses the inputs for each
Mi and receives their outputs. This Z may contain the parties Pi sitting behind the machines
Mi, or any other protocols running in parallel or sequentially with π, probably even some other
sessions of π. Z also communicates with A and sees which information it has extracted from the
protocol.

In security proofs, one defines a functionality F represented by a “trusted” ITM and describes
what exactly it computes and which data is insensitive enough to be output to the adversary
deliberately. On the other hand, there is a protocol π that has exactly the same communication
ports with Z as F has, but that consists of untrusted machines Mi and optionally some other
smaller resource R. Since π is usually more realistic than F , the goal is to show that π is secure
enough to be used instead of F , and this can be done by proving that any attack (represented
by A) against π can be converted to an attack (represented by some As) against F . Formally,
one proves that no environment Z is able to distinguish whether π (with A) or F (with As) is
running, regardless of the adversary A used.

In our model, we treat different kinds of adversaries:

– Passive (honest-but-curious): the corrupted party follows the protocol as an honest party
would do, but it shares all its internal state with A.

– Fail-Stop [11]: the corrupted party follows the rules, but at some moment it may try to
stop the protocol, so that the computation fails. In this paper, we use the definition where
the party may stop the protocol only if it will not be caught (by being caught we mean that
all the honest parties of the protocol consistently agree that this party is guilty).

– Covert [12]: the corrupted party may misbehave, but only as far as it will not be caught.

– Active (malicious): the corrupted party does whatever it wants.

4 Weak Collusion Preservation

In this section we present a model that allows to formalize the problems we presented in Sec. 1.
We need to define more formally what it means that the protocol does not allow sensitive
information to be leaked to honest parties.

Two possible models from which we could start are LUC [4] and CP [3]. At first glance,
the LUC approach seems more interesting since it clearly distinguishes the cases where an un-
corrupted machine Mi has received a message from another uncorrupted machine Mj , or from
a corrupted machine Mk. However, many interesting properties are lost after merging the ad-
versaries into coalitions. Hence we base our work on the collusion preserving (CP) computation
of [3], since the construction is simpler in this case.
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4.1 Definitions

In this subsection we first repeat some definitions of UC and CP, and then adjust them to WCP.
In this paper, the simulation does not mean the transformation of the adversary as S(A), but
the parallel composition (S‖A), meaning that the simulator S translates the messages moving
between the real adversary A and the ideal functionality F , but S does not get access to the
other communication ports of A. The reason is that although there is no difference for UC and
CP definitions, in our model getting control over all the ports of A may give too much power to
the simulator. We discuss it in more details when we define WCP.

Let EXECπ,A,Z be the probability ensemble of outputs of the environment Z running the
protocol π with the adversary A. Recall the definition of standard UC emulation.

Definition 1 (UC emulation [2]). Let π and φ be PPT (probabilistic polynomial time) pro-
tocols. We say that π UC-emulates φ if there exists a PPT machine S, such that for any PPT
adversary A, and for any PPT environment Z, the probability ensembles EXECπ,A,Z and
EXECφ,(S‖A),Z are indistinguishable (denoted EXECπ,A,Z ≈ EXECφ,(S‖A),Z , or |EXECπ,A,Z−
EXECφ,(S‖A),Z | < ε).

If the protocol φ is defined in a way that executing some ideal functionality F is the only
thing that the parties do, we may also say that the protocol π UC-realizes F.

Since Def. 1 does not specify the adversary type, we will further explicitly specify whether a
protocol emulates the functionality passively, covertly, or actively.

We base our work on the collusion preserving (CP) computation of [3]. Although CP is based
on generalized universal composability (GUC) [13], which assumes that the protocols may use
some shared global setup, we first give a simplified definition based on common UC. Differently
from Def. 1, instead of one monolithic adversary there are n adversaries A1, . . . ,An, one for each
party. It is assumed that they do not interact with the protocol directly, but use some kind of
communication resource. All the adversaries are connected with the environment Z, and hence
potentially may use it for communication.

We give the definition of CP emulation in its simplified form (without shared resources and
the global setup).

Definition 2 (CP emulation [3]). Let π and φ be PPT n-party protocols. We say that π CP-
emulates φ if there exist mutually isolated PPT machines S1, . . . , Sn, such that for any PPT ad-
versaries A1, . . . ,An for any PPT environment Z, for A = {A1, . . . ,An}, AS = {(S1‖A1), . . . , (Sn‖An)},
the probability ensembles EXECπ,A,Z and EXECφ,AS ,Z are indistinguishable.

In CP model, all the adversaries may still communicate through the environment, and so the
values seen by any corrupted party may eventually get there. We want to modify the construction
in such a way that it would take into account that the distinct adversarial coalitions will never
use Z to communicate. Instead of assigning an adversary to each party, we assign an adversary
to each coalition. We put some additional constraints on the adversary that ensure that the
outputs of only one of these coalitions reach the environment.

Definition 3 (t-coalition split adversary). Let n be the number of parties, and let [n] =
{1, . . . , n}. A t-coalition split adversary A is a set of PPT machines {AH1 , . . . ,AHn ,AL} defined
as follows.

1. The adversary A is defined as a set PPT ITMs {AH1 , . . . ,AHn } (“high”) and AL (“low”) where
AHi [resp. AL] does not receive inputs from Z [resp. π] nor give outputs to π [resp. Z]. Any
communication inside A goes from ITM AL to ITMs AHi .

2. The active adversary AH1 may corrupt up to t parties. Each party Pi that is not corrupted
by AH1 is corrupted by some passive adversary AHj .

3. There is some j ∈ [n], such that for all i ∈ [n]\{j}, the internal state of AHi does not depend
on the inputs coming from π. We call AHj the true adversary and the other AHi -s the false
adversaries.

The t-coalition split adversary is depicted on Fig. 1.
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Fig. 1: t-coalition split
adversary

The property (1) lets the information moving from Z to π to be
controlled by a single adversaryAL, and it splits the information mov-
ing from π to Z amongst different receiving adversaries. The property
(2) constructs an actively corrupted coalition of size at most t, and
lets each honest party be controlled by a separate passive adversary.
The property (3) guarantees that the views of different coalitions will
not be merged.

Let C(k) be the set of party indices corrupted by AHk . The exe-
cution model of a t-coalition split adversary is the following.

– The corruption of a machine Mi into the coalition handled by
AHj is determined by AL, which sends a message (corrupt, i, j)
to the protocol. After the machine Mi receives that message, it
forwards its internal state and all further received messages to
the adversary AHj .

– Any message m sent by Mi for i ∈ C(1), can be substituted by AL
with an arbitrary message m∗. Alternatively, AL may substitute m
with ⊥, which denotes cancelling delivery of m, or with >, which
denotes that m remains unchanged. The message > is need to
enable AL to proceed with honest protocol execution even if does
not receive m.

We could define WCP emulation analogously to Def. 2, just replacing any adversary with
a t-coalition split adversary. However, we now need to be careful with the simulator definition.
If we allow S to be an arbitrary PPT machine, then it may happen that (S‖A) is no longer a
t-coalition split adversary. Hence we need to constrain the class of simulators.

Definition 4 (split simulator). A split simulator S =
{SH1 , . . . , SHn , SL} consists of PPT machines SHi and SL where

– the communication is allowed from SL to SHi for all i ∈ [n], but not the other way around;
– the input ports of SHi are connected to π, and its output ports to AHi ;
– the input ports of SL are connected to AL, and its output ports to π.

We need to ensure that (S‖A) = {(SH1 ‖AH1 ), . . . (SHn ‖AHn ), (SL‖AL)} is also a t-coalition
split adversary, since otherwise it may happen that we give more power to the adversary that
attacks an ideal functionality than to the adversary that attacks a real functionality, and that
would result in weaker security proofs.

Lemma 1. Let A = {AH1 , . . . ,AHn ,AL} be a t-coalition-split adversary, and let S = {SH1 , . . . , SHn , SL}
be a split simulator. Then the parallel simulation As =
{(SH1 ‖AH1 ), . . . , (SHn ‖AHn ), (SL‖AL)} is also a t-coalition split adversary.

Proof. By Def. 3, there exist channels only from AL to AHi for all i ∈ [n], but not the other way
around. By Def. 4, SHi delivers messages from the protocol π to AHi , and SL delivers messages
from AL to π, and similarly there exist channels only from SL to SHi for all i ∈ [n]. If AHi is the
true adversary, we define A′Hi = (SHi ‖AHi ). If AHi is a false adversary, then it does not listen
to its inputs from SHi anyway. We may drop SHi entirely since it is just a ITM that does not
send any outputs to anyone, and take A′Hi = AHi (which can be now directly connected to π)
and A′L = (SL‖AL). By construction, the resulting adversary A′ = {A′H1 , . . . ,A′Hn ,A′L} is a
t-coalition split adversary, and its behaviour is exactly the same as of As. �.

Definition 5 (t-WCP emulation). Let π and φ be n-party protocols. We say that π WCP-
emulates φ if there exists a PPT split simulator S = {SH1 , . . . , SHn , SL}, such that for any
PPT t-coalition split adversary A = {A1, . . . ,An}, and for any PPT environment Z, for a
t-coalition split adversary As = {(SH1 ‖AH1 ), . . . , (SHn ‖AHn ), (SL‖AL)}, the probability ensembles
EXECπ,A,Z and EXECφ,As,Z are indistinguishable.
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Fig. 2: t-WCP emulation

The definition is correct by Lemma 1. The t-WCP emulation is depicted on Fig. 2.
We emphasize that we intentionally require blackbox simulatability, i.e the same simulator

S must be suitable for an arbitrary adversary A. Intuitively, in this case the simulator does not
know which AHi is the true adversary, and hence each SHi needs to simulate a proper view to all
AHi , not only to the true one. This is one reason why we use the parallel composition (SHi ‖AHi )
for the simulation, and not the transformation SHi (AHi ) where the code of AHi could potentially
tell SHi directly whether AHi is true or false adversary.

What happens if during the protocol simulation, some SHi somehow gets to know that AHi
is a false adversary? It may happen that AL directly tells to SL which AHi is true, or AHi even
proves that it is true by forwarding some challenge of SHi through Z and φ back to SHi (a
false adversary AHi cannot forward a challenge from SHi to anyone, because it does not listen to
the inputs coming from SHi ). However, since S should work for an arbitrary A and any Z, in
general Z is not supposed to forward the messages from A to the protocol, and even if AL gives
some direct hints to SL, they are not necessarily believable. We conclude that all the simulators
SH1 , . . . , S

H
n will have to work for all AH1 , . . . ,AHn in any case.

4.2 Composition Theorem

Dummy Lemma The composition proofs of UC are simpler if instead of an arbitrary adversary
A we consider the dummy adversary D that only forwards the messages between the protocol
and the environment. This kind of adversary is in some sense the strongest one since it delegates
all the attacks to the environment Z, and it just gives to Z the entire view of the corrupted
parties. The dummy lemma has been proven in [2] and it holds also in LUC and CP models.
In our WCP definition, we could also substitute the true adversary with a dummy adversary,
similarly to UC. However, the false adversaries are not allowed to forward the messages. If we
replace a false adversary with D, it will be too strong since the environment Z becomes able to
forward its inputs through D. We conclude that the dummy lemma of UC that works also for
CP and LUC is not straightforwardly applicable to WCP. Nevertheless, it holds if D satisfies
the t-coalition adversary definition.

Definition 6 (k-dummy t-coalition split adversary). Let n be the number of parties, and
let k ∈ [n]. The k-dummy t-coalition split adversary Dk = {DkH1 , . . . ,DkHn ,DkL} is a t-coalition
split adversary, where:

– DkL = D is just a message forwarding ITM;
– DkHk = D is also a message forwarding ITM, but DkHi for i 6= k does not forward the inputs

that come from π (this is a actually a part of Def. 3).

For n parties, there are n different k-dummy adversaries D1, . . . ,Dn.

Lemma 2 (t-dummy lemma). Let π and φ be n-party protocols. Then π t-WCP-emulates φ
according to Def. 5 if and only if it t-WCP-emulates φ with respect to all k-dummy t-coalition
split adversaries for all k ∈ [n].

The proof of Lemma 2 can be found in App. A.1.
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WCP Composition Theorem We need to prove that our WCP definition is composable.
Although it is impossible to achieve collusion-freeness for the adversaries if they are allowed to
use embedding protocols as side channels, we have ensured by the definition of t-coalition split
adversary that they will not try to do it. The composition theorem nevertheless remains useful
for the ordinary attacks that are not related to subliminal channels, an that is why it still makes
sense to define a composition theorem for WCP.

Theorem 1 (WCP composition theorem). Let ρ, φ, π be protocols such that ρ uses φ as
subroutine, and π t-WCP-emulates φ. Then protocol ρ[φ→ π] t-WCP-emulates ρ.

The proof of Thm. 1 can be found in App. A.2.

4.3 Relations to the Existing Notions

We need to show that no attack that UC model detects remains unnoticed by WCP model.
Namely, we show that t-WCP-emulation implies UC-emulation, and hence our security defini-
tion is stronger. However, failure in achieving t-WCP-specific properties does not provide an
immediate UC security fallback in general (as in the case of CP), but on the assumption that
only t parties remain corrupted.

Since the ports between π and A are different for UC and WCP, we need to define a transfor-
mation between UC and WCP functionalities, as it was done for CP and LUC. The transforma-
tion is analogous, and it either splits the monolithic adversary to distinct coalitions, or merges
the coalitions into one monolithic adversary. The formal definitions of these transformations are
given in App. B.

Theorem 2. Let π be a protocol that t-WCP emulates a protocol φ. Then π also UC emulates
φ in presence of at most t corrupted parties. However, there exists protocols π and φ, such that
π UC-emulates φ in presence of at most t corrupted parties, but does not t-WCP emulate it.

The proof of Thm. 2 can be found in App. A.3.

We would also like to compare WCP and CP. In general, CP security is stronger since a
t-coalition split adversary is an instance of CP adversary where the entire AL can be pushed
into Z, and the collaboration of coalitions can be also arranged through Z. The simulators Si of
CP could be used as SHi in WCP. The only problem is that the simulator Si of CP translates the
messages between Ai and φ in both directions, while WCP allows SHi to only forward messages
from φ to AHi . Using a single SL for simulating the other direction may fail without knowing
certain inputs that SHi has got from φ.

Hence we could straightforwardly use only such functionalities φ that do not give to the
adversary any outputs before they have already received from it all the inputs.

Definition 7 (one-time input protocol). A protocol φ is called one-time input if all the
inputs that it gets from the adversary A are obtained before any output is given by φ to A.

We show that, assuming that the number of corrupt parties is the same, and φ is one-time
input protocol, then CP emulation implies WCP emulation. However, depending on the choice
of t, it may happen that t-WCP is strictly weaker than CP.

Theorem 3. Let t be the total number of corrupted parties. Let π be a protocol that CP emulates
a one-time input protocol φ. Then π also t′-WCP emulates φ for any t′ ≤ t. However, there exists
a t′ < t and protocol π and φ, such that π t′-WCP emulates φ, but does not CP emulate it.

The proof of Thm. 3 can be found in App. A.4.
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5 Applicability of WCP Security

In this section we show why WCP is a suitable model for pointing out the problems we mentioned
in Sec. 1. We present some properties related to leaking information to an honest party that can
be captured by t-WCP, but not by UC, CP, LUC. Since CP lets the adversaries to communicate
through an arbitrary resource R, the security in CP model may be dependent on the particular
choice of R, which allows it to be stronger as well as weaker than the other models. In order to
make the definitions similar, we assume that R delivers to Ai the internal state of Mi, and the
adversary Ai may also replace any message m sent by Mi by a message m∗ of Ai’s own choice.

The relations of our protocols and functionalities with the adversaries are described as A(i),
where i is some party identifier, and A(i) corresponds to all i-related adversaries, which is
just A for UC, Ai for CP, Ac(i) for WCP, and Ai,1, . . . ,Ai,n for LUC. More details about
transformations between different adversaries can be found in App. B.

We now present an ideal functionality F0 and two of its possible realizations π1 and π2. We
see that, while for UC, CP, LUC these realizations either both realize or do not realize F0, they
are different in t-WCP model.

Let Enc(key,message) be some symmetric computationally secure encryption scheme that
is secure with respect to a uniformly distributed key.

Ideal. The ideal functionality F0 takes a secret s from a certain party Pi. If Pi is actively
corrupted, then F0 outputs s to each A(j) for j ∈ [n]. The adversary is allowed to abort the
protocol. If it does not, F0 outputs 0 to each party.

Protocol 1. Consider the protocol π1 where a (symmetric) key is generated as k =
∑
`∈I k`

where I is a set of arbitrarily chosen t parties that are supposed to generate k` from uniform
distribution. All k` are sent to the party Mi that encrypts a secret s with this key and sends
Enc(k, s) to some party Mj . If any party refuses to send its message, the protocol aborts.

Protocol 2. Consider an analogous protocol π2 which works in exactly the same way, but
where Mi itself generates one more share kt+1 of k, and sends it to all other parties.

We now compare these protocols in various models.

– UC Assuming that the total number of corrupted parties is at most t, both π1 and π2 UC-
realize F0. If Mi is corrupted, then S gets s from F0 and can simulate everything. Otherwise,
the adversary either gets only the key k (if Pj is not corrupted), or it gets Enc(k, s) and up
to all shares of k except one (if Pj is corrupted). If the number of corrupted parties is at
least t+ 1, then both protocols are insecure since all the shares of the key and the Enc(k, s)
may leak to Z.

– CP, LUC If Mi is corrupted, then the key generating parties may use their shares of k
as side channels for collaborating with A(i), and hence neither π1 nor π2 does not realize
F0. Let Mi be honest. Assuming that the total number of corrupted parties is at most t,
the functionalities π1 and π2 both realize F0. If at least one key generating party is honest,
the simulator S(j) only needs to simulate Enc(k, s) as if the key was uniform. If all the
key generating parties are corrupt, then k might not be uniform, but in this case Pj is
uncorrupted, and Sj does not have to simulate anything. If the total number of corrupted
parties is at least t+ 1, then both the k and Enc(k, s) may leak to Z, and hence π1 and π2
are both insecure, similarly to UC.

– WCP The protocol π2 does t-WCP-realize F0, but π1 does not. If Mi is corrupted, then all
SHj get s from F0, and SL gets from AL all the shares of k that SL delivers to all SHj , so
these side-channels are not taken into account by WCP. Let Mi be honest. In π1, if all the
t key generating parties are corrupted, then SHj has to simulate Enc(k, s) based on the bad
key k that no longer comes from uniform distribution and might be known by Z. Although
SL might have sent the bad key k to SHj , it still does not know s, and hence cannot simulate
Enc(k, s). In π2, the key k comes from a uniform distribution in any case, since at least one
share is generated by the uncorrupted Mi itself. The question is whether k may leak to Z if
all the key generating parties are controlled by an adversarial coalition of size t, as they also
get the final share kt+1 at some moment. We care about the simulation by SHj only if AHj is
the true adversary. In this case, the entire key generating coalition has been controlled by a
false adversary that never leaks the final share kt+1 to Z.
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An analysis of a particular multiparty computation protocol of [5] related to bad key gen-
eration is given in App. D. Another example of an attack captured by WCP model is given in
App. C.

6 Achieving t-WCP Security

We start from a protocol that is secure against t < n/2 passively corrupted parties. In this
section, we show how such a protocol can be made secure against t < n/2 actively corrupted
parties, allowing up to all the other parties to be passively corrupted (i.e “semihonest majority”
assumption).

6.1 Passively Corrupted Coalitions

First of all, we show that UC and t-WCP emulations are equivalent definitions if the UC model
allows at least t parties to be corrupt, and the adversary is passive. This shows that it does not
make sense to define a special transformation for making a protocol passively secure in t-WCP
model.

Theorem 4. Let π be a protocol that passively UC-emulates a protocol φ in presence of t cor-
rupted parties. Then π also passively t-WCP emulates φ.

The proof of Thm. 4 is based on the fact that a passive adversary will not interact with the
protocol, and so all the false adversaries do not interact with the protocol at all. The only true
adversary is handled as in the UC model. A more formal proof be found in App. A.5.

6.2 Fail-Stop Coalitions

A fail-stop adversary [11] follows the protocol as the honest parties do, but it also may force the
corrupt parties to abort the protocol. In this case, the protocol may still be secure in t-WCP
model if noone attempts to stop the protocol. However, the functionalities used to prevent the
protocol from stopping may explicitly require to leak a secret to some honest party.

As a simple example, let us take the transmission functionality Ftr that has been used
in [14,15] to prevent the protocol from aborting by pointing out the exact party that has aborted
the protocol. This helps against a fail-stop adversary that does not want to be accused in cheating.
Suppose that a party Pi should be sending a message mij to another party Pj . If Pi refuses to
send the message to Pj , then there is no way for neither party to prove whether Pi is indeed
silent, or Pj has already received mij but just accuses Pi without reason. The realization of Ftr
works on the assumption that the majority of parties follows the protocol. If there is a fail-stop
conflict between Pi and Pj , then the message should just be broadcast by Pi to all the parties,
so that they get the evidence that Pj indeed received it. Now if Pi decides to abort the protocol,
then it will be blamed by everyone. The definition of Ftr is given in Fig. 3 (the functions reshare
received message and reveal received message will be needed for stronger adversaries).

Compared to [14, 15], we need to modify the realization of Ftr in such a way that it would
be secure in t-WCP model. In the single adversary case, if there is a conflict between Pi and
Pj , then at least one of them is corrupted, and hence the adversary already knows that message
anyway. Therefore, Pi may broadcast the message to all the parties, so that they may prove or
disprove that Pi has sent the message. However, this does not work for multiple adversaries,
since some other party Pk may receive a message that Pi and Pj would exchange privately.

We propose a slight modification to the realization of the functionality Ftr given in [14]. Now
for each message bitstring mij transmitted from Pi to Pj , there is a random bit mask qmij that is
known by both Pi and Pj , but to noone else (this can be done by sharing a common randomness
between each pair of parties). In the case of conflict, Pi signs and broadcasts m′ij = mij ⊕ qmij to
all the parties, and Pj computes m′ij ⊕ qmij . Masking messages by randomness can be viewed as a
weaker version of the physical envelopes used in the construction collusion-free protocols of [9].
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Let [n] = {1, . . . , n}, where n is the number of parties. Let As = {AsH1 , . . . ,AsHn ,AsL} be the ideal
t-coalition split adversary. Let c(i) be the index of the coalition to which the party Pi belongs.
Ftr works with unique message identifiers mid, encoding a sender s(mid) ∈ [n] and a receiver r(mid) ∈
[n]. Some (n, t) threshold sharing scheme is defined.
Secure transmit: Receiving (transmit,mid,m) from Ps(mid) and (transmit,mid) from all (semi)honest
parties, store (mid,m, r(mid)), mark it as undelivered, and output (mid, |m|) to all AsHi . If the input
of Ps(mid) is invalid (or there is no input), and Pr(mid) is (semi)honest, then output (corrupt, s(mid)) to
all parties.
Secure broadcast: Receiving (broadcast,mid,m) from Ps(mid) and (broadcast,mid) from all
(semi)honest parties, store (mid,m, bc), mark it as undelivered, output (mid, |m|) to all AsHi . If the
input of Ps(mid) is invalid, output (corrupt, s(mid)) to all parties.
Synchronous delivery: At the end of each round, for each undelivered (mid,m, r) send (mid,m) to
Pr; mark (mid,m, r) as delivered. For each undelivered (mid,m, bc), send (mid,m) to each party and
all AsHi ; mark (mid,m, bc) as delivered.
Reshare received message: On input (reshare,mid) from the party Pr(mid) which at any point received
(mid,m), share m to shares mk and output (mid,mk) to the party Pk. If both Ps(mid) and Pr(mid) are
corrupt, let AsL choose an arbitrary m.
Reveal received message: On input (reveal,mid) from the party Pr(mid) which at any point received
(mid,m), output (mid,m) to each party Pk. If both Ps(mid) and Pr(mid) are corrupt, let AsL choose an
arbitrary m.

Fig. 3: Ideal functionality Ftr

Lemma 3. Assuming that the majority of parties are at least semihonest, there exists an real-
ization of Ftr that is secure in t-WCP model.

Lemma 3 is proven by construction of a certain realization of Ftr in App. E. Using this result,
we can state and prove the following theorem.

Theorem 5. Let π be a protocol where the parties use the functionality Ftr for communica-
tion. Let π passively UC-emulate a protocol φ in presence of t corrupted parties. If the majority
of parties is at most semihonest, then π also t-WCP emulates φ, assuming that the strongest
adversaries are at most fail-stop.

Proof. As long as the parties behave according to the protocol, the protocol π emulates φ by
Thm. 4. The only other thing that a fail-stop adversary may try to do is to stop the protocol.
This means that at some point there is a situation where some machine Mi refuses to send a
message to some other machine Mj . If Pk for k ∈ {i, j} is corrupted, then Ftr ensures that either
all the (honest) parties unanimously agree that Pk is corrupted, or Pi delivers the message to Pj
as intended by the original protocol. �

6.3 Covertly Corrupted Coalitions

A covert adversary [12] will not cheat if it will be caught with a non-negligible probability.
Assuming that a covert adversary will act as passive anyway, we can extend the result of fail-
stop adversaries to covert adversaries since AL will not attempt to modify the flow of π. Hence
we may be sure that, if a covert adversary will not attempt to cheat, then UC-emulation implies
t-WCP emulation.

It is more difficult to reason about fallback security, i.e what happens if the adversary does
not follow the protocol regardless of being punished. There may be still more attacks in the
t-WCP model than in the UC model, and this will be discussed in more details in Sec. 6.4.

Theorem 6. Let π be a protocol where the parties use the functionality Ftr for communication.
Let π UC-emulate a protocol φ in presence of t covertly corrupted parties. If the majority of parties
is at least semihonest, then π also t-WCP emulates φ, assuming that the strongest adversaries
are at most covert.
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Let [n] = {1, . . . , n}, where n is the number of parties. Let As = {AsH1 , . . . ,AsHn ,AsL} be the ideal
t-coalition split adversary. Let c(i) be the index of the coalition to which the party Pi belongs. By
Def. 3, let 1 be the index of the actively corrupted coalition (in this way, C(1) is the set of indices of
actively corrupted parties). Fvmpc works with session identifiers sid, where ri[sid] is the randomness of
Pi, x̄i[sid] are all the inputs of Pi committed so far, and m̄i[sid] are all the messages received by Pi so
far, and mij [sid, `] are the committed outputs of Pi to Pj (there can be several such outputs for the
same sid, representing different rounds).
Random tape generation On input (gen rnd, sid, i) from all (semi)honest parties, Fvmpc randomly
generates ri. It outputs ri to Pi and also sends (randomness, i, ri) to AsHc(i). Fvmpc treats ri as the

committed randomness for Pi’s computation. Alternatively, a message ⊥ may come from AsL, and in
this case the randomness generation fails.
Input commitment On input (commit input, sid, i,xi) from Pi and (commit input, sid, i) from all
other (semi)honest parties, Fvmpc appends xi to x̄i[sid]. For i ∈ C(1), it sends (input, i,xi) to
AsHc(i). Alternatively, a message (corrupt, j) may come from AsL with j ∈ C(1). Fvmpc defines

B0 = {j | (corrupt, j) has been sent by AsL}.
Message commitment On input (commit msg, sid, i, j, `,m) from Pi and (commit msg, (sid, `), i, j)
from all (semi)honest parties, Fvmpc stores mij [sid, `] = m. Alternatively, a message (corrupt, j) may
come from AsL with j ∈ C(1). Fvmpc defines B0 = {j | (corrupt, j) has been sent by AsL}.
Verification On input (verify, sid, C, i, j, `) from all (semi)honest parties, where C is the description of
circuit that corresponds to the computation of a message for Pj by Pi, Fvmpc checks if mij [sid, `] and all
the values x̄i[sid], ri[sid], m̄i[sid] necessary for computing C(x̄i[sid], ri[sid], m̄i[sid]) are committed. If
they are, Fvmpc computes m′

ij = C(x̄i[sid], ri[sid], m̄i[sid]). If m′
ij = mij [sid, `], then Fvmpc outputs

(approved, sid, C, i, j, `,mij [sid, `]) to Pj and (approved, sid, C, i, j) to all other parties. It appends mij to
m̄j [sid] and outputs mij to AsHc(j). If j ∈ C(1), then Fvmpc appends m′

ij to m̄j [sid] even if m′
ij 6= mij .

In any case, it outputs C to each adversary AH
k .

Fvmpc defines M = B0 ∪ {i ∈ [n] | ∃j : m′
ij 6= mij [sid, `]}. For all i /∈ C(1), AsL sends (blame, i,Bi) to

Fvmpc, with M⊆ Bi ⊆ C. Fvmpc outputs (blame, sid, `,Bi) to Pi.

Fig. 4: The ideal functionality for verifiable computations

Proof. As long as the parties behave according to the protocol, the protocol π emulates φ by
Thm. 4. In the attempts to stop the protocol, π emulates φ by Thm. 6. Since the protocol is
secure against covert adversaries, all the attempts to cheat in any other way will be detected,
and hence the adversary will just not try cheat in any other way, so we do not need to check if
π still emulates φ in any active attacks. �

6.4 Actively Corrupted Coalitions

For constructing a multiparty protocol secure against active adversaries, we follow the general
pattern used in other related works [16, 17]. In this approach, the protocol is constructed in
several steps. Initially, there is a multiparty protocol secure only against a passive adversary. In
order to make it secure against an active adversary, on each round, each party needs to provide
a zero-knowledge proof that it has followed the protocol rules.

Our protocol transformation is similar to the transformation Comp of [18] (the full version
of [17]). We present a functionality Fvmpc that can be viewed as a set of ideal functionalities
called by Comp on different steps. It is given in Fig. 4.

In App. F, we give a protocol that t-WCP realizes Fvmpc. Since our implementation relies
on Byzantine agreement, it works under (semi)honest majority assumption. We use Fvmpc to
construct a protocol transformation WCP-Comp that is analogous to Comp. It is given in Fig. 5.

Having access to WCP-Comp, we may prove the following theorem.

Theorem 7. Let π be a protocol that passively UC-emulates a protocol φ in presence of t
corrupted parties. Assuming that the majority of parties is at least semihonest, the protocol
WCP-Comp(π) t-WCP emulates φ in presence of a coalition of t active adversaries.

Proof. We prove that the protocol WCP-Comp(π) indeed t-WCP emulates φ in presence of t
active adversaries.
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Let xi be the vector of inputs of the party Pi in the protocol π. Let ri be the randomness used by Pi.

1. Random tape generation. When activating WCP-Comp(π) for the first time with session identifier
sid, all (semi)honest parties send (gen rnd, sid, i) to Fvmpc for all i ∈ [n].

2. Activation due to new input. When activated with input (sid,xi), party Pi proceeds as follows.

(a) Input commitment: At any moment when a party Pi should commit an input, all the
(semi)honest parties send (commit input, sid, i) to Fvmpc. Pi sends (commit input, sid, i,xi) to
Fvmpc and adds xi to the list of inputs x̄i (this list is initially empty and contains Pi’s inputs
from the previous activations of π). Pi then proceeds to the next step.

(b) Protocol computation: Let m̄i be the series of messages that were transmitted to Pi in all the
activations of π until now (m̄i is initially empty). Pi runs the code of π on its input list x̄i,
messages m̄i, and random tape ri. If π instructs Pi to transmit a message, Pi proceeds to the
next step.

(c) Outgoing message transmission: Let m`
ij be the outgoing message that Pi sends in π to Pj on `-th

round. As soon as the `-th round starts, all the (semi)honest parties send (commit msg, sid, i, j, `)
to Fvmpc for all i, j ∈ [n]. Pi sends (commit msg, sid, i, j, `,m`

ij) to Fvmpc.

3. Activation due to incoming message Let C`
ij be the description of the arithmetic circuit representing

the computation of Pi on the `-th round that finally outputs m`
ij to Pj . As soon as each party has

finished with its computation of the `-th round, it sends (verify, sid, C`
ij , i, j, `) to Fvmpc. Upon receiv-

ing a message (approved, sid, C`
ij , i, j, `,m

`
ij) from Fvmpc, Pj appends m`

ij to m̄j and proceed with
the Step 2b above. All the other (semi)honest parties wait for the message (approved, sid, C`

ij , i, j, `)
from Fvmpc to proceed with the Step 2b.
In addition, Fvmpc outputs a message (blame, sid, `,Bi) to each (semi)honest Bi. The way in which
(semi)honest parties handle the set Bi depends on the particular protocol π.

4. Output: Whenever π generates an output value, WCP-Comp(π) generates the same output value.

Fig. 5: The compiled protocol WCP-Comp(π)

As far as all the messages are generated according to the rules, the protocol is secure by
Thm. 4. We need to show that no other information will be leaked due to verification procedures.
By definition, for all i ∈ [n], Fvmpc stores all the inputs xi, the randomness ri, and all the
communication mi received by Pi. Fvmpc does not output any message m`

ij to the party Pj
unless it has indeed been computed by the protocol rules defined by the circuit C`ij .

As the side-effect, Fvmpc only outputs to AsHc(i) the inputs xi, the randomness ri, and the

messages m`
ji generated for Pi according to the protocol rules. All these messages would be sent

by a corrupted party to AsHc(i) also in the protocol π. �

7 Conclusions

We have defined an alternative version of UC that is motivated by real world applications and
allows to prove that the protocol is protected also against honest users. It helps to avoid some
attacks that are not covered by the standard UC definition and makes the protocol reliable not
on some participants’ unconditional honestness, but rather on their non-collusion which seems
a more realistic assumption. Compared to the other similar models, the security defined in our
model is weaker and thus easier to achieve. The definition is nevertheless stronger than the
standard UC security definition, and hence we do not lose in security using this new model.

We have proposed some schemes transforming passively secure protocols with one adversary
up to actively secure protocols with semihonest majority and multiple adversaries. While CP
and LUC models require a special mediator party to eliminate any subliminal channels that is
essential for achieving their definitions, in our model it is sufficient to eliminate only the non-
deliberate subliminal channels that could be accidentally used by the parties that follow the
protocol. However, we note that we made some additional assumptions when defining transfor-
mations for actively secure protocols. Although our proposed protocols are obviously insecure in
CP and LUC models due to missing coalition splitting, we think that also CP and LUC models
would benefit from making some assumptions about the behaviour of semihonest parties.
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Fig. 6: t-dummy lemma
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A Proofs

A.1 Proof of t-Dummy Lemma

One proof direction is trivial since a t-dummy adversary is just an instance of a t-coalition split
adversary. The other direction is more interesting. Let S be the split simulator for any k-dummy
adversary Dk guaranteed by Def. 5 (that is, S satisfies EXECφ,(S‖Dk),Z′ ≈ EXECπ,Dk,Z′ for
all Z ′.) We show that π t-WCP emulates φ according to Def. 5. We claim that S is a suitable
simulator for an arbitrary t-coalition split adversary A.

Assume by contradiction that S is a bad simulator, and there is a t-coalition split adversary A
(let AHk be the true one) and an environment Z such that |EXECφ,(S‖A),Z −EXECπ,A,Z | ≥ ε.
We use it to construct Z ′ that breaks EXECφ,(S‖Dk),Z′ ≈ EXECπ,Dk,Z′ . First, we define
Z ′ = (A‖Z). Since Z ′ drops all the inputs coming to false AHi anyway, and DHi have no other
outputs, we could as well put Dk between the protocol and Z ′, getting |EXECφ,(S‖Dk),Z′ −
EXECπ,Dk,Z′ | ≥ ε.
The quantities used in the proof are depicted on Fig. 6.

A.2 Proof of WCP Composition Theorem

We take the simpler proof variant of UC composition theorem of [2] that proves the claim for
one instance of φ and then extends it to polynomially many calls of φ by induction (taking into
account that simulation quality is lost). We could base the proof on t-dummy lemma and make
it similar to the proofs of UC,CP,LUC compositions, but since we do not want our proofs to be
too dependent on each other, we present an alternative proof here.

Consider the protocol ρ that uses φ once as subroutine. We need to prove that there exists
a split simulator S = {SH1 , . . . , SHn , SL} such that, for any t-coalition split adversary A =
{AH1 , . . . ,AHn ,AL} and any environment Z we have EXECρ[φ→π],A,Z ≈ EXECρ,(S‖A),Z .
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Fig. 7: WCP composition theorem

Since π t-WCP-emulates φ, there exists S′ = {S′H1 , . . . , S′Hn , S′L} such that for any t-coalition
split adversary A′ and any environment Z ′ we have EXECπ,A′,Z′ ≈ EXECφ,(S′‖A′),Z′ . We
define the simulator S = {SH1 , . . . , SHn , SL} for the protocol ρ[φ 7→ π] in such a way that SHi acts
as S′Hi when receiving messages from φ, and SL acts as S′L when receiving messages for φ from
AL, and just forwarding all the other messages. We want to show that S is a suitable simulator
for ρ[φ→ π].

Assume by contradiction that S is not suitable. That is, there exist an adversary A and an
environment Z such that |EXECρ[φ→π],A,Z − EXECρ,(S‖A),Z | ≥ ε. We can use these A and
Z to construct A′ and Z ′ to break EXECπ,A′,Z′ ≈ EXECφ,(S′‖A′),Z′ . First, we construct A′Hi
from AHi :

– The adversary AHi cannot see ρ and Z together as a larger environment Z ′ since the messages
of ρ are received by AHi , while the messages of Z are received by AL. Our construction of
Z ′ thus has to be enhanced by some kind of forwarding functionality D forwarding messages
from AHi to AL. Otherwise, let us take A′Hi = AHi .

– Since AL gets its inputs only from Z, we may create two copies of AL, leaving one connected
to ρ and Z only, and the other one to π and Z only. In order to ensure that Z sends the
same data to both copies, we will again put a forwarding functionality D between Z and
the two copies of AL. Let A′L be exactly the same as AL, except that it does not output
anything to ρ.

Now we define ρ, Z, AL, and all the necessary forwarding functionalities D together as a new
environment Z ′. We get that |EXECπ,A′,Z′ − EXECφ,(S′‖A′),Z′ | ≥ ε, which is a contradiction
with the assumption that π t-WCP emulates φ. �

The quantities used in the proof are depicted on Fig. 7.
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Fig. 8: WCP emulation implies UC emulation

A.3 WCP emulation implies UC emulation

Suppose that π t-WCP emulates φ. Let {SH1 , . . . , SHn , SL} be the set of simulators that exists
due to t-WCP emulation. We show that S = (SH1 , S

L) is a suitable simulator for the UC security.
Assume by contradiction that there exist A and Z such that |EXECπ,A,Z−EXECφ,(S1‖A),Z | ≥
ε. Let � be a black hole ITM that just consumes all the inputs and does not output anything.
If we take S = {SH1 , (SH2 ‖�), . . . , (SHn ‖�), SL} (where SHi for i 6= 1 can be connected to φ since
all their output will be lost in � anyway), then still |EXECπ,A,Z − EXECφ,(S‖A),Z | ≥ ε since
all (SHj ‖�) for j 6= 1 are isolated from A.

We now define A′ = {A′H1 , . . . ,A′Hn ,A′L} where A′H1 = A, and A′Hj = � for j 6= 1. The only

difference between A and AH1 is that AH1 receives inputs only from π and sends outputs only to
Z. Hence we extend Z to a new environment Z ′ by adding an ITM D that forwards messages
from AH1 to AL, and define AL to be a functionality that just forwards messages coming from Z
to AH1 or π (we may assume that these messages are labelled, so AL can distinguish these two
types). Since � does not output anything, we may connect (SHj ‖�) directly to A′Hj = � without
changing anything, getting |EXECπ,A′,Z′ − EXECφ,(S‖A′),Z′ | ≥ ε.

Simple counterexamples of the other implication direction are given in Sec. 5. �
The quantities used in the proof are depicted on Fig. 8.

A.4 CP emulation implies WCP emulation

The CP emulation gives a simulator S′ = {S′1, . . . , S′n} such that, for any Z and for the any set
of adversaries {A1, . . . ,An}, EXECπ,A,Z ≈ EXECφ,(S‖A),Z .

Let C = {C(1), . . . , C(n)} be the set of coalitions. Take SHj = {S′i | i ∈ C(j)} for all C(j) ∈
C.

Suppose that this choice of S is not good, and we have found A = {AH1 , . . . ,AHn ,AL} and
Z that can break t-WCP, i.e |EXECπ,A,Z − EXECφ,(S‖A),Z | ≥ ε. Let a CP adversary A′ be
defined as A′i = AHj for all i ∈ C(j). Let Z ′ contain a forwarding functionality D that allows all
the adversaries A′i for i ∈ [n] to communicate with each other. We show that A′ and Z ′ may be
used to break CP.
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Fig. 9: CP emulation implies WCP emulation

– Since SL is allowed to deliver everything to SHj , SHj is as powerful as S′j and hence all

{S′i | i ∈ C(j)}. The distribution on the ports exiting SHj and entering AHj is the same as
the distribution of ports exiting S′i and entering A′i for i ∈ C(j) in the CP model.

– Although SL is not allowed to get anything from SHj , since φ is one-time input, SL should

provide inputs to φ before anything is output by φ to SHj , and hence SHj would not tell SL

anything useful anyway, so SL is able to simulate the behaviour of all S′i for i ∈ [n].

Since A′i may choose to behave in exactly the same way as AHi and AL did (this is possible since
Z ′ enables communication of colluding parties), and Z ′ as Z did, then, since S produces exactly
the same outputs as S′ would, we have |EXECπ,A′,Z′ ≈ EXECφ,(S′‖A′),Z′ | ≥ ε.

Simple counterexamples of the other implication direction are given in Sec. 5. �
The quantities used in the proof are depicted on Fig. 9.

A.5 Proof that UC is Equivalent to WCP in Passive Adversary Case

Let A be the adversary of the UC model. Let S′ be the simulator that translates the messages
between A and φ to simulate π. We show that a suitable choice for S = {SH1 , . . . , SHn , SL} for
t-WCP emulation is just taking SL = SHi = S′ for all i.
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Fig. 10: UC ≈ WCP for a passive adversary

Suppose that S is a bad choice and there exist A = {AH1 , . . . ,AHn ,AL} and Z such that
|EXECπ,A,Z ≈ EXECφ,(S‖A),Z | ≥ ε. Let AHi be the true adversary.

We show that A′ = {AHi , (SHj ‖AHj )j∈[n]\i, (S
L‖AL)} and Z ′ = Z will break UC security.

Since the adversary is passive, π and φ do not expect any inputs from it anyway, and so there
is no difference whether we connect SL with the protocol or not. For the false adversaries SHj ,

there is no difference whether SHj is connected to the protocol or not since AHj drops all inputs

coming from SHj anyway. We get |EXECπ,A′,Z′ − EXECφ,(S′‖A′),Z′ | ≥ ε. �
The quantities used in the proof are depicted on Fig. 10, where � (a black rectangle of various

shapes) denotes ITMs that do not input/output anything, and they are used to substitute missing
ports which formally cannot just be removed.

B Transformations between Functionalities in WCP and UC, CP,
LUC

In this section we formally define how an ideal functionality FWCP defined in WCP model can
be mapped to/from the corresponding functionality FUC , FCP , FLUC . We use the notation ↓XY
for the transformation from a functionality of model X to the functionality of model Y.
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B.1 WCP and UC

The transformations between WCP and UC are similar to the merger and splitter transformations
between UC and LUC defined in [4]. We assume that there is a mapping c(·) such that C =
c(i) is the set of all party indices that belong to the same coalition to which i belongs. Let
{AH1 , . . . ,AHn ,AL} be the t-coalition split adversary.

Definition 8 (WCP to UC). Let FWCP be a functionality in the WCP model. The function-
ality FUC =↓WCP

UC (FWCP ) behaves the same as FWCP with the following differences in the
interface:

1. Upon receiving an input (in) from the external adversary A, FUC behaves as FWCP would
upon receiving input (in) from the adversary AL.

2. Whenever FWCP generates an output (out) to the adversary AHk , FUC gives (out, k) to the
external adversary A.

Definition 9 (UC to WCP). Let FUC be a functionality in the UC model. The functionality
FWCP =↓UCWCP (FUC) behaves the same as FUC with the following differences in the interface:

1. Upon receiving an input (in) from the external adversary AL, FWCP behaves as FUC upon
receiving input (in) from A.

2. Whenever FUC generates an output (out) to A, FWCP gives (out) to all external adversaries
AH1 , . . . ,AHn .

B.2 WCP and LUC

Since LUC contains more adversaries than WCP, the transformations are still related to splitting
and merging. The idea is to first merge all the adversaries Ai,j into one adversary Ai, since Ai,j
models the communication between Pi and Pj as seen by Pi. These adversaries are in turn
merged into coalitions.

Definition 10 (LUC to WCP). Let FLUC be a functionality in the LUC model. The func-
tionality FWCP =↓LUCWCP (FLUC) behaves the same as FLUC with the following differences in
the interface:

1. Upon receiving an input (in, (i, j)) from the external adversary AL, FWCP behaves as FLUC
would upon receiving input (in) from the adversary Ai,j.

2. Whenever FLUC generates an output (out) to the adversary Ai,j, FWCP gives (out, (i, j))
to the external adversary AHc(i).

Definition 11 (WCP to LUC). Let FWCP be a functionality in the WCP model. The func-
tionality FLUC =↓WCP

LUC (FWCP ) behaves the same as FUC with the following differences in the
interface:

1. Upon receiving an input (in) from some external adversary Ai,j, FLUC behaves as FWCP

upon receiving input (in) from AL.
2. Whenever FWCP generates output (out) to AHk , FLUC gives (out) to the external adversaries
Ai,j (∀ i ∈ C(k), j ∈ [n], j 6= i).

3. Upon receiving input (Deliver,m, (`, k)) from some external adversary Ai,j, FLUC outputs
(Delivered,m, (i, j) to A`,k.

B.3 WCP and CP

If each party is corrupted by its own adversary, then the definitions of FCP and FWCP are
exactly the same, and all the difference between CP and WCP is now coming from different
adversary definitions. In general, some of the adversaries in WCP model can be merged into
coalitions, and that is what where merger and splitter functionalities make the difference.

19



Definition 12 (CP to WCP). Let FCP be a functionality in the CP model. The functionality
FWCP =↓CPWCP (FCP ) behaves the same as FCP with the following differences in the interface:

1. Upon receiving an input (in, i) from the external adversary AL, FWCP behaves as FCP
would upon receiving input (in) from the adversary Ai.

2. Whenever FCP generates an output (out) to the adversary Ai, FWCP gives (out) to the
external adversary AHc(i).

Definition 13 (WCP to CP). Let FWCP be a functionality in the WCP model. The func-
tionality FCP =↓WCP

CP (FWCP ) behaves the same as FWCP with the following differences in the
interface:

1. Upon receiving an input (in) from some external adversary Ai, FCP behaves as FWCP upon
receiving input in from AL.

2. Whenever FWCP generates output (out) to AHk , FCP gives (out) to all the external adver-
saries Aj such that j ∈ C(k).

C WCP Applicability: Bad Sharing

This attack is somewhat similar to the bad key attack of Sec. 5. However, now the shared value
itself remains the same, but it will be shared in such a bad way, so that a subset of parties
smaller than the official threshold will be able to reconstruct the secret. This attack would be
more interesting if there were several larger adversarial coalitions. We present its particular case
where a secret gets leaked entirely to some other party.

Ideal. We take the same ideal functionality F0 of Sec. 5.
Protocol 1. In the protocol π1, a subset I of t parties and a subset J of (t+ 1) parties (i /∈ I,

I ∩J = ∅) are fixed. First, each Mj for j ∈ I sends a share sj to Mi. Mi just generates the last
(t+ 1)-th share in such a way that the result would be s, and distributes these shares amongst
the (t+ 1) parties of J . If any party refuses to send its message, the protocol aborts.

Protocol 2. The protocol π2 is analogous to π1 with the only difference that this time Mi

generates all the shares ({s`| ` ∈ I} by itself from uniform distribution.

– UC Assuming that the total number of corrupted parties is at most t, both π1 and π2 UC-
realize F0. If Mi is corrupted, then S gets s from F0 and can simulate everything. Otherwise,
the adversary may get up to t shares of s. If the number of corrupted parties is at least t+ 1,
then both protocols are insecure since all the shares may leak.

– WCP The protocol π2 does t-WCP-realize F1, but π1 does not. In π1, the adversary may
set up to t shares to a value 0, so that the remaining share will be exactly the secret s that
now leaks to some honest party that has not known s yet. At the same time, in π2 an honest
Mi generates all the shares from uniform distribution, and each simulator needs to simulate
at most t shares that are distributed uniformly.

– CP, LUC Both π1 and π2 realize F1 with at most t parties. Similarly to t-WCP, in π1 the
adversary A(i) may use the bad sharing as a subliminal channel to leak s to some other party,
but if A(i) falsifies some k shares, there are at most t − k corrupted parties left to receive
the other shares, and hence t corruptions are not sufficient for the attack. If the number of
parties is at least (t+1), then both π1 and π2 are insecure since even if no shares are falsified,
in both protocols it may happen that the t+ 1 corrupted parties hold all the (t+ 1) shares
of s.

D The Analysis of a Multiparty Computation Protocol in WCP
Model

In this section we analyze the multiparty computation protocol of [5]. This is a 3-party protocol
with one malicious party, where the parties P1, P2, P3 compute some function f on inputs x1, x2,
x∗3. A high-level description of the protocol is the following. The party P3 shares its input as x∗3 =
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x3⊕x4, and sends x3 to P1 and x4 to P2. The parties P1 and P2 agree on a common randomness
r. They use it to construct a garbled circuit F that computes f ′(x1, x2, x3, x4) = f(x1, x2, x

∗
3),

and to garble the inputs x1, x2, x3, x4 to X1, X2, X3, X4. The parties send (F,X1, X2, X3, X4)
to P3 who evaluates the circuit. As far as P3 does not know r, it cannot infer x1 and x2 from
X1 and X2.

The authors of [5] mention that the security would be indeed broken if a malicious P1 sends
r to P3, allowing it to extract x2 from X2. This attack is not covered by UC, and indeed we may
assume that an honest P3 will not communicate with P1 using any side-channels. That attack
would also not be noticed by 1-WCP due to the use of side-channels. However, depending on
how r is generated, P1 may perform this attack quietly, without using any side-channels.

Suppose that r is generated by P1 alone, and P1 just delivers this r to P2. In UC model,
P1 has no reason to choose a bad r since it does not help P1 to gain any information anyway.
Moreover, a bad r may leak P1’s own secret. However, P1 may still sacrifice its own input secrecy
and intentionally choose an r that produces low-entropy garbled inputs X1 and X2. If we look
at the view of P3 (that is not covered by UC if P1 is corrupted), we see that it contains x2 which
is not supposed to be there.

This attack is detected in 1-WCP model. Let P1 be corrupted by an active AH1 , and P3

corrupted by a passive AH3 . Suppose that AH3 is the true adversary that just forwards all its data
to Z. At some moment, AL chooses a bad randomness r that will be delivered to M2 that uses
it to produce a low-entropy X2. Let Z be the environment expecting that, in the real protocol
execution, the view of AH3 will contain the X2 which is related to x2 in a certain way defined by
the choice of r. This means that SH3 has to simulate X2 that is indeed related to x2, but it does
not know x2 by default. Since the ideal functionality just computes f(x1, x2, x

∗
3) and outputs

just x1 to AH1 and x∗3 to AH2 , there is no way for SH3 to simulate x2.
At the same time, if we assume that P1 and P2 mutually generate a good randomness r

running some secure protocol, then AH1 still knows the values r, F (r), X1(r), and X3(r), but
it does not generate r itself. The simulator SH3 should simulate the same values. Since SH1 and
SH3 are not allowed to communicate, SH3 generates r′ from the same distribution as r, and
then computes itself F (r′), X1(r′), X2(r′), X3(r′), and X4(r′). Although in general r 6= r′, the
definition of WCP ensures that only one of the views of AH1 or AH3 reaches the environment, but
not both, and this inconsistency will not be noticed by Z.

E The implementation of Ftr for WCP Model

We give a protocol that t-WCP realizes the communication functionality Ftr given in Sec. 6.2.
Compared to [14, 15, 20], our implementation of Ftr ensures that the message that moves from
Mi to Mj will not be seen by any Mk that colludes neither with Mi nor Mj . The modification
includes a preprocessing phase that just generates a sufficient number of random masks and
shares them amongst the n parties using any (n, t+ 1) threshold sharing.

E.1 Real Functionality

Similarly to [14, 15, 20], we let the implementation πtransmit of the message transmission func-
tionality, consisting of machines M1, . . . ,Mn and a public key infrastructure, to have a “cheap
mode” (which does not prevent the protocol from stopping), and the “expensive mode” for fall-
back. The “cheap mode” is the same as in [14,15,20]. The difference is that, taking into account
multiple adversaries, it is not possible to later prove the authenticity of the messages sent in the
“cheap mode” without leaking them to an honest party, and hence this mode is sufficient only
for a covert adversary. In “expensive mode”, πtransmit works as follows.

– On input (preprocess,mid), the machines Ms(mid), Mr(mid) generate a random element
q(mid) by sending (mrnd,mid) to Fpre that generates random elements q1 and q2. All the
parties Mk get from Fpre two shares qk1 (mid) and qk2 (mid), while Ms(mid) and Mr(mid) get

all the shares qk1 (mid) and qk2 (mid) for all k ∈ [n]. The machines Ms(mid) and Mr(mid) take
q(mid) = q1(mid) + q2(mid).
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– On input (broadcast,mid,m) the machine Ms(mid) signs (mid,m) to obtain signature σs and
sends (mid,m, σs) to each other machine.

– On input (broadcast,mid) each (uncorrupted) machine Mi waits for one round and then
expects a message (mid,m, σs) from Ms(mid), where σs is a valid signature from Ps(mid) on
(mid,m). If no message arrives or the signature is invalid, it signs and sends (corrupt, s(mid))
to each other machine. Otherwise, it forwards the message (m,mid, σs) to each other ma-
chine. If any machine receives (mid,m, σs) and (mid,m′, σ′s) form 6= m′, it sends (mid,m,m′, σs, σ

′
s)

to each other machine. If indeed m 6= m′ and the signatures are valid, the uncorrupted ma-
chine Mi receiving them outputs (corrupt, s(mid)) to Pi. But if Mi receives only messages
(mid,m, σs) with valid σs and no message (mid,m′, σ′s) with m 6= m′ and valid σ′s, then it
outputs (mid,m) to Pi.

– On input (transmit,mid,m) the machine Ms(mid)takes m′ = m⊕ q(mid), signs (mid,m′) to
obtain signature σs and sends (mid,m′, σs) to each other machine.

– On input (transmit,mid), the machines act in exactly the same way as on input (broadcast,mid).
Let m′ be the broadcast value. The machine Mr(mid) additionally computes m = m′⊕q(mid)
and outputs (mid,m) to Pr(mid).

– On input (commit,mid), we assume that the message (mid,m′) has been transmitted from
s(mid) to r(mid), and m′ = m⊕q(mid) broadcast to each party. We present an implementa-
tion for the particular case where ⊕ is not a general masking operation, but a more concrete
addition operation in a finite field F, and m, q(mid), m′ are all some elements of F. Each
machine Mk computes the shares mk

1 = m′ − qk1 and mk
2 = m′ − qk2 , obtaining the shares

(mk
1 ,m

k
2) of m.

Similarly to [14], it can be easily shown that this is a UC secure implementation under the
restrictions that the inputs of honest parties are synchronized (this is ensured by the embedding
protocol), and that even the messages of corrupted parties are delivered, and that their signatures
are valid. We ensure correct delivery in exactly the same way as Damg̊ard et al. [14]. We prove
that our implementation is secure in the WCP model defined in Sec. 4.

E.2 Simulator for πtransmit

We have to show that there exists a simulator that can translate the between the messages
the ideal functionality Ftr exchanges with the ideal adversary, and the messages the protocol
πtransmit exchanges with the real adversary over the network. We present the work of the simu-
lator S = {SH1 , . . . , SHn , SL} for the t-coalition split adversary A = {AH1 , . . . ,AHn ,AL}. Let c(i)
be the index of the coalition that corrupts the machine Mi.

– On input (preprocess,mid), S first simulates Fpre, and then simulates the transmission of old
Ftr of [15]. At this point, AHc(s(mid)) and AHc(r(mid)) get all the shares of q1(mid) and q2(mid).

Each other AHc(k) holds at most t shares qk1 (mid) and qk2 (mid).

– On input (broadcast,mid,m), first of all SHc(s(mid)) simulates the broadcast to AHc(s(mid)). All

the other simulators are waiting. On the first step, if s(mid) ∈ C(1), and AL decides that
no (semi)honest party receives a properly signed value mk, then SL sends (corrupt, s(mid))
to Ftr. Otherwise, SHc(s(mid)) presents complaints from all the (semi)honest parties (SL also

knows which parties should complain), and if AL adds a sufficient number of complaints
from the malicious parties (so that there are at least t+ 1 complaints in total), then SL also
sends (corrupt, s(mid)) to Ftr. Otherwise, there are no sufficient votes against s(mid), and
hence the broadcast proceeds further. Now m′k for the next round are chosen, and again AL
chooses m′k for the malicious parties. Now SL checks if there exists a signed m′k 6= mk that
AL has planned for at least one (semi)honest Mk. If it is so, then SL sends (corrupt, s(mid))
to Ftr and SHc(s(mid)) simulates the same to AHc(s(mid)). Otherwise, all m′k and mk are equal

to the same value m, and each (semi)honest party has now received at least one instance of
m that was received on the first round by some (semi)honest party, and hence the views of
all (semi)honest parties are now consistent. If s(mid) ∈ C(1), then SL sends m to Ftr.
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All the other simulators SHi for i 6= c(s(mid)) have now received all possibly malicious mk

and m′k from SL, and also the message m that was finally broadcast by Ftr, so they can
simulate the entire broadcast in the same way as SHc(s(mid)) did.

– On input (transmit,mid,m) the machineMs(mid) computesm′ = m⊕q(mid), and S simulates
the broadcast of m′. Similarly to the broadcast case, SHc(s(mid)) first simulates the broadcast

to AHc(s(mid)), and SL either sends (corrupt, s(mid)) to Ftr or finds out that the same value

m′ has been accepted by all (semi)honest parties in the real functionality. Now the problem
is that, if s(mid) acts honestly, then SL does not necessarily see m′ at all, and this time m′

cannot be broadcast using the ideal functionality Ftr since it accepts only (transmit,mid,m)
or (corrupt, s(mid)) on the current step. The only simulators that get m′ are SHc(s(mid)) and

SHc(r(mid)), and each other SHi has to generate m′ by itself. Since all coalitions are of size

at most t, and no other adversary except AHc(s(mid)) and AHc(r(mid)) knows q(mid), the other

simulators may just generate a random value m′ assuming that this is m⊕ q(mid).
– On input (commit,mid), SHi computes mk

1 = m′ − qk1 and mk
2 = m′ − qk2 for k ∈ C(i).

The problem is that, if s(mid), r(mid) /∈ C(i), then SHi has generated its own random m′

during simulation of transmit. Assuming that no coalition that does not include s(mid) or
r(mid) has got any additional information about q(mid) so far, m′ still comes from the same
distribution as m ⊕ q(mid) for the view Z. Since each simulator other than SHc(s(mid)) and

SHc(r(mid)) has generated up to t random shares (mk
1 ,m

k
2) of m, only one adversary will output

the shares to Z, and there is no way for (mk
1 ,m

k
2) to get to Z through the protocol for false

adversaries, Z does not notice any inconsistencies.

F Verification functionality for WCP model

In F.1 we present the protocol πvmpc that t-WCP realizes the functionality Fvmpc defined in
Sec. 6.4 (Fig. 4). The implementation tightly follows [15], with a slight modification that makes
the protocol secure in t-WCP model. We prove in F.2 that it is indeed so.

In our proofs, we assume that the computation takes place over an arithmetic circuit C`ij
over a finite field F. Although [15] allows verification of circuits over several rings Zn1 , . . . ,ZnK

,
we will have some problems with the WCP security on the last steps of verification, where a
malicious prover is able to leak some information about his secret using a low-level channel
only, without actually knowing these secret values. The problem of rings is that a product of a
constant and a uniformly distributed value is not necessarily distributed uniformly.

F.1 The Protocol

The protocol πvmpc implementing Fvmpc consists of n machines M1, . . . ,Mn doing the work of
parties P1, . . . , Pn, and the functionalities Ftr of Sec. 6.2 and Fpre of App. G (the existence of
t-WCP implementations of Fpre and Ftr are proven in App. G and App. E). The internal state
of each Mi contains a bit-vector mlci of length n where Mi marks which other parties are acting
maliciously. The goal of the prover is to prove its honestness to all the other parties that act as
verifiers.

Randomness generation On input (gen rnd, sid, i), the machines need to generate ran-
domness ri for the party Pi. For this, they send (rnd, (sid, i)) to Fpre. As the result, ri is shared
to (rk1i, r

k
2i)k∈[n], where ri = declassify((rk1i)k∈[n]) +declassify((rk2i)k∈[n]), and the share (rk1i, r

k
2i)

is issued to Mk.
In addition, the machines send (prec, (sid, i)) to Fpre to generate a sufficient number of

multiplication triples that will be needed in the verification. Each machine Mk gets the share
(sk1i, s

k
2i) of the vector of triples si = declassify((sk1i)k∈[n]) + declassify((sk2i)k∈[n]).

If ⊥ comes from Fpre, the preprocessing fails, and each machine outputs ⊥.
If (corrupt, j) comes from Fpre, each Mk writes mlck[j] := 1 and goes to the accusation phase.
Input commitment On input (commit input, sid, i,xi), the machine Mi sends the message

(commit, (sid, i),xi) to Fpre to commit xi as shares xki = (xk1i,x
k
2i), where xi = declassify((xk1i)k∈[n])+

declassify((xk2i)k∈[n]).
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Public values: The prover Mi constructs the vector ŝi containing the values that have to be published,
as in [15]. Mi sends (broadcast, (public, i), ŝi) to Ftr.
Local computation: After receiving all the messages ((public, i), ŝi) from Ftr, each verifying party Mk

now holds the shares p`k
1ij = (1k‖v`k

1ij‖sk
1i) and p`k

2ij = (0k‖v`k
2ij‖sk

2i), so p`k
1ij +p`k

2ij = p`k
ij = (1k‖v`k

ij ‖sk
i ).

Each party Mk computes and publishes A`
ijp

`k
1ij and A`

ijp
`k
2ij . Everyone computes the shares d`k

ij =

A`
ijp

`k
1ij +A`

ijp
`k
2ij and checks if declassify(d`k

ij ) = 0.
Complaints and final verification: The prover Mi knows how a correct verification should proceed
and, hence, it may compute the values A`

ijp
`k
1ij and A`

ijp
`k
2ij itself. If some of them is wrong, Mi may

argue and open one of the p`k
1ij and p`k

2ij , for which the computation was wrong. All the honest parties
may now repeat the computation on these shares and compare the result. If Mk was guilty, then Mi is
allowed to commit its own A`

ijp
`k
bij also for the remaining p`k

bij that was not opened. If the shares d`k
ij

finally correspond to 0, then the proof of Mi for C`
ij is accepted. Otherwise, each honest party Mh now

immediately sets mlch[i] := 1.

Fig. 11: Verification phase of the real functionality

If (corrupt, j) comes from Fpre, each Mk writes mlck[j] := 1 and goes to the accusation phase.

Message commitment. On input (commit msg, sid, i, j, `,m`
ij) the machine Mi sends

the message (mcommit, (sid, i, j, `),m`
ij) to Fpre. As the result, m`

ij is now shared as m`k
ij =

(m`k
1ij ,m

`k
2ij), where m`

ij = declassify((m`k
1ij)k∈[n]) + declassify((m`k

2ij)k∈[n]), and m`
ij may at be

at some moment opened to Mj .

If (corrupt, j) comes from Fpre, each Mk writes mlck[j] := 1 and goes to the accusation phase.

Verification. On input (verify, C`ij , i, j, `,m
`
ij), the machines need to verify if m`

ij is a valid

output of the circuit C`ij . Let v`ij = (x̄i‖ri‖m̄i) be the vector of inputs and outputs to the circuit

C`ij that Mi uses to compute the `-th message to Mj , where x̄i and m̄i are all the inputs and

messages received by Mi that have been committed so far. At this point, Mi has shared v`ij
among all n parties. Let v`kij = (v`k1ij ,v

`k
2ij) be the share of v`ij given to machine Mk.

Now the actual verification starts. An overview of this phase is given in Fig. 11.

Public values: The prover Mi publishes certain values ŝi that allow the verifiers to repeat
the computation of the circuit locally on shares. This is done using the broadcast functionality
of Ftr. The details of construction of ŝi can be seen in [15], and they are computed locally by
Mi. If the circuits are defined over F, then ŝi consists of the values x′ = x− rx and y′ = y − ry
revealed for the multiplication triple (rx, ry, rxy) so that x · y = x′ry + y′rx + x′y′+ rxy could be
computed locally on shares. This is sufficient to make any computation linear.

If (corrupt, j) comes from Ftr, each Mk writes mlck[j] := 1 and goes to the accusation phase.

Local computation: After all the values are committed and published, the verifiers continue
with local computation. Their goal is to verify if declassify(A`ijp

`k
ij )k∈[n] = 0, where A`ij =

A(C`ij , ŝi) is a matrix whose rows correspond to all the linear subcircuits of C`ij and all the
checks x − x′ − rx = 0 for the multiplication triples (this is needed to check if Mi has cheated
with ŝi), and p`kij = (1k‖v`kij ‖s`kj ), where s`ki are the multiplication triple shares generated in the

preprocessing phase by Fpre. In [15], the parties just computed and opened d`kij = A`ijp
`k
ij which

leak no more than 0 if Mi is honest. However, if some of these shares is invalid and the prover
wants to complain about some d`kij , the value p`kij should be revealed. This is not allowed in

multiple adversary case. We propose that the parties instead work with a sum p`ij = p`1ij +p`2ij ,

where the authenticity of both p`1ij and p`2ij can be proven. All the entries of p`ij collected so
far are indeed represented as a sum of two vectors whose authenticity can be proven by Fpre.
The machine Mk computes and publishes A`ijp

`k
1ij and A`ijp

`k
2ij separately. Now everyone may

compute by itself d`kij = A`ijp
`k
ij = A`ijp

`k
1ij + A`ijp

`k
2ij and check if declassify((d`kij )k∈[n]) = 0. If

some malicious verifier wants to accuse Mi, it may present something wrong instead of A`ijp
`k
1ij

or A`ijp
`k
2ij . In this case, Mi opens either p`k1ij or p`k2ij (if the error is in both, it still suffices to

open just one to detect the cheating), and everyone may check A`ijp
`k
1ij or A`ijp

`k
2ij and discover

cheating without actually revealing p`kij . If Mk was indeed cheating, then Mi may present its

own version of both d`k1ij and d`k2ij .
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If (corrupt, j) comes from Fpre, each Mk writes mlck[j] := 1 and goes to the accusation phase.
If declassify(A`ijp

`k
ij )k∈[n] = 0 even after Mi was allowed to complain, each Mk writes mlck[i] := 1

and goes to the accusation phase.
Accusation. Finally, after all the messages of the `-th round have been verified, each uncor-

rupted machine Mh outputs to Ph the message (blame, sid, `,M) for M = {k | mlch[k] = 1}. If
mlch[i] = 0, the parties send (open, (sid, i, j, `)) to Fpre which outputs the previously committed
m`
ij to Mj . Mj outputs (approved, C`ij , i, j, `, c

`
ij) to Pj , and each other (semi)honest Mh outputs

(approved, C`ij , i, j, `) to Ph.

F.2 Simulator for Fvmpc

In this section we prove that our protocol πvmpc defined in App. F.1 is as secure as Fvmpc
defined in Sec. 6.4. We have to show that there exists a simulator that can translate the between
the messages Fvmpc exchanges with the ideal adversary, and the messages the protocol πvmpc
exchanges with the real adversary over the network. We present the work of the simulator
S = {SH1 , . . . , SHn , SL} in phases, coinciding with the phases of real functionality that it simulates
to the adversary A = {AH1 , . . . ,AHn ,AL}. Let c(i) denote the index of the adversarial coalition to
which Mi belongs. Let 1 be the actively corrupted coalition, as agreed in Def. 3. LetH ⊆ [n]\C(1)
be some fixed subset of semihonest parties of size exactly t + 1. We will treat this set as a
“commitment group” that holds the shares of the value that is considered “committed”.

Throughout the protocol, the simulators will have to simulate Fpre several times. First of all,
SH1 simulates its interaction with Fpre to check if it succeeds, or an error message ⊥ (this may
come only once in the randomness commitment phase where we allow aborting) or (corrupt, j)
should be output. At any time when a message (corrupt, j) should be output from Fpre, SL
sends (corrupt, j) to Fvmpc which collects all such messages sent on one round, defines B0 =
{j |(corrupt, j) has been output}. Each simulator SHk also gets (corrupt, j) from SL and simulates
(corrupt, j) coming from Fpre for all j ∈ B0 in its own simulation. This position corresponds to
the direct jump to the accusation phase in the real functionality.

Randomness Commitment. On input (gen rnd, sid, i, ri), the randomness ri is generated
and shared to (rk1i, r

k
2i) using Fpre. Each simulator SHk simulates its own copy of Fpre to generate

the shares of ri without actually knowing ri (only SHc(i) gets ri). Since Fpre generates ri internally,

here we must assume that all SHk synchronize the randomness tape of their copies of Fpre in
such a way that it uses the same ri that SHc(i) has obtained from Fvmpc. By definition of Fpre,
running it leaks to AHk no more than the t shares of ri. Since each simulator SHk has to run its
own instance of Fpre, each AHk gets its own set of t shares (AHc(i) even gets all n shares), but
since there is only one true adversary, the shares that reach Z are either the same ri that Fvmpc
chose (if AHc(i) is the true adversary), or are just t random uniformly distributed values.

Input commitments: On input (commit input, sid, i,xi), the vector xi should be shared to
(xk1i,x

k
2i) using Fpre. Similarly to the randomness commitment, each simulator SHk has to run

its own instance of Fpre, each AHk (except AHc(i)) gets its own set of t shares, but since there is
only one true adversary, the t shares that reach Z are just random uniformly distributed values.

Message commitment: On input (commit msg, sid, i, j, `,m`
ij), the vector m`

ij should be

shared to (m`k
1ij ,m

`k
2ij). At this point, the value m`

ij is known only by SHc(i). Again, the parties

need to simulate sharing of m`
ij to (m`k

1ij ,m
`k
2ij) using Fpre. Similarly to the randomness and

input commitment, each simulator SHk has to run its own instance of Fpre, each AHk (except
AHc(i)) gets its own set of t shares, but since there is only one true adversary, the t shares that
reach the environment are just random uniformly distributed values.

Verification.
On input (verify, C`ij , i, j, `,m

`
ij), the machines need to verify if m`

ij is a valid output of the

circuit C`ij . At this point, each simulator SHk holds up to t shares (v`k1ij ,v
`k
2ij) of v`ij = (x̄i‖ri‖m̄i).

Let v`kij = (v`k1ij ,v
`k
2ij)

Public values: AL comes up with the public values ŝ for malicious parties. Each simulator
SHk has to think out ŝ for the honest parties. Similarly to [15], all these values look random to
all the parties except the coalition that includes the prover Mi. Hence SHc(i) already knows how
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these values should look like, and it simulates the broadcast of actual ŝ to AHc(i). Each other

simulator SHk generates ŝ from a uniform distribution.
The simulators now have different ideas of what ŝ of (semi)honest should be since they have

generated ŝ themselves, but the inconsistency remains unnoticed by Z since only one AHk is the
true adversary.

Local computation: Each party computes the circuits of the proving party Mi on its local
shares p`kij = (1k‖v`kij ‖ski ). AL decides on the values d∗`kij for k ∈ C(1). Now the remaining shares

d`kij should be computed.

It is easy for SHc(i) to simulate revealing d`kij of (semi)honest Mk since it already knows p`kij and

ŝ. The other simulators SHc for c 6= c(i) need to wait a bit since they do not have enough data
for simulation yet, and each of them holds at most t shares. They do not simulate publishing
d`kij before SL tells them for which d`kbij there will be presented complaints.

Complaints and final verification: Let Mi be the prover. First of all, SHc(i) simulates the

complaint phase to AHc(i), and only then the other simulators may proceed with computation of

d`k1ij and d`k2ij .

– If i /∈ c(A), then if AL decides that some verifier Mk for k ∈ C(1) refuses to broadcast d`k1ij
or d`k2ij , or at least one of them is invalid, then SHc(i) simulates Mi broadcasting a complaint.

Now Mi has the right to reveal p`kbij for one of b ∈ {1, 2} for which d`kbij = A(ŝi)p
`k
bij does not

hold. In this way, SHc(i) finally replaces all falsified d∗`kij with d`kij that actually correspond to

the shares of a (semi)honest Mi.
– If i ∈ C(1), but k /∈ C(1), and AL decides that Mi should complain against Mk, then SHc(i)

simulates the response of Mk to the complaint of Mi, and reveals p`kbij that Mk should hold.
It finally simulates the judgement of Mi as the (semi)honest parties would do. All the pairs
(k, b) for the opened p`kbij will be delivered by AL through SL, so all SHc know which p`kbij
have to be opened.

– If both i, k ∈ C(1), then AL may still introduce malicious final shares for Mi through Mk.
AL may still wants to force Mi to complain about Mk, and the corresponding pairs (k, b)
for the opened p`kbij will be delivered by AL through SL, so all SHc know which p`kbij have to
be opened.

The other simulators SHc now finally have to simulate both the publishing of (d`k1ij ,d
`k
2ij) and

the further complaints. They wait until SL tells them which parties of c(A) were attempting to
cheat with which values, and for which b the shares p`kbij have to be opened. If i /∈ C(1), then

SL might not know against which (k, b) the prover Mi has complained. We claim that in this
case all the other simulators may choose precisely those (k, b) for which AL has chosen some
malicious share p∗`kbij 6= > (recall from Def. 3 that sending > is another possibility for AL to take

p∗`kbij = p`kbij honestly, according to the protocol rules). If it falsified both p∗`kbij and p∗`kbij , choose

any of them. Although p∗`kbij 6= > does not necessarily mean that p∗`kbij 6= p`kbij , we claim that this
choice is sufficient:

– If AH1 is the true adversary, then AHc is false, and hence the possibly wrong simulation of
SHc will never reach Z anyway.

– If AH1 is a false adversary, then it does not know p`kbij , and hence p∗`kbij 6= > will be invalid
with overwhelming probability (depending on the size of F). Hence Mi would indeed have a
right to argue about p∗`kbij .

At this point, each SHc holds the following values:

– up to t shares p`k1ij and p`k2ij for k ∈ C(c) that it has simulated to AHc ;

– the vector ŝ that it has simulated to AHc ;
– up to t additional shares d∗`k1ij and d∗`k2ij for k ∈ C(1) that have come from SL;

– up to t pairs (k, b) obtained via SL from AL, that denote which shares p`kbij were opened.
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In total, SHc already has up to 2t shares (d`k1ij ,d
`k
1ij), which can be inconsistent since the shares

of k ∈ C(c) depend on previous shares p`k1ij and p`k2ij that have been generated by SHc itself,

and for k ∈ C(1) the shares have been chosen by AL. We will see that it is not a problem. SHc
now generates its own version of the remaining shares d`k1ij and d`k2ij for k ∈ [n] \ (C ∪ C(1)).

Since it already knows for which b it will need to open p`kbij , it generates p`kbij first and then takes

d`k1ij = A(ŝ`ij)p
`k
bij . The remaining d`kbij that will not be opened are generated randomly in such

a way that they comprise the share 0 if i /∈ C(1) (without taking into account the shares d∗`k1ij
and d∗`k2ij for k ∈ C(1)). This is always possible since SHc has sent up to t shares to AHc so far.

If i ∈ C(1), then it is possible that the value d`ij based on the shares committed so far is not 0.

We claim that it in this case d`ij can be just a uniformly distributed value:

– If AH1 is the true adversary, then AHc is false, and hence the possibly wrong simulation of
SHc will never reach Z anyway.

– If AH1 is a false adversary, then the only way for it to make d`ij 6= 0 is to provide malicious p∗`ij
and ŝ∗ij . The value ŝ∗ij is either uniformly distributed (if it was not falsified) or has already

been shown to SHc . It is more difficult with p∗`ij since it is possible that only some of its
entries were falsified.
By construction, the elements of p`ij are either some already well-committed constants or

randomness (1, ri and si) that AL cannot modify, or are chosen by Mi broadcasting p′`ij =

(p`ij − r), where r is generated by Fpre and will never reach Z if AH1 is false. As the result,

each entry of p`ij is either generated honestly, or looks like a uniformly distributed value to
Z.
In this way, the entries of A`ijp

∗`
ij = d`ij where the corresponding row of A`ij does not use

the corrupted entries of p∗`ij will be 0, and the entries that depend on the corrupted entries
will be some random values. If we are computing values in a finite field, then these random
entries are distributed uniformly since a uniformly distributed value multiplied by a non-
zero element is still uniformly distributed. One problem is that A`ij = A(ŝ), and ŝ may be

important in deciding which entries of A`ij are 0. However, if AH1 is a false adversary, then

an honestly generated ŝ will not reach Z, and any malicious ŝ∗ is already known by SHc .

If the proof of Mi has not failed yet, then all the shares d`k1ij and d`k2ij for all k ∈ [n] are
published, and are consistent with the view of a (semi)honest Mi since for any conflict with Mk

it was allowed to publish its own d`k1ij and d`k2ij . Sj checks if the published values are the shares
of 0. If the check does not pass, Sj writes mlch[i] := 1 for each (semi)honest party Ph.

Accusation. Fvmpc computes all the outputs m′`ij of C`ij . Let M = {i | ∃j : m′`ij 6= m`
ij},

and B0 = {i | (corrupt, i) has come from AsL}. It is waiting from AsL for (blame, i,Bi), such that
M⊆ Bi ⊆ C. Let B′i = {j | mlci[j] = 1}. S defines Bi = B0 ∪ B′i.

First, we prove that Bi ⊆ C(1), i.e no (semi)honest party will be blamed.

1. For each j ∈ B0, a message (corrupt, j) has come from Fpre at some moment. Due to prop-
erties of Fpre, no (corrupt, j) can be sent for j /∈ C(1). Hence j ∈ C(1).

2. For each j ∈ B′i, the proof of Mj has not passed the final verification. For each j /∈ C(1),

S has chosen d`kji such that declassify((d`kji )k∈[n]) = 0, and the check passes. Hence for a
(semi)honest Mj the proof would always succeed, so j ∈ C(1).

Secondly, we prove that M⊆ Bi, i.e all malicious parties will be blamed.

1. The first component of M is B0 for which the message (corrupt, j) has been sent to Fvmpc.
Each simulator SHk has simulated (corrupt, j) to AHk , so B0 ⊆ Bi for all i ∈ [n].

2. The second component M′ of M are the machines Mi for whom m`
ij 6= C`ij(x̄i‖ri‖m̄i)

happens in Fvmpc.
We show that if Mi /∈ Bi, then Mi /∈ M′. Suppose by contradiction that there is some
Mi ∈ M, Mi /∈ Bi. If Mi /∈ Bi, then the verification of Mi has succeeded, i.e Mi has come
up with d`kij such that declassify((d`kji )k∈[n]) = 0.
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Recall that there is a subset H of t + 1 (semi)honest parties who indeed use the shares of
values x̄i, ri, m̄i that have been committed to Fvmpc, and the shares of the precommitted

multiplication triples si. Since |H| = t+ 1, also declassify((d`kji )k∈H) = 0 holds, this immedi-

ately implies A(C`ij , ŝ)p
`
1ij +A(C`ij , ŝ)p

`
2ij = 0, where p`ij = p`1ij + p`2ij = (1‖x̄i‖ri‖m̄i‖si),

so ŝ proves that C`ij have been computed correctly with respect to x̄i, ri, m̄i of Fvmpc.
Hence m`

ij = C`ij(x̄i, ri, m̄i) for all Mi /∈M′.

Since all parties see all the conflicts, all the sets Bk = B are equal for all k ∈ [n]. Now both
Fvmpc and πvmpc output (blame, i, j, `) for i ∈ B. For i /∈ B, both Fvmpc and πvmpc output
(approved, C`ij , i, j, `,m

`
ij).

G Preprocessing Phase for WCP Model

Let F be a finite field where the computation takes place, equipped with addition (+) and
multiplication (·) operations. Let M1, . . . ,Mn be the machines performing the computation of
parties P1, . . . , Pn, C the set of indices of corrupted machines, and A = {AH1 , . . . ,AHn ,AL} the
t-coalition split adversary.

The preprocessing phase uses a linearly homomorphic verifiable (n, t + 1)-threshold sharing
scheme, such that any t + 1 parties are able to reconstruct the secret, but to any t parties the
shares look completely random. We write (ak)k∈[n] = classify(a) to denote the sharing of a, and

a = declassify((ak)k∈[n]) to denote the reconstruction of a from shares.

G.1 Ideal Functionality

The verification of [15] relies on a preprocessing phase that generates a sufficient number of
preshared randomness and special preshared tuples. We modify the ideal functionality a bit, so
that it can be used to make the verification secure in WCP model. Instead of sharing a value
s directly, we first represent s as a sum s = s1 + s2, and then share s1 and s2 to sk1 and sk2
respectively.

The ideal functionality presented on Fig. 12 is a bit simplified compared to [15]. Namely, we
assume that the only preshared tuples are the multiplication triples [19], as they are sufficient
for computing an arbitrary circuit over a finite field F. While [15] proposes various kinds of
helpful tuples that allow to verify efficiently computations over multiple rings, proving that their
generation is secure in WCP model would be analogous.

We note that the randomness distribution function of Fpre is used also to generate the pre-
shared randomness for message transmission protocol πtransmit (see App. E) that forces these
random elements to be distributed correctly even if both the sender Mi and the receiver Mj are
actively corrupted.

G.2 Real Protocol

For modelling the communication of the randomness distribution function of Fpre, we cannot use
the new implementation πtransmit of Sec. E, since πtransmit is in turn based on the randomness
distribution of Fpre. Instead, we may assume that all the communication takes place using the
old implementation of Ftr of [15] in its “cheap mode” which does not prevent the protocol from
stopping. We use it to enable simple authentication and forwarding of messages. We note that
in the “cheap mode” both the message transmission and the broadcast are secure also in WCP
model.

For the functions other than randomness distribution, we are free to use the new implementa-
tion πtransmit of Sec. E. For the functions commit and preveal, we actually must use πtransmit of
Sec. E since this function will be called not in the preprocessing phase, but at some point later.

– On input (rnd, id), the randomness shares rk1 and rk2 have to be generated for Mp(id). Each

machineMj generates two random vectors r1j and r2j of lengthm(id), computes (rk1j)k∈[n] =
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Fpre works with unique identifiers id, encoding the vector length m(id) and the party p(id) that gets all
the shares of the vector. It stores an array val of already shared vectors of F, and a boolean matrix rev
that denotes which shares have already been partially revealed. Let As = {AsH1 , . . . ,AsHn ,AsL} be the
ideal t-coalition split adversary.
Initialization: On input (init) from the environment, initialize all the arrays to empty.
Randomness distribution: On input (rnd, id) from all (semi)honest parties, check if val[id] exists. If
it does, take (rk

1 , r
k
2)k∈[n] := val[id].

Otherwise, generate field vectors r1, r2
$← F of length m(id), share them as (rk

1)k∈[n] = classify(r1) and
(rk

2)k∈[n] = classify(r2), and assign val[id] := (rk
1 , r

k
2)k∈[n].

Output (rk
1 , r

k
2)k∈[n] to Pp(id), and for all i 6= p(id) output (ri

1, r
i
2) to Pi. Output (rk

1 , r
k
2) also to AsHc(k).

Output (rk
1 , r

k
2)k∈[n] to AsHc(p(id)).

Mutual randomness distribution: On input (mrnd, id) from all (semi)honest parties, Fpre acts in
exactly the same way as on input (rnd, id), except that there are now two parties p1(id) and p2(id) that
get all the n shares (rk

1 , r
k
2).

Precomputed triple distribution: On input (prec, id) from all (semi)honest parties, check if val[id]
exists. If it does, take (sk

1 , s
k
2)k∈[n] := val[id].

Otherwise, generate the random values rx
$← F, ry

$← F of length m(id), compute rxy = rx · ry, and
take s = (rx‖ ry‖rxy). Generate a random vector s1 and compute s2 = s− s1. Share these vectors as
(sk

1)k∈[n] = classify(s1) and (sk
2)k∈[n] = classify(s2). Assign val[id] := (sk

1 , s
k
2)k∈[n].

Output (sk
1 , s

k
2)k∈[n] to Pp(id), and output (si

1, s
i
2) to Pi for all i 6= p(id). Output (sk

1 , s
k
2) also to AsHc(k).

Output (sk
1 , s

k
2)k∈[n] to AsHc(p(id)).

Commit: On input (commit, id,x) from Pp(id) and (commit, id) from all the other (semi)honest parties,
check if val[id] exists. If it does, and if |x| = m(id), take (xk

1 ,x
k
2)k∈[n] := val[id]. Otherwise, generate a

vector x1
$← F of length m(id), compute x2 = x − x1 and share them as (xk

1)k∈[n] = classify(x1) and
(xk

2)k∈[n] = classify(x2). Assign val[id] := (xk
1 ,x

k
2)k∈[n].

Output (xk
1 ,x

k
2)k∈[n] to Pp(id), and for all i 6= p(id) output (xi

1,x
i
2) to Pi. Output (xk

1 ,x
k
2) also to AsHc(k).

Output (xk
1 ,x

k
2)k∈[n] to AsHc(p(id)).

Mutual commit: On input (mcommit, id,x) from Pp(id) and (mcommit, id) from all the other
(semi)honest parties, Fcomm acts in exactly the same way as on input (commit, id,x), except that
it remembers another party p2(id) to which all the n shares (xk

1 ,x
k
2) will be output later.

Partially revealing shares: On input (preveal, id, i, b) from all (semi)honest parties, where b ∈ {1, 2}, if
rev[id][i] == false, check if val[id] exists. If it does, take the shares of precomputed values (vk

1 ,v
k
2)k∈[n] :=

val[id] and output (vi
b) to each party Pj and each adversary. Set rev[id][i] = true. Alternatively, AsL

may choose to output (corrupt, p(id)) to all (semi)honest parties.
Revealing mutual commitment to the second party: On input (open, id) from all (semi)honest
parties, if (mcommit, id,x) has been input at some moment, take the shares of precomputed values
(vk

1 ,v
k
2)k∈[n] := val[id] and output (vk

1 ,v
k
2)k∈[n] to the party Pp2(id) and the adversary AH

c(p2(id)). Alter-

natively, AsL may choose to output (corrupt, p(id)) to all (semi)honest parties.
Stopping: On input (stop) from AsL, stop the computation and output ⊥ to all parties.

Fig. 12: Ideal functionality Fpre

classify(r1j), (rk2j)k∈[n] = classify(r2j), and transmits (rk1j , r
k
2j) to Mk for all k ∈ [n]. Mk

forwards the received shares to Mp(id). Mp(id) verifies that the shares are consistent, computes

rk1 =
∑
j∈[n] r

k
1j and rk2 =

∑
j∈[n] r

k
2j . Since the secret sharing scheme is linear, the obtained

shares also correspond to a (n, t + 1) sharing, so Mp(id) takes r1 = declassify(rk1), r2 =

declassify(rk2). If something goes wrong, the preprocessing aborts, some (semi)honest party
sends a complaint to each other party, and Mp(id) outputs ⊥ to Pi for i /∈ C(1).

– On input (mrnd, id), the machines first act in the same way as on input (rnd, id), generating
a shared randomness (r1, r2) that is given to the machine Mp1(id). We now want to give it

also to the machine Mp2(id). For this, Mp1(id) forwards all the shares rk1j using the forwarding
functionality of old Ftr of [15]. By definition of forwarding, Mp2(mid) gets all the rights for

proving the authenticity of all rk1j which are sufficient for reconstructing (rk1 , r
k
2).

– On input (prec, id, η, κ), the multiplication triples (a, b, c) of length m = m(id) need to
be generated for the machine Mp(id), where η and κ are some security parameters. Their
generation is done in several steps.
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1. Mp(id) generates and shares 3 random vectors (a, b, c) of length mη + κ exactly in the
same way as on input (rnd, id). It then computes and broadcasts c′ = c − a · b (here
Mp(id) just computes c′ itself and noone checks yet if it is valid). Each machine Mk

outputs the vectors sk1 = (ak1‖b
k
1‖ck1 − c′) and sk2 = (ak2‖b

k
2‖ck2) to Pk. If the broadcast

fails, the preprocessing aborts, and Mp(id) outputs ⊥ to Pi for i /∈ C(1).
2. The machines agree on the common randomness that will be used in the verification

of the triples of Mp(id). Each machine Mk broadcasts a random number rk, and they

take the seed r =
∑
k∈[n] r

k. If some party refuses to participate, its share is ignored by

(semi)honest parties.
3. Some κ of Mp(id)’s triples are published (by just broadcasting the shares without pre-

senting the signatures obtained before). The choice of which triples have to be published
is determined by the seed r on which the parties agreed before. If any party refuses to
participate, its share is ignored since there are still at least (t + 1) shares available. If
any shares are inconsistent, Mi outputs ⊥ to Pi for i /∈ C(1).

4. Some 2m of Mp(id)’s triples are divided to pairs according to the seed r. For each pair

(a, b, c), (a′, b′, c′), the parties publish â = a− a′ and b̂ = b− b′ (by just broadcasting the
shares ak−a′k and bk−b′k, without presenting the signatures obtained before), compute

locally the shares a′k · b̂ + bk · â + c′k − ck, publish them (again, just using broadcast),
and check if the resulting shares comprise 0. If any party refuses to participate, its share
is ignored since there are still at least (t + 1) shares available. If any broadcast shares
are inconsistent, Mi outputs ⊥ to Pi for i /∈ C(1).
If the zero check passes, the triple (a′, b′, c′) is discarded, and (a, b, c) is now again paired
with some other triple (a′′, b′′, c′′) from the remaining triples. This pairing repeats η until
there are m triples left, which are output to the parties.

– On input (commit, id), the machines first generate a fresh shared randomness (r1, r2) for
Mp(id), similarly to (rnd, id). The machine Mp(id) that has received the input (commit, id,x),

broadcasts x′ = (r1 + r2)− x. Each (semi)honest machine Mk outputs (rk1 − x′, rk2) to Pk.
If the broadcast fails, each (semi)honest Mi outputs (corrupt, p(id)) to Pi.

– On input (mcommit, id), the machines act exactly in the same way as on input (commit, id),
and only remember that the shares should be revealed to another party p2(id) at some
moment.

– On input (preveal, id, k, b) where b ∈ {1, 2}, the machine Mk broadcasts the message (skb , σ),

where σ is the signature of Mp(id) on sjb. If Mj refuses to broadcast or does not provide a
valid signature, then its share is ignored since there are still at least (t+ 1) shares available.
If any shares are inconsistent (and nevertheless are all signed by p(id)), each (semi)honest
Mi outputs (corrupt, p(id)) to Pi.

– On input (open, id), each machine Mk sends its share of the randomness that was used
when committing a value on input (commit, id) to Mp2(id). At least (t + 1) shares will be
delivered by (semi)honest parties. Since each randomness share is accepted iff it contains
the signatures of all parties, the valid shares cannot be inconsistent. Mp2(id) reconstructs
r1 + r2 and computes x = (r1 + r2)−x′, where x′ is the value that was broadcast on input
(commit, id).

We note that, since we are working with F, the verification of triples can be optimized using
some polynomial-based approach that allows to verify several triples succinctly at once. We do
not provide the optimization details here, as it is not our primary goal.

G.3 Simulator for πpre

We construct a simulator S = {SH1 , . . . , SHn , SL} that translates the between the messages Fpre
exchanges with the ideal adversary, and the messages the protocol of Sec. G.2 exchanges with
the real adversary A = {AH1 , . . . ,AHn ,AL} over the network.

All the communication is modeled using the “cheap mode” of Ftr. That is, if for any malicious
sender Ms(mid), AL delivers a message ⊥, or a message m∗ that is not provided by a valid
signature of Ps(mid), then SL sends (stop) to Fpre and forwards ⊥ to all SHi that simulate to
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AHi a complaint on behalf of the receiver Mr(mid). If AL delivers a complaint for any malicious
receiver Mr(mid), then SL sends (stop) to Fpre.

First of all, SL sends (init) to Fpre.

– On input (rnd, id), each simulator SHi simulates generation of shares rk1 and rk2 of length
m = m(id). First, SL receives the shares rk1j and rk2j for all k ∈ [n], j ∈ C(1) from AL. It

checks if they are consistent. If not, then SL sends (stop) to Fpre. Otherwise, it forwards the
values provided by AL to all SHi . SL sends (rnd, id) for id s.t p(id) = i to Fpre.
• For k ∈ C(i), SHi receives the shares rk1 and rk2 whose generation now needs to be

simulated. Up to t shares rk1j and rk2j for j ∈ C(1) have already been chosen. Each SHi
now has to simulate the remaining shares rk1j and rk2j of j /∈ C(1) in such a way that the

resulting rk1 and rk2 are the same as chosen by Fpre. This is always possible due to the
fact that at least one of the parties that generate the randomness is (semi)honest.

• For k /∈ C(i), SHi does not know the values rk1 and rk2 generated by Fpre. However, AHi
waits for up to t shares rkbj for j ∈ C(i). In this case, SHi just generates up to t random

shares rkbj for j ∈ C(i). Together with the shares rkbj of j ∈ C(1), since t < n/2, there

are still less than n shares of rk1 and rk2 given to AHi now.

In general, different simulators SHi may now have different opinions on what the share rkbj of
some j /∈ C(1) would be, but the inconsistency is not noticed since only one coalition leaks
rkbj to Z, and Z does not know the precise values of rkbj generated inside of the protocol.

– On input (mrnd, id), the simulator S acts similarly to the input (rnd, id) to generate rk1 and
rk2 . It then simulates forwarding these values to Mp2(id). If p1(id) ∈ C(1), and AL decides
that Mp1(id) does not provide the forwarded values with valid signatures, then SL sends
(stop) to Fpre.

– On input (prec, id, η, κ), S needs to simulate generation of m = m(id) multiplication triples
for Mp(id).
1. For p(id) /∈ C(1), S simulates the generation of (a, b, c) in the same way it has simulated

(rnd, id), this time sending m times (prec, id) to Fpre. In addition, SL generates m(η −
1) + κ more random triple shares (ak, bk, ck) and sends them to all SHi .
After the triples are generated, each SHi shuffles the triples according to a common
randomness r provided by SL. Now only the simulators know where are the m triples
generated by Fpre and where are their own triples, and Z does not know it.
After shuffling, all the k-th shares are sent by SHc(k) to AHc(k). Then SHc(p(id)) simulates

to AHc(p(id)) the broadcast of d = c − a · b. If p(id) ∈ C(1), then it might have cheated

and broadcast a malicious d∗. This d∗ is sent by SL to all SHi , and they use it in their
simulation.
If Mp(id) has not cheated, then the other simulators do not know (a, b, c) that were
generated by Fpre, and they just simulate broadcast of a random value c′ that comes
from uniform distribution.

2. The machines should agree on the common randomness that they will use to choose
which triples have to be opened. AL contributes the values of the malicious parties that
SL sends to all simulators SHi . They now generate the remaining shares rk of k /∈ C(1)
in such a way that r =

∑
k∈[n] r

k is the same r that the simulators used before for the
random shuffle.

3. The simulators need to reveal the triples based on the randomness r they generated
before. Recall that they have chosen r in such a way that the shares (ak, bk, ck) to
be revealed are already known to all the simulators. AL decides on the values that the
malicious parties publish. SL sends them to all SHi . Since SL already holds all the shares,
it may check if AL has cheated and any shares are inconsistent. If they are, SL sends
(stop) to Fpre.
• If p(id) /∈ C(1), then all SHi simulate honest behaviour of Mp(id). All the valid shares

are already held by all SHi , so it simulates publishing the shares of honest parties.
It is now important that c = a · b would hold. The simulators have generated these
triples themselves, and since they have simulated a valid broadcast of c′ = c− a · b
for a (semi)honest Mi, the equality check passes.
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• If p(id) ∈ C(1), it may additionally happen that d∗ 6= c − a · b. This attack is also
easy to simulate since (a, b, c) and d∗ are already known by SHi .

4. In the real protocol, the parties should start verifying the triples pairwise. The pairing
depends on the randomness r agreed on before, and the simulators have ensured that
all the triples except the last one (that will be output to the parties) are already known
to all of them. Since simulating already known shares is simpler, let us consider the last
step, where the shares of (a′, b′, c′) are known to all simulators, but the shares of (a, b, c)
are not.
First, SL sends to all SHi the shares of malicious parties provided by AL. Only SH1
may check if the shares provided by AL are incorrect. Each other simulator treats any
a∗k 6= > and a′∗k 6= > (analogously for b∗k, b′∗k, c∗k, c′∗k) as incorrect shares, generating
the remaining shares independently from them. We claim that it is sufficient for the
simulation.
• If AH1 is a false adversary, then the shares a∗k and a′∗k that were chosen by AL

cannot depend on the shares ak and a′k, or even the shares a and a′, that were
actually issued by Fvmpc for k ∈ C(1). Hence the shares of (semi)honest parties may
indeed be generated independently from a∗k and a′∗k.

• If AH1 is the true adversary, then generating independent shares ak and a′k for
(semi)honest parties is not a good idea since the malicious shares of AL may strongly
depend on the shares ak and a′k generated for k ∈ C(1) by Fvmpc. However, in this
case we do not care about the view that SHi simulates to AHi since if AHc(A) is the

true adversary, then AHi is a false adversary.
The simulation of opening the shares of (semi)honest parties proceed as follows:
• If p(id) /∈ C(1), SHi needs to simulate the remaining shares for honest parties.

∗ The first component are values â = a − a′ and b̂ = b − b′. Since a′ and b′ are
generated by the simulators and are never leaked to anyone, both â and b̂ are
distributed uniformly, so it is also easy to simulate them.
∗ The second component of these published values are always 0 for a (semi)honest

party, and hence are easy to simulate.
• If p(id) ∈ C(1), then the simulation is trivial for SH1 since it has all the values already,

so let us consider SHi for i 6= 1. First, SHi needs to simulate the values â = a − a′
and b̂ = b − b′. From SL, it has received up to t shares âk and b̂k. It also holds the
shares ak and a′k of the parties belonging to the i-th coalition, and since there can
be more than t shares, they may already be inconsistent. Since SHi has shown up to
t shares to AHi so far, it just does not take into account the malicious shares sent

by SL and defines the remaining shares in such a way that â and b̂ are uniformly
distributed values. We claim that it is a good simulation (the reasoning is similar to
the inconsistent share case):

∗ If AH1 is a false adversary, then the shares of âk and b̂k for k ∈ C(1) that were
sent by AL cannot depend on the actual values a, a′, b, b′, and the actual values
of â and b̂ still are uniformly distributed in the view of Z. Each share provided
by AL is either completely independent from the shares of the other parties (and
hence is inconsistent with them with overwhelming probability), or is equal to >
which means that SHi generates the corresponding share itself.
∗ If AH1 is the true adversary, then we do not care about the view that SHi simulates

to AHi , similarly to the inconsistent share case.

We can use a similar discussion to show that the shares a′k · b̂+ bk · â+ c′k − ck for
k /∈ C(1) can also be generated uniformly. However, even if AL decided not to falsify
any shares at all, there is still the question from which distribution the resulting
value z = a′ · b̂ + b · â + c′ − c should come. Differently from the p(id) /∈ C(1) case,
these shares do not necessarily comprise 0 since AL may have published false d∗ or
d′∗ before. We claim that, unless d∗ = > and d′∗ = >, the value z can be sampled
from a uniform distribution.
∗ If AH1 is a false adversary, then the values d∗ and d′∗ that were sent by AL

cannot depend on the initial values (a, b, e) and (a′, b′, e′) for which d = e− a · b
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and d′ = e′ − a′ · b′ should have been computed. The random values e and e′

have not been used anywhere else, and hence c = e − d∗ and c′ = e′ − d′∗

are uniformly distributed value regardless of the choice of d∗ and d′∗, and so is
z = a′ · b̂+ b · â+ c′ − c.

∗ If AH1 is the true adversary, we do not care about the view that SHi simulates to

AHi , similarly to the â = a− a′ and b̂ = b− b′ case.
The simulators should also ensure that no invalid triples are finally accepted by Fpre.
The zero check of SH1 may be passed only if either both triples are correct or both
are incorrect. Two incorrect triples may get into the same pair only with a small
probability due to the previous cut-and-choose. Repeating this check η times makes
the probability negligible.

– On input (commit, id) and (commit, id,x), the simulators first simulate the generation of
(r1, r2) in the same way they have simulated (rnd, id). Since the distribution of x′ is random
if p(id) is (semi)honest, they may simulate the broadcast of x′ = (r1 + r2)− x similarly to
the broadcast of c′ in (prec, id).

– On input (mcommit, id), the simulation is the same as on input (commit, id).
– On input (preveal, id, j, b) where b ∈ {1, 2}, the simulators first use Fpre to actually reveal

the shares to each other. Then the broadcasts of Mj of the message (sjb, σjb) have to be
simulated. First of all, SL sends the possibly malicious shares generated by AL to all SHi .
Now each SHi may compare these shares with what it has got from Fpre and simulate the
attack sending the shares of remaining (semi)honest parties to Ai. Here we assume that any
simulator SHi is allowed to generate signatures of (semi)honest parties on any messages.
If id is such that (commit, id,x) has been input at some moment, then one needs to be
careful since x′ has already been leaked to Z. Since at most one rb will be revealed, the
value r = r1 + r2 can still be arbitrary for the parties that have not known r.

– On input (open, id), each SHk should simulate transmitting the randomness of (semi)honest
parties to Mp2(id). In general, this randomness is not known by SHk . However, the simulation
is needed only for SHp2(id) that gets the value x to be opened from Fpre. Sine it already knows

x′ that has been broadcast on input (mcommit, id), it computes r = x = x′ and simulates
the shares of (semi)honest parties in such a way that they comprise r.
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