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Abstract

We present a new Identity-Based Encryption (IBE) scheme from a trapdoor subgroup of Z∗n for an
RSA modulus n. In a trapdoor subgroup of Z∗n, a subgroup order is hidden and can be used as a trapdoor.
Our IBE scheme is efficient in both performance and space. Compared to practical pairing-based IBE
schemes, ours is more efficient particularly in terms of computational performance. Following Naor’s
observation, we also suggest a new Public-Key Signature (PKS) scheme from a trapdoor subgroup of
Z∗n. A favorable feature of our PKS scheme is that signing algorithm is exponentiation-free and requires
only one modular inversion. This enables our PKS scheme to provide the fastest signing, compared
to practical signature schemes such as RSA and ECDSA. We prove the security of our schemes in the
random oracle model under new computational hardness problems that arguably hold in the trapdoor
subgroup of Z∗n.
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1 Introduction

Identity-Based Encryption (IBE) is a special type of public key encryption where a public key can be any
string such as an e-mail address or a device identifier. A private key that corresponds to such a string (i.e.,
identity) is generated by a trusted third party called a key generation center (KGC). A message is encrypted
under a receiver’s identity (as a public key) and public parameters, without any interaction with the receiver
to obtain the public key. A ciphertext is then decrypted with a private key that corresponds to the receiver’s
identity.

Since Shamir [36] posed the initial question about the existence of such an IBE system, there have been
three approaches for constructing IBE schemes. The first one is based on the bilinear map (i.e., pairing) that
gives [9, 34, 5, 38, 39, 14, 21], and the second one is based on the quadratic residuosity (QR) problem that
gives [15, 10], and the third one is based the lattice that gives [18, 13, 1]. Among the previous IBE schemes,
three pairing-based schemes [9, 34, 5] have been perceived as being practical constructions in terms of both
performance and space, and are now in the process of standardization in the IEEE P1363.3 and ISO/IEC
SC27 18033-5, respectively
∗Since our manuscript has been revealed at ePrint Archive, we have received several analysis from Marc Joye, Jung Yeon

Hwang, and Olivier Sanders. All of them show that our schemes are all broken and only the inverse structure in a trapdoor
subgroup of Z∗n is not enough. We put the analysis by Marc Joye in the last part of this manuscript. Thus, it still remains an
open problem to construct an IBE scheme over an RSA modulus (or to show impossibility result).
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1.1 Our Contribution

We present a new efficient (anonymous) IBE scheme that relies on a novel approach, what we call ‘trapdoor
subgroup’ of Z∗n for an RSA modulus n(= pq), where p = 2p1 + 1 and q = 2q1 + 1 for large primes p1
and q1. Roughly speaking, a trapdoor subgroup of Z∗n is specified as (n,g), where g is a generator of the
order-p1q1 subgroup of Z∗n. The important point is that the order of g modulo n must be hidden and can
be used as a trapdoor in constructing our IBE scheme (and also our signature scheme). With a trapdoor
subgroup of Z∗n described, we present an IBE scheme that is secure against chosen plaintext attacks, and
extend our scheme to achieve chosen ciphertext security by applying a variant [24] of Fujisaki-Okamoto
[17] transformation. To prove the security of our IBE schemes in the random oracle model, we introduce a
new computational hardness problem, called q̃-Trapdoor Subgroup Diffie-Hellman (TSDH) problem for q̃
private key queries, which arguably holds in the trapdoor subgroup of Z∗n. Our scheme is efficient in terms
of both performance and space, where the ’performance’ means the computational cost of key generation,
encryption, and decryption, and the ‘space’ means the size of ciphertexts, private keys, and public param-
eters. Particularly, our scheme has the advantage in terms of performance, compared to the pairing-based
schemes [9, 34, 5]. To add credence to the advantage, we give more concrete efficiency comparison that is
based on our implementation using PBC (Pairing-Based Cryptography)1 and Integer libraries.

Following Naor’s observation (stated in [9]), we can suggest a new public-key signature scheme that
is also based on a trapdoor subgroup of Z∗n. A notable feature of our signature scheme is that the signing
algorithm is exponentiation-free and just requires one modular inversion in the hidden order p1q1. As a
result, our signature scheme provides the fastest signing, compared to the current practical schemes such
as RSA-FDH (Full-Domain-Hash) [3], RSA-PSS (Probabilistic Signature Scheme) [4], DSA, and ECDSA.
Indeed, our signing algorithm can be about 62 times faster than RSA-{FDH, PSS}, and about 4 times
faster than ECDSA at the current 112-bit security level. Instead, our verification algorithm is much slower
than the others. Therefore, our signature scheme can be useful in applications where a device that has
to perform signing algorithm is extremely resource-constrained. We prove the security of our signature
scheme (in the random oracle model) based on a new computational hardness problem, called q̃-Trapdoor
Subgroup Exponent Inversion (TSEI) problem for q̃ signature queries, which also arguably holds in the
trapdoor subgroup of Z∗n. Finally, to provide confidence on the above two problems, we demonstrate that
they hold in generic groups in the sense of [6, 37], under the assumption that factoring n is computationally
infeasible .

1.2 Our Technique

With a simple example, we explain the basic idea behind our technique. Let (p,g,gx) be public parameters
where g is a generator of an order-p group and x is randomly chosen among {1, . . . , p}. Assume that KGC
generates a private key d for an identity ID as an exponential value d = 1/(x+h(ID))∈Zp using a collision-
resistant hash function h. Apparently, this leads to an attack that easily allows an adversary to recover the
master secret key x: with a private key d, the adversary has only to compute the inverse of d modulo p, and
extract h(ID) from the inverse. One method to prevent this attack is to raise the exponent d to the group
element g, so that the private key for ID becomes g1/(x+h(ID)). This was the idea behind the Sakai-Kasahara
IBE scheme [34] that relied on pairings.

A distinct method we consider is to hide the group order p from the public parameters so as to be hard to
compute the inverse. To do so, we consider an order-p1q1 (trapdoor) subgroup of Z∗n for a RSA modulus n
described above. If factoring n is computationally infeasible and p1q1 is the product of large primes p1 and

1https://crypto.stanford.edu/pbc/
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q1, then we can see that it is hard to find the order from the public n. One may wonder if a prime number p1
or q1 is a useful section of the subgroup order of Z∗n, but according to [27], setting such a prime order can
easily lead to the factorization of n even without knowledge of the hidden order. From this observation, the
public parameters are changed into (n,g,gx), where g is a generator of a composite order-p1q1 subgroup of
Z∗n and x is randomly chosen among {1, . . . , p1q1}. In this case, a private key d for an identity ID is generated
as d = 1/(x+h(ID)) ∈ Zp1q1 . The order of g modulo n is not revealed from the public parameters (n,g,gx),
so that it is computationally infeasible for the adversary to compute the inverse of d, unless the order p1q1
(or the exponent x) is found. This is the reason why such an exponential value d can be directly given out as
a private key for an identity. In addition, because of the non-linear (i.e., inverse) structure of a private key,
it is difficult for the adversary to generate a private key for a new identity even through collusion-attacks
with (polynomially) many private keys. The key structure is applied to our signature scheme, where ID is
replaced with a message m and then a signature on m is generated as σ = 1/(x+h(m)) ∈ Zp1q1 . It follows
that signing m can be done with a simple modular inversion without requiring any exponentiation, which
makes our signing algorithm faster than the current practical signature schemes.

1.3 Related Work

Boneh and Franklin [9] presented the first practical IBE scheme based on pairings and defined the formal
security notion for IBE . Since then, most of the subsequent IBE schemes [9, 34, 5, 38, 39, 14, 21] have
been suggested to improve efficiency and security, based on pairings. Until now, three [9, 34, 5] of them
have been considered as being practical constructions in terms of both performance and space.

Cocks [15] and Boneh et al. [10] constructed IBE schemes based on the QR problem. They use an RSA
modulus n, but requires to compute the Jacobi symbol over the large composite n each time one-bit message
(or one-bit ciphertext) is encrypted (or decrypted). For an ℓ-bit length of message, Cocks IBE scheme has a
ciphertext that consists of 2ℓ elements in Zn plus 2ℓ bits, which becomes a drawback in space although the
size of private keys and public parameters is short. On the other hand, [10] has a shorter size of ciphertext
that consists of 1 element in Zn plus 2ℓ bits for an ℓ-bit message encrypted. However, the size of private key
becomes of size O(ℓ · logn) and the encryption time is O((logn)4) per a message bit.

Gentry et al. [18] demonstrated how to build an IBE system based on lattice. They constructed a dual
scheme of Regev’s public-key encryption [32], in which a public key corresponds to many equivalent private
keys. Using the so-called ‘preimage sampleable’ trapdoor function as a basic primitive, they can extract a
private key for an identity by mapping a hashed identity as a public key. The advantage of their scheme is
the encryption and decryption time of O(logn) per a message bit, but the drawback is in space: a size of
ciphertext is O(logn · log(logn)), and the size of private keys and public parameters is O((logn)2).

The notion of IBE has been extended into hierarchical IBE [19], attribute-based encryption (ABE) [33],
anonymous IBE [8], and Functional Encryption (FE) [11]. Many pairing-based works [7, 12, 23, 30, 26]
(and more) have been suggested to realize those extended notions. Lattice-based IBE has also been extended
toward hierarchical IBE [13, 1], and FE [2] constructions. As for the QR-based schemes, there does not exist
any further extension, except the anonymous IBE [10], as far as we know.
Trapdoor subgroups. In 1991, Maurer and Yacobi [28] proposed an IBE scheme based on a trapdoor
subgroup of Z∗n. A key idea in their construction is that a private key d for an identity ID can be generated as
a discrete logarithm such that gd = h(ID) (mod n) by using the trapdoor that is the factorization of an RSA
modulus n. If d is easily computed to solve a discrete-logarithm problem (DLP), their scheme is simple and
efficient. However, for some accepted level of security, n (and also factors of n) should be large (e.g., 2048
bits for the 112-bit security level) and then solving such a DLP needs a tremendous amount of work even
if the factors of n are known as a trapdoor. Later, Paterson et al. [31] proved the security of [28] after a
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slight modification, based on the FDH [3] technique. Lee et al. [25] suggested a pre-computation method
to reduce the key generation time of [28], but for the current level of security their method still suffers from
spending a long time in preparing a pre-computation table.

In 2005, Groth [20] demonstrated the cryptographic usefulness of a trapdoor subgroup of Z∗n where an
hidden order is used as a trapdoor, and by reducing the order of underlying groups they suggested a new
homomorphic public-key encryption and commitment schemes. In 2009, Saxena and Soh [35] suggested
an IBE scheme based on so-called ‘Oracle-based Group with Infeasible Inversion’, where ‘Group with
Infeasible Inversion’ [22] has the property that it is easy to compute group operation, but hard to compute an
inverse of group element. Their scheme, with no security proof, has a drawback that decryption algorithm
has always to get access to an oracle in order to perform a group operation.

In 2015, independently to our work, Meshram [29] presented an IBE scheme based on both the integer
factorization and discrete logarithm problems, which is substantially similar in philosophy to our technique.
In comparison to our construction, their scheme can be viewed as using the similar encoding method to
Waters’ hash [38] so as to map a hashed identity to a relevant exponent in Zp for the hidden prime order p.
As a result, the drawback of their scheme is that the size of public parameters is expanded to O(k · logn) for
a security parameter k. Moreover, due to selecting a prime order of g modulo n, their scheme can be easily
broken by factoring n.

2 Preliminaries

2.1 Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme consists of the following algorithms:

• Setup(k) takes a security parameter k as input and outputs a public parameter PP and a master secret
key msk.

• KeyGen(msk, ID) takes a master secret key msk, a public parameter PP and an identity ID ∈ ID as
inputs, where ID is an identity space. It outputs skID, a private key for ID.

• Encrypt(PP, M, ID) takes a public parameter PP, a message M ∈M, and an identity ID ∈ ID as
inputs, whereM is a message space. It outputs CT under ID, a ciphertext under ID.

• Decrypt(CT, PP, skID) takes a ciphertext CT under ID′, a public parameter PP, and a private key skID
as inputs. It outputs a message M or ⊥.

Correctness. For all ID ∈ ID and all M ∈M, let (PP, msk)← Setup(k), skID← KeyGen(msk,PP, ID),
CT← Encrypt(PP,M, ID). We have M← Decrypt(skID, PP, CT).

We next define the chosen ciphertext security [9] of an IBE scheme via the following game interacted
by a challenger C and an adversary A:

• Setup: C runs the setup algorithm to obtain a public parameter PP and a master secret key msk. C
gives PP to A.

• Query Phase 1: A adaptively issues a number of queries where each query is one of:

– Private key query on ID: C runs the key generation algorithm to obtain a private key for ID and
gives the key skID to A.
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– Decryption query on (CT, ID): C runs the key generation algorithm to obtain skID toA and then
runs the decryption algorithm using CTID and skID. It gives the resulting message to A.

• Challenge: A outputs two equal-length messages M0,M1 and an identity ID∗ on which it wishes to be
challenged. The only restriction is that ID is not queried in Query Phase 1. C flips a coin σ ∈ {0,1}.
C gives CT∗← Encrypt(PP,Mσ , ID

∗) as a challenge ciphertext to A.

• Query Phase 2: A adaptively issues a number of additional queries where each query is one of:

– Private key query on ID, where ID ̸= ID∗: C responds as in Phase 1.

– Decryption query on (CT, ID), where (CT, ID) ̸= (CT∗, ID∗): C responds as in Query Phase 1.

• Guess: A outputs a guess σ ′ ∈ {0,1}. A wins if σ ′ = σ .

The advantage ofA in breaking the chosen ciphertext security of an IBE scheme IBE is defined as AdvCCA
IBE ,A=∣∣Pr[b′ = b]−1/2

∣∣.
Definition 1. We say that an IBE scheme is (t,ε ,qK ,qD)-IND-ID-CCA secure if for any polynomial time
adversary A that runs in time at most t, issues at most qK private key queries and at most qD decryption
queries in chosen ciphertext security games, we have that AdvCCA

IBE ,A < ε .

As usual, we consider chosen plaintext security of IBE scheme by disallowingA to issue any decryption
query in the above game. In that case, we say that an IBE scheme is (t,ε,qK)-IND-ID-CPA secure.

2.2 Public Key Signature

A public key signature (PKS) scheme consists of the following algorithms:

• Setup(k): takes as input a security parameter k and outputs a public key PK and a secret key sk.

• Sign(sk, PK, m): takes a secret key sk, the public key PK, and a message m ∈M as input and returns
a signature σ .

• Verify(PK, m, σ ): takes a public key PK, a message m , and a signature σ as input and returns accept
or reject.

Correctness. For all (PK,sk) output by Setup and all m ∈M, we have Verify(PK,m,Sign(sk,PK,m)) =
accept.

We next give the definition of strong unforgeability under adaptive chosen message attacks [6] via an
interaction between an adversary A (i.e., a forger against a signature scheme) and a challenger C:

• Setup: C runs the setup algorithm to obtain a pair (PK,sk). It gives PK to A and keeps sk secret.

• Query Phase: A issues signature queries on messages {mi} that can be adaptively chosen, depending
on previous signatures and messages. Using sk, C runs the signing algorithm for each message and
returns a resulting signature as a response.

• Output: A outputs a valid signature σ∗ and a message m∗ such that: (1) Verify(PK,m∗,σ∗) = accept,
and (2) (m∗,σ∗) /∈ Σ, where Σ is the set of pairs (mi,σi) such that σi was the response to a signature
query.
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The advantage of A that breaks the strong unforgeability of a signature scheme PKS is defined as

Advsuf
PKS,A(k)

= Pr
[
A→ (m∗,σ∗) : Verify(PK,m∗,σ∗) = accept

∧
(m∗,σ∗) /∈ Σ

]
.

Definition 2. We say that a signature scheme PKS is (t,ε,qS)-secure in the sense of strong unforgeabil-
ity if no adversary that runs in time at most t and issues at most qS signature queries breaks the strong
unforgeability with advantage at most ε .

2.3 Trapdoor Subgroups and Complexity Assumptions

Trapdoor Subgroups: Let n be a product of two primes p and q such that p = 2p1 · · · pi + 1 and q =
2q1 · · ·q j + 1 for odd primes pk for k = 1, . . . , i and qk for k = 1, . . . , j. We simply consider the case when
i = 1 and j = 1, in which case such a prime p (and q) is called a safe prime. The notation ‘ordng’ is defined
as the least positive integer x such that gx ≡ 1 (mod n).

A number theory shows that there exists the multiplicative group Z∗n := {u ∈ Zn | gcd(u,n) = 1,n = pq}
that has ϕ(n) group elements where ϕ is the Euler-phi function. Notice that ϕ(n) = 2p1 ·2q1. Then, we can
consider a (cyclic) subgroup of Z∗n whose order is the composite number p1q1 by fining a generator g ∈ Z∗n
such that ordng = p1q1. The point is that the composite order must be the product of two primes, each of
which comes from p and q, respectively. As pointed out in [27], the prime number p1 or q1 cannot be a
subgroup order, since otherwise such a prime order setting easily leads to the factorization of n.

We say that the subgroup G, which is determined by (n,g), is a trapdoor subgroup of Z∗n. The term
‘trapdoor’ means that ordng of the subgroup of Z∗n should be hidden and can be used as a trapdoor. Under the
assumption that factoring n is computationally infeasible, the trapdoor subgroup G of Z∗n has the following
properties:

1. Hidden order: finding ordng is computationally infeasible,

2. Exponentiation-computable: for a positive integer x and a group element g1 ∈G, it is easy to compute
gx

1 (mod n), without knowing ordng.

3. Inversion-infeasible: for a positive integer x, it is hard to compute the inverse x−1 such that x ·x−1 ≡ 1
(mod ordng), without knowing ordng.

Also, we introduce the following (well-known) lemma that plays an important role in our security anal-
ysis. We skip the proof of Lemma 1.

Lemma 1. If g and n are relatively prime integers with n > 0, then gi ≡ g j (mod n), where i and j are
nonnegative integers, if and only if i≡ j (mod ordng).

The q̃-Trapdoor Subgroup Diffie-Hellman (TSDH) Problem: The q̃-TSDH problem is defined as fol-
lows: given

(
n,g,gx,g(x+r∗)y,r∗,{1/(x+ ri),ri}q̃

i=1

)
as input under the condition that (1) g is the generator

of order-p1q1 trapdoor subgroup of Z∗n, (2) g, gx, and g(x+r∗)y are in Z∗n, (3) r∗ and ri for i = 1, . . . , q̃ are in
{0,1}ℓ for some ℓ (less than log(ordng)), and (4) 1/(x+ ri) for i = 1, . . . , q̃ are in Zordng, output gy in Z∗n. We
say that an algorithm A that outputs gy has an advantage Advq̃-TSDH

(n,g),A = ε in solving the q̃-TSDH problem in
the trapdoor subgroup of Z∗n if

Pr
[
A
(
n,g,gx,g(x+r∗)y,r∗,{1/(x+ ri),ri}q̃

i=1

)
= gy

]
≥ ε,
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where the probability is taken over the random choice of x, y ∈ Zordng, the random choice of r∗,{ri}q̃
i=1 in

{0,1}ℓ, and the random bits used by A.

Definition 3. We say that the (t,ε , q̃)-TSDH assumption holds in the trapdoor subgroup of Z∗n if no polyno-
mial time adversary A that runs in time at most t has at least advantage ε in solving the q̃-TSDH problem
in the trapdoor subgroup of Z∗n.

The q̃-Trapdoor Subgroup Exponent Inversion (TSEI) Problem: The q̃-TSEI problem is defined as
follows: given

(
n,g,gx,{1/(x+ ri),ri}q̃

i=1

)
as input under the condition that (1) g is the generator of order-

p1q1 trapdoor subgroup of Z∗n, (2) g and gx are in Z∗n, (3) ri for i = 1, . . . , q̃ are in {0,1}ℓ for some ℓ
(less than log(ordng)), and (4) 1/(x+ ri) for i = 1, . . . , q̃ are in Zordng, output a new pair (1/(x+ r∗),r∗) ∈
Zordng×{0,1}ℓ. We say that an algorithm A that outputs (1/(x+ r∗),r∗) has an advantage Advq̃-TSEI

(n,g),A = ε
in solving the q̃-TSEI problem in the trapdoor subgroup of Z∗n if

Pr
[
A
(
n,g,gx,{1/(x+ ri),ri}q̃

i=1

)
= (1/(x+ r∗),r∗)

]
≥ ε ,

where the probability is taken over the random choice of x ∈ Zordng, the random choice of {ri}q̃
i=1 in {0,1}ℓ,

and the random bits used by A.

Definition 4. We say that the (t,ε , q̃)-TSEI assumption holds in the trapdoor subgroup of Z∗n if no polynomial
time adversary A that runs in time at most t has at least advantage ε in solving the q̃-TSEI problem in the
trapdoor subgroup of Z∗n.

To gain confidence on the above two problems, we prove in Section 5 that they hold in generic groups
in the sense of [37, 6], under the assumption that factoring n is computationally infeasible .

3 New Identity-Based Encryption Scheme

3.1 CPA-Secure Construction

Setup(k): Given a security parameter k ∈ Z+, the setup algorithm runs as follows:

1. Generate two large random safe primes p and q, each roughly the same size, where p = 2p1 +1 and
q = 2q1 +1 for primes p1 and q1.

2. Compute n = pq.

3. Select a random g ∈ Z∗n such that ordng = p1q1.

4. Pick a random x ∈ Zordng and set g1 = gx (mod n).

5. Select two hash functions h : {0,1}∗→{0,1}ℓ, where ℓ < log(ordng), and H : Zn→{0,1}δ .

6. Output PP= (n,g,g1,h,H) and msk= (x,ordng).

KeyGen(msk, ID): To create a private key skID for an identity ID ∈ ID = {0,1}∗, the key generation
algorithm does as follows:

1. Compute h(ID) ∈ {0,1}ℓ. Note that h(ID) ∈ Zordng, since ℓ < log(ordng).

2. Check if gcd(x+h(ID),ordng) ̸= 1. If so, abort.
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3. Otherwise, compute skID such that (x+h(ID)) · skID ≡ 1 (mod ordng).

4. Output the private key skID = 1/(x+h(ID)) ∈ Zordng.

Encrypt(PP, ID, M): To encrypt a message M ∈{0,1}δ under an identity ID∈ID= {0,1}∗, the encryption
algorithm does as follows:

1. Compute h(ID) ∈ {0,1}ℓ and pick a random s ∈ Zn.

2. Compute C0 = gs (mod n), C1 = (g1gh(ID))s (mod n).

3. Compute C2 = H(C0)⊕M ∈ {0,1}δ .

4. Output the ciphertext CT= (C1,C2) ∈ Zn×{0,1}δ .

Decrypt(CT, skID): To decrypt a ciphertext CT = (C1,C2) using a private key skID for an identity ID, the
decryption algorithm does as follows:

1. Compute C0 =CskID
1 (mod n) and compute M = H(C0)⊕C2.

2. Output the message M ∈ {0,1}δ .

Correctness. We can use the fact that gordng = 1 (mod n) and (x+ h(ID)) · skID = 1+ k · ordng for some
positive integer k ∈ Z. Then the correctness of the decryption algorithm can be verified as follows:

CskID
1 (mod n) =

(
(g1gh(ID))s)skID (mod n) =

(
g(x+h(ID))s)skID (mod n)

=
(
g(x+h(ID))·skID

)s
(mod n) = g(1+k·ordng)s (mod n)

= gs(gordng)ks
(mod n) = gs (mod n).

Remark 1. The problem of finding ordng = p1q1 from the public parameters (n,g,g1) is equivalent to that
of factoring n. This can be shown as follows: if ordng = p1q1 of g modulo n is found, an adversary can
also obtain a value p1 + q1 from the equation n = 4p1q1 + 2(p1 + q1)+ 1. From the two values ordng and
p1 +q1, the adversary can have p1 and q1 and easily factor n. The converse is trivial.
Remark 2. Given at least one private key skID for ID, the problem of computing the discrete logarithm
x ∈ Zordng such that gx = g1 (mod n) is also equivalent to that of factoring n. This can be shown as follows:
if x is found, an adversary can have the equation (x+ h(ID)) · skID = 1+ k · ordng for some integer k ∈ Z.
Therefore, g(x+h(ID))·skID−1 = 1 (mod n). Let (x+ h(ID)) · skID− 1 = 2st, where t is an odd integer. Then,
the order of g2s−1t modulo n is 2, and then gcd(g2s−1t −1,n) or gcd(g2s−1t +1,n) is a non-trivial factor of n.
Conversely, if n is factored, then ordng is easily obtained. Then, an adversary can obtain the inverse of skID
(mod ordng) and the discrete logarithm x from extracting h(ID).
Remark 3. A number theory shows that there exist 3(p1−1)(q1−1) elements2 of the order 2p1q1 modulo
n and (p1−1)(q1−1) elements of the order p1q1 modulo n, which are almost all portion of Z∗n. If the setup
algorithm picks an element g of the order 2p1q1, then it simply has to compute g2 (mod n) to obtain an
element of the order p1q1, which is from the equation ordn(gu) = ordng/gcd(u,ordng).
Remark 4. The probability that the key generation algorithm aborts in the Step 2 is at most 1

p1
+ 1

q1
− 1

p1q1
for the prefixed x ∈ Zordng, and if the order is determined by two large primes (e.g., 1023 bits at the current

2More precisely, in Z∗n with n understood, there exist 3(p1−1)(q1−1) elements of the order 2p1q1, (p1−1)(q1−1) elements
of the order p1q1, 3(p1−1) elements of the order 2p1, p1−1 elements of the order p1, 3(q1−1) elements of the order 2q1, q1−1
elements of the order q1, 3 elements of the order 2, and 1 element of the order 1.
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112-bit security level), the probability is negligible. One way to completely avoid such a negligible case
is that x and ℓ are selected in such a way that the bitlength of x and the output length ℓ of h are less than
log(min{p1,q1})−1 bits. In this case, the addition value x+h(ID) for any identity ID remains always less
than p1 or q1, and thus gcd(x+h(ID),ordng) = 1 with probability 1.
Remark 5. As in RSA, it is required to avoid a small decryption exponent skID ∈ Zordng. The exponent
(i.e., a private key) is not directly chosen at random by the key generation algorithm, and determined by the
equation:

(x+h(ID)) · skID ≡ 1 (mod ordng). (1)

Therefore, the small decryption exponent problem can happen if skID unavoidably becomes a ‘short’ size
(e.g., 30 bits) with respect to some identities. In addition, an adversary gets the largest exponent L among a
set {skID} of acquired private keys, and next tries to find ordng by beginning with exponentiation gR (mod
n) such as R > L. If the largest value L gets close to the (unknown) order ordng, the adversary can gain
computational advantage in finding the order of g by simply excluding considerable amount of exponents
less than L.

Solving these small or large exponent problems simultaneously is to select an appropriate discrete loga-
rithm x in Zordng. The equation (1) shows that, roughly speaking, log f1 < log(skID), where f1 is the quotient
⌊ordng/(x+h(ID))⌋. Such the lower bound means that if we choose x as an appropriate size as long as the
trapdoor subgroup discrete-logarithm problem (DLP) is hard in the subgroup of Z∗n, then we can make the
size of private key always larger than log f1 bits. Also, we can show that log(skID) ≤ log(ordng− f1) as
the upper bound3. Such the upper bound implies that a private key skID is at least log f1 bits distance away
from the (unknown) order ordng, and thus even with the largest decryption exponent L the adversary has to
add at least log f1 bits into L and do exponentiations from it. It seems that what is worse to the adversary is
that the value f1 is unknown and changes per an identity ID. As an instance at the current 112-bit security
level, if ordng = p1q1 is chosen as the product of two 1023-bit primes and the bitlength of x as about 1021
bits and the output length ℓ of h as 256 bits, then the size of a private key for any identity is at least 1025
bits and the largest private key is at least 1025 bits away from the 2046-bit order ordng. In such a case
when the bitlength of x is artificially reduced from log(ordng) to about [log(ordng)]/2, we have to ensure
that it should be computationally infeasible to find the discrete logarithm x such that g1 = gx (mod n) on the
trapdoor subgroup of Z∗n.
Remark 6. The ciphertext size is one element in Zn plus δ -bit string. The cost of generating a private key
for an identity is just a modular inversion in Zordng, and the decryption cost is one exponentiation in modulus
n by rasing an about logn-bit exponent. The encryption cost is three exponentiations gs, gh(ID)s, and gs

1 in
modulus n for an about logn-bit randomly chosen exponent s, but they can be calculated in fixed bases g
and g1. The size of the exponent h(ID)s in encryption becomes about ℓ+ logn bits and thus h(ID)s can
get larger than ordng (as a number), but h(ID)s cannot be reduced modulo ordng without knowing the order
ordng of g modulo n. Thus, in case of using fixed-base exponentiations, the values of g j (mod n) should be
precomputed for j = 1, . . . , ℓ+ logn.
Remark 7. It is worth noting that our scheme can be constructed under a smaller size of subgroups as long
as the q̃-TSDH assumption holds in the smaller trapdoor subgroups of Z∗n for the q̃ number of adversarial
queries. For instance, if n = pq = (2p1 p2 +1)(2q1q2 +1) for shorter size of primes p1, p2,q1 and q2, there
are four possible combinations for group orders such as p1q1, p1q2, p2q1, and p2q2. In such a smaller
subgroup, all of the efficiency factors (except the ciphertext size) can be improved further. For instance, if
the bitlength of ordng becomes about 448 bits, the size of private key is reduced into at least a quarter of 2046

3We give the analysis of this upper (and lower) bound in Appendix A.
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bits, and all the exponentiations in encryption (by choosing a randomness s of about (logn)/4 bitlength) and
decryption can be performed under exponents whose bitlengths are roughly from 448-704 bits (instead of
about 2046-2302 bits).

3.2 Chosen Plaintext Security

Theorem 1. Let h and H be modeled as random oracles and qh < q̃. Suppose the (t ′,ε ′, q̃)-TSDH assumption
holds in the trapdoor subgroup of Z∗n. Then our IBE system is (t,ε ,qK)-IND-ID-CPA secure, where

ε · 2
qhqH

≤ ε ′, t ≈ t ′.

Here, {qh,qH} is the number of {h,H} queries, respectively.

Proof. Suppose that there exists an adversary A which can break the CPA security of our IBE system. We
show how to build an algorithm B which uses A to solve a q̃-TSDH problem in the trapdoor subgroup of
Z∗n, with n understood in the scheme description. On input

(
n, g, gx, g(x+r∗)y, r∗,

{
1/(x+ ri),ri

}q̃
i=1

)
, B tries

to output gy in Z∗n. B interacts with A as follows.
Setup B sets g1 = gx and gives PP= (n,g,g1,h,H) to A.
Query Phase 1 B responds to A’s oracle queries as follows:

h queries: B picks a random i∗ from {1, . . . ,qh}. B maintains a list of tuples < IDi,h(IDi)>, referred to
as the hlist . Given IDi, B scans through the hlist to see if IDi appears in a tuple < IDi,h(IDi)>. If it does, B
responds with h(IDi). Otherwise, B selects a value ri ∈ {0,1}ℓ among {r j}q̃

j=1 and sets h(IDi) = ri. B adds
the new tuple < IDi,h(IDi)> to the hlist and responds with h(IDi). If i = i∗, B uses r∗ instead of ri.

H queries: B maintains a list of tuples < Ai,wi >, referred to as the H list . Given Ai ∈Zn, B scans through
the H list to see if Ai appears in a tuple < Ai,wi >. If it does, B responds with H(Ai) = wi. Otherwise, B
picks a random wi ∈ {0,1}δ and sets H(Ai) = wi. B adds the new tuple < Ai,wi > to the H list and responds
with H(Ai).

Key queries: Given IDi ∈ ID, B scans through the hlist to find a tuple < IDi,h(IDi) >. Let h(IDi) = ri.

If IDi∗ = IDi, B aborts. Otherwise, B selects the corresponding 1/(x+ ri) ∈ Zordng among {1/(x+ r j)}q̃
j=1

as skIDi . B gives 1/(x+ ri) to A.
Challenge A outputs M0,M1 ∈ {0,1}δ and ID∗. If IDi∗ ̸= ID∗, B aborts. Otherwise, B uses the r∗ as h(ID∗)
and sets C∗1 = g(x+r∗)y ∈ Zn. Notice that C1 = g(x+r∗)y = (g1gh(ID∗))y under s = y. Next, B picks a random
R ∈ {0,1}δ and sets C∗2 = R. B gives CT∗ = (C∗1 ,C

∗
2) to A.

Query Phase 2 A issues more h, H, and key queries on the constraint that the private key query for ID∗ is
not allowed. B responds as in Query Phase 1.
Guess A outputs a guess b ∈ {0,1}. At this point, B picks a random tuple < Ai,wi > from the H list and
outputs wi as the solution to the given q̃-TSDH problem.
Analysis. We see that the computation that B requires is almost the same as A’s computation that needs to
break the CPA security of the IBE scheme. Next, to analyze B’s advantage, we prove the following claims.

Claim 1: The probability that B dost not abort is at least 1/qh.
Proof. Let abort be the event that B does not abort during the simulation. Since the selection of i∗ is
independent of A’s view, the probability that ID∗ = IDi∗ is at least 1/qh. Thus, the probability Pr[abort] is
at least 1/qh. �
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Unless B does not abort, B is simulating a real attack environment for A. Let H be the event that A
issues gy as an H query at some point, which implies that at the end of the simulation gy (as one of values
{Ai}qH

i=1) appears in the H list . We show that Pr[H]≥ 2ε , by using the same proof strategy as in [9].

Claim 2: (from [9]) Pr[H]≥ 2ε .

As long as B does not abort, B can use the A’s advantage to solve the q̃-TSDH problem. With the
probability at least 2ε from Claim 2, the correct answer gy appears in some tuple on the H list . At the end of
simulation, B picks a random value from {Ai}qH

i=1 in the H list , so that B produces the answer with probability
at least 2ε/qH . This is done with the probability at least 1/qh from Claim 1, implying that B does not abort.
Hence, by putting them all together, we can get the probability B produces the answer for the q̃-TSDH
problem at least 2ε/qHqh. This concludes the proof of Theorem 1. �
Anonymity. We can also prove that our IBE scheme is anonymous under the same q̃-TSDH assumption.
To prove it, we create a sequence of hybrid games which differ by the challenge ciphertext (CT∗) given
to the adversary: Game0 : CT∗ = (C1 = (g1gh(ID∗))s,C2), Game1 : CT∗ = (C1 = (g1gh(ID∗))s,R2), Game2 :
CT∗ = (C1 = (g1gh(R))s̃,R2), where s, s̃, R and R2 are randomly chosen. An adversary’s ability to distinguish
between Game0 and Game1 can be transformed to solve the q̃-TSDH problem as in the proof of Theorem 1
(under the equivalent conversion from the left-or-right game to the real-or-random game). Next, it is easy
to see that Game1 and Game2 are statistically identical. By rewinding the sequence of the hybrid games
in the reverse order, we can show that, under the q̃-TSDH assumption, it is infeasible for the adversary to
distinguish between two games where CT∗ is generated under (ID0,M) and (ID1,M), respectively.

3.3 CCA-Secure Construction

We extend our IBE scheme to achieve chosen-ciphertext security by applying the variant of the Fujisaki-
Okamoto transform [17]. The variant [24] (denoted by FOID, hereafter) allows for achieving CCA security
from any CPA-secure IBE scheme in the random oracle model, while preserving security reduction tightly.

Setup(k): As in the CPA-secure scheme, except for selecting hash functions. The setup algorithm picks
three hash functions h : {0,1}∗ → {0,1}ℓ, where ℓ < log(ordng), H : Zn → {0,1}δ+θ , and H̃ : {0,1}∗ →
{0,1}⌈logn⌉. The algorithm outputs PP= (n,g,g1,h,H, H̃) and msk= (x,ordng).

KeyGen(msk, ID): As in the CPA-secure scheme.

Encrypt(PP, ID, M): To encrypt a message M ∈{0,1}δ under an identity ID∈ID= {0,1}∗, the encryption
algorithm does as follows:

1. Pick a random ρ ∈ {0,1}θ .

2. Compute s = H̃(M, ID,ρ) ∈ {0,1}⌈logn⌉ and h(ID) ∈ {0,1}ℓ.

3. Compute C0 = gs (mod n), C1 = (g1gh(ID))s (mod n).

4. Compute C2 = H(C0)⊕ (M||ρ) ∈ {0,1}δ+θ .

5. Output the ciphertext CT= (C1,C2) ∈ Zn×{0,1}δ+θ .

Decrypt(CT, PP, skID): To decrypt a ciphertext CT = (C1,C2) using a private key skID for an identity ID,
the decryption algorithm does as follows:

1. Compute C0 =CskID
1 (mod n).
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2. Compute M||ρ = H(C0)⊕C2, where M ∈ {0,1}δ and ρ ∈ {0,1}θ .

3. Compute s = H̃(M, ID,ρ) ∈ {0,1}⌈logn⌉ and h(ID) ∈ {0,1}ℓ.

4. Check if C1
?
= (g1gh(ID))s (mod n) holds. If not, output reject.

5. Otherwise, output the message M ∈ {0,1}δ .

3.4 Chosen Ciphertext Security

Theorem 2. Let h, H, and H̃ be modeled as random oracles and qh < q̃. Suppose the (t ′,ε ′, q̃)-TSDH
assumption holds in the trapdoor subgroup of Z∗n. Then our IBE system is (t,ε,qK ,qD)-IND-ID-CCA secure,
where

ε · 2ε
qHqh

(
1−

qH̃
2θ

)(
1− qD

ordng

)
≤ ε ′, t ′ ≈ t +O(te ·qH̃).

Here, {qh,qH ,qH̃} is the number of {h,H, H̃} oracle queries, respectively, and θ is the bitlength of a ran-
domness used in encryption, and ordng is the order of g modulo n, and te is the exponentiation time in
Zn.

Proof. Suppose that there exists an adversary A which can break the CCA security of our IBE system. We
show how to build an algorithm B which uses A to solve a q̃-TSDH problem in the trapdoor subgroup of
Z∗n, with n understood in the scheme description. On input

(
n, g, gx, g(x+r∗)y, r∗,

{
1/(x+ ri),ri

}q̃
i=1

)
, B tries

to output gy in Z∗n. B interacts with A as follows.
Setup B sets g1 = gx and gives PP= (n,g,g1,h,H, H̃) to A.
Query Phase 1 B responds to A’s oracle queries as follows:

h queries: As before, B picks a value i∗ from {1, . . . ,qh}. B maintains a list of tuples < IDi,h(IDi) >,
referred to as the hlist . Given IDi, B scans through the hlist to see if IDi appears in a tuple < IDi,h(IDi)>. If
it does, B responds with h(IDi). Otherwise, B selects a value ri among {r j}q̃

j=1 and sets h(IDi) = ri. B adds
the new tuple < IDi,h(IDi)> to the hlist and responds with h(IDi). If i = i∗, B uses r∗ instead of ri.

H queries: B maintains a list of tuples < Ai,wi >, referred to as the H list . Given Ai ∈Zn, B scans through
the H list to see if Ai appears in a tuple < Ai,wi >. If it does, B responds with H(Ai) = wi. Otherwise, B picks
a random wi ∈ {0,1}δ+θ and sets H(Ai) = wi. B adds the new tuple < Ai,wi > to the H list and responds
with H(Ai).

H̃ queries: B maintains a list of tuples < Bi, ti, CTi, IDi >, referred to as the H̃ list . Given Bi ∈ {0,1}∗,
B scans through the H̃ list to see if Bi appears in a tuple < Bi, ti,CTi, IDi >. If it does, B responds with
H(Bi) = ti. Otherwise, B picks a random ti ∈ {0,1}⌈logn⌉ and sets H̃(Bi) = ti. Additionally, B constructs
CTi under a message M′ and IDi, where M′ is the first δ bits of Bi, and ρ ′ is the last θ bits of Bi, and the rest
of Bi becomes an identity IDi. B adds the new tuple < Bi, ti,CTi, IDi > to the H̃ list and responds with H̃(Bi).

Key queries: Given IDi ∈ ID, B scans through the hlist to find a tuple < IDi,h(IDi) >. Let h(IDi) = ri.
If IDi∗ = IDi, B aborts. (We refer to this event as abort1.) Otherwise, B selects 1/(x+ ri) ∈ Zordng among
{1/(x+ r j)}q̃

j=1 as skIDi . B gives 1/(x+ ri) to A.
Decryption queries: Given a pair (CTi, IDi), B scans through the H̃ list to find a tuple < B j, t j,CT j, ID j >

such that IDi = ID j and CTi = CT j. If there exists such a tuple, B outputs the corresponding message M′

that is the first δ bits of B j. Otherwise, B outputs reject.
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Challenge A outputs M0,M1 ∈ {0,1}δ and ID∗. If IDi∗ ̸= ID∗, B aborts. (We refer to this event as abort2.)
Otherwise, B uses r∗ as h(ID∗), selects a random ρ∗ ∈ {0,1}θ , and sets C∗1 = g(x+r∗)y ∈ Zn. Notice that
C1 = g(x+r∗)y = (g1gh(ID∗))y under s = y. If (M0, IDi∗ ,ρ∗) or (M1, IDi∗ ,ρ∗) was queried to H̃ oracle, then B
aborts. (We refer to this event as abort3.) Next, B picks a random R ∈ {0,1}δ+θ and sets C∗2 = R. B gives
CT∗ = (C∗1 ,C

∗
2) to A.

Query Phase 2 A issues more h, H, H̃, private key, and decryption queries on the constraint that the private
key query for ID∗ and also the decryption query for (CT∗, ID∗) are not allowed. B responds as in Query
Phase 1.
Guess A outputs a guess b ∈ {0,1}. At this point, B picks a random < Ai,wi > from the H list and outputs
wi as the solution to the given q̃-TSDH problem.
Analysis. We easily see that the computation that B requires is dominated by at most qH̃ encryptions plus
A’s computation that needs to break the CCA security of the IBE scheme.

As observed in [24], there could be a troublesome decryption query in the case where A issues (CTi =
(Ci,1,Ci,2), IDi) as a decryption query without making the relevant H̃ query in advance. That is, let Ci,1 =
(g1gh(IDi))si and Ci,2 = H(gsi)⊕(Mi||ρi) for some si ∈ {0,1}⌈logn⌉, Mi ∈ {0,1}δ and ρi ∈ {0,1}θ . Obviously,
the answer to such a decryption query is reject, since there is no relevant tuple < Bi, ti,CTi, IDi >. After such
a decryption query, A issues a tuple (Mi, IDi,ρi) to H̃ query. B then has to pick a random s̃ ∈ {0,1}⌈logn⌉ (if
there does not exist such a tuple). If Ci,1 = (g1gh(IDi))si = (g1gh(IDi))s̃ (mod n), then B aborts. (We refer to
this event as abort4.) This is because, in that case, B should have output the correctly decrypted message
Mi instead of the previous output reject. Recall that si is chosen by A (since A did not issue (Mi, IDi,ρi) to
H̃ query) and s̃ is chosen by B.

If (g1gh(IDi))si = (g1gh(IDi))s̃ (mod n), Lemma 1 shows that (x+h(IDi))si ≡ (x+h(IDi))s̃ (mod ordng).
We can assume that gcd(x+ h(IDi),ordng) = 14 for two large primes p1 and q1 such that ordng = p1q1.
Under the assumption, if (g1gh(IDi))si = (g1gh(IDi))s̃ (mod n), then it implies that s̃≡ si (mod ordng).

Claim 3: The probability that B dost not abort is at least 1
qh
(1− qH̃

2θ )(1− qD
ordng).

Proof. Let abort be the event that B does not abort during the simulation. For abort to happen, the equality
abort = abort1∧ abort2∧ abort3∧ abort4 should hold. The events abort1 and abort2 are complementary.
Thus, as in the proof of Theorem 1, we know that Pr[abort1∧abort2] is at least 1/qh.

The event abort3 occurs if either (M0, IDi∗ ,ρ∗) or (M1, IDi∗ ,ρ∗) was queried to H̃ oracle by A. This is
when B’s work to map H̃(M0, IDi∗ ,ρ∗) or H̃(M1, IDi∗ ,ρ∗) into the exponent s = y is hindered by the A’s
previous query. Note that M0, M1 and IDi∗ are chosen by A and ρ∗ is chosen by B. abort3 then happens
when B selects a random ρ∗ ∈ {0,1}θ such that either (M0, IDi∗ ,ρ∗) or (M1, IDi∗ ,ρ∗) becomes one of the
input values issued by A. For fixed values (M0, IDi∗) and (M1, IDi∗), abort3 occurs if the θ -bit random
ρ∗ (chosen by B) is equal to a last θ -bit value ⋆ (chosen by A) among {(M0, IDi∗ ,⋆)} and {(M1, IDi∗ ,⋆)}.
For one challenge query, the probability that abort3 occurs becomes at most qH̃/2θ , and thus Pr[abort3]
becomes at least (1− qH̃

2θ ).
The event abort4 occurs if s̃ ≡ si (mod ordng), where si is chosen by A and s̃ is chosen by B. This

is when B’s work to correctly decrypt a ciphertext is hindered by the B’s previous output reject. For one
decryption query (without asking a relevant H̃ oracle beforehand), abort4 happens if si (chosen by A) is
equal to s̃ (chosen by B) in Zordng and thus the probability that abort4 occurs becomes at most 1/ordng.
SinceA can make qD decryption queries, the probability that abort4 occurs becomes at most qD/ordng, and
thus Pr[abort4] becomes at least (1− qD

ordng).
The events abort1∧ abort2 and abort3 and abort4 are relatively independent. Hence, the probability

4See Remark 4 in Section 3.1.
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Table 1: Efficiency comparison between the pairing-based IBE schemes and ours

PP CT skID KeyGen Encryption Decryption

BF 2G2 1G2,1h 1G1 1H1,1E1 1H1,1Ef2,1ET,1P 1Ef2,1P
BB1 3G1,1GT 2G1,1h 2G2 2Ef2 3Ef1,1E

f
T 3Ef1,2P

♯

SK 2G1,1GT 1G1,1h 1G2 1Ef2 2Ef1,1E
f
T 2Ef1,1P

Ours n, 2Zn 1Zn,1h 1Zordng 1Iordng 2Efn, 1Êfn 1En, 1Efn, 1Êfn

h: output size of hash function; H1: map-to-point hash into G1; {E1,E2,ET,En}: a general exponentiation in
{G1,G2,GT ,Zn}, respectively; Ên; an exponentiation with a (logn+ ℓ)-bit exponent for ℓ-bit hash output; “f”:
means that fixed-based exponentiations can be performed; Iordng: a modular inversion in Zordng; P: pairing; ♯: two
parings can be optimized into about 1.2 pairing.

Pr[abort] is then at least 1
qh
(1− qH̃

2θ )(1− qD
ordng). �

Unless B does not abort, B is simulating a real attack environment for A. Let H be the event that A
issues gy as an H query at some point, which implies that at the end of the simulation gy (as one of values
{Ai}qH

i=1) appears in the H list . We show that Pr[H]≥ 2ε , by using the same proof strategy as in [9].

Claim 4: (from [9]) Pr[H]≥ 2ε .

As long as B does not abort, B can use the A’s advantage to solve the q̃-TSDH problem. With the
probability at least 2ε from Claim 4, the correct answer gy appears in some tuple on the H list . At the end
of simulation, B picks a random element from {Ai}qH

i=1 in the H list , so that B produces the answer with
probability at least 2ε/qH . This is done with the probability at least 1

qh
(1− qH̃

2θ )(1− qD
ordng) from Claim 3,

implying that B does not abort. Hence, by putting them all together, we can get the probability B produces
the answer for the q̃-TSDH problem at least 2ε

qH qh
(1− qH̃

2θ )(1− qD
ordng). This concludes the proof of Theorem

2. �

3.5 Efficiency comparison to the previous practical IBE schemes

We compare our IBE scheme with the previous pairing-based IBE schemes such as BF [9], SK [34], and
BB1 [5], which are now in the process of standardization. For simplicity, we assume that all IBE schemes are
CCA secure by applying FOID to each of them, and ideally the efficiency comparison is not affected by the
difficulty of solving a computational hardness problem on which the security of each IBE scheme is based.
We consider Supersingular (SS) curves of embedding degree 2 over large prime fields for the pairing-based
IBE schemes, because especially we want to compare the efficiency in case of the SS curves at the 80-bit
security level that are believed to give the fastest pairing operation. In both encryption and decryption of our
scheme, we consider one of exponentiations modulo n as being performed with (logn+ ℓ)-bit exponent for
ℓ-bit hash output. We also assume that any exponentiation is performed with fixed-base when a base is one
of public parameters.

Table 1 presents the efficiency comparison between the pairing-based IBE schemes and ours, and Table
2 shows the representation sizes of group elements and estimated calculation timings of various operations.
We equivalently consider SS-512 curves and 1024-bit modulus n as the same 80-bit security level, and SS-
1024 curves and 2048-bit modulus n as the same 112-bit security level. The operation timings are estimated
when running PBC and Integer libraries on Intel Core i5-4590 @ 3.30GHz. By putting the results of Table 1
and 2 all together, we have the efficiency comparison result shown in Table 3 with respect to actual overheads
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Table 2: Representation sizes and estimated calculation timings for IBE

Sizes (bits) Timings (ms: 10−3 seconds)

Curves / Integers G1 G2 GT Zn Zordng E1 E2 H1 ET P Iordng En Ên

SS-512 / n-1024 512 512 1024 1024 1022 2.65 2.65 6.13 0.74 3.01 0.05 1.79 2.36

SS-1024 / n-2048 1024 1024 2048 2048 2046 41.33 41.33 2.16 5.26 65.88 0.05 12.44 13.41

Table 3: Overheads and estimated calculation timings at the 80- and 112-bit security levels

SS-512 / n-1024 SS-1024 / n-2048
Overheads (bits) Timings (ms) Overheads (bits) Timings (ms)

PP CT♭ SKID KGen Enc Dec PP CT♭ SKID KGen Enc Dec

BF 1024 768 512 8.78 10.41 3.54 2048 1280 1024 43.49 81.56 74.14
BB1 2560 1280 1024 1.06 1.73 5.20♯ 5120 2304 2048 16.53 25.85 103.85♯

SK 2048 768 512 0.53 1.20 4.07 4096 1280 1024 8.26 17.58 82.41
Ours 3072 1280 1022 0.05 1.19 2.62 6144 2304 2046 0.05 7.66 17.61

♭: h= 256 (bits); ♯: a ratio of two pairings is calculated as 1.2 pairing.

and estimated calculation times at the 80- and 112-bit security levels. Table 3 shows that ours gives a longer
size of ciphertexts, but is more efficient than the other pairing-based schemes in terms of key generation,
encryption, and decryption.5 This computational advantage becomes remarkable when IBE schemes are
implemented on the SS-1024 curves and 2048-bit modulus n, respectively. We can also expect that, if our
IBE scheme can be constructed on a smaller size of subgroups of Z∗n (mentioned in Remark 7 in Section
3.1), the computational advantage stands out much more noticeably at the 112-bit security level.

4 New Public-Key Signature Scheme

We present a new PKS scheme whose security relies on a new assumption, called q̃-Trapdoor Subgroup
Exponent Inversion (TSEI) assumption for q̃ adversarial signature queries.

4.1 Construction

Setup(k): As in the IBE scheme, except for selecting a hash function. The setup algorithm picks one
hash function h : {0,1}∗ → {0,1}ℓ, where ℓ < log(ordng). The algorithm outputs PK = (n,g,g1,h) and
sk= (x,ordng).

Sign(m,sk): To sign a message m ∈ {0,1}∗, the signing algorithm does the following:

1. Compute h(m) ∈ {0,1}ℓ, where ℓ < log(ordng) and thus h(m) ∈ Zordng.

2. Check if gcd(x+h(m),ordng) ̸= 1. If so, abort.

5If MNT curves are used, encryption of the pairing-based schemes could be slightly faster than ours, but decryption of the others
would be much slower than ours.
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3. Otherwise, compute σ such that (x+h(m)) ·σ ≡ 1 (mod ordng).

4. Output the signature σ = 1/(x+h(m)) ∈ Zordng.

Verify(PK,m,σ): To verify a signature σ on a message m, the verification algorithm does the following:

1. Compute h(m) ∈ {0,1}ℓ.

2. Output accept if (g1gh(m))σ ?
= g (mod n) holds. If not, output reject.

Correctness. As before, we use the fact that gordng = 1 (mod n) and (x+h(m)) ·σ = 1+ k ·ordng for some
integer k ∈ Z. Then the correctness of the verification algorithm can be verified as follows:

(g1gh(m))σ (mod n) = g(x+h(m))·σ (mod n) = g1+k·ordng (mod n)

= g
(
gordng)k

(mod n) = g (mod n).

Remark 8. The signing cost is one modular inversion and the verification cost is two (fixed-base) expo-
nentiations. The signature size is one element in Zordng. As in the previous IBE scheme, the size of the
exponent h(m)σ in verification becomes ℓ+ log(ordng) bits and h(m)σ cannot be reduced modulo ordng
without knowing ordng. Thus, in case of using fixed-base exponentiations, the values of g j (mod n) should
be prepared for j = 1, . . . , ℓ+ log(ordng).
Remark 9. As in IBE, the discrete logarithm x ∈ Zordng should be carefully chosen to ensure that (1) the
trapdoor subgroup DLP is believed to be hard in the subgroup of Z∗n and (2) the small or large signature
exponent attack is thwarted. Also, our PKS scheme can be constructed under a smaller size of subgroups
(as mentioned in Section 3.1) if the q̃-TSEI assumption holds in the smaller trapdoor subgroups of Z∗n.
Remark 10. The signature generation can be viewed as a function Fx : {0,1}ℓ→ Zordng such that Fx(w) =
1/(x + w), which is deterministic for the fixed x ∈ Zordng. Fx is injective: if Fx(w1) = Fx(w2) for two
w1,w2 ∈ {0,1}ℓ, then 1/(x +w1) ≡ 1/(x +w2) and thus w1 ≡ w2 (mod ordng). Since w1 < ordng and
w2 < ordng (notice that ℓ < log(ordng)), it follows that w1 = w2. Therefore, if h is a collision-resistant
hash function, then the signing algorithm generates a (deterministic) signature Fx(h(m)) on an arbitrary
length message m ∈ {0,1}∗. Using the Coron’s Technique [16], we can modify the signing algorithm into
a randomized one where a signature on m consists of two elements σ = (1/(x+h(m||R)),R) for a random
salt R. The variant makes the signature length longer, but allows for achieving a tight security reduction to
the q̃-TSEI problem.

4.2 Security

Theorem 3. Let h be modeled as a random oracle and qS ≤ qh < q̃. Suppose the (t ′,ε ′, q̃)-TSEI assumption
holds in the trapdoor subgroup of Z∗n. Then our signature scheme is (t,ε ,qS)-strongly unforgeable against
chosen message attacks, where

ε · 1
qh

(
1− q̃

2ℓ

)
≤ ε ′, t ≈ t ′.

Here, qh is the number of h queries and ℓ is the output length of h.

Proof. Suppose that there exists an adversary A which can break the strong unforgeability of our signature
scheme. We show how to build an algorithm B which uses A to solve a q̃-TSEI problem in the trapdoor
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subgroup of Z∗n. On input
(
n, g, gx,

{
1/(x+ ri),ri

}q̃
i=1

)
, B tries to output a new pair

(
1/(x+ r∗),r∗

)
∈

Zordng×{0,1}ℓ, where r∗ /∈ {ri}q̃
i=1. B interacts with A as follows.

Setup B sets g1 = gx and gives PK= (n,g,g1,h) to A.
Query Phase B responds to A’s oracle queries as follows:

h queries: B picks a random i∗ from {1, . . . ,qh}. B maintains a list of tuples < mi,h(mi) >, referred
to as the hlist . Given mi ∈ {0,1}∗, B scans through the hlist to see if mi appears in a tuple < mi,h(mi) >.
If it does, B responds with h(mi). Otherwise, B uses an unused random ri ∈ {0,1}ℓ from {ri}q̃

i=1 and sets
h(mi) = ri. B adds the new < mi,h(mi) > to the hlist and responds with h(mi). If i = i∗, then B selects a
random r∗ ∈ {0,1}ℓ. If r∗ ∈ {ri}q̃

i=1, then B aborts. (We refer to this event as abort1) Otherwise, i.e., if
r∗ /∈ {ri}q̃

i=1, B sets h(mi∗) = r∗.
Signature queries: Given mi ∈ {0,1}∗, B scans through the hlist to find mi in the hlist . If i = i∗, then

B aborts. (We refer to this event as abort2) Otherwise, i.e., if i ̸= i∗, B responds with 1/(x+ ri) (from
{1/(x+ ri)}q̃

i=1) as the signature on mi, where h(mi) = ri.
Output A outputs a valid signature forgery (m∗,σ∗). Depending on whether or not m∗ was queried before-
hand, there are two possible cases:

[Case 1.] m∗ is not queried during the signature queries. In that case, if m∗ ̸= mi∗ , then B aborts. (We
refer to this event as abort3) Otherwise, in that case, h(m∗) = r∗ /∈ {ri}q̃

i=1, so that B can obtain σ∗ =
1/(x+ r∗) ∈ Zordng from the following verification equation:

(g1gh(m∗))σ∗ = g (mod n)⇐⇒ g(x+h(m∗))·σ∗ = g (mod n)

⇐⇒ (x+ r∗) ·σ∗ ≡ 1 (mod ordng) (by Lemma 1).

B can then obtain the pair (1/(x+ r∗),r∗) as the solution of the q̃-TSEI problem.
[Case 2.] m∗ is one of the queried messages. Say m∗=mt for some t ∈ {1, . . . ,qS} and the corresponding

signature (that was generated by one of signature queries) is σt . Again, B refers to the hlist and finds the
tuple < m∗,h(m∗)> such that h(m∗) = ri for some ri ∈ {ri}q̃

i=1. There exists such a tuple, because m∗ = mt

was issued as a signature query and h(m∗) was mapped to some ri. In this case, the two signatures σ∗
and σt on the same message m∗ = mt should be different, i.e., σ∗ ̸= σt in Zordng. However, from the
verification equation, we know that (g1gh(m∗))σ∗ = g (mod n) and (g1gh(m∗))σt = g (mod n). Thus, by Lemma
1, (x+h(m∗)) ·σ∗ ≡ 1 and (x+h(m∗)) ·σt ≡ 1 (mod ordng). We can assume that gcd(x+h(m∗),ordng) = 1,
since otherwise B cannot generate the previous signature σt . Under the assumption, the two equations show
that σ∗ = σt in Zordng, which is the contradiction to σ∗ ̸= σt in Zordng.

Analysis. We can easily see that the computational time of B is almost the same as that of B. Next, to analyze
the B’s advantage, we prove the following claim.

Claim 5: The probability that B dost not abort is at least 1
qh
(1− q̃

2ℓ ).
Proof. Let abort be the event that B does not abort. Obviously, for abort to happen, the equality abort =
abort1∧abort2∧abort3 should hold. The event abort1 happens if the ℓ-bit string r∗ chosen by B belongs to
{ri}q̃

i=1. The probability that abort1 happens is at most q̃/2ℓ, and thus Pr[abort1] becomes at least (1− q̃
2ℓ ).

Next, abort2 and abort3 are complementary. Since the selection of i∗ is independent of A’ view, it follows
that Pr[abort2∧ abort3] becomes at least 1

qh
. We know that the events abort1 and abort2∧ abort3 are

relatively independent, so that the probability Pr[abort] is at least 1
qh
(1− q̃

2ℓ ). �
Next, we can see that as long as B does not abort in the simulation, B provides A with a perfect sim-

ulation whose distribution is identical to that in a real interaction with a signer. This is because (1) the
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Table 4: Efficiency comparison between the practical PKS schemes and ours

RSA-FDH RSA-PSS DSA ECDSA Ours

Public key (n,e) (n,e) (p,q,g,gx) (E,q,g,gx) (n,g,gx)

Secret key d d x x (x,ordng)
Signing cost 1 En 1 En 1 Ep 1 EE 1 Iordng

Verification cost 1 Ee
n 1 Ee

n 2 Ep 2 EE 1 En + 1 Ên

Signature length Zn Zn 2 Zq 2 Zq Zordng

Signing algorithm Deterministic Randomized Randomized Randomized Deterministic

In DSA, q is a prime such that q divides p− 1, and g is a generator of an order-q subgroup of Z∗p; In ECDSA, E
is an elliptic-curve group based on a prime (or other fields), and g is a generator of an order-q subgroup of E; En:
a general modular exponentiation in Zn; Ep: a modular exponentiation with a logq-bit exponent in Zp; EE : a
general exponentiation (i.e., point multiplication) over an elliptic-curve group E; Ên: a modular exponentiation with
a (log(ordng)+ ℓ)-bit exponent in Zn, where ℓ is the output bitlength of hash function; Ee

n: a modular exponentiation
with a small exponent (e.g., e = 65537) in Zn; Iordng: a modular inversion in Zordng.

Table 5: Representation sizes and estimated calculation timings for PKS

Sizes (bits) Timings (ms: 10−3 seconds)
Curves / Integers Zn Zq Zordng EE Ep Iordng En Ên Ee

n

EC-224 / n-2048, p-2048 2048 224 2046 1.03 1.34 0.05 12.44 13.41 0.58

simulation of h oracles is obviously perfect as the output values are chosen at random among given values
{ri}q̃

i=1 and a randomly chosen r∗ /∈ {ri}q̃
i=1, and (2) the simulation of signature oracles is also perfect as

each signature on a message is generated with given {1/(x+ ri)}q̃
i=1.

It follows that as long as B does not abort in the simulation, B can use A’s advantage ε to break the
strong unforgeability of our signature scheme. From Claim 5, B’s advantage ε ′ is then given as ε · 1/qh ·
(1− q̃/2ℓ)≤ ε ′, as required. This concludes the proof of Theorem 3. �

Table 6: Overheads and estimated calculation timings for PKS at the 112-bit security level

RSA-FDH RSA-PSS DSA ECDSA Ours

Secret key (bits) 2048 2048 224 224 4092
Signing cost (ms) 12.44 (3.11♭) 12.44 (3.11♭) 1.34 (0.27†) 1.03 (0.21†) 0.05

Verification cost (ms) 0.58♯ 0.58♯ 2.68 2.06 25.85
Signature length (bits) 2048 2048 448 448 2046

♭: CRT is used; †: fixed-base exponentiation is performed; ♯: e = 65537 is raised.
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4.3 Efficiency comparison to the previous practical PKS schemes

In this section we compare our signature scheme with the previous practical PKS schemes such as RSA-
{FDH, PSS}, DSA, and ECDSA, which are now wildly used in practice. Table 4 presents the efficiency
comparison between the previous schemes and ours. Table 5 shows the representation sizes and estimated
calculation timings at the 112-bit security level when we consider a NIST-recommended elliptic-curve over a
224-bit prime field as well as 2048-bit modulus n and p. The estimated timings are calculated when running
Elliptic-Curve and Integer libraries on Intel Core i5-4590 @ 3.30GHz. Table 6 shows, by putting the results
of Table 4 and 5 together, that our scheme provides the fastest signing, compared to the other practical
schemes: about 62.2 (=3.11/0.05) times faster than RSA-{FDH, PSS} that employ the Chinese remainder
theorem (CRT), and about 4.2 (=0.21/0.05) times faster than ECDSA that uses fixed-base exponentiation.

On the other hand, our scheme is less efficient than the others in terms of verification cost. Our verifica-
tion is about 44.5 (=25.85/0.58) times slower than RSA-{FDH, PSS}, and about 12.5 (=25.85/2.06) times
slower than ECDSA. Regarding the signature size, ours is almost the same as RSA-{FDH, PSS}, but about
4.5 (=2046/448) times longer than DSA and ECDSA. For our scheme, however, there is a chance to improve
the efficiency if our signature scheme is constructed on a smaller size of subgroups of Z∗n. An interesting
case is when we take an order-p2q2 subgroup of Z∗n where n = pq = (2p1 p2 +1)(2q1q2 +1) (as mentioned
in Remark 7 in Section 3.1). If n is 2048 bits and ordng = p2q2 is about 448 bits, the signature length of
ours is the same as that of DSA and ECDSA, and apparently verification will be faster than our current
construction. Our ongoing work is to investigate the difficulty of solving the q̃-TSEI problem in the smaller
size of trapdoor subgroups, and compare the efficiency with the others when implementing our scheme over
the smaller subgroups.

5 Analysis in the Generic Group Model

To provide confidence in the q̃-TSDH and q̃-TSEI assumptions, we establish a lower bound on the com-
putational complexity of the q̃-TSDH and q̃-TSEI problems for generic groups in the sense of [37, 6],
respectively. We assume that factoring n is computationally infeasible, with n understood before.

In the generic-group model, elements in the trapdoor subgroup of Z∗n appear to be encoded as unique
random strings, so that no property other than equality can be directly tested by the adversaryA. A performs
operations on group elements by interacting two oracles: one oracle for computing the group action, and one
oracle for computing the exponentiation. For ordng(= p1q1) of the subgroup of Z∗n, the opaque encoding
of the group elements is modeled as an injective function ξ : Zordng → {0,1}⌈log(ordng)⌉, which maps all
a ∈ Zordng to the string representation ξ (a) that corresponds to ga ∈ Z∗n for a generator g of the subgroup. A
communicates with the oracles using the ξ -representations of the group elements. Note that g corresponds
to ξ (1) modulo n.

The overall proof strategy of our analysis is similar to that of Shoup’s analysis [37], but there exist
several differences between them as follows: (1) due to computational hardness problems, A in [37] takes
as input a list of encoding values, whereas A in ours takes as input a list of encoding values and domain
values, and (2) depending on oracle queries made byA, the domain values in [37] are maintained by a list of
linear polynomials in indeterminates, whereas the domain values in ours are maintained by a list of rational
fractions in indeterminates, and (3) to analyze the probability that A wins, [37] chooses random values
corresponding to the indeterminates when A terminates, whereas ours picks the random values before A
is given the input values. Especially, the reason of (3) in our analysis is because the q̃-TSDH and q̃-TSEI
problems requires to giveA domain values (as well as encoding values) as input, and thus at the initialization
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step, the random values (later mapping to indeterminates) should be chosen and embedded into those domain
values. Although the order is reversed, the philosophy in ours is the same as in Shoup’s analysis.

5.1 The q̃-TSDH Problem

Theorem 4. Let A be an algorithm that solves the q̃-TSDH problem in the generic group model. Assume
that ξ is a random encoding function for the subgroup of Z∗n. If A makes a total of at most qG queries to the
oracles computing the group action and exponentiation in the subgroup of Z∗n, then

ε = Pr
[
A
(

n,ξ (1),ξ (x),ξ ((x+ r∗)y),r∗,
{

1/(x+ ri),ri
}q̃

i=1

)
= ξ (y)

]
≤ 3(qG +4)3

p1
,

where (1) 1/(x+ ri) for i = 1, . . . , q̃ are in Zordng, (2) r∗ and ri for i = 1, . . . , q̃ are randomly chosen in {0,1}ℓ

for some ℓ < log(ordng), (3) r∗ /∈ {ri}q̃
i=1, and (4) x and y are randomly chosen in Zordng.

Proof. Without loss of generality, assume that p1 is larger than q1 when ordng = p1q1. Throughout the
game, we implicitly use the fact that Zordng is isomorphic to Zp1×Zq1 given by CRT. Consider an algorithm
B that plays the following game with A.
B first picks random x,y ∈ Zordng, ri ∈ {0,1}ℓ for i = 1, . . . , q̃, and r∗ ∈ {0,1}ℓ such that r∗ /∈ {ri}q̃

i=1. B
computes {1/(x+ ri)}q̃

i=1 in Zordng. B maintains a list of pairs, L = {(Fi,zi,ξi) : i = 1, . . . ,τ}, such that, at
step τ in the game, τ ≤ 3+qG. Here, the F⋆ ∈Zp1 [X ,Y ] are rational fractions in the indeterminates X ,Y with
coefficients in Zp1 . The z⋆ ∈ Zq1 are images (to Zq1) of domain values in Zordng. The ξ⋆ ∈ {0,1}⌈log(ordng)⌉

are arbitrary distinct strings given to A.
The list is initialized at step τ = 0 by initializing τ ← 3 and setting F1 = 1, F2 = X , F3 = (X + r∗p1

)Y ,
where r∗p1

≡ r∗ (mod p1), and z1 = 1, z2 = xq1 , z3 = (xq1 + r∗q1
)yq1 , where xq1 ≡ x (mod q1), yq1 ≡ y (mod

q1), and r∗q1
≡ r∗ (mod q1). The corresponding strings ξ1, ξ2, and ξ3 are set to arbitrary distinct strings in

{0,1}⌈log(ordng)⌉.
B starts the game by providing A with the encodings ξ1, ξ2, ξ3, and r∗, {1/(x+ ri),ri}q̃

i=1. B responds
to A’s oracle queries as follows:
Group action. Given a multiplication/division selection bit and two operands ξi and ξ j with 1 ≤ i, j ≤ τ ,
compute Fτ← Fi±Fj ∈Zp1 [X ,Y ] and zτ← zi±z j ∈Zq1 depending on whether a multiplication or a division
is requested. If Fτ = Fl and zτ = zl for some l < τ , set ξτ ← ξl; otherwise, set ξτ to a random string in
{0,1}⌈log(ordng)⌉ distinct from ξ1, . . . ,ξτ−1. Add (Fτ ,zτ ,ξτ) to the list L and give ξτ to A, then increment τ
by one.
Exponentiation. Given two operands ξi and (1/(x+ r j),r j) with 1 ≤ i < τ and 1 ≤ j ≤ q̃, compute Fτ ←
Fi ·1/(X +r j,p1)∈Zp1 [X ,Y ] and zτ ← zi ·1/(xq1 +r j,q1)∈Zq1 , where r j,p1 ≡ r j (mod p1) and r j,q1 ≡ r j (mod
q1). If Fτ = Fl and zτ = zl for some l < τ , set ξτ ← ξl; otherwise, set ξτ to a string in {0,1}⌈log(ordng)⌉ distinct
from ξ1, . . . ,ξτ−1. Add (Fτ ,zτ ,ξτ) to the list L and give ξτ to A, then increment τ by one.

After at most qG queries,A terminates and returns a value ξℓ and 1≤ ℓ≤ τ . Let Fℓ be the corresponding
function in the list L. In order to exhibit the correctness of A’s answer within the simulation framework,
B computes the rational fraction F⋆ = (X + r∗p1

)Fℓ ∈ Zp1 [X ,Y ]. Notice that if A’s answer is correct for
particular exponents regarding indeterminates X and Y , we must have the following equality:

F⋆ = (X + r∗p1
)Fℓ = F3. (2)

We know that the rational fraction Fℓ has the following form:

Fℓ =
{(X + r∗p1

)Y}a(∑qG−1
i=1 biX i)+∑qG

i=1 ciX i

Πq̃
i=1(X + ri,p1)

di
, (3)
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where a = 0 or 1, the coefficients bi (i = 1, . . . ,qG− 1) and ci (i = 1, . . . ,qG) are in Zp1 , and ∑q̃
i=1 di ≤ qG.

Then, the equation (2) can be represented by the equation F̃⋆ = 0, where F̃⋆ ∈Zp1 [X ,Y ] is a linear polynomial
of at most qG +2 degrees with respect to the indeterminates X and Y .

At this point B uses the random exponents xp1 and yp1 corresponding to indeterminates X and Y in Zp1 ,
where xp1 ≡ x (mod p1), yp1 ≡ y (mod p1), and evaluates all the polynomials under the assignment. If
the assignment causes two non-identical polynomials within the list L to assume the same value, then the
simulation provided by B to A was flawed since it presented as distinct two group elements that were in
fact equal. If it causes the non-trivial equation (2) to be satisfied, then A has won the game. However, if no
non-trivial equality emerged from the assignment, then the simulation provided by B is perfect and resulted
in A’s failure to solve the instance. By the above argument, the success probability of A in the generic
model is bounded by the probability that at least one equality among the following collections is satisfied,
for random assigned values xp1 ,yp1 in Zp1 corresponding to indeterminates X and Y :

1. Fi(xp1 ,yp1)−Fj(xp1 ,yp1) = 0 in Zp1 , yet Fi ̸= Fj for some i, j ∈ {1, . . . ,τ},

2. (xp1 + r∗p1
)Fℓ(xp1 ,yp1) = F3(xp1 ,yp1) in Zp1 .

We notice that each function Fj for 1 ≤ j ≤ τ has the form of the equation (3). Then, each non-trivial
functions Fi−Fj for fixed i and j can be represented as a polynomial of degree at most 2qG + 1 in the
indeterminate X and Y , so that it vanishes for random assignment of the indeterminates xp1 ,yp1 in Zp1

with probability at most (2qG + 1)/p1. In the second case, since the equation (2) can be represented as
a polynomial of degree at most qG + 2 in the indeterminate X , it vanishes for random assignment of the
indeterminates xp1 ,yp1 in Zp1 with probability at most (qG + 2)/p1. Summing over all valid pairs in the
above cases, we deduce that A wins the game with probability

ε ≤

((
τ
2

)
2qG +1

p1
+

qG +2
p1

)
.

Since τ ≤ 3+qG, we have ε ≤ 3(qG +4)3/p1, as required. �

5.2 The q-TSEI Problem

Theorem 5. LetA be an algorithm that solves the q̃-TSEI problem in the generic group model. Assume that
ξ is a random encoding function for the subgroup of Z∗n. If A makes a total of at most qG queries to the
oracles computing the group action and exponentiation in the subgroup of Z∗n, then

ε = Pr

[
A
(

n,ξ (1),ξ (x),
{

1/(x+ ri),ri
}q̃

i=1

)
=
(
1/(x+ r∗),r∗

)]
≤ 3(qG +3)3

p1
,

where (1) 1/(x+ ri) for i = 1, . . . , q̃ are in Zordng, (2) ri for i = 1, . . . , q̃ are randomly chosen in {0,1}ℓ for
some ℓ < log(ordng), and (3) x is randomly chosen in Zordng.

Proof. As before, assume that p1 is larger than q1 when ordng = p1q1, and we use the fact that Zordng is
isomorphic to Zp1×Zq1 . Consider an algorithm B that plays the following game with A.
B first picks random x ∈ Zordng and ri ∈ {0,1}ℓ for i = 1, . . . , q̃. B computes {1/(x+ ri)}q̃

i=1 in Zordng. B
maintains a list of pairs, L = {(Fi,zi,ξi) : i = 1, . . . ,τ}, such that, at step τ in the game, τ ≤ 2+qG. Here, the
F⋆ ∈ Zp1 [X ] are rational fractions in the indeterminate X with coefficients in Zp1 . The z⋆ ∈ Zq1 are images
(to Zq1) of domain values in Zordng. The ξ⋆ ∈ {0,1}⌈log(ordng)⌉ are arbitrary distinct strings given out to A.
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The list is initialized at step τ = 0 by initializing τ ← 2 and setting F1 = 1 and F2 = X , and z1 = 1 and
z2 = xq1 , where xq1 ≡ x (mod q1). The corresponding strings ξ1 and ξ2 are set to arbitrary distinct strings in
{0,1}⌈log(ordng)⌉.
B starts the game by providing A with the encodings ξ1, ξ2, and {1/(x+ ri),ri}q̃

i=1. B responds to A’s
oracle queries as follows:
Group action. Given a multiplication/division selection bit and two operands ξi and ξ j with 1 ≤ i, j ≤ τ ,
compute Fτ ← Fi±Fj ∈ Zp1 [X ] and zτ ← zi± z j ∈ Zq1 depending on whether a multiplication or a division
is requested. If Fτ = Fl and zτ = zl for some l < τ , set ξτ ← ξl; otherwise, set ξτ to a random string in
{0,1}⌈log(ordng)⌉ distinct from ξ1, . . . ,ξτ−1. Add (Fτ ,zτ ,ξτ) to the list L and give ξτ to A, then increment τ
by one.
Exponentiation. Given two operands ξi and (1/(x+ r j),r j) with 1 ≤ i < τ and 1 ≤ j ≤ q̃, compute Fτ ←
Fi ·1/(X + r j,p1) ∈ Zp1 [X ] and zτ ← zi ·1/(xq1 + r j,q1) ∈ Zq1 , where r j,p1 ≡ r j (mod p1) and r j,q1 ≡ r j (mod
q1). If Fτ = Fl and zτ = zl for some l < τ , set ξτ ← ξl; otherwise, set ξτ to a string in {0,1}⌈log(ordng)⌉ distinct
from ξ1, . . . ,ξτ−1. Add (Fτ ,zτ ,ξτ) to the list L and give ξτ to A, then increment τ by one.

After at most qG queries, A terminates and returns a pair (c∗,r∗) ∈ Zordng×{0,1}ℓ. In order to exhibit
the correctness of A’s answer within the simulation framework, B computes the rational fraction F⋆ =
(X + r∗p1

)c∗p1
, where r∗p1

≡ r∗ (mod p1) and c∗p1
≡ c∗ (mod p1). Notice that if A’s answer is correct for

particular exponents regarding indeterminate X , we must have the following equality:

F⋆ = (X + r∗p1
)c∗p1

= 1. (4)

We know that each of a rational fraction Fi for 1≤ i≤ τ has the following form:

Fi =
∑qG

i=1 ciX i

Πq̃
i=1(X + ri,p1)

di
, (5)

where the coefficients ci for i = 1, . . . ,qG are in Zp1 , ri,p1 ≡ ri (mod p1) for i = 1, . . . ,qG, and ∑q̃
i=1 di ≤ qG.

At this point B use the random exponent xp1 corresponding to indeterminate X in Zp1 , where xp1 ≡ x
(mod p1), and evaluates all the polynomials under the assignment. By the similar argument as in the proof of
Theorem 4, the success probability of A in the generic model is bounded by the probability that at least one
equality among the following collections is satisfied, for random assigned value xp1 in Zp1 corresponding to
indeterminate X :

1. Fi(xp1)−Fj(xp1) = 0 in Zp1 , yet Fi ̸= Fj for some i, j ∈ {1, . . . ,τ},

2. (xp1 + r∗p1
)c∗p1

= 1 in Zp1 .

Each function Fi for 1≤ i≤ τ has the form of the equation (5). Then, each non-trivial functions Fi−Fj

for fixed i and j can be represented as a polynomial of degree at most 2qG in the indeterminate X , so that
it vanishes for random assignment of the indeterminate x in Zp1 with probability at most 2qG/p1. In the
second case, the equation (4) can be represented as a polynomial of degree at most 1 in the indeterminate
X , so that it vanishes for random assignment of the indeterminate x in Zp1 with probability at most 1/p1.
Summing over all valid pairs in the above cases, we deduce that A wins the game with probability

ε ≤

((
τ
2

)
2qG

p1
+

1
p1

)
.

Since τ ≤ 2+qG, we have ε ≤ 3(qG +3)3/p1, as required. �
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A Upper and lower bounds for bitlength of a modular inverse

Assume that gcd(x+h(ID),ordng) = 1 and we find an inverse skID ∈ Zordng such that (x+h(ID)) · skID ≡ 1
(mod ordng). It is easy to show that logq1 ≤ log(skID) as the lower bound, where q1 is the quotient in the
division of ordng/(x+ h(ID). This is because the equation (x+ h(ID)) · skID ≡ 1 (mod ordng) means that
(x+h(ID)) · skID = 1+k ·ordng for some positive integer k. Since x+h(ID) and skID are all less than ordng,
skID should be larger than the quotient q1. This means that logq1 < log(skID) in terms of the bitlength.

25



Next, we show that log(skID) ≤ log(ordng− q1) as the upper bound. For simplicity, let a = ordng and
b = x+ h(ID). Using the extended Euclidean algorithm, we can express the process of finding the inverse
as follows:

gcd(x+h(ID),ordng) = ska+ tkb,

where sk and tk are the k-th terms of the sequences defined recursively by s0 = 1, t0 = 0, s1 = 1, t1 = 1, and
s j = s j−2−q j−1s j−1, t j = t j−2−q j−1t j−1 for j = 2,3, . . . ,k, where the q j are the quotients in the divisions of
the Euclidean algorithm when it is used to find gcd(x+h(ID),ordng). In this case, we has only to consider
the sequence values t j for j = 2, . . . ,k, because t j can be the inverse in the end when we take ‘mod ordng’
operation in the final (k− 1)-th equation. When k is the last index, we see that rk = 0 and rk−1 = 1 in the
process of the extended Euclidean algorithm and then the inverse comes from tk−1.

A simple calculation shows that t j for an even number j(≥ 2) is always negative and decreasing such
as t2 > t4 > · · · (until k (or k− 1) appears), whereas t j for an odd number j(≥ 3) is always positive and
increasing such as t3 < t5 < · · · (until k (or k− 1) appears). We first show that |t j| < ordng for all even
number j even if t j for an even number j decreases, and t j < ordng for all odd number j even if t j for an odd
number j increases.

Claim 6: |t j|< ordng for all even numbers j, and t j < ordng for all odd numbers j.

Proof. The value a(= ordng) can be expressed by a = |t j|r j−1 + |t j−1|r j for j = 2,3 . . . ,k, where r j and
r j−1 are the remainders of the Euclidean algorithm when it is used to find gcd(a,b). In any case, all the
remainders are larger than or equal to 0, and not both 0 at the same time. Thus, Claim 6 holds. �

If k terminates as an even number, tk−1 can be the inverse. As tk−1 > 0 and tk−1 < ordng from Claim 6,
we know that skID = tk−1 in Zordng. Similarly, if k terminates as an odd number, tk−1 can be the inverse. As
tk−1 < 0 and |tk−1|< ordng from Claim 6, we know that skID = ordng+ tk in Zordng. Next, we show that the
increasing ti for odd numbers i = 3,5, . . . ,k cannot exceed ordng−q1.

Claim 7: ordng−q1 ≥ tk−1 when k terminates as an even number.

Proof. When k terminates as an even number, as mentioned above, we know that rk = 0 and rk−1 = 1 in the
process of the extended Euclidean algorithm. Thus, a = |tk|, and since k is an even number, tk < 0 and thus
a =−tk. Also, we can check that for all even numbers j, t j =−q1− t j−1q j−1−α for some α ≥ 0. Hence,
when j = k, a = q1 + tk−1qk−1 +α , and a−q1 = tk−1qk−1 +α . Since a = ordng and qk−1 ≥ 1, then we have
ordng−q1 ≥ tk−1. �

Claim 6 and 7 tell us that, in Zordng, t j for all odd numbers j cannot be larger than ordng−q1 even if they
increases. Notice that the largest t j for an even number j is t2 = −q1. Thus, we can have the bounds such
that, for an odd number k, tk ≤ ordng−q1, and for an even number k, ordng+ tk−1 ≤ ordng−q1. Since either
tk or ordng+ tk−1 is the modular inverse skID in Zordng when k is the last index in the process of the extended
Euclidean algorithm, the two inequalities give the upper bound such that skID ≤ ordng−q1. Finally, in terms
of the bitlength, it is obvious that log(skID)≤ log(ordng−q1), as required.
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In a recent work, Park, Lee and Lee [1] present an identity-based encryption scheme and a
companion signature scheme. Interestingly, their schemes work in RSA subgroups. The authors
introduce two security assumptions to prove the security of their schemes. We show in this short
note that, unfortunately, the assumptions do not hold.

Assumptions. Consider PPT algorithm TRSAgen which, on input a security parameter 1κ, gener-
ates an RSA modulus N = pq where p = 2p1+1 and q = 2q1+1, with p, q, p1, q1 prime, an element
g ∈ Z∗N of order p1q1, and a length ` for some ` < |p1q1|. We write (N, g, l)← TRSAgen(1κ).

Assumption 1 (TSDH Assumption). With the previous notations, the q̃-TSDH assumption
asserts that

Pr
[
A
(
N, g, gx, g(x+r0)y, r0,

{(
1/(x+ ri), ri

)}q̃
i=1

)
= gy

]
is negligible for any PPT algorithm A; the probabilities are taken over the experiment of running
(N, g, `)← TRSAgen(1κ) and choosing at random x, y ∈ Zp1q1 and r0, r1, . . . , rq̃ ∈ {0, 1}`.

Assumption 2 (TSEI Assumption). With the previous notations, the q̃-TSEI assumption as-
serts that

Pr
[
A
(
N, g, gx,

{(
1/(x+ ri), ri

)}q̃
i=1

)
=
(
1/(x+ r∗), r∗

) ∣∣ r∗ /∈ {r1, . . . , rq̃}]
is negligible for any PPT algorithm A; the probabilities are taken over the experiment of running
(N, g, `)← TRSAgen(1κ) and choosing at random x ∈ Zp1q1 and r1, . . . , rq̃ ∈ {0, 1}`.

Analysis. Define the set S =
{
(σi, ri)

}q̃
i=1

where σi = 1/(x + ri) (mod p1q1). From a pair of
elements (σ1, r1), (σ2, r2) ∈ S , it is easily checked that

σ1σ2(r1 − r2) + σ1 − σ2 ≡ 0 (mod p1q1) .

We can write Λ := σ1σ2(r1 − r2) + σ1 − σ2 as Λ = 2tΛ0 where 2t‖Λ and Λ0 is odd. It is worth
observing that Λ0 ∝ p1q1. Next we choose a random element h ∈ Z∗N with Jacobi symbol −1. It
follows then that

gcd(hΛ0 ± 1 mod N,N)

yields the factorization of N . Indeed, since
(
h
N

)
= −1, we can assume without loss of generality that(

h
p

)
= 1 and

(
h
q

)
= −1. Hence, letting α = Λ0/p1 and β = Λ0/q1 in Z, we have hΛ0 ≡

(
h
p

)α
≡ 1

(mod p) and hΛ0 ≡
(
h
q

)β
≡ −1 (mod p) since β is odd. In turn, this implies that gcd(hΛ0 −

1 mod N,N) = p and gcd(hΛ0 + 1 mod N,N) = q. Hence, we get p1q1 = (p− 1)(q − 1)/4.
Once p1q1 is known, an attacker against the TSDH assumption can recover x from (σ1, r1)

as x = (1/σ1) − r1 mod p1q1 and next z := gy mod N as z = (g(x+r0)y)γ mod N where γ :=
1/(x+ r0) mod p1q1.

Similarly, an attacker against the TSEI assumption can first recover x from (σ1, r1) and then
compute a new pair (1/(x+ r∗) mod p1q1, r

∗) for any chosen r∗ ∈ {0, 1}`.
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Extension. The authors of [1] more generally consider the case of RSA moduli of the form N = pq
where p = 2p1 · · · pI + 1 and q = 2q1 · · · qJ + 1 with p1, . . . , pI and q1, . . . , qJ prime, and p1q1-
order subgroups of Z∗N . In this case, an attacker, from two pairs (σ1, r1) and (σ2, r2) where σi =
1/(x+ ri) mod p1q1 with i ∈ {1, 2}, can compute Λ as

Λ := σ1σ2(r1 − r2) + σ1 − σ2 .

Again the main observation is that the so-defined Λ is a multiple of p1q1.
Given two integers a and b whose prime factorizations are a =

∏
i∈I pi

ei and b =
∏
j∈J pi

fi

with ei, fi > 0, we define the operator copb(a) =
∏
i∈I ,i/∈J pi

ei . This can be obtained by successive
GCDs:

δ ← gcd(a, b)
until (δ = 1) do

a← a/δ; δ ← gcd(a, b)
return a

Against the TSDH assumption, the attacker computes

x′ := (1/σ1)− r1 mod copσ1(Λ) , γ := 1/(x′ + r0) mod cop(x′+r0)(Λ)

and then recovers z := gy mod N as

z = (g(x+r0)y)
γ
mod N .

For the TSEI assumption, an attacker needs to produce a pair (1/(x + r∗), r∗) where the first
component is computed modulo p1q1. The knowledge of a multiple of p1q1 (i.e., Λ) is not enough.
However, by considering more than two pairs (σi, ri), the attacker can easily obtain p1q1; namely

Λ′ := gcd
(
σ1σ2(r1 − r2) + σ1 − σ2, σ1σ3(r1 − r3) + σ1 − σ3

)
is likely to be equal to p1q1 or a small multiple thereof (that allows the recovery of p1q1 by pulling
out its small factors).
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