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Abstract

Constructing short signatures with tight security from standard assumptions is a long-
standing open problem. We present an adaptively secure, short (and stateless) signature
scheme, featuring a constant security loss relative to a conservative hardness assumption,
Short Integer Solution (SIS), and the security of a concretely instantiated pseudorandom
function (PRF). This gives a class of tightly secure short lattice signature schemes whose
security is based on SIS and the underlying assumption of the instantiated PRF.

Our signature construction further extends to give a class of tightly and adaptively secure
“compact” Identity-Based Encryption (IBE) schemes, reducible with constant security loss
from Regev’s vanilla Learning With Errors (LWE) hardness assumption and the security
of a concretely instantiated PRF. Our approach is a novel combination of a number of
techniques, including Katz and Wang signature, Agrawal et al. lattice-based secure IBE,
and Boneh et al. key-homomorphic encryption.

Our results, at the first time, eliminate the dependency between the number of adver-
sary’s queries and the security of short signature/IBE schemes in the context of lattice-
based cryptography. They also indicate that tightly secure PRFs (with constant security
loss) would imply tightly, adaptively secure short signature and IBE schemes (with constant
security loss).

1 Introduction

Short signatures are useful and desirable for providing data authenticity in low-bandwidth
and/or high-throughput applications where many signatures have to be processed very quickly.
Most digital signature schemes are based on computationally hard problems on specific algebraic
groups, e.g., finite fields, curves, and lattices. A signature is “short” if the signature consists in
a (small) constant number of group elements (e.g., field elements or lattice points).

Although bare-bones signatures can be obtained from very weak assumptions (e.g., collision-
resistant hash functions), constructing efficient short signatures satisfying standard security
requirements (e.g., existential unforgeability under adaptively chosen-message attacks), from
reasonable assumptions, appears to be a challenging task. Some of the existing short signature
schemes use random oracles, e.g., [20, 10, 48, 36, 50], or rely on non-standard computational
assumptions (strong, interactive assumptions, and/or q-type parametric assumptions), e.g., [34,
30, 33, 16, 26], or require signers to maintain state across signatures, e.g., [45].

The first short signature scheme from a reasonable and non-parametric assumption without
random oracles was proposed by Waters [56]. Hohenberger and Waters later proposed a short
signature scheme from standard RSA [46]. Lattice-based short signatures from the very mild SIS
assumption in the standard model were proposed in [21, 51]. Recently, the “confined guessing”
technique developed by Böhl et al. [13] has produced short signatures from standard RSA and
bilinear-group CDH assumptions, and also from the ring-SIS/SIS assumption in combination
with lattice techniques [32, 4] with very loose reductions.

Despite these elegant constructions, signature schemes that are short and enjoy tight security
reductions to standard assumptions in the standard model (without random oracle), remain
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unknown. Existing tightly secure signature schemes either have large signature size, e.g., [43,
1, 11], or merely have heuristic security arguments based on random oracles, e.g., [48, 38]. We
have not been able to ascertain the earliest occurrence of this long-standing folklore problem in
cryptography, but here [11] is one recent formulation:

Open Problem #1 —Tightly Secure Short Signatures
“Construct a tightly secure and short (in the sense that the signature contains
constant number of group elements or vectors and the security loss is a constant)
signature scheme from standard assumptions.” —Blazy, Kakvi, Kiltz, Pan (2015)

1.1 Tight Security

The reductionist approach to cryptographic security algorithms seeks to prove theorems along
the lines of: “If a t-time adversary attacks the scheme with successful probability ε, then a t′-time
algorithm can be constructed to break some computational problem with success probability
ε′ = ε/θ and t′ = k · t + o(t).”. The parameters θ ≥ 1 and k ≥ 1, or more simply the product
k · θ, measures how tightly the security of the cryptographic scheme is related to the hardness
of the underlying computational problem. Alternatively, when k ≈ 1 as is the case in many
reductions, θ measures the security loss of the security reduction of our cryptographic scheme
from the underlying assumption. A cryptographic scheme is tightly secure if θ is a small constant
that in particular does not depend on parameters under the adversary’s control, such as the
adversary’s own success probability ε, the number of queries it chooses to make, and even the
scheme’s security parameter. The reduction phrases “almost tight security” from the literature
refers to the case where θ only depends on a small polynomial of the security parameter.

Tight reduction is an elegant notion from a theoretical point of view. A tight reductionist
proof (with respect to a well-defined security model) indicates that the security of a crypto-
graphic scheme is (extremely) closely related to the hardness of the underlying hard problem,
which is the optimal case we expect from provable security theory. On the other hand, it is
also a determinant factor to the practicality of real-world security. Its opposite, loose security,
means that in order to realise a desired “real” target security level, one has to increase the
“apparent” security level inside the construction to compensate for the loose reduction. This
inflates the size of data atoms by some polynomial, with in turn increases the running time of
cryptographic operations by another polynomial, combining multiplicatively.

1.2 Identity-Based Encryption with Tight Security

Digital signatures and identity-based encryption (IBE) are closely connected, which suggests
that techniques that improve upon the security of signatures might also improve upon the
security of IBE. In this work, we also investigate the problem of constructing tightly secure IBE
from standard assumptions (without random oracles).

In an IBE system, any random string that uniquely represents a user’s identity, such as email
address or driver license number, can act as a public key (within a certain domain or realm).
Encryption uses this identity, together with some common domain-specific public parameters,
to encrypt messages. Users are issued private decryption keys corresponding to their public
identities, by a trusted authority (or distributed authorities) called Private Key Generator
(PKG) which hold(s) (shares of) the master secret key for a domain. Decryption succeeds if the
identity associated with the ciphertext matches the identity associated with the private key, in
the same domain.

The strongest, most natural and most widely accepted notion of security for IBE is the
adaptive security model or full security model, formally defined in [18]. In this model, the
adversary is able to announce its target (the challenge identity it wants to attack) at any time
during the course of its adaptive interaction with the system. Without the luxury of random
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oracles, an easier security model to achieve was the selective security model, where the adversary
must announce its target identity at the onset of its interaction with the system.

In the last fifteen years, a great many IBE schemes have been proposed, with varying
efficiency, security models, hardness assumptions, and other features. In the standard model
(i.e., without random oracles or other idealised oracles), we mention several notable IBE schemes
which have been constructed from bilinear maps in the selective model [27, 14] and the adaptive
model [15, 56, 35, 57, 29, 12], and from lattices in the adaptive model [2, 28, 5]. It is fair to say
that, by now, the art of selectively secure IBE has been well honed. However, adaptively secure
IBE schemes from standard assumptions with tight security (in the sense that the security loss is
a small constant) remain unknown. The best known adaptively secure IBE schemes in terms of
tight reduction are based on linear assumptions over pairings and achieve almost tight security
(e.g., [29, 12, 6, 44]). Waters [56] states this open problem as follows:

Open Problem #2 —Tight Adaptively Secure IBE
“Construct a tightly, adaptively secure IBE scheme from standard computational
hardness assumptions without random oracles.” —Waters (2005)

Furthermore, for all known directly constructed adaptively secure IBE scheme from standard
post-quantum assumption (specifically the LWE assumption), i.e. [2, 28, 5], their security loss
during reduction depends on the number adversary’s of queries. That is there is current no
even “almost tightly” secure adaptive IBE scheme based on standard computational problems
which are conjectured to be hard under quantum attacks. The following problem is still open.

Open Problem #3 —“Almost” Tight Adaptively Secure, Post-Quantum IBE
“Construct an “almost” tightly, adaptively secure IBE scheme from standard post-
quantum assumptions without random oracles.”

1.3 Our Results

Our work uses pseudorandom functions (PRFs). Recall a PRF is a (deterministic) function:

PRF : K × D → R with the following security property. For random secret key K
$←− K,

PRF(K, ·) is computationally indistinguishable from a random function Ω : D → R, given
oracle access to either PRF(K, ·) or Ω(·). PRFs can be constructed from general assumptions
(e.g., the existence of pseudo-random number generators [39]), number-theoretic assumptions
(e.g., the DDH/k-LIN assumption [53, 31, 47]), and lattice assumption LWE [9, 8].

Our contribution is a construction of a class of adaptively secure short signature schemes/IBE
schemes in the standard model. The schemes’ security is tightly related to SIS/LWE and the
security of an instantiated PRF PRF in the sense that the security loss is a nearly optimal
constant factor. More precisely, let ε and ε′ be the advantage of an adversary in attacking our
signature and IBE schemes respectively, εSIS and εLWE be the security level of the SIS and LWE
assumptions on which our schemes are based, and εPRF is the security level of the PRF instan-
tiation PRF. Our constructions provide the following: ε ≈ 2(εSIS + εPRF), ε′ ≈ 2(εLWE + εPRF),
and the (polynomial) runtime of reduction is approximately the same as attacker’s runtime.

Note that, depending on the underlying hardness assumption and the reduction of PRF,
underlying assumptions and tightness of our signature/IBE scheme vary. By instantiating ex-
isting lattice-based/number theoretic-based PRFs, we obtain the following improvements upon
known results:

• By instantiating the “almost” tightly secure PRFs from [9, 8] which are based on LWE
assumption with super-polynomial modulus, we obtain the first “almost” tightly secure
short signature/IBE schemes from LWE with super-polynomial modulus whose security
does not depend on the number of adversarial queries. Previously, the known lattice
signature schemes either enjoy short signatures but loose reduction (such as [21, 51, 32])
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or have tight reduction but signatures consisting of a rather large number of lattice points
([11]), and the known adaptively secure lattice-based IBE schemes ([2, 5]) have loose
reductions. This, at the first time, eliminates the dependency between the number of
adversary’s queries and the security of lattice-based short signature scheme/IBE scheme.

• If we relex the requirement of quantum resistance, by instantiating the (black-box) tightly
secure PRFs based on DDH or k-LIN, whose security loss is only O(log2 λ) for security
parameter λ, due to Jager [47], we obtain the IBE scheme with tightest security reduction
so far: a factor of O(log2 λ). Previous IBE schemes with almost tight security [29, 12] have
a factor of O(λ) of security loss. This improvement brings us closer again to answering
the Open Problem #1 and #2.

Meanwhile, an interesting and independent contribution of our work is that it indicates
that tightly secure PRFs, which are efficiently computable by Boolean circuits, from standard
computational assumptions are sufficient for us to build tightly, adaptively secure lattice signa-
ture/IBE from SIS/LWE assumption.

Finally, we note that many existing provably secure PRF constructions, for instance the
DDH-based constructions from [53, 31, 47] and lattice-based constructions from [9, 8], are
efficient and can be computed by Boolean circuits in NC1 class. Instantiating a PRF circuits from
these candidates in our construction results in polynomial SIS/LWE modulus in our construction
(not the modulus for LWE-based PRFs). On the other hand, however, the (direct) lattice-based
PRFs from [9, 8] assume LWE assumption with super-polynomial modulus, which makes our
schemes rely on LWE assumption for super-polynomial modulus. How to construct efficient and
low-depth PRFs from LWE with polynomial modulus remains an interesting open question.

Table 1 provides a comparison between our signature scheme with a LWE-based PRF in-
stantiation (from [9]) and a representative sample of the prominent lattice-based (quantum-safe)
signature schemes from the literature. Note, Katz and Wang did not propose a SIS-based sig-
nature scheme in [48]. The scheme we refer to is a straightforward application of Katz-Wang’s
proof technique to GPV’08 signature scheme. Table 2 provides a comparison between our signa-
ture scheme with DDH-based PRF instantiation from [47], which only looses a factor O(log2 λ)
in security proof, and the representative signature schemes from traditional number-theoretic
assumptions, including (strong) RSA, Dlog and linear assumptions over pairings. All of those
assumptions are not conjectured to be quantum-safe. In each case, the two tables refer to
conjectured quantum safe and quantum-unsafe constructions respectively. Table 3 gives a com-
parison between our IBE scheme (with both direct LWE-based PRF instantiation from [9] and
DDH-based instantiation from [47]) and a representative selection of existing IBE schemes from
the literature.

It needs to mention that the bit length of PRF secret key determines the number of public
matrices in our constructions. In the SIS-based signature scheme from [21] and LWE-based
IBE schemes from [2, 28], the number of public matrices are determined by the bit length of
messages and identities respectively. For the provably secure PRFs, the bit length of secret key
is usually significantly larger than the bit length of messages and identities needed in [21, 2, 28].
So our constructions have larger concrete size of verification key than the signature scheme in
[21] and larger concrete size of public parameters than the IBE schemes in [2, 28].

Efficiency Consideration. Though we focus on tightness of reduction in the context of short
signature and IBE, we do not hide the inefficiency of our schemes, particularly with compari-
son to the adptively secure lattice-based signature/IBE scheme obained from the “complexity
leveraging” [14] of efficient selectively secure lattice-based signature/IBE scheme such as [2].
Although complexity leveraing is not very satisfactory from a theoretical perspective, it indeed
often leads to the most practical secure cryptographic schemes. In the context of IBE, we have
seen that the adaptively secure IBE scheme levearaged from selective DBDH-based IBE scheme
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Table 1: Comparison between signature schemes from quantum-safe (Ring-)SIS assumption

Scheme
Signature

size
Security

loss
Assumption(s)

Standard
model?

KW’03 [48] O(1)× Zm O(1) SIS, β = Ω̃(n3/2) ROM

GPV’08 [36] O(1)× Zm O(qhash) SIS, β = Ω̃(n3/2) ROM

Boyen’10 [21] O(1)× Zm O(λqs) SIS, β = Ω̃(n7/2) 4

Lyu’12 [50] O(1)× Zm O(λqs) SIS, Ω̃(n3/2) ROM

MP’12 [51] O(1)× Zm O(λqs) SIS, β = Ω̃(n5/2) 4

BHJKSS’13 [13] O(log λ)× Zm O(λqs) SIS, β = Ω̃(n5/2) 4

DM’14 [32] O(1)×RO(log q)
q O(λqs) Ring-SIS, β = Ω̃(n7/2) 4

BKKP’15 [11] O(λ)× Zm O(1) SIS, β = Ω̃(n3/2) 4

Alperin’15 [4] O(1)× Zm O(λqs) SIS, β = Ω̃(δ2δ · n11/2) 4

Ours O(1)× Zm O(λ) SIS+LWE?, β = Ω̃(`4c · n7/2) 4

λ is the security parameter, n is the lattice hardness parameter, m is the lattice dimension,
and β is the SIS parameter. qhash is the number of random-oracle queries (if applicable). qs
is the number of signing queries. For DM’14, the ring R = Zq[X]/(f(X)) for some cyclotomic

polynomial f of degree n and q ≥ β
√
nω(
√

log n). For Alperin’15, δ satisfies 2q2
s/ε < 2bc

′δc for
attacker’s success probability ε and arbitrary constant c′ > 1. Our construction here consider
instantiation of the direct LWE-based PRF from [9] which has security loss O(λ) and can be
computed by a NC1 circuit with input length ` and depth c log ` for some constant c > 1.
? The security of direct LWE-based PRF construction from [9] relies on LWE assumption with
super-polynomial modulus. So LWE here refers to LWE assumption with super-polynomial
modulus.

in [14] has higher real-world efficiency than the adaptively secure Waters IBE scheme [56] (as
well as the subsequent adaptive IBE schemes from similar standard pairing assumptions with-
out random oracles) for the same security level. This may seem counter-intuitive, but to design
adaptively secure IBE schemes one needs to carefully embed some specially crafted complex
structures into the scheme, to provide enough freedom for the security reduction. This makes
directly constructed adaptive IBE schemes rather bulky. Therefore, our current results are
of more theoretic value. One the other hand, directly constructing adaptively secure schemes
from standard assumptions usually requires new proof ideas and techniques which advance the
state-of art and lead to further applications. Trying to get tighter reduction for the directly
constructed adaptively secure schemes should be always welcome as it remains a very promising
way of bridging the efficiency gap.

1.4 Overview of Our Approach

Construction Outline. Our constructions use a PRF PRF : {0, 1}k ×{0, 1}t → {0, 1} which
takes as input a truly random secret key from {0, 1}k and a string from {0, 1}t, and deter-
ministically outputs a bit which is computationally indistinguishable from a random bit. In
our signature scheme, apart from the “left” matrix A typical of all SIS/LWE based construc-
tions, we set another 4 + k random matrices from Zn×mq , comprising: two “signature subspace
selection” matrices A0,A1, k “PRF secret key” matrices {Bi}i∈[k], and two “message repre-
sentation” matrices C0,C1. The key generation algorithm further expresses PRF as a NAND
Boolean circuit, which serves as a part of the public parameters or perhaps a common reference

string. The signing key is a “short” basis TAof A and a PRF key K
$←− {0, 1}k for PRF.

The signer takes three steps to generate the signature of message M = x1x2 . . . xt ∈ {0, 1}t.
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Table 2: Comparison between signature schemes from various quantum-unsafe assumptions

Scheme Sig. size Sec. loss Assumption(s) Standard model?

GHR’99 [34] O(1)× ZN O(1) Strong-RSA + D-I Hash 4

BLS’01 [20] O(1)×G O(λqs) CDH ROM
KW’03 [48] O(1)× |D| O(1) CFP ROM
BB’04 [16] O(1)×G O(1) qs-SDH 4

Waters’05 [56] O(1)×G O(λqs) CDH 4

HW’09 [46] O(1)× ZN O(λqs) RSA 4

BHJKSS’13 [13] O(1)×G O(λqs) DLog 4

BHJKSS’13 [13] O(1)× ZN O(λqs) RSA 4

ADKMO’13 [1] O(λ)×G O(1) DLIN 4

CW’13 [29] O(k)×G O(λ) k-LIN 4

BKP’14 [12] O(k)×G O(λ) k-LIN 4

BKKP’15 [11] O(λ)×G O(1) DLog 4

BKKP’15 [11] O(λ)× ZN O(1) RSA,FAC 4

Ours O(1)× Zm O(log2 λ) SIS+DDH, β = Ω̃(`4c · n7/2) 4

λ is the security parameter, n is the lattice hardness parameter, m is the lattice dimension,
qs the number of signing queries, N is the RSA modulus, m is the lattice dimension, β is the
SIS parameter, and k is a non-adversary-query-dependent parameter of the LIN assumption.
For GHR’99, D-I hash stands for division-intractable hash. For KW’03, |D| the domain size
of the instantiated claw-free permutation, which is abbreviated as CFP. Our construction here
consider instantiating the DDH-based PRF from [47] which has security loss O(log2 λ) and can
be computed by a NC1 circuit with input length ` and depth c log ` for some constant c > 1.

Firstly, it uses the key-homomorphic evaluation algorithm developed from [37, 19, 24] 1 to
compute the unique matrix APRF,M from the circuit of PRF and the k+t matrices {Bi}i∈[k], Cx1 ,
Cx2 , . . . ,Cxt .

2 Then it computes b = PRF(K,M) and sets the matrix FM,1−b = [A | A1−b −
APRF,M] ∈ Zn×2m

q . Finally, it applies the trapdoor TA to generate the signature: a low-norm
non-zero vector dM ∈ Z2m such that FM,1−b ·dM = 0 (mod q). The verification algorithm checks
whether the signature is a non-zero vector in Z2m and has low-norm, and whether FM,b ·dM = 0
(mod q) or FM,1−b · dM = 0 (mod q). If all these conditions are satisfied, the signature is
accepted.

Our IBE scheme works as follows. The public parameters contain matrices A, A0, A1,
{Bi}i∈[k], C0,C1, a secure PRF PRF represented as a NAND Boolean circuit, and a random
vector u ∈ Znq which is used to hide messages. The trapdoor basis TA and a secret PRF key

K
$←− {0, 1}k serve as master secret key. In private key generation for identity id = x1x2 . . . xt ∈

{0, 1}t, the key-homomorphic evaluation algorithm is invoked to compute the unique matrix
APRF,id from the circuit of PRF and the k + t matrices {Bi}i∈[k],Cx1 ,Cx2 , . . . ,Cxt . It then
sets the “function” matrix to Fid,1−b = [A | A1−b −APRF,id] ∈ Zn×2m

q for b = PRF(K,M), and
uses TA to sample a Gaussian vector did ∈ Z2m as private identity key where Fid,1−b · did = u
(mod q).

To encrypt a message Msg ∈ {0, 1} with an identity id, the encryptor computes APRF,id and
sets two “function” matrices Fid,b = [A | Ab −APRF,id] and Fid,1−b = [A | A1−b −APRF,id]. It

1We will particularly use the evaluation algorithm due to Brakerski and Vaikuntanathan [24] for optimizing
the SIS/LWE modulus.

2It can be shown that for different massages M0 6= M2 APRF,M0 6= APRF,M1 with all but negligible probability.
See section 3.3 for details.
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Table 3: Comparison between adaptively secure IBE schemes from various assumptions

Scheme Security loss Assumption Standard model? Quantum-safe

BF’01 [18] O(qid) BDH ROM 7

KW’03 [48] O(1) BDH ROM 7

BB’04a [14] O(2λ) DBDH, qid-BDHI 4 7

BB’04b [15] O(λqid) DBDH 4 7

Waters’05 [56] O(λqid) DBDH 4 7

Gentry’06 [35] O(1) qid-ABDHE 4 7

GPV’08 [36] O(qhash) LWE ROM 4

Waters’09 [57] O(qid) DBDH 4 7

ABB’10 [2] O(λqid) LWE 4 4

CHKP’12[28] O(λqid) LWE 4 4

LW’12 [49] O(q) DLIN 4 7

CW’13 [29] O(λ) k-LIN 4 7

BKP’14 [12] O(λ) k-LIN 4 7

Ours O(λ) LWE ? 4 4

O(log2(λ)) DDH†+LWE 4 7

λ is the security level, qid the number of private key queries and qhash the number of
random-oracle queries (if applicable). ? Here we instantiate the PRF by direct LWE-based
PRF construction from [9] which has O(λ) security loss and relies on LWE assumption with
super-polynomial modulus. So the LWE here refers to LWE assumption with super-polynomial
modulus. The schemes ABB’10 and CHKP’12 assume LWE assumption polynomial modulus. †

Here we instantiate the PRF by DDH-based PRF construction from [47] which has (black-box)
security loss O(log2(λ)).

generates two independent GPV-style ciphertexts [36]. The first one uses Fid,b:
cb,0 = s>b u + νb,0 + Msg · bq/2c

c>b,1 = s>b Fid,b + ν>b,1

and the second is based on Fid,1−b:
c1−b,0 = s>1−bu + ν1−b,0 + Msg · bq/2c

c>1−b,1 = s>1−bFid,1−b + ν>1−b,1

for random vectors sb, s1−b
$←− Znq , two small noise scalars νb,0, ν1−b,0, and two low-norm noise

vectors νb,1,ν1−b,1.
The decryption algorithm uses did to try both ciphertexts; one of them should work. Here

as a technical caveat, we need some redundant information in the messages in order to check
whether a recovered message is well-formed. To this end, one option is to apply the standard
way of encrypting multiple bits in GPV-style ciphertexts without affecting the security analysis.
That is, instead of using just a vector u ∈ Znq in the public key, we use a matrix U ∈ Zn×zq

allowing us to encrypt z bits. A second option, which costs nothing if hybrid encryption is
being used, is to use multi-bit GPV-style encryption to encrypt a symmetric session key without
redundancy, again using a matrix Zn×zq and rely on downstream symmetric integrity checks or
MACs to weed out the incorrect ciphertexts.

Proof Outline. The security reduction of our signature scheme uses an efficient adversary
to solve a of SIS problem instance A ∈ Zn×mq : a short non-zero vector e ∈ Zm such that
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Ae = 0 (mod q). The reduction embeds a randomly picked secret key K for PRF in verification
key. More specifically, the reduction selects low-norm matrices RA0 , RA1 , {RBi}i∈[k], RC0 ,

RC1

$←− {1,−1}m×m, a PRF secret key K = s1s2 . . . sk
$←− {0, 1}k and sets A0 = ARA0 ,

A1 = ARA1 + G, {Bi = ARBi + siG}i∈[k], C0 = ARC0 and C1 = ARC1 + G. Here, K is
completely hidden from adversary’s view. For answering a signing query on message M, the
reduction computes APRF,M = AR + PRF(K,M)G for some known low-norm m×m matrix R
that depends on RA0 ,RA1 , {RBi}i∈[k],RC0 ,RC1 , K and M. Let PRF(K,M) = b, the reduction
sets FM,1−b = [A | A1−b −APRF,M] = [A | AR + (1− 2b)G] and uses the trapdoor from G to
compute the decryption key. Note, we use PRF to select the matrix Ab which is the same as
the real scheme. For a valid forgery (M∗,dM∗), since b = PRF(K,M∗) is unpredictable to the
adversary, FM∗,b · dM∗ = 0 (mod q) happens with essentially probability 1/2 leading to a valid
SIS solution.

The security reduction for our IBE scheme is similar to the reduction of the signature
scheme. Basically, the reduction answers key generation queries in the same way as answering
signing queries in the signature scheme reduction. To construct the challenge ciphertext for a
challenge identity id∗, the LWE challenge is embedded in the function matrix Fid∗,b = [A | AR]
for which the simulator cannot produce private key. Another ciphertext based on Fid∗,1−b =
[A | AR + (1 − 2b)G] is generated as in the real scheme. With essentially half probability,
the adversary will choose the ciphertext under Fid∗,b to attack giving out useful information for
solving the LWE challenge. We refer to the full details in the rest of the paper.

Related Works. In the related and concurrent work by Brakerski and Vaikuntanathan [25],
a similar idea of embedding PRFs into encryption schemes has been used to construct the first
semi-adaptively secure attribute-based encryption scheme from lattices supporting an a priori
unbounded number of attributes. The recent work by Bai et al. [7] addresses the problem
of improving efficiency of lattice-based cryptographic schemes via a different but novel way.
Their proposal is about using Rényi divergence instead of statistical distance in the context of
lattice-based cryptography which leads to (sometimes simpler) security proofs for more efficient
lattice-based schemes.

2 Preliminaries

Notation. ‘PPT’ abbreviates “probabilistic polynomial-time”. If S is a set, we denote by

a
$←− S the uniform sampling of a random element of S. For a positive integer n, we denote by

[n] the set of positive integers no greater than n. We use bold lowercase letters (e.g. a) to denote
vectors and bold capital letters (e.g. A) to denote matrices. For a positive integer q ≥ 2, let Zq
be the ring of integers modulo q. We denote the group of n×m matrices in Zq by Zn×mq . Vectors

are treated as column vectors. The transpose of a vector a (resp. a matrix A) is denoted by a>

(resp. A>). For A ∈ Zn×mq and B ∈ Zn×m′q , let [A|B] ∈ Zn×(m+m′)
q be the concatenation of A

and B. We denote the Gram-Schmidt ordered orthogonalization of a matrix A ∈ Zm×m by Ã.
The inner product of two vectors x and y is written 〈x,y〉. For a security parameter λ, a func-
tion negl(λ) is negligible in λ if it is smaller than all polynomial fractions for a sufficiently large λ.

We recall the following generalisation of the left-over hash lemma.

Lemma 2.1 ([2], Lemma 4). Suppose that m > (n+ 1) log q+ω(log n) and that q > 2 is prime.
Let R be an m×k matrix chosen uniformly in {1,−1}m×k mod q where k = k(n) is polynomial
in n. Let A and B be matrices chosen uniformly in Zn×mq and Zn×kq respectively. Then, for

all vectors w ∈ Zmq , the distribution (A,AR,R>w) is statistically close to the distribution

(A,B,R>w).
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For a vector u, we let ‖u‖ and ‖u‖∞ denote its `2 norm and `∞ norm, respectively. For a
matrix R ∈ Zk×m, we define two matrix norms:

– ‖R‖ denotes the `2 length of the longest column of R.

– ‖R‖2 is the operator norm of R defined as ‖R‖2 = supx∈Rm+1 ‖R · x‖.

Lemma 2.2 ([2], Lemma 5). Let R be a random chosen matrix from {1,−1}m×m, then
Pr[‖R‖2 > 12

√
2m] < e−m.

2.1 Lattice Background

2.1.1 Lattice Definitions

Definition 2.1. Let a basis B = [b1 | . . . |bm] ∈ (Rm)m of linearly independent vectors. The
lattice generated by B is defined as Λ = {y ∈ Rm : ∃si ∈ Z, y =

∑m
i=1 sibi}. The dual lattice

Λ∗ of Λ is defined as Λ∗ = {z ∈ Rm : ∀y ∈ Λ, 〈z,y〉 ∈ Z}.

Definition 2.2. For q prime, A ∈ Zn×mq and u ∈ Znq , we define the m-dimensional (full-rank)

random integer lattice Λ⊥q (A) = {e ∈ Zm : Ae = 0 (mod q)}, and the “shifted lattice” as the
coset Λu

q (A) = {e ∈ Zm : Ae = u (mod q)}.

2.1.2 Trapdoors of Lattices and Discrete Gaussians

It is shown in [3, 51] how to sample a “nearly” uniform random matrix A ∈ Zn×m along with a
trapdoor matrix TA ∈ Zm×m which is a short or low-norm basis of the induced lattice Λ⊥q (A).
We refer to this procedure as TrapGen.

Lemma 2.3. There is a PPT algorithm TrapGen that takes as input integers n ≥ 1, q ≥ 2
and a sufficiently large m = O(n log q), outputs a matrix A ∈ Zn×mq and a trapdoor matrix
TA ∈ Zm×m, such that A · TA = 0, the distribution of A is statistically close to the uniform
distribution over Zn×mq and ‖T̃A‖ = O(

√
n log q).

Discrete Gaussians. Let m ∈ Z>0 be a positive integer and Λ ⊂ Zm. For any real vector c ∈
Rm and positive parameter σ ∈ R>0, let the Gaussian function ρσ,c(x) = exp

(
−π‖x− c‖2/σ2

)
on Rm with center c and parameter σ. Define the discrete Gaussian distribution over Λ with
center c and parameter σ as DΛ,σ = ρσ,c(y)/ρσ(Λ) for ∀y ∈ Λ, where ρσ(Λ) =

∑
x∈Λ ρσ,c(x).

For notational convenience, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ.
The following lemma bounds the length of a discrete Gaussian vector with sufficiently large

Gaussian parameter.

Lemma 2.4 ([52]). For any lattice Λ of integer dimension m with basis T, c ∈ Rm and Gaussian
parameter σ ≥ ‖T̃‖ · ω(

√
logm), we have Pr[‖x− c‖ > σ

√
m : x← DΛ,σ,c] ≤ negl(n).

Smoothing Parameter. We recall the very important notion of smoothing parameter of a
lattice Λ. It is the smallest value of s such that the discrete Gaussian DΛ,s “behaves” like a
continuous Gaussian.

Definition 2.3 ([52]). For any lattice Λ and positive real tolerance ε > 0, the smoothing
parameter ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ

∗ \ {0}) < ε.

We will make use of the following lemma, which is a special case of Corollary 3.10 from [55].

Lemma 2.5 (special case of Corollary 3.10 of [55]). Let r ∈ Zm be a vector and r, α > 0 be
reals. Assume that 1/

√
1/r2 + (‖r‖/α)2 ≥ ηε(Zm) for some ε < 1/2. Let y be a vector with

distribution DZm,r and e be a scalar with distribution DZ,α. The distribution of 〈r,y〉 + e is
statistically close to DZ,

√
(r‖r‖)2+α2.
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2.1.3 Lattice Sampling Algorithms

Our constructions make use of the “two-sided trapdoor” framework from [2, 21] which consists
of two sampling algorithms SampleLeft and SampleRight.

Algorithm SampleLeft(A,B,TA,u, s) (1)

Inputs: a full-rank matrix A ∈ Zn×mq and a short basis TA of Λ⊥q (A), a matrix B ∈ Zn×m1
q ,

a vector u ∈ Znq , and a Gaussian parameter s.

Output: Let F =
[
A | B

]
. The algorithm outputs a vector d ∈ Zm+m1 in the set Λu

q (F).

Theorem 2.6 ([2, 28]). Let q > 2, m > n and s > ‖T̃A‖ · ω(
√

log(m+m1)). Then the algo-
rithm SampleLeft(A,B,TA,u, s) taking inputs as in (1), outputs a vector d ∈ Zm+m1 distributed
statistically close to DΛu

q (F),s.

Algorithm SampleRight(A,B,R,TB,u, s) (2)

Inputs: matrices A ∈ Zn×kq and R ∈ Zk×m, a full-rank matrix B ∈ Zn×mq , a short basis TB

of Λ⊥q (B), a vector u ∈ Znq , and a Gaussian parameter s.

Output: Let F =
[
A | AR + B

]
; the algorithm outputs a vector d ∈ Zm+m1 in the set Λu

q (F)

Theorem 2.7 ([2], Theorem 19). Let q > 2, m > n. Let s > ‖T̃B‖ · ‖R‖2 · ω(
√

logm). Then
SampleRight(A,B,R,TB,u, s) taking inputs as in (2), outputs a vector d ∈ Zm+k distributed
statistically close to DΛu

q (F),s.

2.1.4 Gadget Matrix

The “gadget matrix” G defined in [51]. We recall the following two facts.

Lemma 2.8 ([51], Theorem 1). Let q be a prime, and n, m be integers with m = n log q. There
is a fixed full-rank matrix G ∈ Zn×mq such that the lattice Λ⊥q (G) has a publicly known trapdoor

matrix TG ∈ Zn×m with ‖T̃G‖ ≤
√

5.

Lemma 2.9 ([19], Lemma 2.1). There is a deterministic algorithm, denoted G−1(·) : Zn×mq →
Zm×m, that takes any matrix A ∈ Zn×mq as input, and outputs the preimage G−1(A) of A such
that G ·G−1(A) = A (mod q) and ‖G−1(A)‖ ≤ m.

2.1.5 Computational Assumptions

We recall the two most mainstream and conservative average-case computational assumptions
for lattice problems.

The learning with errors problem was first proposed by Regev [55]. For a vector s
$←− Znq

and a noise distribution χ over Zq, let As,χ be the distribution over Znq × Zq by taking a
$←− Znq

and x ← χ, and outputting (a, s>a + x) (mod q). Usually, χ is a discrete Gaussian DZ,αq for
some α < 1, reduced modulo q. We refer to [55] for further details.

Definition 2.4. For a security parameter Λ, let a positive integer n = n(λ), a prime q = q(λ),
and a distribution χ over Zq. The learning with errors problem LWEn,q,χ is to distinguish the
oracle Os, which outputs samples from the distribution As,χ, from the oracle O$, which outputs
samples from the uniform distribution over Znq × Zq, for an unspecified polynomial number of
queries. We define the advantage (in the security parameter λ) of an algorithm A in solving
the LWEn,q,χ problem as

Adv
LWEn,q,χ
A (λ) =

∣∣∣Pr[AOs(1λ) = 1]− Pr[AO$(1λ) = 1]
∣∣∣
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We say that the (t, εLWE)-LWEn,q,χ assumption holds if no t-time algorithm A that has advantage
at least εLWE in solving the LWEn,q,χ problem.

For polynomial size q in λ, there are known quantum [55] and classical [22] reductions
from the average-case LWEn,q,χ assumption to many standard worst-case lattice problems (e.g.,
GapSVP). 3 Peikert [54] also gave a classic reduction that applies (only) for exponential moduli
q in λ. These reductions further strengthen the appeal of the LWE assumption.

The security of our adaptively secure signature scheme is based on the SIS problem, which
can be seen as an average-case approximate shortest vector problem on random integer lattices.
In a sense, SIS is the computational counterpart to the decisional LWE.

Definition 2.5. For a security parameter λ, let n = n(λ), m = m(λ), and β = β(λ). Let q be
a prime integer. The short integer solution problem SISn,q,β,m is as follows. Given a uniform

random matrix A
$←− Zn×mq , find a non-zero vector e ∈ Zm such that Ae = 0 (mod q) and

‖e‖ ≤ β. We define the advantage (function of the security parameter λ) of an algorithm A in
solving the SISn,q,β,m problem as

Adv
SISn,q,β,m
A (λ) =

 Ae = 0 (mod q)
and ‖e‖ ≤ β,

and e 6= 0.
: A

$←− Zn×mq

e← A(1λ,A)


We say the (t, εSIS)-SISn,q,β,m assumption holds if no t-time algorithm A that has advantage at
least εSIS in solving the SISn,q,β,m problem.

It has been shown in [52] that solving the average-case instances of the SISn,q,β,m problem
for certain parameters is as hard as solving worst-case instances of the approximate Shortest
Independent Vector Problem (SIVP).

2.2 Pseudorandom Functions

Definition 2.6 (Pseudorandom Functions). Let λ > 0 be the security parameter, and let
k = k(λ), t = t(λ) and l = l(λ). A pseudorandom function PRF : {0, 1}k × {0, 1}t → {0, 1}l
is an efficiently computable, deterministic two-input function where the first input, denoted by
K, is the key. Let Ω be the set of all functions that map t bits strings to l bits strings. We
define the advantage (in the security parameter λ) of an adversary A in attacking the PRF as

AdvPRF,A(λ) =
∣∣∣Pr[APRF(K,·)(1λ) = 1]− Pr[AF (·)(1λ) = 1]

∣∣∣
where the probability is taken over a uniform choice of key K

$←− {0, 1}k and F
$←− Ω, and the

randomness of A. We say that PRF is (tPRF, εPRF)-secure if for all tPRF-time adversaries A,
AdvPRF,A(λ) ≤ εPRF.

2.3 Key-Homomorphic Evaluation Algorithm

Recall the matrix key-homomorphic evaluation algorithm, which is developed by Gentry et al.
[37], Boneh et al. [19] and Brakerski and Vaikuntanathan [24] in the context of fully homo-
morphic encryption and attribute-based encryption, works generally in the following. Given a
fan-in-2 Boolean NAND circuits C : {0, 1}` → {0, 1}, ` different matrices {Ai = ARi + xiG ∈
Zn×mq }i∈[`] which correspond to each input wire of C where A

$←− Zn×mq , Ri
$←− {1,−1}m×m,

xi ∈ {0, 1} and G ∈ Zn×mq is the gadget matrix, the key-homomorphic evaluation algorithm

3Equivalently, this is to say that many classic worst-case lattice problems reduce to the average-case LWE
problem, for suitable parameters.
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deterministically computes AC = ARC + C(x1, . . . , x`)G ∈ Zn×mq where RC ∈ Zm×m has low
norm and C(x1, . . . , x`) ∈ {0, 1} is the output bit of C on the arguments x1, . . . , x`. This is
done, in general, by inductively evaluating each NAND gate. For a NAND gate g(u, v;w) with
input wires u, v and output wire w, matrices Au = ARu + xuG and Av = ARv + xvG where
xu and xv are input bits of u and v respectively, the evaluation algorithm computes

Aw = G−Au ·G−1(Av)

= G− (ARu + xuG) ·G−1(ARv + xvG)

= ARg + (1− xuxv)G

where 1 − xuxv
def
= NAND(xu, xv), and Rg = −Ru ·G−1(Av) − xuRv has low-norm if Ru,Rv

have low-norm.
In this paper, we consider evaluating circuits of PRFs. Most of the well-known PRFs

from number-theoretic assumptions (e.g. [53, 47]) and lattice assumptions (e.g. [9, 8]) can be
computed by circuits in class NC1 (i.e. with polynomial size, logarithmic depth O(log `) in
input length ` and fan-in 2). For circuits in NC1, by applying above procedure in a general tree-
fashion, the norm of RC in the matrix AC is roughly bounded by mO(log `), which in turn usually
results in superpolynomial or sub-exponential LWE/SIS modulus q (in the security parameter)
in certain applications.

In [24], Brakerski and Vaikuntanathan observed that the norm of RC matrix in above
homomorphic evaluation is accumulated in an asymmetric way. They exploited this feature to
design a special evaluation algorithm that evaluates NC1 circuits with moderately increasing the
norm of RC . Specifically, the observation is that any circuit with depth d can be simulated by a
length-4d and width-5 branching program, through the Barrington’s theorem. Such a branching
program can be computed by multiplying 4d 5-by-5 permutation matrices. It is showed in
[24] that homomorphically evaluating the multiplication of permutation matrices using above
homomorphic evaluation procedure and the asymmetrical noise-growth feature only increases
the noise by a polynomial factor and, therefore, allows us to use polynomial size LWE/SIS
modulus q in the security parameter. Such result has been used to construct efficient ABE
scheme for branching programs (with bounded length) from LWE with polynomial modulus
[42]. In our constructions, we particularly use the Brakerski and Vaikuntanathan’s evaluation
algorithm [24] and denote it by EvalBV.

We recall the Barrington’s Theorem.

Theorem 2.10 (Barrington’s Theorem). Every Boolean NAND circuit C that acts on ` inputs
and has depth d can be computed by a width-5 permutation branching program Π of length
4d. Given the description of the circuit Ψ, the description of the branching program C can be
computed in poly(`, 4d) time.

The following theorem follows from the Claim 3.4.2 and Lemma 3.6 of [24] and the Barring-
ton’s Theorem.

Lemma 2.11. Let C : {0, 1}` → {0, 1} be a NAND Boolean circuit. Let {Ai = ARi + xiG ∈
Zn×mq }i∈[`] be ` different matrices correspond to each input wire of C where A

$←− Zn×mq , Ri
$←−

{1,−1}m×m, xi ∈ {0, 1} and G ∈ Zn×mq is the gadget matrix. There is an efficient deterministic
algorithm EvalBV that takes as input C and {Ai}i∈[`] and outputs a matrix AC = ARC +
C(x1, . . . , x`)G = EvalBV(C,A1, . . . ,A`) where RC ∈ Zm×m and C(x1, . . . , x`) is the output of
C on the arguments x1, . . . , x`. EvalBV runs in time poly(4d, `, n, log q).

Let ‖Rmax‖2 = max {‖Ri‖2}i∈[`], the norm of RC in AC output by EvalBV can be bounded,with
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overwhelming probability, by

‖RC‖2 ≤ O(L · ‖Rmax‖2 ·m)

≤ O(L · 12
√

2 ·
√
m ·m)

≤ O(4d ·m3/2)

where L is the length of the width-5 branching program which simulates C and ‖Ri‖2 ≤ 12
√

2m
for i ∈ [`] with overwhelming probability, by Lemma 2.2.

Particularly, if C has depth d = c log ` for some constant c, i.e. C is in NC1, we have
L = 4d = `2c and ‖RC‖2 ≤ O(`2c ·m3/2).

Remark. In our constructions, the circuit of an instantiated PRF serves as a part of verifi-
cation key (in the signature case) or public parameters (in the IBE case). This is in contrast to
the FHE and ABE cases addressed by [37, 19, 24] in which circuits can be dynamically chosen
by participants of protocols. Therefore further optimization on such a specific PRF circuit (e.g.
depth, number of gates) could be possible. Here we consider circuit class NC1 as a more general
case to include almost all efficient and provably secure PRF candidates.

2.4 Digital Signatures

A digital signature scheme consists of three PPT algorithms: KeyGen, Sign, and Ver. The
algorithm KeyGen takes as input a security parameter and generates a public verification key
Vk and a private signing key Sk. The signing algorithm Sign takes as input the signing key Sk
and a massage M, and outputs the signature Sig of M. The verification algorithm Ver takes as
input a signature-message pair (Sig,M) as well as the verification key Vk. It outputs 1 if Sig is
valid, or 0 if Sig is invalid.

We review the standard security notion of digital signature schemes. The existential un-
forgeability under chosen-message attack (EUF-CMA) of a digital signature scheme Π is defined
through the following security game between an adversary A and a challenger B.

Setup. B runs Setup(1λ)→ (Sk,Vk), and passes Vk to A.

Query. A adaptively selects messages M1, . . . ,Mqs to ask for the corresponding signatures
under Vk from B. For the query Mi, B responds with a signature Sigi ← Sign(Sk,Mi).

Forge. A outputs a pair (Sig∗,M∗) and wins if

1. M∗ /∈ {M1, . . . ,Mqs}, and

2. Ver(Vk,Sig∗,M∗)→ 1.

We refer to such an adversary A as EUF-CMA adversary. We define the advantage (in the
security parameter λ) AdvΠ,A(λ) of A in attacking a digital signature scheme Π to be the
probability that A wins above game.

Definition 2.7. For a security parameter λ, let t = t(λ), qs = qs(λ) and ε = ε(λ). We say that
a digital signature scheme Π is (t, qs, ε)-EUF-CMA secure if for any t time EUF-CMA adversary
A that makes at most qs signing queries and has AdvΠ,A(λ) ≤ ε.

2.5 Identity-Based Encryption

An Identity-Based Encryption system (IBE) consists of four PPT algorithms: Setup, KeyGen,
Encrypt, and Decrypt. The algorithm Setup takes as input a security parameter and generates
public parameters Pub and a master secret key Msk. The algorithm KeyGen uses the master
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secret key Msk to produce an identity private key Skid corresponding to an identity id. The
algorithm Encrypt takes the public parameters Pub to encrypt messages for any given identity
id. The algorithm Decrypt decrypts ciphertexts using the identity private key if the identity of
the ciphertext matches the identity of the private key.

We review the security model of IBE proposed in [18]. It defines the indistinguishability of
ciphertexts under an adaptive chosen-ciphertext and adaptive chosen-identity attack (IND-ID-
CCA2). The IND-ID-CCA2 security of IBE is defined through the following game between an
adversary A and a challenger B. For a security parameter λ, let Mλ be the message space and
Cλ be the ciphertext space.

Setup. B runs Setup(1λ)→ (Pub,Msk), passes the public parameters Pub to A, and keeps the
master secret Msk.

Phase 1. A adaptively issues queries q1, . . . , qm where each query qi is one of:

• Private key query for identity idi. B runs KeyGen to generate Skidi and sends it to
A.

• Decryption query for a ciphertext Ctxidi under identity idi. B runs KeyGen to generate
Skidi . Then, B runs the decryption algorithm to decrypt Ctxidi and returns the
message to A.

Challenge. When A decides the Phase 1 is over, it outputs a challenge identity id∗, which is
not been queried during Phase 1, and two equal length messages Msg0,Msg1 ∈ Mλ. B
flips a fair coin γ

$←− {0, 1} and sets Ctxid∗ ← Encrypt(Pub,Msgγ , id
∗). Finally A passes

Ctxid∗ to A.

Phase 2. A adaptively issues more queries qm+1, . . . , qn where qi is one of

• Private key query for identity idi 6= id∗.

• Decryption query for a ciphertext Ctxidi 6= Ctxid∗ .

In both cases, B responds as in Phase 1.

Guess. A outputs γ′ ∈ {0, 1} and it wins if γ′ = γ.

We refer to such an adversary A as an IND-ID-CCA2 adversary. We define the advantage (in the
security parameter λ) of A in attacking an IBE scheme E as AdvE,A(λ) = |Pr[γ′ = γ]− 1/2|.
Definition 2.8. For a security parameter λ, let t = t(λ), qid = qid(λ), qCtx = qCtx(λ), and
ε = ε(λ). We say that an IBE system E is (t, qid, qCtx, ε)-IND-ID-CCA2 secure if for any t-time
IND-ID-CCA2 adversaryA that makes at most qid private key queries and at most qCtx decryption
queries, we have AdvE,A(λ) ≤ ε.

Chosen-Plaintext Security. We define the chosen-plaintext security (IND-ID-CPA) for IBE
systems as in above security game, except the adversary is not allowed to issue decryption
queries. The adversary is still able to adaptively make private key queries.

Definition 2.9. We say that an IBE system E is (t, qid, ε)-IND-ID-CPA secure if E is (t, qid, 0, ε)-
IND-ID-CCA2 secure.

Selective Security. A weaker and less realistic security model of IBE system, introduced in
[27], is the selective security model in which adversary is required to commit to the challenge
identity even before seeing the public parameters. We note that under computational assump-
tions with sub-exponential hardness, a selectively secure IBE is also adaptively secure through
a standard “complexity leveraging” argument from [14]; however, complexity leveraging incurs
a rather severe loss of tightness in the security reduction, causing the resulting scheme to suffer
from a possibly large loss of efficiency per a similar argument as discussed in the introduction.
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3 Signature Scheme with Tight Security

3.1 Constructions

KeyGen(1λ) The key generation algorithm does the following.

1. Sample a matrix A along with a trapdoor basis of lattice Λ⊥q (A) by TrapGen.

2. Select matrices A0, A1, “PRF key” matrices B1, . . . , Bk, and “PRF input” matrices C0,
C1 from Zn×mq uniformly at random.

3. Select a secure pseudorandom function PRF : {0, 1}k × {0, 1}t → {0, 1}, express it as a

NAND Boolean circuit CPRF with depth d = d(λ), and select a PRF key K = s1s2 . . . sk
$←−

{0, 1}k.

4. Select a Gaussian parameter s > 0.

5. Output the verification key and signing key as:

Vk =
(
A, {A0,A1}, {Bi}i∈[k], {C0,C1}, s,PRF, CPRF

)
, Sk = (TA,K)

Sign(Vk, Sk,M) The signing algorithm takes as input the public verification key Vk, the signing
key Sk and a message M = m1m2 . . .mt ∈ {0, 1}t. It does:

1. Compute ACPRF,M = EvalBV(CPRF, {Bi}i∈[k],Cm1 ,Cm2 , . . . ,Cmt) ∈ Zn×mq . 4

2. Compute bit value b = PRF(K,M) and set FM,1−b =
[
A | A1−b −ACPRF,M

]
.

3. Run SampleLeft to sample dM ∈ Z2m with distribution DΛ⊥q (FM,1−b),s.

4. Output the signature Sig = dM.

Ver(Vk,M,Sig) The verification algorithm takes as input the verification key Vk, message M and
the signature of M, verifies as follows:

1. Assume Sig = d. It checks if d ∈ Z2m, d 6= 0, and ‖d‖ ≤ s
√

2m.

2. Compute ACPRF,M = EvalBV(CPRF, {Bi}i∈[k],Cm1 ,Cm2 , . . . ,Cmt) ∈ Zn×mq .

Check if FM,bd =
[
A | Ab −ACPRF,M

]
d = 0 (mod q) for b = 0 or 1.

3. If all above verifications pass, accept the signature; otherwise, reject.

3.2 Parameters Selection and Discussion

Let λ be the security parameter, we set n = n(λ), let the message length be t = t(λ) and
the secret key length of PRF be k = k(λ). For the most general case, let the circuit depth of
CPRF be d = d(λ). To ensure we can run TrapGen in the Lemma 2.3, we set m = n1+η for
some η (we assume nη > O(log q)). To run SampleLeft and SampleRight in the real scheme and
simulation per Theorem 2.7, we set s sufficiently large such that s > ‖T̃G‖ · ‖R‖2 · ω(

√
logm)

for R = RAb
− RCPRF,M (see the security proof below). By Lemma 2.11 we set s = O(4d ·

m3/2) · ω(
√

logm). For the SIS parameter β, we need β ≥ O(4d · m3/2 · s
√

2m). So we set
β = O(16d · m7/2) · ω(

√
logm). To ensure the applicability of the average-case to worst-case

reduction for SIS, we need q ≥ β · ω(
√
n log n). So we set q = O(16d ·m4) · (ω(

√
logm))2.

4It turns out that if PRF is secure, an efficient SIS algorithm can be tightly reduced to an efficient algorithm
that finds M 6= M′ such that ACPRF,M = ACPRF,M

′ . We prove this in the section 3.3.
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Particularly, if we choose PRF from the well-known efficient and provably secure candidates
of PRFs like the ones from [53, 31, 47, 9, 8] can be computed by NC1 circuits, let ` = t+ k be
the input length of PRF (which is a polynomial in the security parameter), the circuit depth of
CPRF will be d = c log ` for some constant c. In this case we can set β = O(`4c ·m7/2) ·ω(

√
logm)

and q = O(`4c ·m4) · (ω(
√

logm))2 which are polynomial in the security parameter.
It needs to mention that if we instantiate PRF by the (direct) LWE-based PRF from [9]

or by the LWE-based PRF from [8] whose security relies on LWE assumption with super-
polynomial modulus, the security of our signature scheme has to rely on LWE assumption with
super-polynomial modulus. Such LWE assumption is stronger than the SIS assumption with
polynomial modulus (as we set above) from which we make the proof for the following theorem.

3.3 Security of the Signature Scheme

The security of our signature scheme is stated by the following theorem.

Theorem 3.1. Let λ be a security parameter. The parameters n, m, and q are chosen as the
section 3.2. If the (tSIS, εSIS)-SISn,q,β,m assumption holds and the PRF used in the signature
scheme is (tPRF, εPRF)-secure, the signature scheme is (t, qs, ε)-EUF-CMA secure where εSIS ≥
ε/2 − εPRF − negl(λ), for some negligible statistical error negl(λ), and max(tPRF, tSIS) ≤ t +
O(qs · (TS + TE)) where qs is the number of signing query, TS is the maximum running time of
SampleRight, and TE is the maximum running time of EvalBV for one input message.

Proof. Consider the following security game between an adversary A and a simulator B. Upon
receiving a SISn,q,β,m challenge A ∈ Zn×mq , the challenger B prepares Vk as follows:

1. Select k + 4 matrices RA0 , RA1 , {RBi}i∈[k], RC0 , RC1

$←− {1,−1}m×m.

2. Select a secure pseudorandom function PRF : {0, 1}k × {0, 1}t → {0, 1} and express it as
a NAND Boolean circuit CPRF with depth d.

3. Select a PRF key K = s1s2 . . . sk
$←− {0, 1}k.

4. Set Ab = ARAb
+ bG and Cb = ARCb + bG for b = 0, 1.

5. Set Bi = ARBi + siG for i ∈ [k].

6. Select a Gaussian parameter s > 0.

7. Publish Vk =
(
A, {A0,A1}, {Bi}i∈[k], {C0,C1},PRF, CPRF

)
.

In the query phase, the adversary A adaptively issues messages for inquiring the correspond-
ing signatures. Consider a message M = m1m2 . . .mt ∈ {0, 1}t. B does the following to prepare
the signature:

1. Compute ACPRF
= ARCPRF,M+PRF(K,M)G ∈ Zn×mq by EvalBV(CPRF, {Bi}i∈[k],Cm1 ,Cm2 , . . . ,Cmt).

2. Let b = PRF(K,M), it sets

FM,1−b =
[
A | A1−b −ACPRF,M

]
=
[
A | A(RA1−b −RCPRF,M) + (1− 2b)G

]
and runs SampleRight to generate the signature Sig = dM ∼ DΛ⊥q (FM,1−b),s.
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Finally, A output a forgery (d∗,M∗). Let PRF(K,M∗) = b. If ‖d‖ > s
√

2m or
[
A | A1−b −ACPRF,M

∗
]
d∗ =

0 (mod q), B aborts. Otherwise, we have
[
A | Ab −ACPRF,M

∗
]
d∗ = 0 (mod q). Let d∗ =

[d>1 | d>2 ]> ∈ Z2m. B outputs e = d1 + (RAb
−RCPRF,M

∗)d2 where ‖e‖ ≤ β as a solution for the
SISn,q,β,m problem instance.

We show that Vk output by B has the correct distribution. In the real scheme, the matrix
A is generated by TrapGen. In the simulation, A has uniform distribution in Zn×mq as it
comes from the SIS challenge. By the Lemma 2.3, A generated in the simulation has right
distribution except a negligibly small statistical error. Secondly, the matrices A, {A0,A1},
{Bi}i∈[k], and {C0,C1} computed in the simulation have distribution that is statistically close
to uniform distribution in Zn×mq by the Lemma 2.1. In particular, the PRF secret key {si}i∈[k]

is information-theoretically concealed by {Bi}i∈[k].
Now we show that given {A0,A1}, {Bi}i∈[k], and {C0,C1}, it is hard to find two messages

M 6= M′ such that ACPRF,M = ACPRF,M
′ . Assume an efficient adversary finds M 6= M′ such that

ACPRF,M = ACPRF,M
′ . With the public parameters set up above, we have

ARCPRF,M + PRF(K,M)G = ARCPRF,M
′ + PRF(K,M′)G

If PRF(K,M) 6= PRF(K,M′), which will happen essentially 1/2 probability if PRF is secure,
we have RCPRF,M 6= RCPRF,M

′ and A(RCPRF,M − RCPRF,M
′) ± G = 0 (mod q). By Lemma 2.8

and Algorithm 1, a low-norm vector d̄ ∈ Zm×m can be efficiently found such that Gd̄ = 0
(mod q) where d̄ 6= 0 and

∥∥d̄∥∥ ≤ s′
√
m for some Gaussian parameter s′ ≥

√
5 · ω(

√
logm).

Then (RCPRF,M −RCPRF,M
′) · d̄ will be a non-zero vector with all but negligible probability and,

therefore, a valid the SIS solution for A.
In the query phase, the signatures replied to A have the correct distribution under the

predefined conditions. Indeed, by the Theorem 2.7, for sufficient large Gaussian parameter s,
the the distribution of signatures generated in the simulation by SampleRight is statistically close
to DΛ⊥q (FM,1−b),s where the distribution of signatures generated in the real scheme by SampleLeft
is also statistically close to DΛ⊥q (FM,1−b),s.

In the forge phase, A will have at most advantage εPRF in predicting the bit value b with
respect to the message it wants to forge. Therefore, if A can not distinguish PRF from random
functions, it will randomly pick either of the matrices A0 or A1 to make a forgery. With 1

2
chance it will pick the one that B will be able to use to solve the SIS problem. So we have
εSIS ≥ ε/2− εPRF−negl(λ) where negl(λ) stands for negligible statistical error in the simulation.

To argue that e = d1 + (RA1 − RCPRF,M
∗)d2 is a valid solution of the SISn,q,β,m problem

instance, we need to show e is sufficiently short, and non-zero except with negligible probability.
First of all, we have[

A | Ab −ACPRF,M
∗
]
d∗ =

[
A | A(RAb

−RCPRF,M
∗)
]
d∗

= Ad1 + A(RAb
−RCPRF,M

∗)d2

= A (d1 + R · d2)

= 0 (mod q)

where R = RAb
−RCPRF,M

∗ . Since d1,d2 have distribution DZm,s with condition d ∈ Λ⊥q (FM,b),
by the Lemma 2.4, d1,d2 ≤ s

√
m. By Lemma 2.11, we have ‖e‖ ≤ ‖d1‖ + ‖R‖2 · ‖d2‖ ≤

O(4d ·m3/2) · s
√
m. Let β ≥ O(4d ·m3/2) · s

√
m is sufficient.

It remains to show that e = d1 + R · d2 6= 0. Suppose d2 6= 0, we have e 6= 0 since d 6= 0.
On the other hand, we have d2 = (d1, . . . , dm)> 6= 0 and, thus, at least one coordinate of d2,
say dj , is not 0. We write R = (r1, . . . , rm) and so

R · d2 = rj · dj +
m∑

i=1,i 6=j
ri · di
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Observe that for the fixed message M∗ on which A made the forgery, R (therefore rj) depends
on the low-norm matrices RA0 ,RA1 , {RBi}i∈[k],RC0 ,RC1 and the secret key of PRF. The only
information about rj for A is from the public matrices in Vk, i.e. {A0,A1}, {Bi}i∈[k], {C0,C1}.
So by the pigeonhole principle there is a (exponentially) large freedom to pick a value to rj
which is compatible with A’s view, i.e. Ar′j = Ar′′j (mod q) for admissible (low-norm) r′j , r

′′
j

where r′j 6= r′′j . (In fact, here we have more freedom than the case in [21] where R is picked
from {1,−1}m×m).

Finally, to answer one signing query, B’s running time is bounded by O(TS + TE). So the
total running time of B in the simulation is bounded by O(qs(TS + TE)) This concludes the
proof.

4 IBE with Tight Security

4.1 Construction with CPA Security

Setup(1λ) The setup algorithm takes as input a security parameter λ. It does the following:

1. Sample a random matrix A ∈ Zn×mq along with a trapdoor basis TA ∈ Zm×m of lattice

Λ⊥q (A) by running TrapGen.

2. Select random matrices A0, A1, random “PRF key” matrices B1, . . . , Bk, and random
“PRF input” matrices C0, C1 from Zn×mq uniformly at random.

3. Select a random vector u
$←− Znq .

4. Select a secure pseudorandom function PRF : {0, 1}k × {0, 1}t → {0, 1}, express it as a

NAND Boolean circuit CPRF with depth d = d(λ), and select a PRF key K = s1s2 . . . sk
$←−

{0, 1}k.

5. Output the public parameters

Pub =
(
A, {A0,A1}, {Bi}i∈[k], {C0,C1},u,PRF, CPRF

)
and the master secret key Msk = (TA,K).

KeyGen(Pub,Msk, id) Upon an input identity id=x1x2 . . . xt ∈ {0, 1}t, the key generation al-
gorithm does the following:

1. Compute b = PRF(K, id).

2. Compute ACPRF,id = EvalBV(CPRF, {B}i∈[k],Cx1 ,Cx2 , . . . ,Cxt) ∈ Zn×mq .

3. Set Fid,1−b =
[
A | A1−b −ACPRF,id

]
∈ Zn×2m

q .

4. Run SampleLeft to sample did from the discrete Gaussian distribution DΛu
q (Fid,1−b),s hence

Fid,1−bdid = u (mod q). Output Skid = did.

Encrypt(Pub, id,Msg) To encrypt a message Msg ∈ {0, 1} with respect to an identity id =
x1x2 . . . xt ∈ {0, 1}t:

1. Compute ACPRF,id = EvalBV(CPRF, {Bi}i∈[k],Cx1 ,Cx2 , . . . ,Cxt).

2. Set Fid,b =
[
A | Ab −ACPRF,id

]
∈ Zn×2m

q for b = 0, 1.

3. Select two random vectors s0, s1
$←− Znq .
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4. Select two noise scalars ν0,0, ν1,0 ← DZ,σLWE
and four noise vectors ν̂0,1, ν̂1,1 ← DZm,

√
2σLWE

,

ν̌0,1, ν̌1,1 ← DZm,σ where σ is sufficiently larger than σLWE. 5

5. Compute the ciphertext Ctxid = (c0,0, c0,1, c1,0, c1,1) as:
c0,0 =

(
s>0 u + ν0,0 + Msgbq/2c

)
mod q

c>0,1 =
(
s>0 Fid,0 + [ν̂>0,1 | ν̌>0,1]

)
mod q

c1,0 =
(
s>1 u + ν1,0 + Msgbq/2c

)
mod q

c>1,1 =
(
s>1 Fid,1 + [ν̂>1,1 | ν̌>1,1]

)
mod q

Decrypt(Pub, Skid,Ctxid) The decryption algorithm uses the key did to try to decrypt both
(c0,0, c0,1) and (c1,0, c1,1) 6. W.l.o.g., assume that (cb,0, cb,1) is the correct ciphertext. The
decryption algorithm computes

τ =
(
cb,0 − c>b,1did

)
mod q

View τ as an integer in (−q/2, q/2]. If τ is closer to 0 than ±q/2, the output is Msg = 0.
Otherwise, it is Msg = 1.

4.2 Correctness

Following the decryption algorithm, let did = [d>1 | d>2 ]>. We have

τ =
(
cb,0 − c>b,1did

)
mod q

=
(
Msgbq/2c+ νb,0 − ν̂>0,1d1 − ν̌>0,1d2

)
mod q

Recall, the norm of d1 and d2 is bounded by s
√
m, and the norm of ν̂b,1 and ν̌b,1 is bounded by

σLWE
√
m and σ

√
m respectively, by Lemma 2.4. To ensure correctness of decryption, we need

|τ | = |cb,0 − ν̂>b,1d1 − ν̌>0,1d2|
≤ |cb,0|+ ‖ν̂0,1‖ · ‖d1‖+ ‖ν̂0,1‖ · ‖d2‖
≤ O(s ·m · (σLWE + σ))

≤ q/4

Accordingly, it is enough to set q such that O(s ·m · (σLWE + σ)) ≤ q/4.

4.3 Parameter Selection and Discussion

We now discuss a consistent parameter instantiation that achieves both correctness and security.
Let λ be the security parameter, t = t(λ) be the identity length, k = k(λ) be the secret key
length of PRF, and let ` = t + k be the input length of PRF. Let, for the most general case,
the circuit depth of PRF be d = d(λ). To ensure we can run TrapGen in the Lemma 2.3, we
set m = n1+η for some η > 0 (we assume nη > O(log q)). To make sure SampleLeft in the

5For instance we set σ = O(4d ·m3/2) · ω(
√

logm) · σLWE.
6To ensure correct decryption, the message should contain some redundancy to weed out the incorrect cipher-

text. It is a standard technique to encrypt multiple bits in GPV-style encryption, by replacing u with a matrix
U ∈ Zn×zq in Pub with which we can now independently encrypt z > 1 bits without change to the security anal-
ysis. If hybrid encryption is used, the multiple bits can be used to encrypt a symmetric key without redundancy,
deferring the integrity check to the symmetric realm where it can be performed at minimal cost.
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real scheme and SampleRight in the simulation algorithm Sim.KeyGen (see section 4.4) have
the same output distribution per Theorem 2.7, we set a sufficiently large Gaussian parameter
s = ‖T̃G‖ · O(4d ·m3/2) · ω(

√
logm). To ensure the applicability of Regev’s [55] and Peikert’s

[54] LWE reductions from worst-case lattice problems, we set the Gaussian parameter of LWE
noise distribution to be σLWE =

√
n. So the LWE noise distribution is (DZ,

√
n) mod q. For

the security proof (specifically for the proofs of Lemma 4.3 and Lemma 4.9), we set σ =
O(4d ·m3/2) · ω(

√
logm) · σLWE. Finally, to ensure correctness condition of decryption, we set

q = O(16d ·m9/2) · (ω
√

logm)2.
As for our signature scheme, if we the PRF can be computed by a NC1 NAND circuit with

depth d = c log ` for some constant c > 1, we can set the LWE modulus q = O(`4c · m9/2) ·
(ω
√

logm)2, which is polynomial in the security parameter λ.

Tight Reduction and Hardness of LWE. It is known that larger modulus results in
stronger LWE assumption, if the standard deviation of the noise distribution stays unchanged.
More precisely, let B be the maximum magnitude of the LWE noise, and q be the LWE modulus.
The hardness of the LWE problem depends on the ratio q/B. The LWE problem becomes easier
when this ratio grows. In this regard, the appeal of our tight reduction varies: tight reduction
to harder LWE problem is more preferable than tight reduction to easier LWE problem. This is
true particularly when one considers the average-case hardness of LWE to worst-case hardness
of classic lattice problems, e.g. GapSVP and SIVP, reductions [55, 54, 22] where ratio q/B is
smaller, the solutions for classic lattice problems are better.

One feature of our IBE scheme (and the signature scheme it induces) is that depending on
different circuits instantiations, the assumptions we male for our tight reduction may vary. In
addition, if we use a LWE-based PRF, our IBE scheme relies on the stronger one of two LWE
assumptions: one is made for the PRF and another one is made for our construction, which
uses a polynomial modulus q as we chose above. Currently, basing our IBE scheme solely on
LWE needs to assume the LWE assumption with super-polynomial modulus. This is because
the state-of-art PRFs from LWE (from [9, 8]) in terms of efficiency and provable security require
super-polynomial LWE modulus.

On the other hand, we believe that our tight reduction is still very valuable even for large
ratio q/B. Firstly, it shows that, at the first time, we actually can eliminate the dependency
between the number of adversary’s queries and the security of lattice-based IBE scheme (as
well as short lattice signature scheme). This is very important since the number of adversary’s
queries can be quite large, which will negatively impact the schemes’ security seriously. Sec-
ondly, the average-case to worst-case reduction does provide some security confidence for the
LWE assumption, but this is not the whole story. For certain parameters, many classic lattice
problems are NP-hard. However, those parameters have no direct connection to lattice-based
cryptography. (There is even evidence that the classic lattice problems with parameters rel-
evant cryptography are not NP-hard.) On the other hand, the LWE problem (with various
parameters) could be assured to be a hard problem in its own right. It has shown robustness
against various attacks in a relatively long-term period. This has made LWE widely accepted
as standard assumption and for use in cryptography. For instance, even for sub-exponentially
large ratios q/B = 2O(nc) where n is the LWE dimension and 0 < c < 1/2, the LWE problem is
still believed to be hard and leads to powerful cryptographic schemes which we were not able
to obtain by other means, including fully homomorphic encryption, e.g. [23], attribute-based
encryption for circuits, e.g. [40, 19, 25], and predicate encryption for circuits [41].

4.4 Proof of Security

The security of our IBE scheme with respect to the Definition 2.9 can be stated by the following
theorem.
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Theorem 4.1. Let λ be a security parameter. The parameters n, q are chosen as the section
4.3. Let χ be the distribution DZm,

√
n. If the (tLWE, εLWE)-LWEn,q,χ assumption holds and the

PRF used in the IBE scheme is (tPRF, εPRF)-secure, then the IBE scheme is (t, qid, ε)-IND-ID-
CPA secure such that ε ≤ 2(εPRF + εLWE) + negl(λ) for some negligible function negl(λ), and
max(tPRF, tLWE) ≤ t+O (qid · (TS + TE)) where TS is the maximum running time of SampleRight
and TE is the maximum running time of EvalBV for one input identity.

We prove above theorem through a sequence of indistinguishable security games. The first
game is identical to the IND-ID-CPA game. In the last game, the adversary has no advantage.
We will show that a PPT adversary will not be able to distinguish the neighboring games which
will prove that the adversary has only negligibly small advantage in wining the first (real) game.

Firstly, we define the following simulation algorithms Sim.Setup, Sim.KeyGen and Sim.Encrypt.

Sim.Setup(1λ) The algorithm does the following:

1. Select matrix A
$←− Zn×mq .

2. Select k + 4 low-norm matrices RA0 , RA1 , {RBi}i∈[k], RC0 , RC1

$←− {1,−1}m×m.

3. Select a secure pseudorandom function PRF : {0, 1}k × {0, 1}t → {0, 1} and express it as
a NAND Boolean circuit CPRF with depth d = d(λ).

4. Select a uniformly random string K = s1s2 . . . sk
$←− {0, 1}k.

5. Set Ab = ARAb
+ bG and Cb = ARCb + bG for b = 0, 1.

6. Set Bi = ARBi + siG for i ∈ [k].

7. Select vector u
$←− Znq .

8. Publish Pub =
(
A, {A0,A1}, {Bi}i∈[k], {C0,C1},u,PRF, CPRF

)
Sim.KeyGen(Pub,Msk, id) Upon an input identity id = x1x2 . . . xt ∈ {0, 1}t, the algorithm uses
the parameters generated from Sim.Setup to do the following:

1. Compute APRF,id = ARCPRF,id + PRF(K, id)G← EvalBV(CPRF, {Bi}i∈[k],Cx1 , . . . ,Cxt).

2. Let PRF(K, id) = b ∈ {0, 1}. Set

Fid,1−b =
[
A | A1−b −ACPRF,id

]
=
[
A | A(RA1−b −RCPRF,id) + (1− 2b)G

]
.

3. Run SampleRight to sample did ∈ DΛu
q (Fid,1−b),s as the private key Skid.

Sim.Encrypt(Pub, id∗,Msg) To encrypt a message Msg∗ ∈ {0, 1} with respect to an identity id∗:

1. Compute b = PRF(K, id∗).

2. Set

Fid∗,b =
[
A | Ab −ACPRF,id

∗
]

=
[
A | A(RAb

−RCPRF,id
∗)
]

and

Fid∗,1−b =
[
A | A1−b −ACPRF,id

∗
]

=
[
A | A(RA1−b −RCPRF,id

∗) + (1− 2b)G
]
.
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3. Select random vectors sb, s1−b
$←− Znq .

4. Select noise scalars νb,0, ν1−b,0 ← DZ,σLWE
.

5. Sample noise vectors x,y ← DZm,σLWE
for sufficiently large Gaussian parameter σLWE

(σLWE ≥ ηε(Zm) for some small ε > 0). Set ν̂b,1 = x + y.

6. Let R = RAb
− RPRF,id∗ and ri be the i-th column of R. We sample the noise vector

z = (z1, z2, . . . , zm) ∈ Zm with zi ← DZ,σ1,i for the sufficiently large Gaussian parameter

σ1,i =
√
σ2 − 2(‖ri‖ · σLWE)2. 7 Set ν̌b,1 = R> · (x− y) + z.

7. Select noise vectors ν̂1−b,1 ← DZm,
√

2σLWE
, ν̌1−b,1 ← DZm,σ.

8. Set the challenge ciphertext Ctxid∗ = (cb,0, cb,1, c1−b,0, c1−b,1) as:
cb,0 =

(
s>b u + νb,0 + Msgbq/2c

)
mod q

c>b,1 =
(
s>b Fid∗,b + [ν̂>b,1 | ν̌>b,1]

)
mod q

c1−b,0 =
(
s>1−bu + ν1−b,0 + Msgbq/2c

)
mod q

c>1−b,1 =
(
s>1−bFid∗,1−b + [ν̂>1−b,1 | ν̌>1−b,1]

)
mod q

Now we define a series of games and prove that the neighboring games are either statistically
indistinguishable, or computationally indistinguishable.

Game 0 This is the real IND-ID-CPA game from the definition. All the algorithms are the
same as the real scheme.

Game 1 This game is the same as Game 0 except it runs Sim.Setup and Sim.KeyGen instead
of Setup and KeyGen.

Game 2 This game is the same as Game 1 except that the challenge ciphertext is generated
by Sim.Encrypt instead of Encrypt.

Game 3 This game is the same as Game 2 except that during preparation of the challenge
ciphertext for identity id∗, it samples (cb,0, cb,1) uniformly random from Zq × Z2m

q for b =
PRF(K, id∗). Another part of the challenge ciphertext (c1−b,0, c1−b,1) is computed by Sim.Encrypt
as in Game 2.

Game 4 This game is the same as Game 3 except for b = PRF(K, id∗) it runs real encryp-
tion algorithm Encrypt to generate (c1−b,0, c1−b,1) of the challenge ciphertext instead of using
Sim.Encrypt.

Game 5 This game is the same as Game 4 except it runs Setup and KeyGen to generate Pub
and private identity keys.

Game 6 This game is the same as Game 5 except that for b = PRF(K, id∗), the chal-
lenge ciphertext part (cb,0, cb,1) is generated by Encrypt instead of choosing it randomly, and
(c1−b,0, c1−b,1) is chosen randomly.

7In section 4.3, the σ is set large enough such that σ1,i can be larger than ‖R‖ · ηε(Zm).
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Game 7 This game is the same as Game 6 except that it runs Sim.Setup and Sim.KeyGen to
generate Pub and private identity keys.

Game 8 This game is the same as Game 7 except that for the bit value b = PRF(K, id∗), it
computes the challenge ciphertext (cb,0, cb,1) by Sim.Encrypt.

Game 9 This game is the same as Game 8 except that the whole challenge ciphertext is
sampled uniformly at random from the ciphertext space. Therefore, in Game 5 the adversary
has no advantage in wining the game.

In Game i, we let Si be the event that γ′ = γ at the end of the game. The adversary’s
advantage in Game i is |Pr[Si]− 1

2 |. We prove the following lemmas to prove the Theorem 4.1.

Lemma 4.2. Game 1 and Game 0 are statistically indistinguishable, so |Pr[S0]− Pr[S1]| ≤
negl(λ) for some negligible function negl(λ).

Proof. We analyse the differences between Game 0 and Game 1:

1. In Game 0, the matrix A is generated by TrapGen, and in Game 1, the matrix A is
chosen uniformly random. By the Lemma 2.3, the distributions of these two ways of
constructing the matrix A are statistically close.

2. In Game 0, the matrices {A0,A1}, {Bi}i∈[k], {C0,C1} are chosen uniformly at random
from Zn×mq . In Game 1, They are computed as Ab = ARAb

+ bG, Cb = ARCb + bG
for b = 0, 1, and Bi = ARBi + siG for i ∈ [k] for random and secret low-norm matrices
RA0 , RA1 , {RBi}i∈[k], RC0 ,RC1 from {1,−1}m×m. By the Lemma 2.1, the distributions
of these two ways of generating these public matrices are statistically close. In particular,
the PRF secret key {si}i∈[k] is information-theoretically concealed by {Bi}i∈[k].

3. We note that in both Game 0 and Game 1, the use of A0 or A1 of the key generation
algorithms is decided by b = PRF(K, id). For a private key query on id in Game 1, let

Fid,1−b =
[
A | A1−b −APRF,id

]
=
[
A | A(RA1−b −RPRF,id) + (1− 2b)G

]
.

Note that the publicly known trapdoor of Λ⊥q (G) is also a trapdoor of Λ⊥q ((1− 2b)G). In
Game 1, the identity key did ∈ Λu

q (Fid,1−b) is generated by SampleLeft with the trapdoor

basis TA of Λ⊥q (A). In Game 1, did is generated by SampleRight with the trapdoor

of Λ⊥q ((1 − 2b)G). By the Theorems 1 and 2, for sufficient large Gaussian parameter s,
the identity key did will have the same distribution DΛu

q (Fid,1−b),s up to a negligibly small
statistical difference.

Summing up, the distributions of Game 0 and Game 1 are statistically close, and thus
|Pr[S0]− Pr[S1]| ≤ negl(λ) for some negligible function negl(λ).

Lemma 4.3. Game 2 and Game 1 are statistically indistinguishable, so |Pr[S1]− Pr[S2]| ≤
negl(λ) for some negligible function negl(λ).

Proof. Let R = RAb
−RCPRF,id

∗ in the Sim.Encrypt algorithm. The difference between Game
1 and Game 2 is the way of generating the challenge ciphertext. In Game 1, the challenge
ciphertext is generated by Encrypt, and the noise vectors are sampled from some discrete Gaus-
sian distributions that are independent of Pub. In Game 2 the challenge ciphertext is generated
by Sim.Encrypt, and R, where R is computed from RA0 ,RA1 , {RBi}i∈[k],RC0 ,RC1 , PRF’s key
K, circuit CPRF and id∗.
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By construction, Encrypt and Sim.Encrypt generate (cb,0, c1−b,0, c1−b,1) in the essentially
same way (besides the negligible statistical difference in their input public parameters). So
(cb,0, c1−b,0, c1−b,1) part of the challenge ciphertexts output by Encrypt and Sim.Encrypt are
statistically close.

By the construction of cb,1 in the challenge ciphertext in Game 2,

c>b,1 =
(
s>b Fid∗,b + [ν̂>b,1 | ν̌>b,1]

)
mod q

= s>0
[
A|A(RAb

−RCPRF,id
∗)
]

+[(x + y)> | R(x− y)> + z>]
)

mod q

=
(
s>0
[
A|AR

]
+ [(x + y)>|R(x− y)> + z>]

)
mod q

By the Lemma 2.1 (the generalised left-over hash lemma), with R appearing in the challenge
ciphertext, the public matrices A0,A1, {Bi}i∈[k],C0,C1 still have distribution which is statis-
tically close to the uniform distribution on Zn×mq .

Now we use the idea of smoothing parameter and continuous Gaussian approximation to
show that the noise terms (x + y,R>(x − y) + z) have proper distribution. 8 In particularly,
we show x + y and R>(x − y) + z have proper distributions individually and are statistically
independent.

Firstly, since R has independent columns and z has independent coordinates and R, z would
not appear in other places, vector R>(x−y)+z has independent coordinates. Secondly, x−y is
discrete Gaussian with Gaussian parameter σLWE greater than the smoothing parameter ηε(Zm),
so R>(x− y) is a mixture of discrete Gaussians that closely approximates a (mixture of) con-
tinuous Gaussians, but only on a ”large scale” greater than ‖R‖ · ηε(Zm). The term z is used
to smooth out all visible discretisation introduced by R and make R>(x − y) + z closely ap-
proximate a continuous Gaussian that has zero-correlation and fixed standard deviation. So
by the construction of Sim.Encrypt and Lemma 2.5, R>(x − y) + z has distribution which is
statistically close to DZm,σ as required. By the same reason, x + y has discrete Gaussian distri-
bution DZm,

√
2σLWE

that closely approximates the continuous Gaussian with standard deviation√
2σLWE.

Since each of x + y and R>(x − y) + z closely approximates a multivariate continuous
Gaussian as seen above, for which the covariance Cov(x + y,R>(x− y) + z) = 0 making (the
continuous approximations of) x + y and R>(x− y) + z statistically independent.

Summing up, cb,1 output by Encrypt has distribution that is statistically close to the dis-
tribution of cb,1 output by Sim.Encrypt. Therefore Game 1 and Game 2 are statistically
indistinguishable and the lemma follows.

Lemma 4.4. If (t, εLWE)-LWEn,q,χ assumption holds where χ stands for the distribution DZ,σLWE

reduced modulo q, then |Pr[S2]− Pr[S3]| ≤ εLWE.

Proof. We show a simulation algorithm B that uses its LWE challenge to simulate either Game
2 or Game 3 for an adversary A. At the beginning, B receives its LWE challenge (W,v) ∈
Zn×mq × Zmq and (w, v) ∈ Znq × Zq which is either from O$ or Os.

Setup. B prepares the public parameters for A as follows:

1. Set A←W and u← v. We note A,u have uniform distribution.

2. Set other public parameters as Game 2.

Phase 1. B answers private key queries like Game 2.

Challenge. B prepares the challenge ciphertext of identity id∗ as follows.

8Notice that the simulator knows R and adversary does not know R, x− y, and z individually.
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1. Let b = PRF(K, id∗). B sets

Fid∗,1−b =
[
A | A1−b −ACPRF,id

∗
]

=
[
A | A(RA1−b −RCPRF,id

∗) + (1− 2b)G
]

2. Let R = RA0 −RCPRF,id
∗ . B samples y ← DZm,σLWE

. It also samples z ∈ Zm as in
Sim.Encrypt by its knowledge of R. Then to construct (cb,0, cb,1), it sets

cb,0 = (v + Msg∗bq/2c) mod q

c>b,1 =
(
[v>|v>R] + [y>| − y>R + z>]

)
mod q

3. B sets (c1−b,0, c1−b,1) the same as Game 2.

Phase 2. B replies the private key queries as in Game 2.

Guess. Finally, A outputs whether it is interacting with Game 2 or Game 3. If A says Game
2, B decides its LWE challenge is from Os. Otherwise, B decides the LWE challenge is
from O$.

If B gets the LWE challenge from the oracle Os, there exists a secret vector s ∈ Znq , a noise
scalar x with distribution DZ,σLWE

, a noise vector x ∈ Zm with distribution DZm,σLWE
such that

v> = s>A + x> and v = s>w + x. Rewrite the ciphertext we have

cb,0 = (v + Msg∗bq/2c) mod q

=
(
s>w + x+ Msg∗bq/2c

)
mod q

=
(
s>b u + νb,0 + Msg∗bq/2c

)
mod q

and

c>b,1 =
(

[v>|v>R] + [y>| − y>R + z>]
)

mod q

=
(

[s>A + x>|(s>A + x>)R] + [y>| − y>R + z>]
)

mod q

=
(
s>[A|AR] + [x> + y>|(x> − y>)R + z>]

)
mod q

=
(
s>b Fid∗,b + [ν̂>b,1|ν̌>b,1]

)
mod q

They are valid challenge ciphertext parts in Game 2. Therefore, in this case B simulates Game
2 for A. On the other hand, if B gets samples from O$, (cb,0, cb,1) constructed above will be
random, which is the case of Game 3, and B simulates Game 3. |Pr[S2] − Pr[S3]| ≤ εLWE

follows.

Lemma 4.5. |Pr[S3]− Pr[S4]| = 0.

Proof. Note for generating (c1−b,0, c1−b,1) of the challenge ciphertext, Encrypt and Sim.Encrypt
behave the same. (cb,0, cb,1) is a random string in both games. So adversary’s advantages in
Game 4 and Game 3 are the same.

Lemma 4.6. Game 5 and Game 4 are statistically indistinguishable, so |Pr[S4]− Pr[S5]| ≤
negl(λ) for some negligible function negl(λ).

Proof. The proof is essentially the same as the proof for Lemma 4.2. We omit the details.

Lemma 4.7. If the PRF PRF is (t, εPRF)-secure, then |Pr[S5]− Pr[S6]| ≤ 2εPRF.
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Proof. We recall the difference between Game 6 and Game 5. let b = PRF(K, id∗) for the
challenge identity id∗. In Game 5, the ciphertext component (cb,0, cb,1) is uniformly random
and (c1−b,0, c1−b,1) is computed by Encrypt. In Game 6, the ciphertext component (cb,0, cb,1) is
computed by Encrypt and (c1−b,0, c1−b,1) is uniformly random. To prove the indistinguishably
between Game 6 and Game 5, three additional security games are added.

Firstly we define Game 5.1 which is same as Game 5 except that it samples b
$←− {0, 1}

to select matrix Ab for generating private keys and challenge ciphertext instead of using PRF
to compute it. Also, if same identity is queried multiple times, the same bit b will be used (For
simulation, we simply let the simulator keep a state remembering the bit for each identity.).
Obviously, a distinguisher between Game 5 and Game 5.1 leads to a attacker for PRF. So
|Pr[S5]− Pr[S5.1]| ≤ εPRF.

Secondly, we define Game 5.2 which is the same as Game 5.1 except for randomly sampled
bit b for id∗, it runs Encrypt to produce (cb,0, cb,1) and samples (c1−b,0, c1−b,1) uniformly random
from Zq × Z2m

q . While here b is uniformly random, we must have |Pr[S5.1]− Pr[S5.2]| = 0.
Finally, as Game 6 is the same as Game 5.2 except the bit value b is computed via PRF

in key generation query phase and challenge phase, so we have |Pr[S5.2]− Pr[S6]| ≤ εPRF.
|Pr[S5]− Pr[S6]| ≤ 2εPRF follows.

Lemma 4.8. Game 7 and Game 6 are statistically indistinguishable, so |Pr[S6]− Pr[S7]| ≤
negl(λ) for some negligible function negl(λ).

Proof. The proof is essentially the same as the proof for Lemma 4.2. We omit the details.

Lemma 4.9. Game 8 and Game 7 are statistically indistinguishable, so |Pr[S7]− Pr[S8]| ≤
negl(λ) for some negligible function negl(λ).

Proof. The proof is essentially the same as the proof for Lemma 4.3. We omit the details.

Lemma 4.10. If (t, εLWE)-LWEn,q,χ assumption holds where χ stands for the distribution DZ,σLWE

reduced modulo q, then |Pr[S8]− Pr[S9]| ≤ εLWE.

Proof. The proof is essentially the same as the proof for Lemma 4.4. We omit the details.

Now we prove the Theorem 4.1 by the established lemmas.

Proof. Based on the lemmas that show the difference between the sequence of games, we have
ε = |Pr[S0]− 1/2| ≤ 2(εPRF + εLWE) + negl(λ) for some negligibly small statistical error negl(λ).
The running time of B is dominated by answering qid private key generation queries from A.
For answering one such query, B needs to apply the key-homomorphic algorithm on the circuit
of PRF. This requires time TE . Besides that, B needs to run SampleRight to sample Gaussian
vectors for constructing the private keys, which requires at most time TS . Therefore, for one
query, B roughly runs O(TS + TE) time. For all qid queries and constructing the challenge
ciphertext, the total time is bounded by O (qid · (TS + TE)). So if an adversary A has running
time t, max(tLWE, tPRF) ≤ t+O(qid · (TS + TE)).

4.5 Adaptively CCA-Secure IBE and CCA-Secure PKE

Boneh at al. [17] showed a ` + 1-depth CPA-secure Hierarchical IBE (HIBE) scheme (` ≥ 0)
can be tightly transferred into an `-depth CCA-secure HIBE scheme with small additional
overhead (known as the BCHK transformation). In particularly, a 1-depth HIBE scheme is an
IBE scheme and a 0-depth HIBE scheme is a public-key encryption scheme PKE. Generally, in
HIBE, identities are arranged in a directed tree. A user with identity of a father node can issue
private keys for the users with identities of children nodes. This process is called delegation.
Ideally, we would like to have HIBE schemes supporting identity trees with polynomial depth.
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Unfortunately, directly applying our technique will result in an HIBE scheme with only log-depth
identity tree. On the other hand, our technique particularly works for 2-depth HIBE scheme. So
by applying the BCHK transformation, we obtain a IND-ID-CCA2 secure IBE scheme from the
2-depth IND-ID-CPA HIBE scheme and a IND-CCA2 secure PKE scheme from our IND-ID-CPA
secure IBE scheme9.

5 Conclusions

In this paper, we propose a short adaptively secure lattice signature scheme and a “compact”
adaptively secure IBE scheme in the standard model. Our constructions make use of PRFs in
a novel way by combining several recent techniques in the area of lattice-based cryptography.
The security of our signature and IBE scheme is tightly related to the conservative lattice
assumptions SIS and LWE, respectively, and the security of an instantiated PRF, with a constant
loss factor. By instantiating the existing efficient PRFs from lattice and number-theoretic
assumptions which can be implemented by shallow circuits, we obtain the first “almost” tightly
secure lattice-based short signature/IBE scheme whose security is based on LWE assumption
with super-polynomial modulus, and an adaptively secure IBE scheme with the tightest security
reduction so far, i.e. with only O(log2 λ) factor of security loss for the security parameter λ,
based on a novel combination of lattice and number-theoretic assumptions.

The problem of constructing a tightly and adaptively secure IBE scheme from standard
assumptions (in the sense that the security loss of reduction is a constant) remains open. Our
work suggests that constructing tightly secure PRFs, which is another important open problem
left by [31, 47], would solve it. We leave as a fascinating open problem the question of employing
similar (or different) techniques to construct compact and (almost) tightly secure signature and
encryption schemes with increased expressiveness, such as hierarchical and attribute-based en-
cryption scheme, or homomorphic signatures. Another interesting open question is to construct
a PRF from LWE assumption with polynomial modulus.
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[13] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, Jae Hong Seo, and Christoph
Striecks. Advances in Cryptology – EUROCRYPT 2013: 32nd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May
26-30, 2013. Proceedings, chapter Practical Signatures from Standard Assumptions, pages
461–485. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[14] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption with-
out random oracles. In Christian Cachin and JanL. Camenisch, editors, Advances in Cryp-
tology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages
223–238. Springer Berlin Heidelberg, 2004.

[15] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles.
In Matt Franklin, editor, Advances in Cryptology - CRYPTO 2004, volume 3152 of Lecture
Notes in Computer Science, pages 443–459. Springer Berlin Heidelberg, 2004.

28

http://eprint.iacr.org/


[16] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian
Cachin and JanL. Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, vol-
ume 3027 of Lecture Notes in Computer Science, pages 56–73. Springer Berlin Heidelberg,
2004.

[17] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security
from identity-based encryption. SIAM J. Comput., 36(5):1301–1328, December 2006.

[18] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In Joe
Kilian, editor, Advances in Cryptology CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 213–229. Springer Berlin Heidelberg, 2001.

[19] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic en-
cryption, arithmetic circuit abe and compact garbled circuits. In PhongQ. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014, volume 8441 of
Lecture Notes in Computer Science, pages 533–556. Springer Berlin Heidelberg, 2014.

[20] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. Journal
of Cryptology, 17(4):297–319, 2004.

[21] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. In PhongQ. Nguyen and David Pointcheval, editors, Public
Key Cryptography - PKC 2010, volume 6056 of Lecture Notes in Computer Science, pages
499–517. Springer Berlin Heidelberg, 2010.

[22] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
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