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1 Introduction

The summer of 2013 brought shocking news of mass surveillance being conducted by the NSA and
its counter-parts in other countries. The documents revealed new ways in which the adversary
compromises security, ways not covered by standard models and definitions in cryptography. This
opens up a new research agenda, namely to formalize security goals that defend against these novel
attacks, and study the achievability of these goals. This agenda is being pursued along several
fronts. The front we pursue here is parameter subversion, namely the compromise of security by
the malicious creation of supposedly trusted public parameters for cryptographic systems. The
representative example is the Dual EC random number generator (RNG).

Dual EC. Dual EC is an NSA-designed, elliptic-curve-based random number generator, stan-
dardized as NIST SP 800-90 and ANSI X9.82. BLN [BLN15] say that its story is “one of the most
interesting in modern cryptography.” The RNG includes two points P,Q on an elliptic curve that
function as public parameters for the algorithm. At the Crypto 2007 rump session, Shumow and
Ferguson noted that anyone who knew the discrete logarithm of P to base Q, meaning a scalar s
such that P = sQ, could predict generator outputs. In a Wired Magazine article the same year,
Schneier warned against Dual EC because it “just might contain a backdoor for the NSA.” The
NSA’s response was that they had “generated P,Q in a secure, classified way.” But the Snow-
den revelations (documents from project Bullrun and SIGINT) show that Dual EC was part of a
systematic NSA effort to subvert standards. And in 2014, CNEGLRBMSF [CFN+14] showed the
practical effectiveness of the subversion by demonstrating how the backdoor could be exploited to
break TLS.

Two things are remarkable. The first is that the “trusted” public parameters were in fact sub-
verted. The second is the effort put into ensuring that the subverted parameters were standardized
and used. NSA-based pressure and lobbying not only lead to Dual EC remaining a US standard but
even to its being in an international standard, ISO 18031:2005. In 2013 Reuters reported that the
NSA paid RSA corporation $10 million to make Dual EC the default method for random number
generation in their BSafe library.

Cryptography resistant to parameter subversion. The lesson to take away is that a cryp-
tographic system that relies on public parameters assumed to have been honestly generated, say by
some “trusted” party, is at great practical risk from the possibility that the parameters were in fact
maliciously generated with intent to subvert security of their use. We suggest that in response we
should develop cryptography that is resistant to parameter subversion. This means that it should
provide its usual security with trusted parameters, but retain as much security as possible when
the parameters are maliciously generated.

Parameters arise in many places in cryptography, but a prominent one that springs to mind
are non-interactive zero-knowledge (NIZK) systems, where the common reference string (CRS) is
assumed to be honestly generated. NIZKs are not only important in their own right but used in a
wide variety of applications, so their security under parameter subversion has far-reaching effects.
This paper provides a treatment of resistance to parameter subversion for NIZKs, with definitions,
negative results and positive results.

NIZKs. Non-interactive zero-knowledge systems originate with BFM [BFM88] and BDMP
[BDSMP91] and have since seen an explosion in constructions and applications. The Groth-Sahai
framework for efficient NIZKs [GS08] is widely utilized and we are seeing not only efficient NIZKs
but also their implementation in systems [GS08, Gro10, BCTV14, EG14, BSCTV14]. Structure-
preserving cryptography [AFG+10, AGOT14, Gro15] was developed to allow these NIZKs to be
used for efficient applications.
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The NIZK model postulates a common reference string (CRS) that has been honestly generated
according to some distribution. The pragmatics of how this is done receives little explicit attention.
Some early works talk of using digits of π and others speak whimsically of “a random string in
the sky,” but for the most part the understanding is that a trusted party will generate, and make
public, the CRS. In light of the above, however, we must be concerned that the CRS is in fact
maliciously generated. This is the issue addressed by our work.

An immediate avenue of attack that may come to mind is the following. NIZK security requires
that there is a simulator that generates a simulated CRS (indistinguishable from the honest one)
together with a trapdoor allowing the simulator to generate proofs without knowing the witness.
What if the subvertor generates the CRS via the simulator, so that it knows the trapdoor? Since this
CRS is indistinguishable from an honestly generated one, the subversion will not be detected. Now,
what does the subvertor gain? This seems to depend on the particular system and its properties.
For example, the subvertor may be able to generate proofs of false statements and violate soundness.
In some cases the trapdoor permits extraction of witnesses from honest proofs, in which case the
subvertor would be able to violate zero knowledge. What we see here is that features built into
the standard notions and constructions of NIZKs turn out to be potential liabilities in the face of
subversion. Put another way, current NIZKs have the possibility of subversion effectively built into
the security requirement because the simulator works by “subverting” the CRS.

Two remarks with regard to the above. (1) First, if it is unclear what is going on, or what
conclusion to draw, there is a good reason, namely that we are trying to think or talk about what
subversion does in the absence of a clear understanding of the subversion-resistance goal, effectively
jumping the gun. To be able to effectively assess security we first need precise definitions of the new
goal(s) underlying resistance to CRS subversion. Providing such definitions is the first contribution
of this paper. (2) Second, while the above discussion may lead one to be pessimistic, we will see
that in fact a surprising amount of security can be retained even under a maliciously generated
CRS.

NIZK security, now. To discuss the new goals in subversion-resistant NIZKs we first back up to
recall the standard goals in the current model where the CRS is trusted and assumed to be honestly
generated. We distinguish three standard goals for a non-interactive (NI) system Π relative to an
NP relation R defining the language L(R) ∈ NP. The formalizations are recalled in Sect. 4.

SND: (Soundness) It is hard for an adversary, given an honestly generated crs, to find an x 6∈ L(R)
together with a valid proof π (meaning one that the verification algorithm Π.V accepts) for x
relative to crs.

WI: (Witness indistinguishability) Assuming crs is honestly generated, an adversary can’t tell
under which of two valid witnesses an honest proof (i.e., generated by the prover algorithm Π.P
under crs) for an instance x was created, and this even holds for multiple, adaptively chosen
instances depending on crs.

ZK: (Zero-knowledge) There is a simulator Π.Sim.crs returning a simulated CRS crs0 and associated
trapdoor std, and an accomplice simulator Π.Sim.pf taking an instance x ∈ L(R) and std and
returning a proof, such that an adversary given crsb cannot tell whether a proof it receives was
created honestly (with the honest prover algorithm, an honest crs1 and a witness; the b = 1 case)
or via Π.Sim.pf (the b = 0 case). Moreover this holds even for multiple, adaptively chosen instances
depending on crsb.

NIZK security under subversion. The key change in our model is that the adversary gener-
ates the CRS. It can retain, via its coins r, some kind of “backdoor” related to this CRS. In Sect. 4
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Standard Subversion resistant
Achievable?

SND ZK WI S-SND S-ZK S-WI

N • • 7 Thm. 5.1

P1 • • • • • 3 Thm. 6.2

P2 • • • • 3 Thm. 6.5

P3 • • • • 3 Thm. 6.6

S-SND S-ZK S-WI

SND ZK WI

? ? ?

-

-

Figure 1: Left: Achievability chart showing our negative result N and positive results P1, P2, P3. In a
row we refer to simultaneously achieving all selected notions. Right: Relations.

we formalize the following goals:

S-SND: (Subversion soundness) It is hard for the adversary to generate a (malicious) CRS crs
together with an instance x 6∈ L(R) and a valid proof π for x relative to crs. (The goal of the
subvertor here is to create a CRS that allows it to give proofs of false statements.)

S-WI: (Subversion witness indistinguishability) Even if the adversary creates crs maliciously and
retains the corresponding coins r, it can’t tell under which of two valid witnesses an honest proof
(meaning one generated by the prover algorithm Π.P under the subverted crs) for an instance x
was created, and moreover this holds even for multiple, adaptively chosen instances depending on
crs.

S-ZK: (Subversion zero knowledge) For any adversary X creating a malicious CRS crs1 using coins
r1, there is a simulator S.crs returning not only a simulated CRS crs0 and associated trapdoor std
but also simulated coins r0, and an accomplice simulator S.pf taking an instance x ∈ L(R) and std
and returning a proof, such that an adversary A given crsb, rb cannot tell whether a proof it receives
was created honestly (with Π.P using crs1 and a witness; the b = 1 case) or via S.pf (the b = 0
case). Moreover this holds even for multiple, adaptively chosen instances depending on crsb, rb.

The right side of Figure 1 may help situate the notions. It shows the obvious relations: S-X implies
X; ZK implies WI and S-ZK implies S-WI.

Achievability. Is subversion resistance achievable? This question first needs to be meaningfully
posed. The subversion resistance goals are easy to achieve in isolation. For example, S-SND is
achieved for any NP relation by having the prover send the witness, but this is not ZK. S-ZK is
achieved by having the prover send the empty string as the proof and having the verifier always
accept, but this is not SND. Such trivial constructions are un-interesting. The interesting question
is whether meaningful combinations of the goals are simultaneously achievable. A pragmatic view-
point is that we already have systems achieving SND+WI+ZK. We want to “upgrade” these to get
some resistance to subversion. While retaining SND, WI and ZK, what can be added from the list
S-SND, S-WI, S-ZK? Can we have them all? Are things so bad that we can have none? We will
be able to completely categorize what is achievable and what is not and will see that the truth is
somewhere between these extremes and on the whole the news is perhaps more positive than we
might have expected. Our core results are summarized in the table on the left side of Figure 1.
In any row, we are considering simultaneously achieving the notions indicated by the bullets. The
last column indicates whether or not it is possible. We now discuss these results, beginning with
the negative result of the first row.

Negative result. We first ask whether we can achieve S-SND (soundness for a malicious CRS)
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while retaining what we have now, namely SND, WI and ZK. Result N (the first row of Figure 1)
indicates that we cannot. It says that there is no NI system that achieves both ZK and S-SND.
(More precisely, this is only possible for trivial NP-relations, i.e., where verifiers can check if
x ∈ L(R) themselves.) We stress that ZK here is the standard notion where the CRS is honest. We
are not asking for S-ZK but only to retain ZK. The proof of Theorem 5.1 establishing this uses the
paradigm of GO [GO94] of using the simulator to break soundness.

Positive results. Figure 1 lists three positive results that we discuss in turn:

P1: The most desirable target is S-ZK. By result N it cannot be achieved in combination with
S-SND. The next best thing would be to get it in combination with SND. We show in Theorem 6.2
that this is possible. Since S-ZK implies ZK, S-WI and WI, this yields result P1 of the table of
Figure 1, showing we can simultaneously achieve all notions but S-SND. Theorem 6.2 is based on a
knowledge-of-exponent assumption (KEA) in a group equipped with a bilinear map. The assump-
tion is certainly strong, but (1) this is to be expected since our goal implies certain forms of 2-move
interactive ZK that have themselves only been achieved under extractability assumptions [BCPR14],
(2) similar assumptions have been made before [Gro10], and (3) unlike other knowledge assump-
tions [BCPR14], our assumption is not ruled out assuming indistinguishability obfuscation. See
the beginning of Sect. 6.1 for a high-level description of the ideas of our construction.

P2: The question left open by P1 is whether there is some meaningful way to achieve S-SND. (It
is the one item missing in row P1.) We know from result N that we cannot do this in combination
with ZK. Result P2 of the table of Figure 1 says that we can do the best possible given this
limitation. Namely we can simultaneously achieve both S-SND and S-WI (and thus SND and
WI). Theorem 6.5 establishing this is under a standard assumption, namely the decision-linear
assumption (DLin). It follows easily from the existence of a SND and WI NI system with trivial
CRS under DLin [GOS06a] and the observation (Lemma 6.4) that any such system is obviously
also S-SND and S-WI.

P3: Result P3 of the Figure 1 represents “hedging.” The system has the desired properties (SND,
WI, ZK) under an honest CRS. When the CRS is maliciously chosen, it does not break completely;
it retains witness indistinguishability in the form of S-WI. In practice this offers quite a bit of
protection. Our hedging construction combines a PRG with a zap. (A zap is a 2-move witness-
indistinguishable interactive protocol [DN00].)

Result P3 may seem redundant; isn’t it implied by P1? (Indeed it selects a strict subset of
the notions selected by P1.) While P1 uses strong (extractability) assumptions, P3 is established
in Theorem 6.6 under the minimal assumption that some SND+WI+ZK NI system exists. Our
hedging thus adds no extra assumptions. This is because a zap can be built from any SND+ZK
NI system [DN00].

Full achievability picture. The broad question we have asked is, which combinations of the
six notions SND, WI, ZK, S-SND, S-WI, S-ZK are simultaneously achievable? Figure 1 looks at
four combinations. But there are in principle 26 combinations about which one could ask. In
Table 1 in Appendix C we go systematically over all combinations and evaluate achievability. We
are able to give the answer in all cases. Briefly, Figure 1 covers the interesting cases, which is why
we have focused on those for the body of the paper, and other cases are dealt with relatively easily
in Appendix C.

Other notions. We have been selective rather than exhaustive with regard to which notions
to consider in this setting, focusing on the basic soundness, witness indistinguishability and zero
knowledge. There are many other notions in this area that could be considered including robustness,
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simulation soundness and extractability [DDO+01, Gro06, GO07, DHLW10] but it seems fairly
apparent that these stronger notions will be subject to commensurately strong negative results
with regard to security under CRS subversion. For example, extractability asks that the simulator
can create a CRS such that, with a trapdoor it withholds, it can extract the witness from a valid
proof. But if so, a subvertor can create the CRS like the simulator so that it has the trapdoor and
can also extract the witness.

2 Discussion and related work

Relation to 2-move protocols. There is a natural connection between NI systems and 2-move
interactive protocols in which NI system Π corresponds to the protocol 2MV in which the verifier
first sends the CRS and the prover sends the proof in the second move. We can then think of
the following correspondence of notions for Π and 2MV: S-WI ↔ ZAP; ZK ↔ honest-verifier ZK;
S-ZK ↔ full (cheating-verifier) ZK. This analogy provides intuition and insight and opens up
connections we exploit for both positive and negative results, but one must be wary that the analogy
is not fully accurate in either direction. We look separately at this for negative and positive results.

On the negative side, many forms of 2-move ZK are impossible [GO94, BLV03]. This does
not directly imply that S-ZK is impossible because S-ZK does not imply these particular forms
of 2-move ZK. For example, S-ZK does not incorporate auxiliary inputs and thus does not imply
auxiliary-input 2-move ZK, so the fact that the latter is ruled out [GO94] does not mean the former
is ruled out. (Why does our definition of S-ZK not incorporate auxiliary inputs? One reason was
exactly to avoid the impossibility results. But also, an important reason to introduce auxiliary
inputs in the interactive case was to be able to prove that ZK for multiple instances is provided,
by sequential composition. But our S-ZK formulation already and directly requires security for
multiple, adaptively chosen instances, removing the main motivation for auxiliary inputs.)

On the positive side, some forms of 2-move ZK are possible [BLV03, Pas03, BP04a, BCPR14].
A natural question is whether one can obtain S-ZK+SND (the goal of P1) from them by the
obvious transformation, namely to make the verifier’s move the CRS. Unfortunately, this does not
in general achieve S-ZK. In particular the simulation requirement for S-ZK is stronger than for ZK
because the simulated CRS must be produced upfront without knowing the instance, and then the
simulator must be able to adaptively produce simulated proofs for multiple instances.

So 2-move ZK as claimed and proven by [BLV03, BP04a, BCPR14] does not directly yield S-ZK.
The next natural question is whether the protocols of these papers can, nonetheless, be directly
shown to have the stronger properties needed to obtain S-ZK. This appears to be the case for the
protocols of [BLV03, Pas03, BCPR14], because the verifier’s first message does not depend on the
instance. Starting from BLV [BLV03], the assumption would be that Micali’s conjecture [Mic94]
(there exist CS proofs or two-round universal arguments) is true. Starting from BCPR [BCPR14],
the assumption would be the existence of privately verifiable P-delegation, 1-hop FHE, and a
complexity-leveraging commitment scheme. In this light, we have chosen to present our knowledge
of exponent based P1 construction as a concrete, self-contained illustration of one simple route to S-
ZK+SND from a plausible assumption, but other routes are possible. We do note that BLV [BLV03]
themselves view their assumption as so strong that they hesitate to call their result a positive one,
instead referring to it as “a negative result on negative results.”

BP [BP04a] build one-message ZK arguments, but the simulation is super polynomial time.
(This is also true of the construction of Pass [Pas03].) These would thus yield S-ZK with super-
polynomial-time simulation. But we require simulation for S-ZK to be polynomial time. This is in
keeping with the intuition behind zero-knowledge that the entity running the verifier in the protocol
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should be able to run the simulator to produce a similar view.

Finally, in the bare public-key model of [CGGM00], Wee [Wee07] constructs a weak non-uniform
non-interactive zero-knowledge argument. This can be turned into a NI system by using the
verifier’s public key as the CRS. However this form of ZK allows a super-polynomial simulator
whose size depends on the size of the distinguisher and the distinguishing gap, and this is weaker
than S-ZK. Also Wee’s [Wee07] construction is only proved for one instance, while in S-ZK we
require security for multiple, adaptively-chosen instances.

Context. Resistance of NIZKs to parameter subversion may not be of immediate practical
relevance but we believe it is an important long-term consideration for this technology. The foun-
dational tradition has always had as its stated goal to model and capture realistic, practical attacks
and then investigate theoretically whether or not security can be achieved. Parameter subversion
is such a realistic attack not previously considered, and it leads us to revisit the foundations of
NIZKs to bring it into the picture. We are seeing large efforts in the creation of efficient NIZKs
and their implementation in systems towards eventual applications [GS08, Gro10, BCTV14, EG14,
BSCTV14, BSCG+15]. For security, parameter subversion must be kept in mind from the start.

A standard suggestion to protect against CRS subversion is to generate the CRS via a multi-
party computation protocol so that no particular party controls the outcome. This is pursued
in [BSCG+15]. The effectiveness and practicality of this solution are not very clear. What parties
would perform this task, and why can we trust any of them? The Snowden revelations indicate that
corporations cooperate with the NSA toward subversion, either willingly or due to court orders.
NIZKs with built-in resistance to subversion, as we define and achieve, provide greater protection.

One might note that in some applications, such as the use of NIZKs for signatures [BG90,
CL06, DHLW10] and IND-CCA encryption [NY90, DDN00], users can pick their own CRS and
be confident of its quality. However this blows up key sizes and increases system complexity. It
would be more convenient if there were a single, global CRS, in which case resistance to subversion
matters.

CPs [CPs07] study UC-secure computation in a model where the CRS is drawn from a dis-
tribution that is adversarially chosen subject to several restrictions, including that it has high
min-entropy and is efficiently sampleable via an algorithm known to the simulator. They do not
consider NIZKs, and in their model the CRS is not chosen fully maliciously, with no restrictions,
as in our model. GO [GO07] studied the “multi-CRS” model where the adversary can substitute
t out of m CRSs, GGJS [GGJS11] consider replacing a single trusted setup in UC with multi-
ple, untrusted ones and KKZZ [KKZZ14] consider distributing the setup for UC-secure multi-party
computation. Concern with trust in a CRS is exhibited in the context of elections by KZZ [KZZ15],
who have the CRS generated by the election authority using the voter’s coins.

Algorithm-substitution attacks, studied in [BPR14, AMV15], are another form of subversion,
going back to the broader framework of kleptography [YY96, YY97]. Back-doored blockciphers
were studied in [RP97, PG97, Pat99]. DGGJR [DGG+15] provide a formal treatment of back-
dooring of PRGs in response to the Dual EC debacle. The cliptography framework [RTYZ15] aims
to capture many forms of subversion.

3 Notation

The empty string is denoted by ε. If x is a (binary) string then |x| is its length. If S is a
finite set then |S| denotes its size and s←$ S denotes picking an element uniformly from S and
assigning it to s. We denote by λ ∈ N the security parameter and by 1λ its unary representation.
Algorithms are randomized unless otherwise indicated. “PT” stands for “polynomial time”, whether
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for randomized or deterministic algorithms. By y ← A(x1, . . . ; r) we denote the operation of
running A on inputs x1, . . . and coins r and letting y denote the output. By y←$A(x1, . . .), we
denote letting y ← A(x1, . . . ; r) for random r. We denote by [A(x1, . . .)] the set of points that have
positive probability of being output by A on inputs x1, . . . Adversaries are algorithms. Complexity
is uniform throughout: scheme algorithms and adversaries are Turing Machines, not circuit families.

For our security definitions and some proofs we use the code-based game playing framework
of [BR06]. A game G (e.g. Figure 2) usually depends on some scheme and executes one or more
adversaries. It defines oracles for the adversaries as procedures. The game eventually returns a
boolean. We let Pr[G] denote the probability that G returns true.

4 Security of NIZKs under CRS subversion

We first recall and discuss standard notions of NIZK security in the setting used until now where
the CRS is trusted. We then formulate new notions of NIZK security in the setting where the CRS
is subverted, starting with the syntax.

4.1 NP relations and NI systems

NP relations. Proofs pertain to membership in an NP language defined by an NP relation,
and we begin with the latter. Suppose R : {0, 1}∗ × {0, 1}∗ → {true, false}. For x ∈ {0, 1}∗ we let
R(x) = {w : R(x,w) = true } be the witness set of x. We say that R is an NP relation if it is
PT and there is a polynomial R.wl : N→ N called the maximum witness length such that every w
in R(x) has length at most R.wl(|x|) for all x ∈ {0, 1}∗. We let L(R) = {x : R(x) 6= ∅ } be the
language associated to R. The fact that R is an NP relation means that L(R) ∈ NP. We now go
on to security properties, first giving formal definitions and then discussions.

NI systems. A non-interactive (NI) system specifies the syntax of the proof system. We can
then consider various security attributes, including soundness, zero knowledge and witness in-
distinguishability. Formally, a NI system Π for R specifies the following PT algorithms. Via
crs←$ Π.Pg(1λ) one generates a common reference string crs. Via π←$ Π.P(1λ, crs, x, w) the hon-
est prover, given x and w ∈ R(x), generates a proof π that x ∈ L(R). Via d ← Π.V(1λ, crs, x, π) a
verifier can produce a decision d ∈ {true, false} indicating whether π is a valid proof that x ∈ L(R).
We require (perfect) completeness, namely Π.V(1λ, crs, x,Π.P(1λ, crs, x, w)) = true for all λ ∈ N,
all crs ∈ [Π.Pg(λ)], all x ∈ L(R) and all w ∈ R(x). We also require that Π.V returns false if any of
its arguments is ⊥.

4.2 Notions for honest CRS: SND, WI and ZK

Soundness. Soundness asks that it be hard to create a valid proof for x 6∈ L(R). Formally, we say
that Π is sound for R, abbreviated SND, if Advsnd

Π,R,A(·) is negligible for all PT adversaries A, where

Advsnd
Π,R,A(λ) = Pr[SNDΠ,R,A(λ)] and game SND is specified in Figure 2. This is a computational

soundness requirement as opposed to a statistical one, as is sufficient for applications.

WI. This notion [FLS90] requires that a PT adversary, which chooses two witnesses, cannot tell
which one was used to create a proof. Formally, we say that Π is witness-indistinguishable (WI) for
R, if Advwi

Π,R,A(·) is negligible for all PT adversaries A, where Advwi
Π,R,A(λ) = 2 Pr[WIΠ,R,A(λ)]− 1

and game WI is specified in Figure 2. In this game, an adversary A can request a proof for x under
one of two witnesses w0, w1. It is returned an honestly generated proof under wb where b is the
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Game SNDΠ,R,A(λ)

crs←$ Π.Pg(1λ)

(x, π)←$ A(1λ, crs)

Return (x 6∈ L(R) and Π.V(1λ, crs, x, π))

Game S-SNDΠ,R,A(λ)

(crs, x, π)←$ A(1λ)

Return (x 6∈ L(R) and Π.V(1λ, crs, x, π))

Game WIΠ,R,A(λ)

b←$ {0, 1}
crs←$ Π.Pg(1λ)

b′←$ AProve(1λ, crs)

Return (b = b′)

Prove(x,w0, w1)

If R(x,w0) = false or R(x,w1) = false

then Return ⊥
π←$ Π.P(1λ, crs, x, wb)

Return π

Game S-WIΠ,R,A(λ)

b←$ {0, 1}
(crs, st)←$ A(1λ)

b′←$ AProve(1λ, crs, st)

Return (b = b′)

Prove(x,w0, w1)

If R(x,w0) = false or R(x,w1) = false

then Return ⊥
π←$ Π.P(1λ, crs, x, wb)

Return π

Game ZKΠ,R,A(λ)

b←$ {0, 1}
crs1←$ Π.Pg(1λ)

(crs0, std)←$ Π.Sim.crs(1λ)

b′←$ AProve(1λ, crsb)

Return (b = b′)

Prove(x,w)

If R(x,w) = false then Return ⊥
If b = 1 then π←$ Π.P(1λ, crs1, x, w)

Else π←$ Π.Sim.pf(1λ, crs0, std, x)

Return π

Game S-ZKΠ,R,X,S,A(λ)

b←$ {0, 1}
r1←$ {0, 1}X.rl(λ) ; crs1 ← X(1λ; r1)

(crs0, r0, std)←$ S.crs(1λ)

b′←$ AProve(1λ, crsb, rb)

Return (b = b′)

Prove(x,w)

If R(x,w) = false then Return ⊥
If b = 1 then π←$ Π.P(1λ, crs1, x, w)

Else π←$ S.pf(1λ, crs0, std, x)

Return π

Figure 2: Games defining standard (left) and subversion (right) security of NI system Π. Top to bottom:
Soundness, witness indistinguishability, zero knowledge.

challenge bit. It can adaptively request and obtain many such proofs before outputting a guess b′

for b. The game returns true if this guess is correct.

ZK. We say that Π is zero-knowledge for R, abbreviated ZK, if Π specifies additional PT algo-
rithms Π.Sim.crs and Π.Sim.pf such that Advzk

Π,R,A(·) is negligible for all PT adversaries A, where

Advzk
Π,R,A(λ) = 2 Pr[ZKΠ,R,A(λ)]− 1 and game ZK is specified in Figure 2. Adversary A can adap-

tively request proofs by supplying an instance and a valid witness for it. The proof is produced
either by the honest prover using the witness, or by the proof simulator Π.Sim.pf using a trapdoor
std. The adversary outputs a guess b′ as to whether the proofs were real or simulated.

Discussion. The classical definitions of soundness and zero knowledge for proof systems [GMR89]
were in what we will call the complexity-theoretic style. The soundness condition said that for all
x 6∈ L(R), the probability that a dishonest prover could convince the honest verifier to accept was
low. Zero knowledge, similarly, looked at distributions associated to a fixed x ∈ L(R) and then
at ensembles over x. The first definition for NIZK was similar [BDSMP91]. But over time, NIZK
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definitions have adapted to what we call a cryptographic style [DDO+01, GOS06b]. This is the
style we use because it seems more prevalent now and it works better for applications. Here x is
not quantified but chosen by an adversary. The definitions directly capture proofs for multiple,
related statements. All adversaries are PT, meaning all metrics are computational.

One consequence of the complexity-theoretic style was a need for non-uniform complexity for
adversaries and assumptions [GMR89, GMW91]. In [Gol93] Goldreich made a case for uniform
complexity. The cryptographic style we adopt is in this vein, and in our setting all complexity
(adversaries, algorithms, assumptions) is uniform.

4.3 Notions for subverted CRS: S-SND, S-WI and S-ZK

A core assumption in NIZKs is that the CRS is honestly generated. In light of subversion of
parameters in other contexts as part of the mass-surveillance revelations, we ask what would happen
if the CRS were maliciously generated. We will define subversion-resistance analogues S-SND, S-WI
and S-ZK of the SND, WI, ZK goals above. The key difference is that the CRS is selected by an
adversary rather than via the CRS-generation algorithm Π.Pg prescribed by Π.

Subversion soundness. Subversion soundness asks that if a subvertor creates a CRS in any way
it likes, it will still be unable to prove false statements under that CRS. Formally, we say that Π
is subversion-sound (abbreviated S-SND) for R if Advs-snd

Π,R,A(·) is negligible for all PT adversaries

A, where Advs-snd
Π,R,A(λ) = Pr[S-SNDΠ,R,A(λ)] and game S-SND is specified in Figure 2. Compared

to the honest-CRS game SND to the left of it, the adversary now not only generates x and π, but
itself supplies crs, modeling a malicious choice of the latter.

Subversion WI. Subversion WI asks that if a subvertor creates a CRS in any way it likes
then it will still be unable to tell which of two witnesses was used to create a proof, even given
both witnesses. Formally, we say that Π is subversion witness-indistinguishable (S-WI) for R if
Advs-wi

Π,R,A(·) is negligible for all PT adversaries A, where Advs-wi
Π,R,A(λ) = 2 Pr[S-WIΠ,R,A(λ)]−1 and

game S-WI is specified in Figure 2. Compared to the honest-CRS game WI, the CRS crs is now
generated by the adversary in a first stage, along with state information st passed to its second
stage. In the latter, via its Prove oracle, it adaptively obtains proofs for instances of its choice
under a challenge witness, and outputs a guess b′ for the challenge b. The state can contain the
coins of A or any trapdoor associated to crs that A chooses to put there helping its distinguishing
task.

Subversion ZK. Subversion ZK asks that for any CRS subvertor X creating a CRS in any way
it likes there is a simulator able to produce the full view of the CRS subvertor, including its coins
and proofs corresponding to adaptively chosen instances, without knowing the witnesses. Formally,
a simulator S for X specifies PT algorithms S.crs and S.pf. Now consider game S-ZK of Figure 2
associated to Π,R,X,S and an adversary A. We let Advs-zk

Π,R,X,S,A(λ) = 2 Pr[S-ZKΠ,R,X,S,A(λ)] − 1.
We say that Π is subversion zero-knowledge (S-ZK) for R if for all PT CRS subvertors X there is a
PT simulator S such that for all PT A the function Advs-zk

Π,R,X,S,A(·) is negligible.
In this game, if the challenge bit b is 1 then the CRS crs1 is generated via X with the coins r1

made explicit. Otherwise, if b = 0, the first stage S.crs of the simulator is run to produce simulated
versions crs0, r0 not only of the CRS but also of the coins of X. Alongside, S.crs produces a
simulation trapdoor std as in ZK to allow its second stage to simulate proofs. Now, A gets to
request its Prove oracle for proofs of instances of its choice. If b = 1, these are produced by the
honest prover with the given witness; but if b = 0, they are produced via the second stage S.pf of
the simulator using the simulation trapdoor std and no witness. Adversary A produces its guess b′

and wins of b′ = b.
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Game DECIG,R,M(λ)

(x,w)←$ IG(1λ) ; d1 ← R(x,w)

If (x ∈ L(R) and d1 = false) then return false

d0←$ M(1λ, x) ; return (d0 6= d1)

Figure 3: Game defining language triviality

The definition reflects that X here is like a cheating verifier in classical ZK [GMR89]. The
simulator thus needs to produce its coins as well as the transcript of its interaction with its oracle.
But also, to reflect the ZK requirement of non-interactive systems above, more is required, namely
that the simulator must first produce the simulated CRS and coins, and then, in its second stage, be
able to produce simulated proofs. The definition is thus quite demanding. Note that the simulator
can depend (in a non-blackbox way) on X, but not on A. The latter is important to ensure that
S-ZK implies ZK.

4.4 2-move protocols

We will have many occasions to refer to and use 2-move interactive protocols, so we fix a syntax
for them. A 2-move protocol 2MV for NP relation R specifies PT algorithms 2MV.V, 2MV.P,
2MV.D. Via (m1, st)←$ 2MV.V(1λ, x) the honest verifier generates the first move message m1

on input x, retaining associated state information st. Via m2←$ 2MV.P(1λ, x, w,m1) the honest
prover generates a reply computed from x, a witness w ∈ R(x) and the first move message m1.
Deterministic decision algorithm 2MV.D takes x,m1,m2, st and returns a boolean decision. Security
notions will be discussed as needed.

5 Negative result: ZK and S-SND are not compatible

All the different forms of subversion security (S-SND, S-WI, S-ZK) are easy to achieve in isolation.
For example sending the witness as the proof achieves S-SND (but this is not ZK). Having the
verification algorithm always accept and sending the empty string as the proof achieves S-ZK
(but not SND). These kinds of results are not interesting. We want to study the simultaneous
achievability of meaningful combinations of the notions, meaning some kind of soundness together
with some kind of zero knowledge or witness indistinguishability.

We already have NI systems that are SND+ZK and we do not want to degrade this. If now the
CRS is subverted, what more can we have without losing the initial properties? The first question
we ask is, can we up the ante for soundness, meaning add S-SND? That is, we want subversion
soundness while retaining ZK. We will show that this is not possible.

An impossibility result in this domain means no NI system satisfying the conditions exists
unless the relation R is trivial. Roughly, trivial means that the verification algorithm can decide
membership in L(R) on its own. Impossibility results of this type begin with Goldreich and Oren
(GO) [GO94]. Their definition of R being trivial was simple, namely that it is in BPP. This will
not suffice here, so we begin with a more precise definition of relation triviality and an explanation
of why it is needed.

Relation triviality. The definition of a relation R being trivial if L(R) ∈ BPP works when
the formulations of ZK and soundness are in the complexity-theoretic style, meaning the conditions
refer to universally quantified inputs. As discussed in Sect. 4.2 however, our formulations, following
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modern treatments of NI systems in the literature, are in the cryptographic style, which is better
suited for applications. Here the only instances that come into play are those that can be generated
by PT algorithms, and the only positive instances that come into play are those generated with
witnesses. In this setting, BPP will not work as a definition of triviality because membership
in standard complexity classes like BPP refers to arbitrary inputs, not merely ones that one can
generate in PT. For our purposes we thus give a definition of a language (actually an NP relation)
being trivial, which can be seen as defining a cryptographic version of BPP.

Let R be an NP relation. An instance generator is a PT algorithm that on input 1λ returns
a pair (x,w). Here x is a challenge instance that may or may not be in L(R), and w should be in
R(x) if x ∈ L(R). Let M be an algorithm (decision procedure) taking 1λ, x and returning a boolean
representing whether or not it thinks x is in L(R). Consider game DEC of Figure 3 associated to
IG,R,M and let Advdec

IG,R,M(λ) = Pr[DECIG,R,M(λ)]. We say that algorithm M decides R if for every

PT IG the function Advdec
IG,R,M(·) is negligible. We say that R is trivial if there is a PT algorithm M

that decides R. Intuitively, in game DEC, think of IG as an adversary trying to make M fail. The
game returns true when IG succeeds, meaning M returns the wrong decision. A technical point is
that if IG generates a positive instance x, the game forces it to lose if the witness w is not valid.
Thus we are asking that M is able to decide membership in PT for instances that can be efficiently
generated with valid witnesses if the instance is positive. But this does not mean it can decide
membership on all instances. Thus if L(R) ∈ BPP then R is certainly trivial, but the converse
need not be true.

Result. We show that ZK and subversion soundness (S-SND) cannot co-exist, meaning only
trivial relations will have NI systems with both attributes. We stress that we are not asking here
for subversion ZK but just plain ZK.

Theorem 5.1 Let Π be a NI system satisfying zero knowledge (ZK) and subversion soundness
(S-SND) for an NP relation R. Then R is trivial.

The proof follows the basic paradigm of GO [GO94]. We use the simulator to build a cheating
prover that violates soundness. In our case this works if soundness holds relative to a simulated
CRS, but S-SND guarantees this.

Proof of Theorem 5.1: Define the following decision procedure M:

Algorithm M(1λ, x)

(crs0, std0)←$ Π.Sim.crs(1λ) ; π←$ Π.Sim.pf(1λ, crs0, std0, x)
Return Π.V(1λ, crs0, x, π)

Thus, to decide if x ∈ L(R), algorithm M runs the simulator to get a simulated CRS and simulation
trapdoor, uses the latter to generate a simulated proof, and decides that x ∈ L(R) if this proof is
valid. Let IG be any PT instance generator. We will show below that Advdec

IG,R,M(·) is negligible.
This shows that R is trivial.

To show Advdec
IG,R,M(·) is negligible, below we will define PT adversaries A,B such that

Advdec
IG,R,M(λ) ≤ Advzk

Π,R,A(λ) + Advs-snd
Π,R,B(λ) (1)

for all λ ∈ N. By assumption, Π satisfies ZK and S-SND for R, so the functions Advzk
Π,R,A(·) and

Advs-snd
Π,R,B(·) are both negligible. Thus Eq. (1) implies that Advdec

IG,R,M(·) is negligible, as desired.

Consider games G0,G1,G2 of Figure 4. Game G0 is defined ignoring the box, while game G1

includes it. Games G0 and G1 split up the decision process depending on whether or not x ∈ L(R).
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Games G0, G1

(x,w)←$ IG(1λ) ; d1 ← R(x,w)

(crs, std)←$ Π.Sim.crs(1λ)

π←$ Π.Sim.pf(1λ, crs, std, x)

d0 ← Π.V(1λ, crs, x, π)

b← ((x 6∈ L(R)) ∧ (d0 = true))

b← ((d1 = true) ∧ (d0 = false))

Return b

Game G2

(x,w)←$ IG(1λ) ; d1 ← R(x,w)

crs←$ Π.Pg(1λ)

π←$ Π.P(1λ, crs, x, w)

d0 ← Π.V(1λ, crs, x, π)

b← ((d1 = true) ∧ (d0 = false))

Return b

Figure 4: Games for proof of Theorem 5.1

Game G2 switches to a real CRS and proofs, which it can do since the instance generator provided
a witness.

Game DEC returns true iff ((x 6∈ L(R)) AND (d0 = true)) OR ((x ∈ L(R)) AND (d1 = true) AND
(d0 = false)). The first condition in the OR is when game G0 returns true. The second condition in
the OR is equivalent to ((d1 = true) AND (d0 = false)), which is the condition under which game
G1 returns true. Furthermore the conditions are mutually exclusive. We thus have

Advdec
IG,R,M(λ) = Pr[G0] + Pr[G1] = Pr[G0] + Pr[G2] + (Pr[G1]− Pr[G2]) (2)

Notice that by completeness of Π we have

Pr[G2] = 0 . (3)

Now we specify the adversaries A,B as follows:

Adversary AProve(1λ, crs)

(x,w)←$ IG(1λ) ; d1 ← R(x,w)
π←$ Prove(x,w) ; d0 ← Π.V(1λ, crs, x, π)
If ((d1 = true) ∧ (d0 = false)) then b′ ← 0
Else b′ ← 1
Return b′

Adversary B(1λ)

(x,w)←$ IG(1λ)
(crs, std)←$ Π.Sim.crs(1λ)
π←$ Π.Sim.pf(1λ, crs, std, x)
Return (crs, x, π)

Then we have

Pr[G0] ≤ Advs-snd
Π,R,B(λ) (4)

Pr[G1]− Pr[G2] ≤ Advzk
Π,R,A(λ) . (5)

Putting together Eqs. (2), (3), (4) and (5) we get Eq. (1).

6 Positive results

We already have NI systems that are SND+ZK, or SND+WI. We ask, if the CRS is subverted,
what more can we have without losing the initial properties? Can we add S-ZK? In Sect. 6.1
we answer positively to this question (result P1), showing a protocol that is SND+S-ZK under
a knowledge-of-exponent assumption (KEA) in a group equipped with a bilinear map. In light
of negative result N, this is the best we can achieve if we want to retain ZK in presence of CRS
subversion.
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Can we add S-SND? In light of N, we know that we cannot have S-SND and any form of ZK
together. The best we can achieve while retaining S-SND is S-WI. In Sect. 6.2 we show that there
exist NI systems that are S-SND+S-WI (result P2).

Result P1 provides S-ZK but requires KEA. A natural question is, if we relax the requirement
of S-ZK and aim to retain S-WI, can we achieve it from weaker assumptions? In Sect. 6.3 we show
that there exists a NI system that is SND, ZK and S-WI under the weaker assumption that one-way
functions and zaps exist.

6.1 Soundness and subversion ZK

Overview. To achieve S-ZK, a simulator must be able to simulate proofs under a CRS output by
a subvertor. As opposed to ZK, the simulator thus cannot embed a trapdoor in the CRS, nor can it
extract one from the subvertor by rewinding, as there is no interaction with it. We will instead rely
on a knowledge assumption, stating that an algorithm can only produce a certain output if it knows
underlying information. This is formalized by requiring that there exists an extractor that extracts
the information from the algorithm. We will use this information as the simulation trapdoor, which
we can extract from a subvertor outputting a CRS. For soundness, a minimal requirement is that
it is hard for the adversary to obtain the trapdoor from an honestly generated CRS.

The knowledge-of-exponent assumption (KEA) for a group G, generated by g, states that from
any algorithm which given a random element h←$ G returns a pair of the form (gs, hs) one can
efficiently extract s. A possible approach for a NI system is to define the CRS as a pair (gs, hs), for
random s, and define a proof for x ∈ L to prove that either x ∈ L or one knows the value s in the
CRS. By extracting s, the simulator in the S-ZK game can simulate proofs, while the adversary in
the soundness game must supposedly use a witness for x, since it does not know s.

There are two problems with this approach: who chooses the group G and who chooses the
element h used to prove knowledge of s? We address the first problem by letting the group G be part
of the scheme specification. As for the choice of h, it cannot be chosen at CRS setup, since if the
subvertor knows η = logg h, it can produce a CRS (S1, S2) without knowing s by randomly picking
S1←$ G and setting S2 ← Sη. Fixing h and letting it also be also part of the scheme description
is problematic, since again, what guarantees that the subvertor does not know its logarithm and
can thereby break KEA? We overcome this issue by defining a new type of KEA, stating that in
order to produce elements (h = gη, gs, hs), one has to either know s or η. As tuples of this form
are Diffie-Hellman tuples, we call the assumption DH-KEA.

We define a CRS as a tuple (gs0 , gs1 , gs0s1) and let a proof for a statement x prove that either
there is a witness for x or one knows s0 or s1. We prove knowledge by adding a ciphertext C and
use a perfectly sound witness-indistinguishable NI proof ζ with trivial CRS (a.k.a. a non-interactive
zap) to prove that either x ∈ L or C encrypts s0 or s1. (Using linear encryption for C and the NI
system by GOS [GOS06a], both IND-CPA of C, as well as WI of ζ, follow from the decision-linear
assumption (Dlin) [BBS04].)

The sketched scheme is ZK since by encrypting the trapdoor s0 (or s1) proofs can be simulated,
and by IND-CPA of C and WI of ζ they are indistinguishable from real ones. But we defined the
CRS to allow even more: by DH-KEA, from a CRS subvertor we can extract either s0 or s1, which
should yield S-ZK. Not quite, since the subvertor could simply output random group elements
(S0, S1, S2), from which we cannot extract. Since the GOS NI system requires a bilinear group, we
can use its pairing to check CRS well-formedness. The prove (and verification) algorithm can then
reject a malformed CRS, which together with simulatability under a well-formed CRS yields S-ZK.

Soundness intuitively holds because, by soundness of ζ, a proof for a wrong statement must
contain an encryption of s0 or s1, which should be infeasible to obtain from an honestly generated
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CRS if computing discrete logarithms (DL) is hard. (Given a DL challenge S, one can randomly
set S0 or S1 to S and with probability 1

2 , the proof contains an encryption of logS.) To formally
prove soundness, the reduction must recover s from C. We could include in the CRS a public key
under which C is to be encrypted: the reduction sets up the CRS, knows the decryption key and
can obtain s. Alas, this would break S-ZK: an adversary that created the CRS could also decrypt
C and thereby distinguish real proofs from simulated ones.

We therefore include the linear-encryption key pk = (gu, gv) in the proof rather than the CRS.
But how would the soundness reduction then retrieve s? Could we use KEA again? Since we can
only extract one of two possible logarithms, we do the following. The proof contains two public
keys pk0 = (gu0 , gv0) and pk1 = (gu1 , gv1) and s is encrypted under both of them. Additionally, the
proof contains elements gu0u1 , gu0v1 , gv0u1 , gv0v1 , whose consistency can be verified via the pairing.
By DH-KEA, there exists an extractor which from (gu0 , gu1 , gu0u1) extracts either u0 or u1, another
extractor that from (gu0 , gv1 , gu0v1) extracts u0 or v1, and so on. Together these four extractors
either yield (u0, v0) or (u1, v1), thus one of the secret keys corresponding to pk0 and pk1. This way
the soundness reduction can extract the value s encrypted in a proof for a false statement. At the
same time we show that S-ZK still holds.

In our actual scheme we use the CDH assumption (defined below and implied by DLin) instead
of DL. The reason is that CDH solutions are group elements, which can be efficiently encrypted
using linear encryption. The trapdoor is then a solution to a CDH instance in the CRS. Besides
14 group elements, the most costly component of our proofs is the GOS NI proof ζ. It uses a
circuit representation of the NP relation R and shows that (a) either R(x,w) for some w, or (b) the
simulation trapdoor was encrypted (see Eq. (6)). The GOS system [GOS06a] was further developed
by Groth and Sahai [GS08] yielding very efficient proofs for algebraic statements, and we could
replace GOS by GS. As the clause (b) that we added has precisely this algebraic form, the overhead
for turning a proof that is merely WI into one that is S-ZK would be quite modest.

Discussion. Our scheme specification includes the bilinear group, so one might ask whether we
have not just shifted the subversion risk from the CRS to the choice of the group. Since the
group generation algorithm is deterministic and public, anyone can run the algorithm to re-obtain
the group; moreover, different entities can implement it independently if they think that some
standardized implementation was subverted, as a check. With the CRS, the situation is different.
There is no easy way to check that it was properly generated, at least without compromising
security. Perhaps a vocabulary that speaks to this is that the group is reproducible, whereas the
CRS is not. Someone is trusted to produce it and one cannot easily check that they did it honestly.

Still, one must ask whether the algorithms used allow embedding of backdoors. Here we must
look at the specific algorithms. Thus, while one could use a bilinear group in which the discrete-log
problem is easy, leading to an insecure scheme, we know it is possible to publicly specify good
algorithms. The specifications, given for example in research papers, may be used by anyone to
re-produce the results of the algorithms with some faith that there are no backdoors, in the case
(as here) that these algorithms are deterministic.

Speaking broadly, we cannot (and do not claim to) prevent all possible subversion. This is not
possible. Our goal is to put in defenses that make the most obvious paths harder, one of which is
subversion of the CRS.

Bilinear groups. Our construction is based on bilinear groups for which we introduce a new
type of knowledge-of-exponent assumption. A bilinear-group generator GGen is a PT algorithm that
takes input a security parameter 1λ and outputs a description of a bilinear group (p,G,GT , e, g),
where p is a prime of length λ, G and GT are groups of order p, g generates G and e : G×G→ GT

is a bilinear map that is non-degenerate (i.e. 〈e(g, g)〉 = GT ).
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Game KEdGG,M,E(λ)

(p,G,GT , e, g)← dGG(1λ) ; h0, h1←$ G; r←$ {0, 1}M.rl(λ)

(S0, S1, S2)←M(1λ, h0, h1; r) ; s←$ E(1λ, h0, h1, r)

Return
(
e(S0, S1) = e(g, S2) and gs 6= S0 and gs 6= S1

)
Game CDHdGG,A(λ)

(p,G,GT , e, g)← dGG(1λ) ; s, t←$ Zp ; C←$ A(1λ, gs, gt)

Return (C = gst)

Game DLindGG,A(λ)

b←$ {0, 1} ; (p,G,GT , e, g)← dGG(1λ)

u, v, s, t, ξ←$ Zp ; b′←$ A(1λ, gu, gv, gus, gvt, gs+t+b·ξ)

Return (b = b′)

Figure 5: Games defining the knowledge-of-exponent assumption, the CDH assumption and the DLin as-
sumption.

While in the cryptographic literature bilinear groups are often assumed to be probabilistically
generated, real-world pairing-based schemes are defined for groups that are fixed for every λ. We
reflect this by defining the group generator as a deterministic PT algorithm dGG. An advantage
of doing so is that every entity in the scheme can compute the group from the security parameter
and no party must be trusted with generating the group.

KEA. The knowledge-of-exponent assumption (KEA) [Dam92, HT98, BP04b] in a group G states
that an algorithm M that is given two random generators g, h of G and outputs (gc, hc) must know
c. This is formalized by requiring that there exists an extractor for M which when given M’s coins
outputs c. Generalizations of KEA were used in the bilinear-group setting in [Gro10]. We introduce
a new type of KEA in bilinear groups, which we call DH-KEA, where we assume that if M outputs
a Diffie-Hellman (DH) tuple gs, gt, gst then it must either know s or t. This should also be the
case when M is given two additional random generators h0, h1. We note that while an adversary
may produce one group element without knowing its discrete logarithm by hashing into the elliptic
curve [BF01, SvdW06, BCI+10], it seems hard to produce a DH tuple without knowing at least
one of the logarithms.

Formally, let Advke
dGG,M,E(λ) = Pr[KEdGG,M,E(λ)], where game KE is defined in Figure 5. The

DH-KEA assumption holds for dGG if for every PT M there exists a PT E s.t. Advke
dGG,M,E(·) is

negligible.
We note that due to deterministic group generation the assumption does not hold for non-

uniform machines M, as their advice for inputs 1λ could simply be a DH tuple (S0, S1, S2) w.r.t.
the group output by dGG(1λ). However, we follow Goldreich [Gol93] and only consider uniform
machines. As a sanity check, we show that DH-KEA holds in the generic-group model. To reflect
hashing into elliptic curves, we provide the adversary with an additional generic operation: it
can create new group elements without knowing their discrete log. In Appendix B we show the
following.

Theorem 6.1 DH-KEA, as defined above, holds in the generic-group model with hashing into the
group.

CDH. The computational Diffie-Hellman assumption in a group G states that given gs and gt
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for a random s, t, it should be hard to compute gst. Formally, the CDH assumption holds for dGG
if Advcdh

dGG,A(·) is negligible for all PT adversaries A, where Advcdh
dGG,A(λ) = Pr[CDHdGG,A(λ)] and

game CDH is specified in Figure 5.

DLin. The decision linear (DLIN) assumption [BBS04] in a group G states that given (gu, gv,
gus, gvt) for random u, v, s, t, the element gs+t is indistinguishable from a random group element.
Formally, the DLin assumption holds for dGG if Advdlin

dGG,A(·) is negligible for all PT adversaries A,

where Advdlin
dGG,A(λ) = 2 Pr[DLindGG,A(λ)]− 1 and game DLin is defined in Figure 5.

We will make use of the fact that DLin is self-reducible. This means that given a tuple
(U, V, S, T,X) one can produce a new tuple (U ′, V ′, S′, T ′, X ′) so that if the original tuple was linear
then the new tuple is so too, but with fresh u, v, s and t; and if X is random then (U ′, V ′, S′, T ′, X ′)
are all independently random as well. In particular, consider the following algorithm that takes
input a DLin challenge (U, V, S, T,X) ∈ G5:

Algorithm Rnd(1λ, (U, V, S, T,X))

(p,G,GT , e, g)← dGG(1λ) ; z, a, b, c, d←$ Zp
U ′ ← U c ; V ′ ← V d ; S′ ← SczU ca ; T ′ ← T dzV db ; X ′ ← Xzgagb

Return (U ′, V ′, S′, T ′, X ′)

Let s, t, ξ be such that S = U s, T = V t, X = gξ. Define s′ := sz + a and t′ := tz + b and note
that they are both uniformly random. We have S′ = (U ′)s

′
, T ′ = (V ′)t

′
and X ′ = gξz+a+b =

g(ξ−s−t)z+sz+tz+a+b = g(ξ−s−t)z+s
′+t′ . Thus, if the original challenge was a linear tuple (i.e., ξ =

s + t) then the new tuple is also linear with new randomness uc, vd, s′, t′, whereas otherwise (i.e.,
ξ − s− t 6= 0) U ′, V ′, S′, T ′ and X ′ are independently random.

The scheme. Our S-ZK scheme is based on a bilinear-group generator dGG, for which we define
linear commitments to messages M ∈ G as follows:

Ln.C(M ; (~u,~t))

~C ← (gu0 , gu1 , gu0t0 , gu1t1 , gt0+t1 ·M)
Return ~C

Ln.D(~u, (C2, C3, C4))

M ← C4 · C−1/u02 · C−1/u13

Return M

Commitments are hiding under DLin. Since (C2, C3, C4) is a linear encryption under public key
(C0, C1), the logarithms of the latter let one recover the message via Ln.D.

We also use a statistically sound NI system with trivial CRS (also called “non-interactive zap”
by GOS [GOS06a]) Z = (Z.P,Z.V) for the following relation:

(6)RZ((x, S0, S1, h, ~C0, ~C1), ((w, (s, ~u0, ~u1,~t0,~t1)))

If R(x,w) = true then return true

If (gs=S0 or gs=S1) and ~C0 = Ln.C(hs; (~u0,~t0)) and ~C1 = Ln.C(hs; (~u1,~t1))

then return true

Return false

The NI proof system Z can for example be instantiated by the construction from [GOS06a], which
does not require a CRS, is perfectly sound and WI under the DLin assumption. Our NIZK system
Π[R, dGG] is given in Figure 6.

Theorem 6.2 Let R be an NP relation and let dGG be a bilinear-group generator. Then Π[R, dGG],
defined in Figure 6, satisfies (1) soundness under DH-KEA and CDH; and (2) subversion zero
knowledge under DH-KEA and DLin.
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Π.Pg(1λ)

(p,G,GT , e, g)← dGG(1λ) ; t, s0, s1←$ Zp ; h← gt

S0 ← gs0 ; S1 ← gs1 ; S2 ← gs0s1 ; crs ← (S0, S1, S2, h) ; Return crs

Π.V
(
1λ, (S0, S1, S2, h), x, π

)
(p,G,GT , e, g)← dGG(1λ) ; (~C0, ~C1, ~D0, ~D1, ζ)← π

If e(S0, S1) 6= e(g, S2) then return false

For i, j = 0, 1 do

If e(C0,i, C1,j) 6= e(g,Di,j) then return false

Return Z.V((x, S0, S1, h, ~C0, ~C1), ζ)

Π.P(1λ, (S0, S1, S2, h), x, w)

If R(x,w) = false then return ⊥
(p,G,GT , e, g)← dGG(1λ)

If e(S0, S1) 6= e(g, S2) then return ⊥
C0,0, . . . , C0,4, C1,2, C1,3, C1,4←$ G ; u0, u1←$ Zp ; C1,0 ← gu0 ; C1,1 ← gu1

For i, j = 0, 1 do Di,j ← C
uj

0,i

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (w,⊥)) ; π ← (~C0, ~C1, ~D0, ~D1, ζ)

Return π

Figure 6: NIZK scheme Π[R, dGG] satisfying SND and S-ZK

We start with some intuition before giving the proof.

Soundness. Assume an adversary A outputs a proof π = (~C0, ~C1, ~D0, ~D1, ζ) for a false statement.
Since there does not exist a witness w, by statistical soundness of the proof ζ, RZ must return
1 in the second line in Eq. (6), meaning ~C0 and ~C1 are commitments to either hlogS0 or hlogS1 ;
intuitively, the adversary has thus broken the CDH assumption either for challenge (S0, h) or (S1, h).

To make this formal, we construct an algorithm B that on input (gs, h) outputs hs with prob-
ability close to 1

2 . We first construct four machines Mi,j , 0 ≤ i, j ≤ 1 that are given given (S, h),
set Sb ← S for a random b, complete this to a CRS, on which they run A; when A returns π, Mi,j

outputs (C0,i, C1,j , Di,j). By DH-KEA there exist four extractors Ei,j which on input (S, h) and
Mi,j ’s coins (which include A’s coins) return either u0,i = logC0,i or u1,j = logC1,j .

Using M0,0,M0,1,M1,0,M1,1, we define B: given a CDH challenge (S, h), it picks coins r̄ and uses
r̄ to pick b←$ {0, 1}, s′←$ Zp and coins r for A; it sets Sb ← S, S1−b ← gs

′
and S2 ← Ss

′
and

runs A on input (S0, S1, S2, h) and coins r to get π containing (~C0, ~C1, ~D0, ~D1); it then runs all Ei,j
on input (S, h, r̄), which each returns either u0,i = logC0,i or u1,j = logC1,j . This implies that for
some i, B obtains both ui,0 and ui,1. Using this, B recovers T ← Ln.D((ui,0, ui,1), (Ci,2, Ci,3, Ci,4)),
which it outputs. By soundness of ζ, we have either T = hlogS0 or T = hlogS1 . Since A has no
information on where the challenge S was embedded, B solves CDH with probability 1

2 .

Subversion zero knowledge. By DH-KEA, for every X that outputs a CRS of the form (gs0 , gs1 , gs0s1 , h)
there exists an algorithm E that extracts either s0 or s1. To show S-ZK we first construct a sim-
ulator S. Its first part S.crs picks r, runs crs ← X(1λ, r) and sets s←$ E(1λ, r) if crs is correctly
formed and s ← ⊥ otherwise, and outputs crs, r and the trapdoor std ← s. It is immediate that
crs1 output by X on coins r1 is indistinguishable from crs0, r0 output by S.crs.

We next construct a proof simulator S.pf for statements x under crs = (S0, S1, S2, h) using
trapdoor s. Like Π.P it returns ⊥ if crs is malformed. Else, it chooses ~u0,~t0, ~u1,~t1 and defines ~C0
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Game SNDΠ,R,A(λ)

(p,G,GT , e, g)← dGG(1λ); t, s0, s1←$ Zp
h← gt; S0 ← gs0 ; S1 ← gs1 ; S2 ← gs0s1

(x, (~C0, ~C1, ~D0, ~D1, ζ))←$ A(1λ, (S0, S1, S2, h))

Return true if all of the following hold:

– x 6∈ L(R)

– e(S0, S1) = e(g, S2)

– For all i, j = 0, 1 : e(C0,i, C1,j) = e(g,Di,j)

– Z.V((x, S0, S1, h, ~C0, ~C1), ζ)

Return false

Algorithm Mi,j(1
λ, S, h; (b, s′, r))

(p,G,GT , e, g)← dGG(1λ)

Sb ← S; S1−b ← gs
′
; S2 ← Ss

′

(x, (~C0, ~C1, ~D0, ~D1, ζ))← A(1λ, (S0, S1, S2, h); r)

Return (C0,i, C1,j , Di,j)

Figure 7: Soundness game for Π[R, dGG] and algorithm Mi,j

and ~C1 as commitments to hs and computes the corresponding elements Di,j ← gu0,iu1,j . Since

either gs = S0 or gs = S1, S.pf has thus a witness for the statement (x, S0, S1, h, ~C0, ~C1) ∈ RZ ,
which it uses to compute a proof ζ. The simulated proof is π ← (~C0, ~C1, ~D0, ~D1, ζ), which we now
argue is indistinguishable from a real proof output by Π.P under DLin by a series of game hops.

We first note that when constructing ζ, instead of witness (s, ~u0, ~u1,~t0,~t1) we could use w; this
is indistinguishable under WI, which for the GOS system follows from DLin. In the next game hop,
we replace ~C0 by a random quintuple and construct the Di,j ’s as in Π.P; this is indistinguishable

under DLin. In the final game hop we replace ~C1 by a random quintuple. This is also reduced to
DLin using the fact that we can compute the Di,j ’s using the logarithms of ~C0. The result is a
proof π that is distributed like one output by Π.P.

Proof of Theorem 6.2: Soundness. Let A be a PT adversary breaking soundness. We write
out the game and define four algorithms Mi,j for 0 ≤ i, j ≤ 1 in Figure 7.

By the DH-KEA assumption (defined by game KE in Figure 5) applied to each Mi,j , there exist PT
extractors Ei,j which with with overwhelming probability extract either logC0,i or logC1,j , that is,

For all 0 ≤ i, j ≤ 1 : Advke
dGG,Mi,j ,Ei,j

(·) is negligible . (7)

Consider games G1, G2, G3 and G4 in Figure 8, where games G1 and G3 ignore the boxes in its
description, while G2 and G4 include the boxes.

Game G1 differs from SNDΠ,R,A in how the CRS is computed. As the CRS is distributed identically
in both games, we have

Pr[SNDΠ,R,A(λ)] = Pr[G1(λ)] . (8)

Since G1 and G2 only differ when for some i, j: C0,i 6= gvi,j and C1,j 6= gvi,j , while e(C0,i, C1,j) =
e(g,Di,j) (that is, Ei,j failed), we have

Pr[G1(λ)]− Pr[G2(λ)] ≤
∑1

i,j=0 Pr[KEdGG,Mi,j ,Ei,j
(λ)] . (9)

We now argue that whenever G2 returns true then so does G3. The differences are the box in G2

and lines (I), (II) and (III) in G3. Suppose G2 returns true. Then we have (1a) C0,0 = gv0,0 or
(1b) C1,0 = gv0,0 ; (2a) C0,1 = gv1,0 or (2b) C1,0 = gv1,0 ; and (3a) C0,1 = gv1,1 or (3b) C1,1 = gv1,1 .
Suppose we have (1a): if (2a) holds then clause (I) in G3 is satisfied; otherwise (2b) must hold. If
(3a) holds then again (I) in G3 is satisfied; if (3b) holds then, since we have (2b), clause (II) in G3
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Game G1 and G2

(p,G,GT , e, g)← dGG(1λ)

S, h←$ G
b←$ {0, 1}; s′←$ Zp
Sb ← S; S1−b ← gs

′
; S2 ← Ss

′

r←$ {0, 1}A.rl(λ)

(x, (~C0, ~C1, ~D0, ~D1, ζ))← A(1λ, (S0, S1, S2); r)

For i, j = 0, 1:

vi,j ←$ Ei,j(1
λ, S, h, (b, s′, r))

Return true if the following hold:

– x 6∈ L(R)

– e(S0, S1) = e(g, S2)

– For all i, j = 0, 1:

e(C0,i, C1,j) = e(g,Di,j)

C0,i = gvi,j or C1,j = gvi,j

– Z.V((x, S0, S1, h, ~C0, ~C1), ζ)

Return false

Games G3 and G4

(p,G,GT , e, g)← dGG(1λ)

S, h←$ G; b←$ {0, 1}; s′←$ Zp
Sb ← S; S1−b ← gs

′
; S2 ← Ss

′

r←$ {0, 1}A.rl(λ)

(x, (~C0, ~C1, ~D0, ~D1, ζ)) ← A(1λ, (S0, S1, S2); r)

For i, j = 0, 1: vi,j ←$ Ei,j(1
λ, S, h, (b, s′, r))

If (∃ j : C0,0 = gv0,j ) and (∃ j : C0,1 = gv1,j ) (I)

T ← Ln.D((v0,j , v1,j), (C0,2, C0,3, C0,4))

If (∃ i : C1,0 = gvi,0) and (∃ i : C1,1 = gvi,1) (II)

T ← Ln.D((vi,0, vi,1), (C1,2, C1,3, C1,4))

Else return false (III)

Return true if the following hold:

– x 6∈ L(R) and e(S0, S1) = e(g, S2)

– For all i, j = 0, 1:

e(C0,i, C1,j) = e(g,Di,j)

– Z.V((x, S0, S1, h, ~C0, ~C1), ζ)

– e(S0, h) = e(g, T ) or e(S1, h) = e(g, T )

Return false

Figure 8: Hybrid games in the proof of soundness of Π[R, dGG]

is satisfied. Case (1b) is dealt with analogously. We thus obtain:

Pr[G3] ≥ Pr[G2] . (10)

Game G4 returns false if T is not of the expected form. Games G3 and G4 thus differ when (a1) the
logarithms of (C0,0, C0,1) or (a2) those of (C1,0, C1,1) were extracted (otherwise both games return

false), moreover (b) x 6∈ L(R) and (c) Z.V((x, S0, S1, h, ~C0, ~C1), ζ), while (d) (gt 6= S0 and gt 6= S1),
with t such that T = ht. Suppose (e) there exist (s, ~u0, ~u1,~t0,~t1) such that:

gs = S0 ∨ gs = S1 , (11)

~C0 = Ln.C(hs; (~u0,~t0)) and ~C1 = Ln.C(hs; (~u1,~t1)) . (12)

If (a1) holds then by correctness of linear encryption and Eq. (12), we get that the result of
decryption T satisfies T = hs. This, together with Eq. (11) however contradicts (d). Analogously,
we get a contradiction if we have (a2). Therefore, (e) does not hold, and together with (b) this yields
(x, S0, S1, h, ~C0, ~C1) /∈ L(RZ), as defined in Eq. (6). Together with (c), this contradicts soundness
of Z.

Constructing AZ that runs the game and outputs the proof ζ together with its statement (formally
defined in Figure 9), we have thus shown that

Pr[G3(λ)]− Pr[G4(λ)] ≤ Pr[SNDZ,RZ ,AZ
(λ)] . (13)

Finally, note that since A’s view is independent of the bit b, if G4 returns true then e(Sb, h) = e(g, T )
with probability 1

2 . We can thus construct a CDH adversary B (formally specified in Figure 9) that
given (S, h) simulates G4 and outputs T , which with probability 1

2 Pr[G4(λ)] is a CDH solution for
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Adversary AZ(1λ)

(p,G,GT , e, g)← dGG(1λ)

S, h←$ G
b←$ {0, 1}; s′←$ Zp
Sb ← S; S1 ← gs

′
; S2 ← Ss

′

(x, (~C0, ~C1, ~D0, ~D1, ζ))

←$ A(1λ, (S0, S1, S2))

Return ((x, S0, S1, h, ~C0, ~C1), ζ)

Adversary B(1λ, S, h)

(p,G,GT , e, g)← dGG(1λ)

b←$ {0, 1}; s′←$ Zp; r←$ {0, 1}A.rl(λ)

Sb ← S; S1 ← gs
′
; S2 ← Ss

′

(x, (~C0, ~C1, ~D0, ~D1, ζ))← A(1λ, (S0, S1, S2; r))

For i, j = 0, 1: vi,j ←$ Ei,j(1
λ, S, h, (b, s′, r))

If (∃ j : C0,0 = gv0,j ) and (∃ j : C0,1 = gv1,j )

then return Ln.D((v0,j , v1,j), (C0,2, C0,3, C0,4))

If (∃ i : C1,0 = gvi,0) and (∃ i : C1,1 = gvi,1)

then return Ln.D((vi,0, vi,1), (C1,2, C1,3, C1,4))

Return ⊥

Figure 9: Adversaries in the proof of soundness of Π[R, dGG]

Algorithm S.crs(1λ)

(p,G,GT , e, g)← dGG(1λ)

r←$ {0, 1}X.rl(λ)

(S0, S1, S2, h)← X(1λ; r)

If e(S0, S1) = e(g, S2) then s←$ EX′(1λ, r)

Else s← ⊥
Return ((S0, S1, S2, h), r, s)

Algorithm S.pf(1λ, (S0, S1, S2, h), s, x)

(p,G,GT , e, g)← dGG(1λ)

If e(S0, S1) 6= e(g, S2) or s = ⊥ then return ⊥
~u0,~t0, ~u1,~t1←$ Z2

p

~C0 ← Ln.C(hs; (~u0,~t0)); ~C1 ← Ln.C(hs; (~u1,~t1))

For i, j = 0, 1: Di,j ← gu0,iu1,j

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (⊥, (s, ~u0, ~u1,~t0,~t1)))

Return π ← (~C0, ~C1, ~D0, ~D1, ζ)

Figure 10: Simulator for S-ZK

(S, h), thus

1
2 Pr[G4(λ)] ≤ Pr[CDHdGG,B(λ)] . (14)

Eqs. (8), (9), (10), (13) and (14) together yield

Advsnd
Π,R,A(λ) = Pr[G1(λ)]− Pr[G2(λ)] + Pr[G2(λ)]− Pr[G3(λ)]+

Pr[G3(λ)]− Pr[G4(λ)] + Pr[G4(λ)]

≤
1∑

i,j=0

Advke
dGG,Mi,j ,Ei,j

(λ) + Advsnd
Z,RZ ,AZ

(λ) + 2 ·Advcdh
dGG,B(λ) ,

which by Eq. (7), the fact that Z is perfectly sound and assuming CDH is hard yields that
Advsnd

Π,R,A(·) is negligible, as desired.

Subversion zero knowledge. Let X be a CRS subvertor that outputs (~S, h). Define X′(1λ; r)
that runs (~S, h) ← X(1λ; r) and returns ~S. By DH-KEA there exists a PT algorithm EX′ that if
S0 = gs0 , S1 = gs1 and S2 = gs0s1 for some s0, s1 then with overwhelming probability EX′ extracts
s0 or s1, that is,

Advke
dGG,X′,EX′ (·) is negligible . (15)

Using EX′ we define a simulator S = (S.crs,S.pf) in Figure 10.
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Game S-ZKΠ,R,X,S,A(λ)

b←$ {0, 1}
(p,G,GT , e, g)← dGG(1λ)

r1←$ {0, 1}X.rl(λ)

(~S1, h1)← X(1λ; r1)

r0←$ {0, 1}X.rl(λ)

(~S0, h0)← X(1λ; r0)

If e(S0,0, S0,1) = e(g, S0,2)

then s←$ EX′(1λ, r0)

Else s← ⊥
b′←$ AProve(1λ, (~Sb, hb), rb)

Return (b′ = b)

Prove(x,w)

If R(x,w) = false then return ⊥
If e(Sb,0, Sb,1) 6= e(g, Sb,2) then return ⊥
~u0,~t0, ~u1,~t1←$ Z2

p

For i, j = 0, 1: Di,j ← gu0,iu1,j

If b = 1 then // simulate Π.P

M0,M1←$ G; ~C0 ← Ln.C(M0; (~u0,~t0))
~C1 ← Ln.C(M1; (~u1,~t1))

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (w,⊥))

Else // simulate S.pf

If s = ⊥ then return ⊥ (∗∗)
~C0←Ln.C(hs; (~u0,~t0)); ~C1←Ln.C(hs; (~u1,~t1))

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (⊥, (s, ~u0, ~u1,~t0,~t1)))

Return π ← (~C0, ~C1, ~D0, ~D1, ζ)

Figure 11: S-ZK game for Π[R, dGG]

Games G0(λ), G1(λ)

(p,G,GT , e, g)← dGG(1λ)

r←$ {0, 1}X.rl(λ) ; (~S, h)← X(1λ; r)

If e(S0, S1) = e(g, S2): s←$ EX′(1λ, r)

If gs 6= S0 and gs 6= S1 return false

Else s← ⊥
b′←$AProve(1λ, (~S, h), r); return (b′ = 1)

Prove(x,w)

If R(x,w) = false then return ⊥
If e(S0, S1) 6= e(g, S2) then return ⊥
~u0,~t0, ~u1,~t1←$ Z2

p

For i, j = 0, 1: Di,j ← gu0,iu1,j

~C0 ← Ln.C(hs; (~u0,~t0))
~C1 ← Ln.C(hs; (~u1,~t1))

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (⊥, (s, ~u0, ~u1,~t0,~t1)))

Return π ← (~C0, ~C1, ~D0, ~D1, ζ)

Games G2(λ), G3(λ) , G4(λ)

(p,G,GT , e, g)← dGG(1λ)

r←$ {0, 1}X.rl(λ) ; (~S, h)← X(1λ; r)

If e(S0, S1) = e(g, S2): s←$ EX′(1λ, r)

If gs 6= S0 and gs 6= S1 return false (∗)
Else s← ⊥
b′←$AProve(1λ, (~S, h), r); return (b′ = 1)

Prove(x,w)

If R(x,w) = false then return ⊥
If e(S0, S1) 6= e(g, S2) then return ⊥
~u0,~t0, ~u1,~t1←$ Z2

p

For i, j = 0, 1: Di,j ← gu0,iu1,j

~C0 ← Ln.C(hs; (~u0,~t0))

M0←$ G; ~C0 ← Ln.C(M0; (~u0,~t0))
~C1 ← Ln.C(hs; (~u1,~t1))

M1←$ G; ~C1 ← Ln.C(M1; (~u1,~t1))

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (w,⊥))

Return π ← (~C0, ~C1, ~D0, ~D1, ζ)

Figure 12: Hybrid games in the proof of S-ZK of Π[R, dGG]

Let A be an arbitrary PT adversary for S-ZK. Writing out game S-ZK for Π,X, S and A, we obtain
the game in Figure 11. (Note that in case b = 1 the values ~C0 = (gu0,0 , gu0,1 , gu0,0t0,0 , gu0,1t0,1 , gt0,0+t0,1·
M0) (and likewise ~C1) are random quintuples, so Π.P is correctly simulated. Moreover note that
line (∗∗) is redundant, as s = ⊥ only if e(S0,0, S0,1) 6= e(g, S0,2); but if so then for b = 0 Prove
returns ⊥ before line (∗∗).)

Observe that r0 and r1 in S-ZKΠ,R,X,S,A are distributed identically and that for a fixed value b ∈
{0, 1} the values r1−b, ~S1−b and h1−b are not used anywhere. We can therefore replace every
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occurrence of r0, ~S0, h0 and r1, ~S1, h1 by values r, ~S, h, respectively.

In order to show that the cases b = 0 and b = 1 are indistinguishable, we define a sequence of
hybrid games G0, . . . ,G4 given in Figure 12, where G3 includes the first box and only G4 includes
the double box. The first game G0 is game S-ZKΠ,R,X,S,A with the value b fixed to 0, but returning
(b′ = 1) instead of (b′ = 0). We thus have

Pr[G0(λ)] = 1− Pr[S-ZKΠ,R,X,S,A(λ) | b = 0] (16)

Game G1 differs from G0 if and only if EX′ fails to extract s0 or s1 when X outputs a valid CRS,
that is, X′ outputs (gs0 , gs1 , gs0s1). We have

Pr[G1(λ)]− Pr[G0(λ)] ≤ Advke
dGG,X′,EX′ (λ) . (17)

Game G2 differs from game G1 only in which witness is used to compute ζ; games G2 and G3 differ
in whether ~C0 is an encryption of hs or random; games G3 and G4 differ in the same way for ~C1.
In Appendix A we show the following:

Claim 6.3 There exist adversaries Awi against Z and B,B′ against DLin such that

Pr[G4(λ)]− Pr[G1(λ)] = Advwi
Z,Rz ,Awi

(λ) + Advedlin
dGG,B(λ) + Advedlin

dGG,B′(λ) . (18)

We define one more game G5, which is defined as G4 but without the line (∗). Observe that G5 is
the original game S-ZKΠ,R,X,S,A with b set to 1, so we have:

Pr[G5(λ)] = Pr[S-ZKΠ,R,X,S,A(λ) | b = 1] . (19)

Since game G4 differs from G5 only when EX′ fails (line (∗)), we have

Pr[G5(λ)]− Pr[G4(λ)] ≤ Advke
dGG,X′,EX′ (λ) . (20)

By Eqs. (16) and (19) we have

Advs-zk
Π,R,X,S,A(λ) = Pr[S-ZKΠ,R,X,S,A(λ) | b = 0] + Pr[S-ZKΠ,R,X,S,A(λ) | b = 1]− 1

= Pr[G5(λ)]− Pr[G0(λ)]

= Pr[G5(λ)]− Pr[G4(λ)] + Pr[G4(λ)]− Pr[G1(λ)] + Pr[G1(λ)]− Pr[G0(λ)]

≤ 2 ·Advke
dGG,X′,EX′ (λ) + Advwi

Z,Rz ,Awi
(λ) + Advedlin

dGG,B(λ) + Advedlin
dGG,B′(λ) ,

by Eqs. (17), (20) and (18). By Eq. (15) and assuming DLin (which also implies WI of Z), the
right-hand side is negligible, as desired.

6.2 Subversion SND and subversion WI

In this section we prove result P2: there exists an NI system that is simultaneously SND, WI,
S-SND and S-WI. We call Π an NI system with trivial CRS if crs = ε and Π.P and Π.V ignore
input crs. In Lemma 6.4 we observe that if such a Π is SND and WI then it is also S-SND and
S-WI. (Intuitively, if the CRS is ignored then there’s no harm in subverting it.) In Theorem 6.5 we
then notice that an NI system with trivial CRS exists [GOS06a] which is SND and WI under the
DLin assumption in bilinear groups (defined on p. 18). As in this instantiation the group is chosen
by the prover (rather than fixed as for P1), it needs to be verifiable [GOS06a] (that is, one can
efficiently check that it is a bilinear group).
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Lemma 6.4 Let R be an NP relation. Let Π be an NI system with trivial CRS for R. If Π is SND
and WI then it is also S-SND and S-WI.

Proof: Let A be an S-SND adversary. We define B against SND: on input (1λ, ε), run (crs, x, π)←$

A(1λ) and return (x, π). Since Π.V(1λ, ε, x, π) = Π.V(1λ, crs, x, π), we have Pr[SNDΠ,R,B(λ)] =
Pr[S-SNDΠ,R,A(λ)]. Thus, if Π is SND, it is S-SND.

Let A be a WI adversary. Define B against S-WI: on input (1λ, ε), run (crs, st)←$ A(1λ); b′←$

AProve(1λ, crs, st) and return b′; forward A’s queries to own oracle (this simulates A’s oracle since
Π.P(1λ, ε, x, wb) = Π.P(1λ, crs, x, wb)). We have Pr[WIΠ,R,B(λ)] = Pr[S-WIΠ,R,A(λ)]. Thus, if Π is
WI, it is S-WI.

Theorem 6.5 Let R be an NP relation. If the decision-linear assumption holds for a verifiable
bilinear group then there exists an NI system Π for R that is S-SND and S-WI.

Proof: Let Π be the NI system presented in [GOS06a]. Π is an NI system with trivial CRS
satisfying SND and WI under the DLin assumption. By Lemma 6.4 it follows that Π is also S-SND
and S-WI.

6.3 Soundness, ZK and subversion WI

We prove result P3 by presenting an NI system that is SND, ZK, and S-WI.

Zaps. A zap [DN00] for a relation R is a 2-move protocol (cf. Sect. 4.4), where the first move is
public-coin and is generated independently of the statement to be proved. Zaps retain soundness
and witness-indistinguishability even if the statements are chosen adaptively after the first move
m1 is fixed. Consequently, the same m1 can be reused for many proofs. We denote zaps by

m1←$ Z.V(1λ) ; m2←$ Z.P(1λ, x, w,m1) ; b← Z.D(x,m1,m2) .

Dwork and Naor [DN00] show that zaps can be constructed from any NIZK in the shared
random string model. Concretely, zaps can be based on any family of doubly-enhanced trapdoor
permutations, when the underlying NIZK is instantiated with the system of FLS [FLS90].

The scheme. The CRS of our scheme consists of a random bit string σ of length 2λ and the first
move m1 of a zap. A proof consists of the second move of the zap for statement (x, σ), proving
that either x ∈ L or s is the pre-image of σ under a PRG G. The formal description of Π follows.

Let G : {0, 1}λ → {0, 1}2λ be a pseudorandom generator and let Z be a zap for the following
relation RZ :

RZ((σ, x), (s, w))

If σ = G(s) then return true
Return R(x,w)

Then NI system Π[G,Z] is given in Figure 13.

Theorem 6.6 Let R be an NP relation. Let G be a length-doubling function and Z be a zap for
relation RZ . If G is pseudorandom and Z is sound and witness-indistinguishable then Π[G,Z] is
SND, ZK and S-WI.
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Π.Pg(1λ)

σ←$ {0, 1}2λ ; m1←$ Z.V(1λ) ; Return crs ← (σ,m1)

Π.P(1λ, (σ,m1), x, w)

m2←$ Z.P(1λ, (σ, x), (⊥, w),m1) ; π ← m2 ; Return π

Π.V(1λ, (σ,m1), x, π)

Return Z.D(1λ, (σ, x),m1, π)

Figure 13: NIZK scheme Π[G,Z] satisfying SND, ZK and S-WI

Game Z-WIZ,RZ ,B(λ)

b←$ {0, 1}
(m1, st)←$ B1(1λ)

b′←$ BWIProve
2 (1λ, st)

Return (b = b′)

WIProve(x̄, w̄0, w̄1)

If (RZ(x̄, w̄0) = false)

then return ⊥
If (RZ(x̄, w̄1) = false)

then return ⊥
m2 ← Z.P(1λ, x̄, w̄b,m1)

Return m2

B1(1λ)

((σ,m1), st)←$ A(1λ)

Return (m1, (σ, st))

BWIProve
2 (1λ, (σ, st))

b′←$ AProve(1λ, (σ,m1), st)

Return b′

B2’s simulation of Prove(x,w0, w1)

m2 ←WIProve((σ, x), (⊥, w0), (⊥, w1))

π ← m2 ; Return π

Figure 14: Game defining WI for zaps (left) and adversary in proof of S-WI of Π

Proof: Soundness of Π follows from the soundness of the zap and the fact that the probability
that a randomly sampled string σ is in the range of the PRG G is negligible. ZK follows as in
[FLS90]: The ZK simulator picks s←$ {0, 1}λ, sets the CRS to be σ ← G(s) and m1←$ Z.V(1λ).
When the simulator is challenged to prove a theorem x, it has a witness for (σ, x) ∈ RZ and can
therefore compute π←$ Z.P(1λ, (σ, x), (s,⊥),m1). Indistinguishability of the simulated CRS and
proofs follows from the pseudorandomness of G and zap-WI (defined below).

To show S-WI, we prove that from an adversary A winning game S-WIΠ,R,X,A we can construct an
adversary B winning the WI game of the underlying zap for relation RZ . We denote this game
by Z-WIZ,RZ ,B and define it in Figure 14. Note that it reflects the stronger notion of WI where
the verifier can obtain several proofs, for theorems of her choice, computed using the same first
move m1.

In its first stage B runs A to obtain a CRS consisting of σ and the first message m1 and returns m1.
B then simulates oracle Prove(x,w0, w1) for A by accessing its own oracle WIProve. Figure 14
specifies adversary B. Plugging its description into game Z-WIZ,RZ ,B, we obtain
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Game Z-WIZ,RZ ,B(λ)

b←$ {0, 1}
((σ,m1), st)←$ A(1λ)
b′←$ AProve(1λ, (σ,m1), st)
Return (b = b′)

Prove(x,w0, w1)

If RZ((σ, x), (⊥, w0)) = false then return ⊥
If RZ((σ, x), (⊥, w1)) = false then return ⊥
m2 ← Z.P(1λ, (σ, x), (⊥, wb),m1)
Return m2

As this is precisely the description of game S-WIΠ,R,A, we have

Pr[Z-WIZ,RZ ,B(λ)] = Pr[S-WIΠ,R,A(λ)] . (21)

Since Z is zap-WI, 2 Pr[Z-WIZ,RZ ,B(·)]−1 is negligible and thus by Eq. (21) Advs-wi
Π,R,A(·) is negligible,

which proves the theorem.
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key cryptography in the presence of key leakage. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 613–631. Springer, Heidelberg, December 2010. (Cited on page 7,
8.)

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st FOCS, pages 283–293.
IEEE Computer Society Press, November 2000. (Cited on page 6, 25.)

[EG14] Alex Escala and Jens Groth. Fine-tuning Groth-Sahai proofs. In Hugo Krawczyk, editor,
PKC 2014, volume 8383 of LNCS, pages 630–649. Springer, Heidelberg, March 2014. (Cited on
page 3, 8.)

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In 31st FOCS, pages 308–317. IEEE
Computer Society Press, October 1990. (Cited on page 9, 25, 26.)

[GGJS11] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Bringing people of different beliefs
together to do UC. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 311–328.
Springer, Heidelberg, March 2011. (Cited on page 8.)

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. (Cited on page 10, 11, 12.)

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):691–729,
1991. (Cited on page 11.)

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, 1994. (Cited on page 6, 7, 12, 13.)

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In Alfred Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 323–341. Springer, Heidelberg, August
2007. (Cited on page 7, 8.)

[Gol93] Oded Goldreich. A uniform-complexity treatment of encryption and zero-knowledge. Journal
of Cryptology, 6(1):21–53, 1993. (Cited on page 11, 17.)

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques
for NIZK. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 97–111.
Springer, Heidelberg, August 2006. (Cited on page 6, 15, 16, 18, 24, 25.)

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358. Springer,
Heidelberg, May / June 2006. (Cited on page 11.)

29



[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS,
pages 444–459. Springer, Heidelberg, December 2006. (Cited on page 7.)

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg, De-
cember 2010. (Cited on page 3, 6, 8, 17.)

[Gro15] Jens Groth. Efficient fully structure-preserving signatures for large messages. In Tetsu Iwata
and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 239–259.
Springer, Heidelberg, November / December 2015. (Cited on page 3.)

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer,
Heidelberg, April 2008. (Cited on page 3, 8, 16.)

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols. In
Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 408–423. Springer, Heidel-
berg, August 1998. (Cited on page 17.)

[KKZZ14] Jonathan Katz, Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Distributing the setup
in universally composable multi-party computation. In Magnús M. Halldórsson and Shlomi
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Adversary A
WIProve(·,·,·)
wi (1λ)

(p,G,GT , e, g)← dGG(1λ)

r←$ {0, 1}X.rl(λ)

(~S, h)← X(1λ; r)

If e(S0, S1) = e(g, S2)

s←$ EX′(1λ, r)

If gs 6= S0 and gs 6= S1

then return ⊥
Else s← ⊥
b′←$AProve(1λ, (~S, h), r)

Return b′

Simulation of A’s oracle Prove(x,w)

If R(x,w) = false then return ⊥
If e(S0, S1) 6= e(g, S2) then return ⊥
~u0,~t0, ~u1,~t1←$ Z2

p

For i, j = 0, 1: Di,j ← gu0,iu1,j

~C0 ← Ln.C(hs; (~u0,~t0))
~C1 ← Ln.C(hs; (~u1,~t1))

ζ←$ WIProve((x, S0, S1, h, ~C0, ~C1), (⊥, (s, ~u0, ~u1,~t0,~t1)), ((w,⊥)))

Return π ← (~C0, ~C1, ~D0, ~D1, ζ)

B(1λ, U0, U1, T0, T1, V )

(p,G,GT , e, g)← dGG(1λ)

r←$ {0, 1}X.rl(λ)

(~S, h)← X(1λ; r)

If e(S0, S1) = e(g, S2)

s←$ EX′(1λ, r)

If gs 6= S0 and gs 6= S1, return 0

Else s← ⊥
b′←$AProve(1λ, (~S, h), r); return b′

Simulation of A’s oracle Prove(x,w)

If R(x,w) = false then return ⊥
If e(S0, S1) 6= e(g, S2) then return ⊥
(~U ′, ~T ′, V ′)←$ Rnd(1λ, ~U, ~T , V )

~u1,~t1←$ Z2
p

For i, j = 0, 1: Di,j ← U
u1,j

0,i

M0←$ G; C0,0 ← U0; C0,1 ← U1;

C0,2 ← T0; C0,3 ← T1; C0,4 ← V · hs
~C1 ← Ln.C(hs; (~u1,~t1))

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (w,⊥))

Return π ← (~C0, ~C1, ~D0, ~D1, ζ)

Figure 15: Adversaries Awi against WI of Z and B against DLin in the proof of S-ZK of Π[R, dGG]

[YY96] Adam Young and Moti Yung. The dark side of “black-box” cryptography, or: Should we trust
capstone? In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 89–103. Springer,
Heidelberg, August 1996. (Cited on page 8.)

[YY97] Adam Young and Moti Yung. Kleptography: Using cryptography against cryptography. In Wal-
ter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 62–74. Springer, Heidelberg,
May 1997. (Cited on page 8.)

A Proof of Claim 6.3

In the proof of S-ZK we made Claim 6.3, which we now prove.

Proof: Game G2 differs from game G1 only in which witness is used to compute ζ. Consider
adversary Awi against witness indistinguishability in Figure 15. Note that Awi always calls its
WIProve oracle with two valid witnesses when simulating Prove(x,w): if e(S0, S1) 6= e(g, S2)
then Prove returns ⊥ and otherwise gs = S0 or gs = S1 (if not, Awi would have returned ⊥
before running A); moreover, if R(x,w) = false then Prove returns ⊥. When b = 0 in game
WIZ,RZ ,Awi

then Awi simulates G1 and Awi wins when A outputs 0, that is, when A loses G1. When
b = 1 then Awi simulates G2 and wins when A outputs 1 (and thus wins G2). When gs 6= S0
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and gs 6= S1 then Awi returns ⊥ in which case games WI, G1 and G2 all return false. We have
Pr[WIZ,RZ ,Awi

| b = 0] = 1− Pr[G1(λ)] and Pr[WIZ,RZ ,Awi
| b = 1] = Pr[G2(λ)]. Together this yields

Pr[G2(λ)]− Pr[G1(λ)] = Advwi
Z,RZ ,Awi

(λ) . (22)

Game G3 differs from G2 in whether ~C0 is random or an encryption of hs. Consider B for game
EDLin in Figure 15, which makes use of the algorithm Rnd for self-randomizability. If B receives
a linear tuple (b = 0 in EDLin) then it simulates G2 and outputs 0 if gs 6= S0 and gs 6= S1, or
if A outputs 0, which are the events in which G2 returns false. We have thus Pr[DLindGG,B | b =
0] = 1− Pr[G2(λ)]. If B receives a linear tuple (b = 1 in EDLin), it simulates G3 and outputs 1 if
A outputs 1, which is the event in which G3 returns true; thus Pr[DLindGG,B | b = 1] = Pr[G3(λ)].
Together this yields

Pr[G3(λ)]− Pr[G2(λ)] = Advedlin
dGG,B(λ) . (23)

Since game G4 differs from G3 in how ~C1 is distributed, we could analogously construct an adversary
B′ and show that

Pr[G4(λ)]− Pr[G3(λ)] = Advedlin
dGG,B′(λ) . (24)

Eqs. (22), (23) and (24) together now yield the claim.

B Proof sketch for Theorem 6.1

In the “traditional” generic-group model group elements are represented by random strings and an
adversary M only has access to operations on them (multiplication of elements in G and GT and
pairing of elements in G) via oracles. In particular, M can only produce new group elements by
multiplying received elements.

We also need to reflect the fact that by “hashing into the group”, one can create a new group
element without knowing its discrete logarithm w.r.t. one of the received elements. We extend the
generic-group model and provide the adversary with an additional operation, namely to request
a new group element “independently of the received ones”. (And neither the adversary nor the
extractor we construct knows its discrete logarithm.)

For DH-KEA the adversary M receives the group elements (g, h0 = gx0 , h1 = gx1) and needs
to output (S0, S1, S2) where for some s0, s1: S0 = gs0 , S1 = gs1 and S2 = gs0s1 . The adversary
can produce these group elements by combining the received group elements with newly generated
(“hashed”) group elements that it has requested. We represent the latter as gxi , for i = 2, . . . k, for
some k. The extractor keeps track of the group operations performed by M and thus knows

α, µ0, . . . , µk, β, ν0, . . . , νk, γ, ξ0, . . . , ξi ∈ Zp (25)

such that M’s output (S0, S1, S2) is of the form

S0 = gα
∏k
i=0(g

xi)µi S1 = gβ
∏k
i=0(g

xi)νi S2 = gγ
∏k
i=0(g

xi)ξi

(Note that the extractor does however not know x0, . . . , xk.)

If (I) for all 0 ≤ i ≤ k : µi = 0 then the extractor outputs α. If (II) for all 0 ≤ i ≤ k : νi = 0
then the extractor outputs β. Otherwise, it aborts. It is clear that when (I) or (II) happens then
the extractor outputs the logarithm of either S0 or S1, as required.

To argue that with overwhelming probability the extractor does not abort, we show that the

32



probability that

S2 = g(logg S0)·(logg S1) (26)

holds but neither (I) nor (II) holds is negligible. Taking the logarithms of Eq. (26), we get

γ +
∑k

i=1 ξi xi = αβ +
∑k

i=1 ανi xi +
∑k

i=1 µiβ xi +
∑k

i,j=1 µiνj xixj ,

which we interpret as multivariate polynomials in x0, . . . , xk. If neither (I) nor (II) holds then for
some i, j we have µiνj 6= 0 and thus the polynomial on the RHS is different from that on the LHS.
Since the adversary has no information about x0, . . . , xk (except for a negligible information leak
by comparing group elements, which we ignore), the values in Eq. (25) are generated independently
of x1, . . . , xk. By the Schwartz-Zippel lemma the probability that the two polynomials evaluate
to the same for randomly chosen x1, . . . , xk is negligible, and therefore so is the probability that
Eq. (26) holds.

It follows thus that if Eq. (26) holds then with overwhelming probability the extractor succeeds,
which proves the theorem.

C Complete relations

We introduced three new security notions for NI systems: S-SND, S-ZK and S-WI and showed in
Sections 5 and 6 that some combinations of them with standard notions are impossible while others
are achievable. As there are 26 possible combinations of the notions SND, ZK, WI, S-SND, S-ZK,
S-WI, we now investigate for each of them whether they can be achieved or not. We first note
that since (S-)ZK implies (S-)WI and since the subversion-resistant notions imply their standard
counterparts, quite a few of the combinations are impossible.

We list all possible combinations in Table 1. The rows correspond to the standard notions SND,
ZK and WI and for example 110 means that the first two are satisfied while WI is not. The columns
correspond to the subversion-resistant notions S-SND, S-ZK and S-WI. A mark “7” indicates trivial
impossibility, for example the notions in row 110 cannot be satisfied as ZK implies WI.1

N indicates the combinations that after trivial exclusions would still be possible, but which we
showed impossible in Thm. 5.1, namely all combinations satisfing ZK and S-SND. P1 corresponds
to a scheme satisfying all notions except S-SND and was constructed in Thm. 6.2, P2 satisfies all
notions except ZK and S-ZK and was proved achievable in Thm. 6.5 and P3 indicates a scheme
achieving all notions except S-SND and S-ZK, which was constructed in Thm. 6.6.

We now show that the remaining combinations P4–P15 are all achievable, which completes the
picture.

P4. (“P2 w/o S-WI”) Assume the existence of IND-CPA-secure public-key encryption. Now
consider the scheme from P2 and add an encryption key to the CRS and add an encryption of the
witness to the proof. As the subvertor can decrypt the witness, the scheme is not S-WI anymore.
The scheme is still sound since verification did not change; it is still WI under WI of the original
scheme and IND-CPA of the encryption scheme.

P5. (“P3 w/o S-WI”) Similarly, we can remove S-WI from the scheme in P3: add a key for public-
key encryption to the CRS and add an encryption of the witness to the proof. SND is preserved
since verification is unchanged and ZK is preserved since the simulator can add an encryption of 0

1In particular from ZK⇒WI we get that all combinations (∗10, ∗∗∗) are impossible; S-ZK⇒S-WI makes (∗∗∗, ∗10)
impossible; S-SND⇒SND makes (0 ∗ ∗, 1 ∗ ∗) impossible; S-ZK⇒ZK makes (∗0∗, ∗1∗) impossible and S-WI⇒WI
excludes all combinations (∗ ∗ 0, ∗ ∗ 1).
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Table 1: Achievability of combinations of notions (red marks impossibility, black marks achievability): “7”
marks a trivial impossibility, N marks impossibility due to Thm. 5.1. Pxx marks achievability: P1, P2, P3
are from Theorems 6.2, 6.5 and 6.6; P4–P15 are discussed here.

S-SND/S-ZK/S-WI

SND/ZK/WI 111 110 101 100 011 010 001 000

111 N 7 N N P1 7 P3 P5

110 7 7 7 7 7 7 7 7

101 7 7 P2 P4 7 7 P8 P9

100 7 7 7 P6 7 7 7 P7

011 7 7 7 7 P10 7 P12 P11

010 7 7 7 7 7 7 7 7

001 7 7 7 7 7 7 P13 P14

000 7 7 7 7 7 7 7 P15

to the ciphertext, which is still indistinguishable from real proofs by IND-CPA of the encryption
scheme.

P6. A scheme only satisfying the soundness notions is trivial to construct. Define crs ← ε, a
proof π to be the witness and verification to check R(x,w). The system is S-SND (which implies
SND) and not WI (which implies not ZK, not S-WI and not S-ZK).

P7. (“P6 w/o S-SND”) Assume the existence of a length-doubling pseudorandom generator G.
To make the scheme from P6 not satisfy S-SND, set crs←$ {0, 1}2λ, a proof to be the witness and
verification to accept if R(x,w) = 1 or crs = G(w). A subvertor can choose t←$ {0, 1}λ, define
crs ← G(t) and can then prove false theorems by sending t. Soundness still holds since an honestly
generated CRS is in the range of G with negligible probability only. Since π ← w, the system is
not WI.

P8. (“P2 w/o S-SND”) Similarly, we can make the scheme from P2 not satisfy S-SND: add
s←$ {0, 1}2λ to the CRS and let verification also accept when it is given a preimage of s under G.

P9. (“P8 w/o S-WI”) To make the above scheme violate S-WI, use the trick from P4: add a
public key to the CRS and an encryption of the witness to the proof.

P10. To guarantee S-ZK (and therefore S-WI, ZK and WI), the prover outputs π ← ε. To violate
S-SND and SND, verification always accepts.

P11. (“P10 w/o S-WI”) To make the above scheme violate S-ZK and S-WI, use the trick from
P4: add a public key to the CRS and an encryption of the witness to the proof. Note that this
preserves the notions ZK and WI.

P12. (“P3 w/o SND”) Take the scheme from P3 and change verification to always accept. The
scheme is clearly not SND. As verification is irrelevant for the ZK and WI notions, we still have
ZK, WI, S-WI but not S-ZK.

P13. (“P2 w/o SND”) Consider the scheme from P2 which is not ZK, not S-ZK, but WI and S-
WI. Define verification to always accept. The scheme is clearly not SND; as verification is irrelevant
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for the ZK and WI notions, these are preserved.

P14. (“P13 w/o S-WI”) Consider the scheme from P13 and use the same trick as in P4 to
violate S-WI: add a public key to the CRS and an encryption of the witness to the proof.

P15. To violate all notions, set the proof π to be the witness and make verification always accept.
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