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ABSTRACT. In 1849, Dirichlet [5] proved that the probability that two posi-
tive integers are relatively prime is 1/¢(2). Later, it was generalized into the
case that positive integers has no nontrivial kth power common divisor. In this
paper, we further generalize this result: the probability that the ged of m prod-

ucts of n positive integers is B-friable is Hp>B [1 - {1 — (1 _ %)n}m] for
m > 2. We show that it is lower bounded by ﬁ for some s > 1if B > n"ﬁl s

which completes the heuristic proof in the cryptanalysis of cryptographic mul-
tilinear maps by Cheon et al. [2]. We extend this result to the case of k-gcd:

the probability is [, 5 [1 - {1 7 (1 _ %>” (1 iy nﬁﬁl)}my
n+i71)

where , H; = (

1. INTRODUCTION

In 1849, Dirichlet [5] proved that the probability that two positive integers are
relatively prime is 1/¢(2). To be precise,
lim | {(z1,22) € {1,2,..,N}? : ged(z1,20) = 1} | _ 1
N—oo N2 ¢(2)°

Lehmer [7] and more recently Nymann [10] extended this result that the probability
that the r positive integers are relatively prime is 1/{(r).

Meanwhile, in 1885, Gegenbauer [6] proved that the probability that a posi-
tive integer is not divisible by rth power for an integer r > 2 is 1/{(r). In 1976,
Benkoski [1] combined Gegenbauer and Lehmer’s results and obtain that the proba-
bility that r positive integers are relatively k-prime is 1/{(rk). For positive integers
Z1,...,x, and k, we denote by gedy(z1,..,z,) or k-ged of xq, ..., z, the largest kth
power that divides z1,...,z,. If gedy(21,..,2,) = 1, we call 21, .., z, are relatively
k-prime.

Later, study on the probability of gcd was extended by changing domain from
Z to other Principal Ideal Domains. One extension is the result of Collins and
Johnson [3] in 1989 that the probability that two Gaussian integers are relatively
prime is 1/(g(;)(2). In 2004, Morrison and Dong [8] extended Benkoski’s result to
the ring F,[z| for a finite field F,. More recently, in 2010, Sittinger [11] extended
Benkoski’s result to the algebraic integers over the algebraic number field K: the
probability that k algebraic integers are relative r-prime is 1/{o, (rk) while Ok is
the ring of algebraic integers in K, and (o(rk) denotes the Dedekind zeta function
over Og.
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In this paper, we move our question to the probability that the ged of prod-
ucts of positive integers is B-friable. We investigate the probability that the gcd
of products of positive integers is B-friable. Given positive integers m > 2 and
n, assume that r;;’s are positive integers chosen randomly and independently in
[1,N] for 1 <i<mand 1< j <n. Our theorem states that the probability that

ny m
gcd(]_[?‘:1 T1js ey H?’Zl Tmj) is B-friable converges to [ [ . p [1 — {1 - (1 - %) } }
as N — oo. This is proved by using Lebesgue Dominated Convergence Theorem
and the inclusion and exclusion principle.

nNym
We show that the value of HP>B {1 - {1 - (1 - %) } ] is lower bounded by

HB<p§ﬁ [1 - {1 - (1 - %) } } ~Hﬁ<p§f, {1 - (%) } . C(ls) for 7 = max{n, B},
r = |nm1 4+1], # = max{n,r} and s = m(1 — log.n) > 1. Note that the first
product term is equal to 1 if B = n, and the second product term is equal to
1 if n = #. Thus our theorem proves the heuristic argument in the lemma in [2,
page 10] to tell that this probability is lower bounded by 1/{(s) in case of B = 2n
and > 1. The lemma is used to guarantee the success probability of the

m
log, 2n
cryptaffalysis of cryptographic multilinear maps proposed by Coron et al. [4].

Finally, we extend the theorem to the case of k-gcd. When r;;’s are chosen
randomly and independently from {1,---, N}, we show that the probability that
gedi (IT52y 715 o [Ty 7my) is B-friable converges to

i) oo )

p>B

n+?71).

as N — oo, where ,H; = ("]

Benkoski’s.

This result is another generalized form of

Notations. For an integer z, if z has no prime divisor larger than B, we say that
x is B-friable. For a finite set X, the number of elements of X is denoted by |X|.
All of the error terms in this paper are only about the positive integer N, i.e. O is
actually Oy. For positive integers z1, ..., 2., and k, we denote by ged, (1, ..., z,)
or the k-ged of x1, ..., z, the largest kth power that divides x1, ..., z,.. Note that the
usual ged is 1-ged. From now on, alphabet p always denotes a prime number, and
| | is a disjoint union.

2. PROBABILITY THAT THE GCD OF PRODUCTS OF POSITIVE INTEGERS IS
B-FRIABLE

2.1. The gcd of products of positive integers. In this section, we fix the
positive integers m > 2 and n. For a positive integer NV, r;;’s are integers uniformly
and independently chosen in [1,N] for 1 < ¢ < m and 1 < j < n. The aim of
this section is to compute the probability that ged([Tj_, 715, -, [1j—; 7mj) s B-
friable when N — oo. Denote by p1,p2, ps.... the prime numbers larger than B
in increasing order, and define T'(¢, N) be the number of ordered pairs (r;;) such
that ged(ITj_; 715, .+, [[j=, 7mj) is coprime to py,...,pe for 1 < r;; < N. Note

that lim e 7'(¢, N)/N™" is the probability that ged(ITj_; r1j, ., [Tj=) 7mys) is
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B-friable where r;; are chosen randomly and independently in {1,2,...,N}. By
following two steps, we obtain the value of limy o0 limg— oo T'(¢, N)/N™".

Theorem 2.1. Let p1, ps, ...be the prime numbers larger than B in increasing order.
Then,

(2.1) Jim TN lfll[ { <1‘pl>}m}

Proof. Let Xy = {p1,p2,...,pe} and 1 < r;; < N for a positive integer N. By the
inclusion and exclusion principle,

n

n
(rij) gcd(H T1jy e H Tm;j) 1S coprime to p1, ..., pe

j=1 j=1
= Z (=D)IP1 L () Hp|gcd Hrlj,.. Hrm]
PCX, pEP j=1 j=1
= 3 0 {{ow): T T
PCX, peP j=1
where Hpe pp = 1for P = ¢. Applying the inclusion and exclusion principle again,
we obtain
(r1;) Hp| Hﬁ] = Z(_l)lQl (le)iprle,Vp€Q
peP  j=1 QCP j=1
N
= Z (—1)el Z (—1)IE { J
Qcp RCQ HPGRp
Consequently, we have

T(,N) = Z (—1)I7! Z(_l)\cz\ Z(_l)lm L_[N J

PCX, QcP RCQ rerP
Finally, using [N/[[,cgp|/N =1/]l,cgp + O(1/N), we have

T(¢,N) Z p R 1 1

L = (_1)\ | Z(—1)|Q| Z(_l)\ - +o(=

N PCX, QCcP RCQ HpeRp N

4 nym
1 1
= 1—91—(1—-— o=,
{050} o (s)

which gives the theorem as N — oc. [l

Theorem 2.1 gives the probability that the ged of products of positive integers
is not divisible by the first £ primes greater than B. To obtain the probability that
this ged is B-friable, we need to take ¢ — oo before taking N — oo in Theorem
2.1. To swap the orders of limits, we use the Lebesgue Dominated Convergence
Theorem for counting measure on set of natural numbers, which states:
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Let {f, : N — R} be a sequence of functions. Suppose that
lim,,_, o fn exists pointwisely and there exists a function g : N — R
s.t1fnl < g, and 307, g(x) < oco. Then we have

[ESWACES DWAD
=1 =1

Theorem 2.2. Whenr;;’s are chosen randomly and independently from {1,2,..., N},
the probability that gcd(H 1T H?Zl Tm;j) s B-friable converges to

{05} ]

p>B
as N — oo.

Proof. Define gy (¢) = (T({—1,N)—=T (£, N))/N™" and T(0, N) = N™". Note that
gn (¢) is the probability that gcd(H ETIE H?Zl Tmj) is coprime to pi,...,pe—1
and divisible by p, for randomly and 1ndependently chosen r;;’s from {1,..., N},

and so is non-negative.
We claim that

(2.2) lim Y gn(0) =) Jim g (f)
=1 =1

N—o0

Since » )., gn(s) =1—=T(¢, N)/N™", this claim gives the proof of the theorem.
To prove the claim, we show that g (¢) is bounded by the function g(¢) = 2

n
m

Py
and Y, g(¢) < n™((m) < co. As the final step, we have
gnv() = Pr gcd(H T1jy e H Tmj) coprime to pi, ..., p,—1 and divisible by py
L . J:1
< Pr Y2 | ng(HT1j7 Hrmj
L ‘j:1
m m
‘ {(le) tpe | [T le} (N” - ‘ {(le) cpet [Ty le} D
- Nmn = Nmn
— (Nn_|{T111p£Jf7‘11}|n)m — 1— 1_i ﬁ "
Nmn N | pe
nym m
< {-0e) ) =i
De Py
where the last inequality is from Bernoulli’s inequality. O

Corollary 2.3. Let i = max{n, B}, r = |[nm-1 4+ 1| and # = max{fn,r}. Then the
probability that gcd(H 1T HJ 1 "mj) ts B-friable is upper bounded by

o I

p<B



and lower bounded by

L0 -6) Fas

for s = m(1 —log,n) > 1. The first product term is equal to 1 if B =1, and the
second product term is equal to 1 if n = 7.

Proof. Since [],. p[1 —{1 — (1 —1/p)"}™] decreases as n increases, we can obtain
an inequality

n"" 1 1 1\!
11T - )
p>B [ p p>B p ¢(m) p<B p
Using Bernoulli’s inequality, we can also obtain

1 n m 1 n m n m
P00 3 = I b= 00 - G)
p>B { P B<p<i p o p

We can easily check that n™/p™ < 1/p® for prime p larger than 7. Therefore,
we obtain
1 n m
[Ilr-<1-(1-=
p>B p

= I [{-00) T TG I C-5)

-0 -G e

Finally, s = m(1 — log;n) > 1 since # > r > n7-T, and the proof is completed.
O
m

Remark 2.4. Suppose B = 2n, and Tog, 2n is a positive integer larger than 1. Then

we can check that B > nm-1,s0 # = B >r > n. Applying Corollary 2.3, we have

Lh-{-0-3)} =

for s = m(1 —log,n) = m(1 —log,, n) . This is exactly same lower bound

— m
~ log, 2n

suggested in the lemma of [2, page 10].

2.2. Generalization to k-gcd. Now, we extend Theorem 2.1 and 2.2 to the case
of k-ged. For a positive integer N, r;;’s are chosen randomly and independently
in {1,2,..., N}. We compute the probability that gedy (T, r1j, - [[j—; 7mg) is
B-friable when N — oco. Define T} (¢, N) be the number of ordered pairs (r;;) such
that ged, (IT7—; 7175 s [Tj=1 7mj) is coprime to p1, ..., pe for 1 < ry; < N. Note that
limg o0 Ty (¢, N)/N™" is the probability that ged,(IT—; r1j, - [Ij=1 7mg) is B-
friable where 7;;’s are chosen randomly and independently in {1, 2, ..., N}. Similarly
to Theorem 2.1 and 2.2, we obtain the value of limyn_ o limy_,o, Tk (¢, N)/N™" by
following two steps.
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Theorem 2.5. Let p1,ps,... be the prime numbers larger than B in increasing
order. Then,

Z m
. Tx(¢,N) nH1 nHi—1
Jim = H[l—{l—(l—) <1+ ' +"'pk1 .
1=1 ? 2
Proof. Similarly to Theorem 2.1, we apply the inclusion and exclusion principle.

Note that [T,cpp | gedy(ITj=; m1js s [[j=; 7mg) if and only if [Lep?® | [, ri; for
any . For X; = {p1,...,p¢} and 1 <ry; <N, we can get

m

L(LN) S0 ST (1@l e p’%ﬁ% for all p € Q

Nmn
PCX, QCP j=1

Let p® ||  denotes that p® | z and p®*! { z, and a,, ;’s be the non-negative integers
for p € @ and 1 < j < n. Note that the number of n-tuples of non-negative integers
(ap1, ... app) satistying ap 1+ - - +ap, =i is ,H; = (”+271). Then we have

n
Pr |p* ¢ H ry; for all p € Q Z Pr [p* || rq; for all p, j]

i=1 ap1tapn <k

Z H Pr[p®i || ry; for all p € QJ.

ap1t-rapn<kj=1

Using inclusion and exclusion principle,

‘{(le) st || ri; for all p € QY

N o N e | N
\‘Hperap'jJ q%;? \‘q.Hperap’jJ + (1) \‘Hperap,_j+1J

=N]] ( %iﬂ)+0(1).

PER

Therefore, we obtain

Pr pkﬂ’Hrlj,VpE Q

j=1

> Ii) o)

€Q Qp, 1+ +a/pn<k.7 1

1\" 1
(1 - p) Z paeattapn +0 (

PEQR ap1+-tap n<k

1 " nHl nkal 1
H<1p> (1 p m+pk‘1)+0(1\7>’

PERQ

3

|
—

which gives the theorem when substituting in above equation and taking the limit
N — oo. (I
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Theorem 2.6. When;;’s are chosen randomly and independently from {1,2,..., N},
the probability that gedy,([17_, 715, -, [1j=1 7mj) is B-friable converges to

-0 D (et )

Proof. The statement is proved by exactly the same way with Theorem 2.2. Since

Ti({ —1,N) — T (¢, N) . L
Nmn S Pr Pe | gcdk(H le, veey H’I"mj)

as N — oo.

| j=1 j=1
i n n
= Pr|p}| gcd(H rlj,...,Hrmj)
| j=1 j=1
I n n
< Pr|p] gcd(H le,---,Hij)
| j=1 j=1
nm
<
by
we can apply Lebesgue Dominated Convergence Theorem in the same way to The-
orem 2.2 to obtain the theorem. [l

Theorem 2.6 is a generalized form of Benkoski’s theorem [1] and Theorem 2.2.
As we mentioned in Introduction, Benkoski’s theorem is that the probability that
r positive integers are relatively k-prime is 1/{(rk). When k=1, 1 4+ "Tfh + 4
nHr—1

=1, so the result is same with Theorem 2.2. Also when B = n = 1, the same

pkfl
condition with Benkoski’s theorem, (1 — %) (1 + % +--+ ":117]:1) =1- ﬁ.
Therefore,

1\" ZH nWHi— " 1 1
- (-3 ()] -
b p p p . p ((mk)

This is exactly the same result of Benkoski.
The value of [T, . {1 L (L I e =) } can be lower

bounded by the case of k = 1. Therefore, we can conclude

) oy
T e () I G)

B<p<n n<p<7

for i = max{n, B}, r = |[n=-1 + 1|, # = max{n, r}, and s = m(1 — log; n).
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