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Abstract. In 1849, Dirichlet [5] proved that the probability that two posi-

tive integers are relatively prime is 1/ζ(2). Later, it was generalized into the
case that positive integers has no nontrivial kth power common divisor. In this
paper, we further generalize this result: the probability that the gcd of m prod-

ucts of n positive integers is B-friable is
∏

p>B

[
1−

{
1−

(
1− 1

p

)n}m]
for

m ≥ 2. We show that it is lower bounded by 1
ζ(s)

for some s > 1 if B > n
m

m−1 ,

which completes the heuristic proof in the cryptanalysis of cryptographic mul-
tilinear maps by Cheon et al. [2]. We extend this result to the case of k-gcd:

the probability is
∏

p>B

[
1−

{
1−

(
1− 1

p

)n (
1 + nH1

p
+ · · ·+ nHk−1

pk−1

)}m]
,

where nHi =
(n+i−1

i

)
.

1. Introduction

In 1849, Dirichlet [5] proved that the probability that two positive integers are
relatively prime is 1/ζ(2). To be precise,

lim
N→∞

{(x1, x2) ∈ {1, 2, .., N}2 : gcd(x1, x2) = 1
}

N2
=

1

ζ(2)
.

Lehmer [7] and more recently Nymann [10] extended this result that the probability
that the r positive integers are relatively prime is 1/ζ(r).

Meanwhile, in 1885, Gegenbauer [6] proved that the probability that a posi-
tive integer is not divisible by rth power for an integer r ≥ 2 is 1/ζ(r). In 1976,
Benkoski [1] combined Gegenbauer and Lehmer’s results and obtain that the proba-
bility that r positive integers are relatively k-prime is 1/ζ(rk). For positive integers
x1, ..., xr and k, we denote by gcdk(x1, .., xr) or k-gcd of x1, ..., xr the largest kth
power that divides x1, ..., xr. If gcdk(x1, .., xr) = 1, we call x1, .., xr are relatively
k-prime.

Later, study on the probability of gcd was extended by changing domain from
Z to other Principal Ideal Domains. One extension is the result of Collins and
Johnson [3] in 1989 that the probability that two Gaussian integers are relatively
prime is 1/ζQ(i)(2). In 2004, Morrison and Dong [8] extended Benkoski’s result to
the ring Fq[x] for a finite field Fq. More recently, in 2010, Sittinger [11] extended
Benkoski’s result to the algebraic integers over the algebraic number field K: the
probability that k algebraic integers are relative r-prime is 1/ζOK

(rk) while OK is
the ring of algebraic integers in K, and ζO(rk) denotes the Dedekind zeta function
over OK .
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In this paper, we move our question to the probability that the gcd of prod-
ucts of positive integers is B-friable. We investigate the probability that the gcd
of products of positive integers is B-friable. Given positive integers m ≥ 2 and
n, assume that rij ’s are positive integers chosen randomly and independently in
[1, N ] for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Our theorem states that the probability that

gcd(
∏n

j=1 r1j , ...,
∏n

j=1 rmj) isB-friable converges to
∏

p>B

[
1−

{
1−

(
1− 1

p

)n}m
]

as N → ∞. This is proved by using Lebesgue Dominated Convergence Theorem
and the inclusion and exclusion principle.

We show that the value of
∏

p>B

[
1−

{
1−

(
1− 1

p

)n}m
]
is lower bounded by∏

B<p≤n̂

[
1−

{
1−

(
1− 1

p

)n}m
]
·
∏

n̂<p≤r̂

{
1−

(
n
p

)m}
· 1
ζ(s) for n̂ = max{n,B},

r = ⌊n
m

m−1 + 1⌋, r̂ = max{n̂, r} and s = m(1 − logr̂ n) > 1. Note that the first
product term is equal to 1 if B = n̂, and the second product term is equal to
1 if n̂ = r̂. Thus our theorem proves the heuristic argument in the lemma in [2,
page 10] to tell that this probability is lower bounded by 1/ζ(s) in case of B = 2n
and m

log2 2n > 1. The lemma is used to guarantee the success probability of the

cryptanalysis of cryptographic multilinear maps proposed by Coron et al. [4].
Finally, we extend the theorem to the case of k-gcd. When rij ’s are chosen

randomly and independently from {1, · · · , N}, we show that the probability that
gcdk(

∏n
j=1 r1j , ...,

∏n
j=1 rmj) is B-friable converges to

∏
p>B

[
1−

{
1−

(
1− 1

p

)n(
1 +

nH1

p
+ · · ·+ nHk−1

pk−1

)}m]

as N → ∞, where nHi =
(
n+i−1

i

)
. This result is another generalized form of

Benkoski’s.

Notations. For an integer x, if x has no prime divisor larger than B, we say that
x is B-friable. For a finite set X, the number of elements of X is denoted by |X|.
All of the error terms in this paper are only about the positive integer N , i.e. O is
actually ON . For positive integers x1, ..., xr, and k, we denote by gcdk(x1, ..., xr)
or the k-gcd of x1, ..., xr the largest kth power that divides x1, ..., xr. Note that the
usual gcd is 1-gcd. From now on, alphabet p always denotes a prime number, and⊔

is a disjoint union.

2. Probability that the gcd of products of positive integers is
B-friable

2.1. The gcd of products of positive integers. In this section, we fix the
positive integers m ≥ 2 and n. For a positive integer N , rij ’s are integers uniformly
and independently chosen in [1, N ] for 1 ≤ i ≤ m and 1 ≤ j ≤ n. The aim of
this section is to compute the probability that gcd(

∏n
j=1 r1j , ...,

∏n
j=1 rmj) is B-

friable when N → ∞. Denote by p1, p2, p3.... the prime numbers larger than B
in increasing order, and define T (ℓ,N) be the number of ordered pairs (rij) such
that gcd(

∏n
j=1 r1j , ...,

∏n
j=1 rmj) is coprime to p1, ..., pℓ for 1 ≤ rij ≤ N . Note

that limℓ→∞ T (ℓ,N)/Nmn is the probability that gcd(
∏n

j=1 r1j , ...,
∏n

j=1 rmj) is
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B-friable where rij are chosen randomly and independently in {1, 2, ..., N}. By
following two steps, we obtain the value of limN→∞ limℓ→∞ T (ℓ,N)/Nmn.

Theorem 2.1. Let p1, p2, ...be the prime numbers larger than B in increasing order.
Then,

lim
N→∞

T (ℓ,N)

Nmn
=

ℓ∏
i=1

[
1−

{
1−

(
1− 1

pi

)n}m]
.(2.1)

Proof. Let Xℓ = {p1, p2, ..., pℓ} and 1 ≤ rij ≤ N for a positive integer N . By the
inclusion and exclusion principle,

(rij) : gcd(
n∏

j=1

r1j , ...,
n∏

j=1

rmj) is coprime to p1, ..., pℓ




=
∑

P⊂Xℓ

(−1)|P |


(rij) :

∏
p∈P

p | gcd(
n∏

j=1

r1j , ...,
n∏

j=1

rmj)




=
∑

P⊂Xℓ

(−1)|P |


(r1j) :

∏
p∈P

p |
n∏

j=1

r1j



m

.

where
∏

p∈P p = 1 for P = ϕ. Applying the inclusion and exclusion principle again,
we obtain

(r1j) :
∏
p∈P

p |
n∏

j=1

r1j


 =

∑
Q⊂P

(−1)|Q|


(r1j) : p ∤

n∏
j=1

r1j ,∀p ∈ Q




=
∑
Q⊂P

(−1)|Q|

∑
R⊂Q

(−1)|R|

⌊
N∏
p∈R p

⌋n

.

Consequently, we have

T (ℓ,N) =
∑

P⊂Xℓ

(−1)|P |

∑
Q⊂P

(−1)|Q|

∑
R⊂Q

(−1)|R|

⌊
N∏
p∈R p

⌋n
m

.

Finally, using ⌊N/
∏

p∈R p⌋/N = 1/
∏

p∈R p+O(1/N), we have

T (ℓ,N)

Nmn
=

∑
P⊂Xℓ

(−1)|P |

∑
Q⊂P

(−1)|Q|

∑
R⊂Q

(−1)|R| 1∏
p∈R p

n
m

+O

(
1

N

)

=

ℓ∏
i=1

[
1−

{
1−

(
1− 1

pi

)n}m]
+O

(
1

N

)
,

which gives the theorem as N → ∞. □

Theorem 2.1 gives the probability that the gcd of products of positive integers
is not divisible by the first ℓ primes greater than B. To obtain the probability that
this gcd is B-friable, we need to take ℓ → ∞ before taking N → ∞ in Theorem
2.1. To swap the orders of limits, we use the Lebesgue Dominated Convergence
Theorem for counting measure on set of natural numbers, which states:
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Let {fn : N → R} be a sequence of functions. Suppose that
limn→∞ fn exists pointwisely and there exists a function g : N → R
s.t |fn| ≤ g, and

∑∞
x=1 g(x) < ∞. Then we have

lim
n→∞

∞∑
x=1

fn(x) =
∞∑
x=1

lim
n→∞

fn(x).

Theorem 2.2. When rij’s are chosen randomly and independently from {1, 2, ..., N},
the probability that gcd(

∏n
j=1 r1j , ...,

∏n
j=1 rmj) is B-friable converges to

∏
p>B

[
1−

{
1−

(
1− 1

p

)n}m]
as N → ∞.

Proof. Define gN (ℓ) = (T (ℓ−1, N)−T (ℓ,N))/Nmn and T (0, N) = Nmn. Note that
gN (ℓ) is the probability that gcd(

∏n
j=1 r1j , ...,

∏n
j=1 rmj) is coprime to p1, ..., pℓ−1

and divisible by pℓ for randomly and independently chosen rij ’s from {1, ..., N},
and so is non-negative.

We claim that

lim
N→∞

∞∑
ℓ=1

gN (ℓ) =
∞∑
ℓ=1

lim
N→∞

gN (ℓ).(2.2)

Since
∑

1≤s≤ℓ gN (s) = 1−T (ℓ,N)/Nmn, this claim gives the proof of the theorem.

To prove the claim, we show that gN (ℓ) is bounded by the function g(ℓ) = nm

pm
ℓ

and
∑∞

ℓ=1 g(ℓ) ≤ nmζ(m) < ∞. As the final step, we have

gN (ℓ) = Pr

gcd( n∏
j=1

r1j , ...,
n∏

j=1

rmj) coprime to p1, ..., pℓ−1 and divisible by pℓ


≤ Pr

pℓ | gcd( n∏
j=1

r1j , ...,
n∏

j=1

rmj)


=

{(r1j) : pℓ |∏n
j=1 r1j

}m

Nmn
=

(
Nn −

{(r1j) : pℓ ∤∏n
j=1 r1j

})m
Nmn

=
(Nn − |{r11 : pℓ ∤ r11}|n)

m

Nmn
=

{
1−

(
1− 1

N

⌊
N

pℓ

⌋)n}m

≤
{
1−

(
1− 1

pℓ

)n}m

≤ nm

pmℓ
,

where the last inequality is from Bernoulli’s inequality. □

Corollary 2.3. Let n̂ = max{n,B}, r = ⌊n
m

m−1 +1⌋ and r̂ = max{n̂, r}. Then the
probability that gcd(

∏n
j=1 r1j , ...,

∏n
j=1 rmj) is B-friable is upper bounded by

1

ζ(m)
·
∏
p≤B

(
1− 1

pm

)−1

,
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and lower bounded by∏
B<p≤n̂

[
1−

{
1−

(
1− 1

p

)n}m]
·
∏

n̂<p≤r̂

{
1−

(
n

p

)m}
· 1

ζ(s)
,

for s = m(1 − logr̂ n) > 1. The first product term is equal to 1 if B = n̂, and the
second product term is equal to 1 if n̂ = r̂.

Proof. Since
∏

p>B [1− {1− (1− 1/p)n}m] decreases as n increases, we can obtain
an inequality∏
p>B

[
1−

{
1−

(
1− 1

p

)n}m]
≤
∏
p>B

(
1− 1

pm

)
=

1

ζ(m)
·
∏
p≤B

(
1− 1

pm

)−1

.

Using Bernoulli’s inequality, we can also obtain∏
p>B

[
1−

{
1−

(
1− 1

p

)n}m]
≥

∏
B<p≤n̂

[
1−

{
1−

(
1− 1

p

)n}m]
·
∏
p>n̂

{
1−

(
n

p

)m}
.

We can easily check that nm/pm ≤ 1/ps for prime p larger than r̂. Therefore,
we obtain∏

p>B

[
1−

{
1−

(
1− 1

p

)n}m]

≥
∏

B<p≤n̂

[
1−

{
1−

(
1− 1

p

)n}m]
·
∏

n̂<p≤r̂

{
1−

(
n

p

)m}
·
∏
p>r̂

(
1− 1

ps

)

≥
∏

B<p≤n̂

[
1−

{
1−

(
1− 1

p

)n}m]
·
∏

n̂<p≤r̂

{
1−

(
n

p

)m}
· 1

ζ(s)
.

Finally, s = m(1− logr̂ n) > 1 since r̂ ≥ r > n
m

m−1 , and the proof is completed.
□

Remark 2.4. Suppose B = 2n, and m
log2 2n is a positive integer larger than 1. Then

we can check that B > n
m

m−1 , so r̂ = B ≥ r ≥ n. Applying Corollary 2.3, we have∏
p>B

[
1−

{
1−

(
1− 1

p

)n}m]
≥ 1

ζ(s)
,

for s = m(1− logr̂ n) = m(1− log2n n) =
m

log2 2n . This is exactly same lower bound

suggested in the lemma of [2, page 10].

2.2. Generalization to k-gcd. Now, we extend Theorem 2.1 and 2.2 to the case
of k-gcd. For a positive integer N , rij ’s are chosen randomly and independently
in {1, 2, ..., N}. We compute the probability that gcdk(

∏n
j=1 r1j , ...,

∏n
j=1 rmj) is

B-friable when N → ∞. Define Tk(ℓ,N) be the number of ordered pairs (rij) such
that gcdk(

∏n
j=1 r1j , ...,

∏n
j=1 rmj) is coprime to p1, ..., pℓ for 1 ≤ rij ≤ N . Note that

limℓ→∞ Tk(ℓ,N)/Nmn is the probability that gcdk(
∏n

j=1 r1j , ...,
∏n

j=1 rmj) is B-

friable where rij ’s are chosen randomly and independently in {1, 2, ..., N}. Similarly
to Theorem 2.1 and 2.2, we obtain the value of limN→∞ limℓ→∞ Tk(ℓ,N)/Nmn by
following two steps.
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Theorem 2.5. Let p1, p2, ... be the prime numbers larger than B in increasing
order. Then,

lim
N→∞

Tk(ℓ,N)

Nmn
=

ℓ∏
i=1

[
1−

{
1−

(
1− 1

pi

)n
(
1 +

nH1

pi
+ · · ·nHk−1

pk−1
i

)}m]
.

Proof. Similarly to Theorem 2.1, we apply the inclusion and exclusion principle.
Note that

∏
p∈P p | gcdk(

∏n
j=1 r1j , ...,

∏n
j=1 rmj) if and only if

∏
p∈P pk |

∏
j rij for

any i. For Xℓ = {p1, ..., pℓ} and 1 ≤ rij ≤ N , we can get

Tk(ℓ,N)

Nmn
=
∑

P⊂Xℓ

(−1)|P |

∑
Q⊂P

(−1)|Q| Pr

pk ∤
n∏

j=1

r1j for all p ∈ Q

m

.

Let pa ∥ x denotes that pa | x and pa+1 ∤ x, and ap,j ’s be the non-negative integers
for p ∈ Q and 1 ≤ j ≤ n. Note that the number of n-tuples of non-negative integers
(ap,1, ..., ap,n) satisfying ap,1 + · · ·+ ap,n = i is nHi =

(
n+i−1

i

)
. Then we have

Pr

pk ∤
n∏

j=1

r1j for all p ∈ Q

 =
∑

ap,1+···ap,n<k

Pr [pap,j ∥ r1j for all p, j]

=
∑

ap,1+···ap,n<k

n∏
j=1

Pr [pap,j ∥ r1j for all p ∈ Q] .

Using inclusion and exclusion principle,

|{(r1j) : pap,j ∥ r1j for all p ∈ Q}|

=

⌊
N∏

p∈Q pap,j

⌋
−
∑
q∈Q

⌊
N

q ·
∏

p∈Q pap,j

⌋
+ · · ·+ (−1)|Q|

⌊
N∏

p∈Q pap,j+1

⌋

= N
∏
p∈Q

(
1

pap,j
− 1

pap,j+1

)
+O(1).

Therefore, we obtain

Pr

pk ∤
n∏

j=1

r1j , ∀p ∈ Q

 =
∏
p∈Q

 ∑
ap,1+···+ap,n<k

n∏
j=1

p− 1

pap,j+1

+O

(
1

N

)

=
∏
p∈Q


(
1− 1

p

)n ∑
ap,1+···+ap,n<k

1

pap,1+···+ap,n

+O

(
1

N

)

=
∏
p∈Q

(
1− 1

p

)n(
1 +

nH1

p
+ · · ·+ nHk−1

pk−1

)
+O

(
1

N

)
,

which gives the theorem when substituting in above equation and taking the limit
N → ∞. □
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Theorem 2.6. When rij’s are chosen randomly and independently from {1, 2, ..., N},
the probability that gcdk(

∏n
j=1 r1j , ...,

∏n
j=1 rmj) is B-friable converges to∏

p>B

[
1−

{
1−

(
1− 1

p

)n(
1 +

nH1

p
+ · · ·nHk−1

pk−1

)}m]
as N → ∞.

Proof. The statement is proved by exactly the same way with Theorem 2.2. Since

Tk(ℓ− 1, N)− Tk(ℓ,N)

Nmn
≤ Pr

pℓ | gcd k(
n∏

j=1

r1j , ...,
n∏

j=1

rmj)


= Pr

pkℓ | gcd(
n∏

j=1

r1j , ...,
n∏

j=1

rmj)


≤ Pr

pℓ | gcd( n∏
j=1

r1j , ...,

n∏
j=1

rmj)


≤ nm

pmℓ
,

we can apply Lebesgue Dominated Convergence Theorem in the same way to The-
orem 2.2 to obtain the theorem. □

Theorem 2.6 is a generalized form of Benkoski’s theorem [1] and Theorem 2.2.
As we mentioned in Introduction, Benkoski’s theorem is that the probability that
r positive integers are relatively k-prime is 1/ζ(rk). When k = 1, 1 + nH1

p + · · ·+
nHk−1

pk−1 = 1, so the result is same with Theorem 2.2. Also when B = n = 1, the same

condition with Benkoski’s theorem,
(
1− 1

p

)n (
1 + nH1

p + · · ·+ nHk−1

pk−1

)
= 1 − 1

pk .

Therefore,∏
p>B

[
1−

{
1−

(
1− 1

p

)n(
1 +

nH1

p
+ · · ·+ nHk−1

pk−1

)}m]
=
∏
p

(
1− 1

pmk

)
=

1

ζ(mk)
.

This is exactly the same result of Benkoski.

The value of
∏

p>B

[
1−

{
1−

(
1− 1

p

)n (
1 + nH1

p + · · ·+ nHk−1

pk−1

)}m
]
can be lower

bounded by the case of k = 1. Therefore, we can conclude∏
p>B

[
1−

{
1−

(
1− 1

p

)n(
1 +

nH1

p
+ · · ·+ nHk−1

pk−1

)}m]

≥
∏

B<p≤n̂

[
1−

{
1−

(
1− 1

p

)n}m]
·
∏

n̂<p≤r̂

{
1−

(
n

p

)m}
· 1

ζ(s)
,

for n̂ = max{n,B}, r = ⌊n
m

m−1 + 1⌋, r̂ = max{n̂, r}, and s = m(1− logr̂ n).
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