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Oscar Garćıa-Morchón1, Ronald Rietman1, Ludo Tolhuizen1, Jose-Luis
Torre-Arce1, Moon Sung Lee2, Domingo Gómez-Pérez3, Jaime Gutiérrez3, and
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Abstract. The HIMMO scheme has been introduced as a lightweight
collusion-resistant key pre-distribution scheme, with excellent efficiency
in terms of bandwidth, energy consumption and computation time. As its
cryptanalysis relies on lattice techniques, HIMMO is also an interesting
quantum-safe candidate. Unlike the schemes by Blom, by Matsumoto
and Imai, and by Blundo et al, which break down once the number
of colluding nodes exceeds a given threshold, it aims at tolerating any
number of colluding nodes.
In 2015, a contest for the verification of the scheme was held. During the
contest, a method was developed to guess a key by finding an approxi-
mate solution of one of the problems underlying the scheme. This attack
involves finding a short vector in a lattice of dimension linear in a system
parameter α and allowed key recovery for several challenges. Thwarting
this attack by increasing α would lead to a significant performance degra-
dation, as CPU and memory requirements for the implementation of the
scheme scale quadratically in α.
This paper describes a generalization of HIMMO parameters that allows
configuring the scheme such that both its performance and the dimension
of the lattice involved in the attack grow linearly in α. Two attacks in-
spired by the one developed in the contest are described, and the impact
of those attacks for different parameter choices is discussed. Parameters
choices are described that thwart existing attacks while enabling high
performance implementations of the scheme.

Keywords: Key predistribution scheme, collusion attack, identity, lattice anal-
ysis

1 Introduction

Background More and more devices are getting connected to the Internet form-
ing the so called Internet of Things (IoT). Strong security is fundamental for the
IoT to be deployed in critical applications like healthcare, smart cities and smart



energy. However, currently, it is estimated that 70 % of IoT devices have security
vulnerabilities and devices are often poorly managed. Security methods need to
be scalable and be easily deployable, require limited resources regarding band-
width, energy or CPU time, and remain secure during the long lifetime of IoT
devices. Simultaneously, quantum computers are expected to be developed in the
next years and as a consequence traditional public-key primitives in use today
will be broken. This also motivates research into novel security architectures for
the Internet so that it can be become more secure and efficient.

In [14], [12] the HIMMO scheme is proposed as an innovative method for
pairwise key establishment. It is a lightweight key pre-distribution scheme that
enables secure sharing of keys and verification of credentials between any pair of
devices in a single message - ideal for real-time interactions. The scheme relies on
a trusted third party (TTP), or an infrastructure of TTPs, to handle the root
keying material and distribute to each device secret key generating functions
linked to its identifier or credentials. By re-using existing device identities like
MAC addresses, integration of HIMMO in existing systems is easy and attractive.
It can be easily integrated in existing protocols such as TLS so that it can be
readily applied to address many real-world use cases. The fact that HIMMO
cryptanalysis relies on lattice techniques makes it also an interesting quantum-
safe candidate. The goal of HIMMO is to achieve excellent efficiency in terms of
bandwidth, energy consumption, and computation time to generate a key while
being a collusion resistant and quantum-safe key pre-distribution scheme.

During the NIST workshop on ”Cyber-security in a post-quantum world”
and later during the rump session at Crypto2015, a contest (https://www.
himmo-scheme.com) was announced for facilitating the assessment and further
improvements of the HIMMO scheme by the security community. The contest
ended on December 31st 2015 with different results for the three challenges linked
to the two mathematical problems underlying HIMMO, the HI and MMO prob-
lems, and to the scheme itself.

In this paper, we introduce parameter updates in the HIMMO scheme that
deal with the approach used by one of the participants in the contest to find
an approximate solution to the MMO problem, and in this way, to solve sev-
eral challenges in the contest. We describe the corresponding security analysis
and discuss how with these updated parameters the performance of the scheme
improves compared with previous results reported in [14].

Related work We motivate our approach by discussing related work covering
three alternative approaches to key establishment.

The first approach is to use any Diffie-Hellman based scheme, involving a
one-way function defined for a discrete log setting (including elliptic curve cryp-
tography). The main drawback of these schemes is simply that evaluation of the
one-way function is too costly, and this drawback extends to schemes involv-
ing pairings. Some relevant examples are the schemes and related constructions
in [6,8,9,10,15,21,22].

The second approach is to use a simpler one-way function. For instance,
[17] proposes a key exchange protocol based on the NTRU one-way function.



Basically, two nodes establish a common key by exchanging NTRU encryptions
of their private keys, which is computationally efficient. However, several serious
drawbacks remain. In the first place, there is no protection against man-in-the-
middle attacks as the corresponding public keys of the nodes are not certified.
Secondly, the communication complexity of such a key establishment protocol
is high, as it involves an exchange of public key encryptions; hence the protocol
is too costly for resource-constrained devices. And, finally such a scheme lacks
identity-based modes.

The third approach is to actually build a key predistribution scheme [18]. Key
predistribution schemes allow for the establishment of pairwise keys in a large
network of nodes, where each node uses its so-called keying material as secret
input [18]. All pairwise keys are determined by a master key, and one gets all
the benefits mentioned above. Clearly, the main challenge is to achieve collusion
resistance while being efficient and that’s what HIMMO is solving. In Blundo et
al.’s scheme [5], a master key consisting of a symmetric bivariate polynomial over
a finite field is generated by a trusted party, and each node’s keying material
consists of the univariate polynomial obtained as the evaluation of the master
key at a field element associated with the node. Key establishment in Blundo
et al.’s scheme is very efficient, as it amounts to the evaluation of a polynomial
over a finite field. The scheme is secure against collusions whose size does not
exceed the degree of the polynomial. For larger collusions, however, the security
of Blundo et al.’s scheme breaks down completely. In the literature there has only
been one attempt at constructing an efficient scheme with collusion-resistance
against arbitrary collusions [24]. However, the collusion resistance claims turned
out to be flawed [2]. The starting point for HIMMO goes back to Blundo et al.’s
elegant key predistribution scheme [5] and the general definition of Matsumoto
and Imai [18] and aims at defining a key predistribution scheme that achieves
efficiency comparable to Blundo et al.’s scheme but with much better security,
basically tolerating collusions of practically any size.

Roadmap The paper is organized as follows. In Section 2, we describe general-
ized HIMMO parameters and different choices for them. In Section 3, we detail
and describe the analysis of the different lattice-based attacks aiming at com-
promising the TTP, a node, or a single key. The TTP can be attacked by solving
the MMO problem which, if successful, allows the attacker to obtain all keys in
the network. A node can be attacked by solving the HI problem or obtaining
an approximate solution to the MMO problem. If successful, the attacker can
and obtain all the keys of the node under attack. We discuss which parameters
should be used. Section 4 discusses the efficient implementation, associated per-
formance, and compares with related work. In Section 5, we draw conclusions
and indicate directions for further research.

2 HIMMO

In this section we describe the generalized parameters for the HIMMO scheme.
Throughout this paper we use the following notation. For all integers x and all



positive integers N , we denote with 〈x〉N the integer in the interval [0, N−1] that
is equivalent to x modulo N , i.e., that differs an integer multiple of N . Moreover,
we denote with {x}N the integer in the interval (−N2 ,

N
2 ] that is equivalent to x

modulo N .

2.1 HIMMO Operation

HIMMO has several system parameters, viz. B, the bit length of node iden-
tifiers, b, the key length, N , an odd reduction integer, and integers α and
m. Other system parameters are non-negative integer functions φ0, . . . , φα on
{0, 1, . . . , 2B − 1}. We remark that α plays a key role both in the security and
performance of the system.

As in any key pre-distribution scheme, HIMMO relies on a trusted third
party (TTP), and several phases can be distinguished during its operation.

In the set-up phase, the TTP, given the system parameters, secretly and
randomly generates the following root keying material:

– m distinct random moduli q1, q2, . . . , qm of the form qi = N − 2bβi, where
0 ≤ βi < 2B and at least one of β1, . . . , βm is odd.

– for 1 ≤ i ≤ m and 0 ≤ j ≤ k ≤ α, a random integer R
(i)
j,k with 0 ≤ R

(i)
j,k ≤

qi − 1, and for k < j ≤ α,R(i)
j,k = R

(i)
k,j

In the keying material extraction phase, the TTP provides node ξ ∈
[0, 2B) with coefficients G0(ξ), . . . , Gα(ξ), where for 0 ≤ k ≤ α

Gk(ξ) =
〈 m∑
i=1

〈
α∑
j=0

Rij,kφj(ξ)〉qi
〉
N
. (1)

A later phase comprises a key establishment protocol in which if node ξ
wishes to communicate with node η, it computes the key Kξ,η defined as

Kξ,η = 〈Gξ(η)〉2b , where Gξ(η) = 〈
α∑
k=0

Gk(ξ)φk(η)〉N . (2)

2.2 Key symmetry and reconciliation

In general, for ξ, η ∈ [0, 2B), the generated keys Kξ,η and Kη,ξ need not be equal.
The following theorem, that relates Kξ,η and Kη,ξ, can be proved analogously
to [12, Thm. 1].

Theorem 1 Let 0 ≤ ξ, η ≤ 2B − 1. We have that

Kη,ξ ∈ {〈Kξ,η + jN〉2b | j ∈ Z, |j| ≤ ∆}, where

∆ = 1 +
⌊2b

N
·max{

α∑
k=0

φk(x) | 0 ≤ x ≤ 2B − 1} ·
m∑
i=1

βi
⌋
.



In order to arrive at a common key, node ξ sends to node η some helper data,
for instance, the s least significant bits of Kξ,η, where s := dlog2(2∆+ 1)e. From
these s bits and Kη,ξ, node η can determine Kξ,η, see [12] for more details. The
remaining b − s most significant bits of Kξ,η then serve as a common key for ξ
and η.

2.3 Parameter choices

In [12],[14], φk(x) = xk was used for 0 ≤ k ≤ α. In this case,
∑α
k=0 φk(x) ≤ 2αB

for 0 ≤ x < 2B , and so ∆ ≤ 1+ 2αB+b

N

∑m
i=1 βi ≤ 1+ m2(α+1)B+b

N . Hence, if N has
a length of (α+ 1)B+ b bits, then ∆ ≤ m. Note, however, that N (and therefore
the coefficients Gk(ξ)) grow in α.

In the present paper, we focus on parameters that allow to take the size of N
independent of α. In particular, we stipulate that for 0 ≤ k ≤ α and x ∈ [0, 2B),

0 ≤ φk(x) ≤ 2B . (3)

For N , we take an odd integer with a length of (2B+ b) bits. As (3) is satisfied,
it follows that ∆ ≤ 1 + m(α + 1) in Theorem 1. The bit length of N is thus
independent of α, and much smaller than with the choices for φk from [12],
[14]. This leads to an improved performance-security trade-off, as explained in
subsection 3.4.

With the above choice for the size of N , the scheme is operationally correct,
irrespective of the precise form of the functions φk, as long as (3) is satisfied.
In order that different nodes have different keying materials, we require that for
any distinct ξ, η ∈ [0, 2B)

(φ0(ξ), . . . , φα(ξ)) 6= (φ0(η), . . . , φα(η)).

In the remainder of the paper, we will use φk(x) = 〈〈xk〉p〉2B , where p is a prime
slightly larger than 2B . These functions can be easily evaluated, and fulfill the
above condition. We note that other choices for φk(x) are feasible, e.g., the hash
function of x concatenated with k. This choice would lead to more uncorrelated
φk(x) values.

3 Security Analysis

We assume an attack model in which an adversary has obtained the key gener-
ating functions of c different nodes. The identifiers of these compromised nodes
are assumed to be uniformly drawn random B-bit strings, denoted ξ1, . . . , ξc.
We consider three attacks. In the first attack, the adversary aims at recovering
the TTP’s root keying material and therefore at attacking the whole system. In
the second attack, the adversary aims at recovering the keying material of an
uncompromised node ξ 6∈ {ξ1, . . . , ξc}. We shall analyze two methods for doing
this. In the third attack, the adversary aims at recovering the pairwise key Kξ,η

between two uncompromised nodes ξ, η 6∈ {ξ1, . . . , ξc}.



Notation. Most attacks in this section is based on lattices. A lattice is a set of
all integer linear combination of some basis vectors of Zd. When a lattice L is
formed from the basis matrix B, we denote L = L(B). For any two vectors u
and v, we say that they are orthogonal if their inner product is zero, u · v = 0.
For a lattice L ⊂ Zd, we denote by L⊥ the set of vectors orthogonal to vectors
of L: L⊥ = {v ∈ Zd : v · u = 0,∀u ∈ L}. Note that dimL + dimL⊥ = d. For
more properties and applications of orthogonal lattices, we refer [20].

3.1 Attacking the TTP

A coefficient of a node’s keying material is obtained by mixing of operations with
m different moduli (Equation 1). When attacking the TTP, the goal is to recover
the root keying material so that the attacker can generate the complete keying
material of any other node, and therefore, have access to all the communications
of any device. For this, the attacker has to deal with the following problem.

Problem 1 (Mixing Modular Operations (MMO) Problems). Let the parameter
set be {m,α, φ0, . . . , φα}, where m ≥ 2, α ≥ 0, and φ0, . . . , φα are functions. Let
xi, (0 ≤ i ≤ c) be given and let it be given that yi =

∑m
j=1〈

∑α
k=0 gj,kφk(xi)〉qj ,

for 0 ≤ i ≤ c, for some integer coefficients gj,k and moduli qj .
MMO problem: given the parameter set, the number x0 and the pairs of
numbers (xi, yi) for 1 ≤ i ≤ c, output an estimate ŷ0 of y0.
MMO problem with known moduli: given the input of the MMO problem
and, additionally, the moduli qj (1 ≤ j ≤ m), output an estimate ŷ0 of y0.

If ŷ0 = y0, we say that the solution to the MMO problem is exact.

The general strategy for solving the MMO problem is to first guess q1, . . . , qm
and then solve the MMO problem with known moduli. In [11], a strategy for
recovering q1, . . . , qm is presented that relies on applying finite differences to
obtain a set of equations that only depend on q1, . . . , qm. This method does
not seem to scale well with increasing m, so that guessing the moduli remains
difficult. Note that most MMO challenges remain unsolved in the contest as well.

In [13], the exact MMO problem with known moduli was studied for the case
m = 2 and φk(x) = xk for 0 ≤ k ≤ α. Generalizing this method, it can be shown
that solving the exact MMO problem with known moduli and c colluding nodes
requires solving a close vector problem in a lattice with dimension m(α + 1) +
(m− 1)c, and that c must be at least m(α+ 1) to find a unique solution. Thus
the adversary has to solve a close vector problem in a lattice of dimension at
least m2(α+ 1), which quickly becomes infeasible if m grows.

In the following, we first show that obtaining an approximate solution ŷ0 to
the MMO problem can be useful to attack a single node, if 〈ŷ0〉N differs a small
multiple integer from 〈y0〉N .



3.2 Attacking a single node

Let the coefficients of node ξ’s keying material, as provided by the TTP, be
Gk(ξ), 0 ≤ k ≤ α. The key Kξ,η is given by

Kξ,η =
〈〈 α∑
k=0

Gk(ξ)φk(η)
〉
N

〉
2b
.

If the adversary finds an estimate gk for Gk(ξ) such that for each k

gk = Gk(ξ) + 2bεk with max
η∈[0,2B)

|εkφk(η)| < N/2b, (4)

then

〈 α∑
k=0

gkφk(η)
〉
N

=
〈 α∑
k=0

Gk(ξ)φk(η) + 2b
α∑
k=0

εkφk(η)
〉
N

=
〈 α∑
k=0

Gk(ξ)φk(η)
〉
N

+ 2b
α∑
k=0

εkφk(η)− λN

for some integer λ with |λ| ≤ (α+ 1). Reducing this result modulo 2b, it follows
that the key calculated using the estimated keying material coefficients differs a
small multiple of N from the real key, and is thus likely to differ a small enough
multiple of N from the key Kη,ξ calculated by node η.

A. Simulating the keying material from the keying materials of other
nodes In terms of the root-keying material, the k-th coefficient of the keying
material of node ξ is given by

Gk(ξ) =
〈 m∑
i=1

〈 α∑
`=0

R
(i)
k` φ`(ξ)

〉
qi

〉
N
,

so finding an estimate to Gk(ξ), given the values Gk(ξi), 1 ≤ i ≤ c amounts to
solving an MMO problem, like in Section 3.1, where the adversary is allowed to
make an error of the form 2bεk, with |εk| small enough. The adversary can do
this, even without knowing the secret moduli qi, by using Orthogonal lattices in
the following way.



Consider the k-th keying material coefficient of device ξ:

Gk(ξ) =
〈 m∑
i=1

〈 α∑
l=0

R
(i)
kl φl(ξ)

〉
qi

〉
N

=
〈 m∑
i=1

( α∑
l=0

R
(i)
kl φl(ξ)− (N − 2bβi)

⌊
q−1i

α∑
l=0

R
(i)
kl φl(ξ)

⌋)〉
N

=
〈 m∑
i=1

( α∑
l=0

R
(i)
kl φl(ξ) + 2bβi

⌊
q−1i

α∑
l=0

R
(i)
kl φl(ξ)

⌋)〉
N

=
〈 m∑
i=1

( α∑
l=0

R
(i)
kl φl(ξ) + 2bβi(q

−1
i

α∑
l=0

R
(i)
kl φl(ξ)− εik(ξ))

)〉
N

=
〈 m∑
i=1

α∑
l=0

NR
(i)
kl

qi
φl(ξ)−

m∑
i=1

2bβiεik(ξ)
〉
N

where we defined

εik(ξ) = q−1i

α∑
l=0

R
(i)
kl φl(ξ)− bq

−1
i

α∑
l=0

R
(i)
kl φl(ξ)c, with 0 ≤ εik(ξ) < 1.

The integral quantity between the 〈 〉N brackets is written as the difference
of a linear combination of the function φl(ξ) with rational coefficients and the
sum

∑m
i=1 2bβiεik(ξ).

Let ξ0 = ξ and consider the column vector Yk = (Gk(ξ0), . . . , Gk(ξc))
T . It

can be written in terms of the (α+ 1)× (c+ 1) matrix

Vij = φi(ξj), 0 ≤ i ≤ α, 0 ≤ j ≤ c,

a column vector ρ in Qα+1 of rational polynomial coefficients and the column
vectors Eik = (εik(ξ0), . . . εik(ξc))

T as

Yk =
〈
V T ρ−

m∑
i=1

2bβiEik
〉
N
,

where the modulo-N operation works component-wise.
Let c > α, and consider L(V ), a (α + 1)-dimensional lattice generated by

basis matrix V . From this, we compute an orthogonal lattice L(V )⊥ and let K
be a short basis of this lattice. Then it is easy to see that dimL(K) = c−α and
K · V T = 0 from the definition.

As KV T = 0, it follows that

KYk ≡ KV T ρ−
m∑
i=1

2bβiKEik

≡ −2bK

m∑
i=1

βiEik (mod N),



and so

{
2−bKYk

}
N

= −K
m∑
i=1

βiEik,

provided that the infinity norm of −K
∑m
i=1 βiEik is less than N/2.

To continue the attack, let Yk0 = Gk(ξ0) be the first component of Yk, and let
Y ′k be the column vector Y ′k = (Gk(ξ1), . . . , Gk(ξc))

T . Similarly, let K = [K0 |K ′]
where K0 is the first column vector of K. Then the following holds:

{
2−bKYk

}
N

=
{

2−b(K0Yk0 +K ′Y ′k)
}
N

= −K
m∑
i=1

βiEik.

Let w be a row vector such that w = (−K
∑m
i=1 βiEik)T . Now consider the

lattice generated by the basis matrix L:

L =

1 0 C · 〈2−bKT
0 〉N

0 N/2 C · 〈2−b(K ′Y ′k)T 〉N
0 0 C ·N · Ic−α

 , (5)

where C ≈ N/‖w‖ and Ic−α is the (c− α)× (c− α) identity matrix. Now from
the construction, the lattice L(L) contains a vector:

v = (Yk0, N/2, C · w).

By Minkowski’s theorem, the length of the shortest vector of this lattice is less
than:

λ1(L(L)) ≤ (detL)
1

c−α+2

where
detL ≈ Cc−αN c−α+1 ≈ N2c−2α+1/‖w‖c−α.

As a consequence, if ‖w‖ < N
c−α−1
c−α , then (detL)

1
c−α+2 > N , which means that

if ‖w‖ is much less than N , then we can hope to find v among the short vectors
in this lattice by lattice reduction algorithms. And from v, we can obtain Yk0.

However, L(L) contains a trivial short vector v1 = (2b, 0, C · 〈KT
0 〉N ) with

‖v1‖ < ‖v‖. Thus, the attacker can only find v modulo v1 and this reveals
approximations to Yk0 = Gk(ξ0), which can then be used to calculate an estimate
for the key between node ξ0 and any other node.

In order for this attack to work, we need ‖w‖ to be smaller than N . If (3)
is satisfied and N has bit length 2B + b, then by using Equation 7 from the

appendix, ‖w‖ ≈ 2B2
(α+1)B
c−α and N ≈ 22B+b, we infer that it is required that

c > α + (α+1)B
B+b . If φk(x) = xi for 0 ≤ i ≤ α and N has bitlength (α + 1)B + b,

then by using Equation 6 from the appendix, we infer that c > α+ 1
2
α(α+1)B
(α+1)B+b .

Thus, the parameter α needs to be set such that finding short vectors in a
(c− α)-dimensional lattice L(K) ∈ Zc+1 is hard.



Since the matrix K, with short basis vectors for the left integer kernel for
V T , does not depend on k, it can be reused for attacking each of the α + 1
coefficients of a device. Doing this, requires further solving α + 1 close vector
problems, as the basis matrix L in (5) depends on k. However, these problems
can be solved in parallel and in our experience are less complicated than finding
the short matrix K.

B. Simulating the keying material from keys shared with other nodes
Another approach to find approximations to l G0(ξ), . . . , Gα(ξ) is by using the
keys between ξ and the c nodes ξ1, . . . , ξc. To this end, the attacker computes
the key Kξj ,ξ = 〈Gξj (ξ)〉2b for 1 ≤ j ≤ c, uses Kξ,ξj as an approximation for
Kξj ,ξ and tries to obtain the G0(ξ), . . . , Gα(ξ) from the c equations

Kξ,ξj =
〈
〈
α∑
k=0

Gk(ξ)φk(ξj)〉N
〉
2b

for 1 ≤ j ≤ c.

This is an instance of the hiding information (HI) problem: the attacker tries to
obtain G0(ξ), . . . , Gα(ξ) from the b least significant bits of the evaluation of Gξ

in ξ1, . . . , ξc. That is, part of the evaluation of Gξ is hidden.

The algorithm for obtaining the coefficients G0(ξ), . . . , Gα(ξ), makes use of
the equivalence of this reconstruction problem to a lattice problem, as described
in [19]. The lattice is spanned by the rows of the block matrix(

NIc 0
V 2−bIα+1

)
,

where Ic and Iα+1 denote unit matrices of size c × c and (α + 1) × (α + 1)
respectively, and V denotes the (α+ 1)× c matrix with elements Vk,j = φk(ξj),
0 ≤ k ≤ α, 1 ≤ j ≤ c. The problem is to find a lattice vector that lies inside a
hypercube of edge length N/2b around a target vector that is constructed with
the values Kξ,ξj , 1 ≤ j ≤ c. For more details, we refer to [12, Sec. 6.2].

We now give a bit counting argument to see how large c should be in order
to arrive at a correct solution. It is sufficient that the adversary finds an approx-
imation gk for Gk(ξ) satisfying (4).
In the case of N independent of α, N has a length of 2B + b bits, and φk(x) ∈
[0, 2B). It is thus sufficient to obtain the B most significant bits and the b least
significant bits of each Gk(ξ). As each key yields b observed bits, and we need
to estimate (α+ 1)(B + b) bits, we need that c ≥ (α+ 1)B+b

b .
If φk(x) = xk for 0 ≤ k ≤ α, and N has (α + 1)B + b bits, we have in (4) that
| εk |< 2((α+1)−k)B bits for 0 ≤ k ≤ α. This implies that we need to estimate
(α + 1)B + b − ((α + 1 − k)B) = b + kB bits of coefficient Gk(ξ). The total
numbers of bits to be estimated thus equals (α+ 1)b+ 1

2α(α+ 1)B. As each key

yields b observed bits, we need that c ≥ (α+1)(2b+αB)
2b .



3.3 Finding a single key of a node from its keys with other nodes

In this attack, the adversary aims to find just a single key Kη,ξ from observations
of keys Kξi,η between the colluding nodes ξi, 1 ≤ i ≤ c and the node under attack
η. To this end, a method similar to the one from Section 3.2.A can be used.

Since Kη,ξi and Kξi,η differ by a small multiple of N , modulo 2b, the attacker
uses Kξi,η as an approximation to yi = K(η, ξi) in the attack, and recovers
y0 = Kη,ξ with an error which is small multiple of N modulo 2b. Let G denote
the column vector of node η’s keying material coefficients, and Y the column
vector of the yi, 0 ≤ i ≤ c. Then Y = 〈〈V TG〉N 〉2b , so that 〈V TG〉N = Y + 2bΛ,
where each integer component Λi satisfies 0 ≤ Λi ≤ N/2b. Multiplying by vK,
where v = 〈2−b〉N and K is the kernel of V T , and splitting K into its first
column, L0, and the rest, L1, and similarly for the vector Y , we obtain{

y0vL0 + v(L1Y1) +KΛ
}
N

= 0.

The components of KΛ are of order N ′ = κN/2b, where is the order of magnitude
of the is length of short vectors in the kernel. Consider the lattice basis matrix(

N ′ 2b〈vLT0 〉N
0 2bNIc

)
and solve the CVP for target vector (2b−1N ′,−2b〈v(L1Y1)T + [N/2b+1]Ke〉N ,
where e is the all-ones column vector of length c + 1. Let Z be the resulting
lattice vector. Its first component Z0 is a multiple of N ′ and the estimate for
Kη,ξ is obtained as Z0/N

′ + 2b−1.
For the above method to work, it is required that N ′ < N , or equivalently

that κ < 2b. For the case that the bit length of N depends on α, Equation 6
from the appendix implies that κ = 2α(α+1)B/2(c−α), from which we infer the
requirement c > α+ 1

2α(α+ 1)Bb .
For the case of N of bit length independent of α, Equation 7 from the ap-

pendix implies that k = 2(α+1)B/(c−α), from which we infer the requirement
c > α+ (α+ 1)Bb .

The computational bottleneck in this attack is the reduction of the kernel,
which has dimension c− α.

3.4 Parameters

Table1 summarizes the results of the analysis. Disregarding the MMO attack, as
it seems infeasible to find coefficients qi for reasonable values of m, the attack
on coefficients with the orthogonal lattice as described in Section 3.2.A yields
the smallest lattice dimension.

Table 2 compares HIMMO when configured with N dependent on α ( [12],
[14]) or independent of α (this paper, N of bitlength 2B + b and the functions
φk satisfying (3)). The table considers the two types of attacks described in Sec-
tion 3.2, namely HI attack and approximate solution to the MMO problem, and
the memory requirements to store the coefficients Gk(η). When N depends on



Table 1. Minimum required number of colluding nodes, cmin, and lattice dimension
related to various attacks described in the previous sections

N dependent on α N independent of α
([12], [14]) (This paper)

Section 3.2.B (α+1)(αB+2b)
2b

, c+ α+ 1 (α+ 1)B+b
b

, c+ α+ 1

Section 3.2.A α+ α(α+1)B
2((α+1)B+b)

, c− α α+ (α+ 1) B
B+b

, c− α
Section 3.3 α+ α(α+1)

2
B
b

, c− α α+ (α+ 1)B
b

, c− α

α, the memory requirements and lattice dimension associated to the HI problem
are proportional to α2. However, finding an approximate solution to the MMO
problem only requires finding a reduced basis of a lattice of dimension ∼ α/2,
when b = B. This method refines the method that was used to solve some of the
HIMMO Challenges in the contest (wwww.himmo-scheme.com). This paper up-
dates HIMMO parameters in such a way that N is independent of α. With this
update, the memory requirements and the dimensions of the lattices associated
to the HI problem and the approximate MMO problem both grow linearly with
α, resulting in an improved security/complexity trade off.

Table 2. Performance and security level for N dependent on and independent of α for
b = B = 256.

N dependent on α ( [12], [14]) N independent of α (this paper)
Dimension Dimension Memory Dimension Dimension Memory
HI Orthogonal lattice HI Orthogonal lattice

α Node Node

25 351 13 10.97 KB 75 13 1.56 KB

50 1326 26 41.44 KB 150 26 3.13 KB

100 5151 50 160.97 KB 300 50 6.25 KB

800 320000 400 10.07 MB 2400 400 50.00 KB

1000 500000 500 15.67 MB 3000 500 62.50 KB

1500 1100000 750 35.23 MB 4500 750 93.75 KB

2000 2000000 1000 62.60 MB 6000 1000 125.00 KB

4000 8000000 2000 250.19 MB 12000 2000 250.00 KB

8000 32000000 4000 1 GB 24000 4000 500.00 KB

Next, we report on the performance of attacks presented in this paper. We
took b = B = 32, the bit length of N equal to 2B + b, and φk(x) = 〈〈xk〉p〉2B ,
where p is a prime slightly larger than 2B . The attacks perform as follows:

– Guessing the root keying material to the TTP (Section 3.1) requires finding
the exact solution to the MMO problem. This involves (i) guessing the secret
qis and then (ii) finding a close vector in a lattice of dimension ≈ m2α. We



have only managed to solve this for very small parameters (till m = 2 and
α = 5).

– Guessing the key generating function of a node (Section 3.2) involves solving
the HI problem or finding an approximate solution to the MMO problem that
requires finding a close/short vector in a lattice of dimension that grows
linearly with α, see Table 1. For the HI problem, experiments fail to find a
correct solution with LLL when α > 180. We have verified that the method
for finding an approximate solution of the MMO problem works up to at
least α = 500, but expect it to fail for large values.

– Directly guessing a key of a node (Section 3.3) involves finding a short basis
of a kernel of dimension c− α, where c needs to be at least 2α. In this case,
experiments using LLL fail to find the correct solution when α > 200.

These experimental results are for LLL. Other algorithms to find an approximate
reduced basis of a lattice of high dimension, such as BKZ, can achieve better
performance, i.e., a shorter reduced basis (at the expense of a longer running
time), but we expect them to fail also at some point, as reported in [12] for the
case that N depends on α. In that case, the HI attack worked with LLL till an
α value of 20 corresponding to a lattice dimension of 252. Using BKZ, the HI
attack worked till α = 26 corresponding to a lattice dimension of 405.

Thus, taking an ample margin, we suggest using the following parameters:
m = 10, α ≈ 2000, N ≈ 23B , b = B, and φk(x) = 〈〈xk〉p〉2B . These parameters
lead to an efficient implementation for which all methods for guessing a key
shared between a pair of nodes seem not to be feasible. We note that the scheme
could be applied with an even larger α value, for instance, 8000 or even higher,
while still being very efficient. This will be described in the next section.

4 Efficient Implementation and Performance

The design principles of HIMMO enable very efficient implementation. If N
depends on α as (α + 1)B + b and φk(x) = xk, then Equation (2) represents
the evaluation of a polynomial that can be implemented as described in [14]. If
the modulus N is independent of α and its bit length is equal to 2B + b, B = b
and φk(x) = 〈〈xk〉p〉2B , then key generation (Equation (2)) can be implemented
as shown in Algorithm 1. This algorithm shows a loop with α + 1 iterations,
each iteration requiring a partial evaluation of φk(x) and the corresponding
multiplication modulo N with the kth coefficient. Evaluating φk(x) involves a
reduction modulo p that can be efficiently implemented if p = 2B + r for a small
integer r. The reduction modulo N can also be efficiently implemented by taking
N = 23B − 1.

Table 3 provides preliminary performance results when the above algorithm
runs on the 32-bit NXP LPC1769 LPCXpresso Board at 120 MHz.The results are
based on an implementation in C only, and C with some assembler optimizations.

Comparing the performance of HIMMO with N dependent on α ([14], [12])
and N independent of α leads to several conclusions. Firstly, the CPU time
and memory requirements when N is (in)dependent of α are proportional to



Algorithm 1 Optimized key generation

1: INPUT: B, α, η, p Gξ,j with j ∈ {0, . . . , α}
2: OUTPUT: key
3: φ← 1
4: ID ← 1
5: key ← 0
6: for j = 0 to α do
7: φ← 〈φ · η〉p
8: ID ← 〈φ〉2B
9: key ←

〈
key +

〈
〈Gξ,j〉2B · ID

〉
2B

〉
2B

10: key ←

〈
key +

〈
Gξ,j

22B
·ID

2B

〉
2B

〉
2B

11: end for
12: return key

Table 3. HIMMO performance for B = b = 32 as a function of α.

α
800 1000 1500 2000 4000 8000

Keying material size (KB) 6.25 7.82 11.72 15.63 31.25 62.50

CPU time (msec) on NXP LPC1769 C 0.69 0.86 1.29 1.72 3.44 6.87
(32-bit @ 120 MHz) C+ASM 0.29 0.36 0.54 0.72 1.44 2.88

(α) α2. Thus, the proposed parameters in this paper allow us to achieve much
better performance for a given value of α. For instance, for α = 2000, if N is
independent of α, we see in Table 2 that the keying material is around 500 times
smaller than when N depends on α. Secondly, the usage of N independent of α
leads to very low RAM requirements, basically only one or two numbers of size
N need to be stored in RAM. Thirdly, in both cases, bandwidth consumption is
low, since a pair of nodes, ξ and η can directly communicate with each other, as
follows. The first party, ξ, computes a common key Kξ,η with η, uses this key
to protect a message, and then sends to η the protected message together with
some reconciliation data of Kξ,η so that the other party, η, can securely process
the received information. This method can be easily extended to include the
implicit verification of ξ’s credentials [14], [12]. As the implementation is very
efficient in RAM, computation time, and bandwidth, its energy consumption is
small as well.

As the above values and analysis show, HIMMO is a key pre-distribution
scheme that is both efficient and collusion resistant. Its features compare fa-
vorably with those of existing public-key schemes, in particular, if we consider
devices and use cases with limited bandwidth or energy budget, or with strict
timing requirements. One advantage is that HIMMO can achieve key agreement
and credential verification in a single message, while with public-key several
message exchanges are required. Additionally, most public-key systems, in par-



ticular, quantum-safe schemes, have very long public-key and signature sizes.
For instance, XMSS has signatures of 8 KB [1], one NTRUMLS signature [16]
is around 988 Bytes long, the original McEliece scheme involves extremely large
public-keys of around 200 KB and variants are more efficient but still relatively
bulky [4], NTRUEncrypt requires around 610 Bytes [23]. In HIMMO, the B-bits
identities play a role similar to the public keys, and signing can be done im-
plicitly. For instance, integration of HIMMO with DTLS [14] enables both key
agreement and mutual authentication with very low overhead that would be suit-
able for lightweight use cases. Computation-wise HIMMO is also very efficient,
even for large α parameters, achieving a performance for key generation similar
to that of Curve 25519 [3]. Indeed, the authors of [7] report a computation time
of 72 msec for generating a 32 Byte value with Curve25519 on a Cortex M0
processor at 50 MHz. This is comparable to the values for HIMMO that would
be obtained if we take Table 3 as a reference.

HIMMO also supports a collusion-resistant TTP infrastructure ensuring that
the manager of a single TTP (or an attacker breaking a TTP) cannot overhear
all the communications. This can be achieved without increasing communication
and computation overhead, see [14].

5 Conclusions

This paper has presented attacks and parameter choices for the HIMMO scheme.
The attack based on orthogonal lattices as presented in Section 3.2 allows ob-
taining an approximate solution to the MMO problem, and in this way, to attack
HIMMO. For the parameter choices from [12],[14], the dimension of the related
lattice grows linearly in α, but CPU and memory requirements scale quadrat-
ically in α. With the parameter choices presented in this paper, the CPU and
memory requirements and the dimension of the lattices associated to all attacks
described in this paper depend linearly on α, and a high α value can be used.
A value of α = 2000 seems to be a secure choice while still enabling a very well
performing scheme in terms of CPU time and energy consumption. In particu-
lar, the fact that HIMMO relies on identities leads to a quasi-non-interactive key
exchange while still enabling multiple protocol extensions such as the implicit
certification and verification of credentials.

Our future work firstly focuses on the further security analysis of HIMMO
and its operational features. To this end, we will analyze the performance of the
presented attacks when other lattice reduction algorithms are applied. We are
studying the usage of the HI and MMO problems for the design of other security
building blocks enabling additional functionality beyond key pre-distribution.
We are also analyzing how HIMMO can be used to enable more secure, efficient
and scalable security architectures for the Internet.
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and Ludo Tolhuizen. The MMO problem. In Proc. ISSAC’14, pages 186–193. ACM,
2014.

14. Oscar Garcia-Morchon, Ronald Rietman, Sahil Sharma, Ludo Tolhuizen, and
JoseLuis Torre-Arce. Dtls-himmo: Achieving dtls certificate security with sym-
metric key overhead. In Gnther Pernul, Peter Y A Ryan, and Edgar Weippl,
editors, Computer Security – ESORICS 2015, volume 9326 of Lecture Notes in
Computer Science, pages 224–242. Springer International Publishing, 2015.

15. Rosario Gennaro, Shai Halvei, Hugo Krawczyk, Tal Rabin, Steffen Reidt, and
Stephen D. Wolthusen. Strongly-resilient and non-interactive hierarchical key-
agreement in manets. In ESORICS 2008, volume 5283 of Lecture Notes in Com-
puter Science, pages 49–65. Springer, 2008.



16. C. J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and W. Whyte. Tran-
script secure signatures based on modular lattices. In Post-Quantum Conference
2014, 2014.

17. Xinyu Lei and Xiaofeng Liao. NTRU-KE: A lattice-based public key exchange
protocol. Cryptology ePrint Archive, Report 2013/718, 2013.

18. T. Matsumoto and H. Imai. On the key predistribution system: a practical solution
to the key distribution problem. In C. Pomerance, editor, Advances in Cryptology
– CRYPTO’87, LNCS 293, pages 185–193. Springer, 1988.
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Appendix: lattice heuristics

In our analysis, we needed estimates for the length of short vectors in a lattice. In
this appendix, we describe the heuristics that we used for obtaining this estimate.
We consider basic functions φ0, . . . , φα and distinct elements ξ0, . . . , ξc ∈ [0, 2B)
and let V be an (α + 1) × (c + 1) integer matrix with rows v0, . . . , vα, defined
as Vi,j = φi(ξj) for 0 ≤ i ≤ α and 0 ≤ j ≤ c. The lattice obtained by taking
integral linear combinations of these rows will be denoted by L. Since V is an
integral matrix, L is a subset of Zc+1, and as each point of L lies in the span of
v0, . . . , vα, it holds that

L ⊆ span(v0, . . . , vα) ∩ Zc+1.

The integer kernel K consists of the integral vectors that are orthogonal to all
rows of V , so

K = (span(v0, . . . , vα))⊥ ∩ Zc+1.

In order to obtain estimates for the length of small vectors in K, we consider
lattice volumes. We clearly have that

vol(L) ≥ vol(span(v0, . . . , vα) ∩ Zc+1),



and by definition

vol(K) = vol((span(v0, . . . , vα))⊥ ∩ Zc+1).

For any m-dimensional linear subspace S of Rn, m < n, it holds that vol(S ∩
Zn) = vol(S⊥ ∩ Zn), so the two volumes on the right hand sides of the above
equations are equal, and hence vol(K) ≤ vol(L).

The lattice volume of L is upper bounded by the product of the lengths of
the basis vectors which are upper bounded by

√
c+ 1 times the upper bound for

its elements: vol(L) <
∏α
i=0

√
c+ 1 maxη∈[0,2B) φi(η). As a consequence,

vol(L) < (c+ 1)
1
2 (α+1) 2

1
2α(α+1)B if φi(x) = xi,

vol(L) < (c+ 1)
1
2 (α+1) 2(α+1)B if φi(x) ≤ 2B

By the Gaussian heuristic, short vectors in K are expected to have a length
∼ (vol(K))1/(c−α). In our heuristics, we assume that K and L have approxi-
mately equal volumes, and approximate the length of short vectors in K by
(vol(L))1/(c−α). As a result, the length of short vectors in K is approximated by

(c+ 1)
α+1

2(c−α) 2
α(α+1)
2(c−α)

B if φi(x) = xi, (6)

and by

(c+ 1)
α+1

2(c−α) 2
α+1
c−αB if φi(x) ≤ 2B . (7)


