
Oblivious Transfer from Any Non-Trivial Elastic
Noisy Channel via Secret Key Agreement

Ignacio Cascudo1?, Ivan Damg̊ard2, Felipe Lacerda2, and Samuel Ranellucci2

1 Department of Mathematics, Aalborg University, Aalborg, Denmark
ignacio@math.aau.dk

2 Department of Computer Science, Aarhus University, Aarhus, Denmark
{ivan, lacerda, samuel}@cs.au.dk

Abstract. A (γ, δ)-elastic channel is a binary symmetric channel between
a sender and a receiver where the error rate of an honest receiver is δ
while the error rate of a dishonest receiver lies within the interval [γ, δ].
In this paper, we show that from any non-trivial elastic channel (i.e.,
0 < γ < δ < 1

2
) we can implement oblivious transfer with information-

theoretic security. This was previously (Khurana et al., Eurocrypt 2016)
only known for a subset of these parameters. Our technique relies on a
new way to exploit protocols for information-theoretic key agreement
from noisy channels. We also show that information-theoretically secure
commitments where the receiver commits follow from any non-trivial
elastic channel.

Keywords: oblivious transfer, elastic channels, key agreement, commitments

1 Introduction

In this paper we consider oblivious transfer (OT), a well known two-party
cryptographic primitive. In oblivious transfer, a sender has two messages and a
receiver chooses to learn one of them. The receiver gains no information about
the other message, while the sender does not know which of the messages the
receiver has learned. Oblivious transfer is an important primitive because it is
sufficient for information-theoretic secure computation [Kil88].

However, information-theoretic secure computation and therefore oblivious
transfer are well known to be impossible if sender and receiver communicate in the
plain model, without additional resources. Therefore, several alternative models
have been studied where information-theoretically secure oblivious transfer is
possible because we assume additional resources.

One such assumption is the existence of a noisy channel between the sender
and the receiver. It was shown in [CK88] that binary symmetric channels are

? ©IACR 2016. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag on 23 August 2016. The version published by Springer-Verlag
is available at 10.1007/978-3-662-53641-4 9.

in fact enough to realize oblivious transfer. A binary symmetric channel is one
where each bit sent is flipped with a certain probability, known as the error
rate of the channel. More efficient constructions, and different variants of noisy
channels, were provided in subsequent papers, such as [BCS96, Cré97, DKS99,
DFMS04, CMW05, CS06, PDMN11, IKO+11].

In particular, it was realized that it is problematic to assume that we are given
a noisy channel with known and fixed parameters, such that the OT protocol we
construct is allowed to depend on the parameter values. One reason for this is
that it can be very hard to reliably estimate the parameters of a real channel.
Another, more serious problem is that by fixing the parameters we are implicitly
assuming that the adversary cannot change them. This is clearly unrealistic, and
was the main motivation for introducing unfair noisy channels (UNC) in [DKS99].
In this model, the channel is a binary symmetric channel where, however, an
adversary who corrupts one of the two parties can also choose the error rate
to be within some range [γ, δ]. For δ ≥ 2γ(1 − γ), the channel is easily seen
to be trivial (it can be simulated from noiseless communication). It was shown
in [DKS99] that information-theoretically secure oblivious transfer follows from
UNC for a certain subset of the possible non-trivial parameter choices, while
information-theoretically secure commitments follow from any non-trivial UNC.

Elastic channels (EC), a relaxation of unfair noisy channels, have been
introduced in [KMS16]. For an EC, the noise can only be reduced by an adversary
who corrupts the receiver. More precisely, given 0 ≤ γ < δ ≤ 1/2, a (γ, δ)-elastic
channel is one where the communication between the sender and an honest
receiver has error rate δ, but a dishonest receiver may reduce this to be in the
interval [γ, δ]. Clearly, in this setting, δ = 1/2 would correspond to a channel
where all information is lost for the honest receiver, while γ = 0 would yield a
channel where a dishonest receiver has full information about the messages sent
by the sender. We cannot implement oblivious transfer in either case, and hence
these channels are deemed trivial.

It was shown in [KMS16] that commitments where the sender commits follow
from any non-trivial EC, and that oblivious transfer follow from EC for a certain
subset of parameters, which is larger than in the case of an UNC. More specifically,

they show that δ ≤ `(γ) where `(γ) :=
(
1 + (4γ(1− γ))−1/2

)−1
is sufficient.

It is of course interesting that going from UNC to EC allows a larger range
of parameters from which we can get OT. However, for both channels, we are
still left with a “grey area” of parameter values where we do not know if OT
is possible. One might say that we still do not know if an EC is fundamentally
and qualitatively different from a UNC as far as OT is concerned. Moreover, for
commitments, we know that we can have the sender commit, but since an EC
is asymmetric w.r.t what corrupted senders and receivers can do, it is not clear
that we can get commitments where the receiver commits for any non-trivial EC.

Our contribution. In this paper, we make progress on the above questions. First,
we close the gap left open in [KMS16] and show that information theoretically
secure oblivious transfer follows from any non-trivial EC. Along the way, we also
construct commitments where the receiver commits, from any non-trivial EC.

2

Our main technical contribution is a new way to exploit a certain type of key
agreement protocol towards implementing OT. More specifically, we consider a
key agreement protocol between two parties (Alice and Bob) in the following
model: Alice can send messages to Bob through a binary symmetric channel
C with error rate δ, and the adversary Eve will receive what Alice sends via
an independent binary symmetric channel with error rate γ′ ∈ [γ, δ]. On top
of this, Alice and Bob may also communicate via a public error-free channel.
Several key agreement protocols exist in this model [Mau93]. The main idea is to
use the public channel to identify transmissions where Alice and Bob are more
likely to agree on what was sent on the noisy channel. Because Eve’s channel is
independent, this may create a situation where Eve has a disadvantage compared
to Bob, even if her noise rate is initially smaller.

In this work, we consider key agreement protocols that are secure in the usual
sense: Alice and Bob agree on the output, and Eve gets essentially no information
on the key. But in addition, we require an extra property we call emulatability :
We can replace Bob by a “fake” Bob’, who gets no information on what Alice
sends on the noisy channel (but Eve gets information with error rate γ′ as usual).
Still, Bob’ can complete the conversation on the public channel such that neither
Alice nor Eve can distinguish Bob’ from Bob. As we explain later, we can modify
the key agreement protocol presented in [Mau93, §V] so that it is emulatable. We
show that an oblivious transfer protocol secure against semi-honest adversaries
can be constructed from any emulatable key agreement protocol. Furthermore,
by using information-theoretic commitments where the committing party is the
receiver (which can be constructed from any non-trivial EC, as we will show)
we can upgrade our protocol to achieve security against a malicious receiver too.
Finally, we show how to achieve security against a malicious sender in the case
where our emulatable key agreement protocol is the one mentioned above.

Technical overview. To give an intuition of how our protocol works, consider first
the case of semi-honest security where a semi-honest receiver reduces the error
rate to the minimal value γ (which is without loss of generality).

We turn an emulatable key agreement (KA) protocol as described above into
an OT protocol as follows. The sender and the receiver engage in two independent
instances (indexed respectively by 0 and 1) of the key agreement protocol above.
In both cases, the sender from the OT protocol takes the role of Alice in the
KA protocol, while the receiver does the following: in the instance of the KA
protocol corresponding to his selection bit b, he acts as Bob would, while in the
other instance, he acts as Bob’ (so in particular his actions are independent of
what he receives from the sender on the EC). Finally Alice sends her messages
m0, m1 one-time padded respectively with k0 and k1, each of these keys obtained
in the corresponding key agreement protocol.

Now, an honest receiver will learn mb as he should, which follows from
correctness of the KA protocol. Second, a corrupt sender cannot learn the choice
bit b. This follows from the emulatability property of the KA protocol: the sender
cannot distinguish in which of the two instances she is interacting with the real
Bob. Finally, a corrupt receiver cannot learn m1−b. This follows from the fact

3

that, in the instance of the KA corresponding to 1− b, the view of the receiver
is the same as the view of Eve, namely he sees everything Alice sends with
error rate γ, and he sees the public discussion (the fact that he generates that
discussion himself by running Bob’ makes no difference). One can then show that
emulatability implies that this view is distributed identically to the case where
Eve watches Alice interact with Bob, and the usual definition of key agreement
security guarantees that this is independent from the exchanged key k1−b.

Security in the malicious case is more involved. First, we need to ensure that
the malicious receiver follows the protocol. It turns out to be sufficient that the
receiver proves that for one of the KA instances, the messages he sends on the
public channel are generated by Bob’, of course without revealing which one. To
this end we can use the fact that commitments where the committing party is
the receiver also follow from any EC (see below) and, via a known reduction,
zero-knowledge proofs on committed values follow as well. Thus, we are doing
something very similar to the GMW compiler. As a result we get a protocol that
is secure against a semi-honest sender and a malicious receiver.

To further protect against a malicious sender, we execute many instances of
the OT. The receiver checks the statistics of what he receives on the EC and
discards instances that are too far from what he expects to see from an honest
sender. This creates a protocol where the sender will (at least sometimes) have
non-trivial uncertainty about the choice bit. We can now use standard techniques
to clean this up to get a secure OT.

As for our construction on receiver commitments from any non-trivial EC,
we observe that the commitment protocol from [DKS99] (that was designed for
a UNC) can be modified to work for an EC. All we essentially have to do is to
choose the parameters correctly. On the one hand, handling an EC is harder
because δ and γ are much further apart than for a UNC, however, on the other
hand an EC is easier because one party has to live with the large noise rate even
if he is corrupt. Intuitively, the observation is that these two issues balance each
out so that (almost) the same protocol still works.

Outline. In Section 2 we define the basic functionalities we will deal with for
the remainder of the paper, namely oblivious transfer and the elastic channel.
In Section 3, we introduce the notion of emulatable key agreement, as well as a
protocol that implements it. Emulatable key agreement is used in Section 4 to
implement an OT protocol that is secure against semi-honest adversaries. This
protocol is then used in Section 5 in the construction of a protocol secure against
a malicious receiver. Finally, in Section 6 we present a construction that builds
upon the one of Section 5 to obtain security against malicious adversaries.

2 Preliminaries

2.1 Security Model

We prove our protocols secure in the Universal Composability framework intro-
duced in [Can01]. This model is explained in Appendix A.

4

2.2 Oblivious Transfer

Oblivious transfer is a two-party primitive where one party (the sender) inputs
two messages and the other party (the receiver) chooses to receive one—and only
one—of them. Crucially, the sender does not learn the receiver’s choice, and the
receiver does not learn the message it did not choose. This primitive is formalized
in the figure below. Note that the description includes an adversary A, which
can corrupt parties.

Functionality FOT (Oblivious transfer)

FOT runs with two parties: a sender and a receiver.

Send: Upon receiving (send, sid,m0,m1) from the sender: store
(sid,m0,m1) and send (sent, sid) to A.

Receipt: Upon receiving (choice, sid, b) from the receiver: if a message
of the form (sid,m0,m1) has been stored, send (receipt,mb) to the
receiver.

2.3 Elastic Channel

A (γ, δ)-elastic channel, as introduced in [KMS16], is a binary symmetric channel
with crossover probability δ where a receiver that has been corrupted by the
adversary can choose to reduce the crossover probability to a level ν with
γ ≤ ν ≤ δ. In the functionality below, we define a more general version where
the channel is composed by ` binary symmetric channels (all with crossover
probability ν).

Functionality FEC(γ, δ) (Elastic channel)

FEC runs with parties P1, P2 and eavesdropper A as follows:

Initialization: ν ← δ

Noise: Upon receiving (noise, ν̄) from A, if the receiver is corrupt and
γ ≤ ν̄ ≤ δ then set ν ← ν̄.

Send: On (send, sid,m) from the sender, where m ∈ {0, 1}`, produce m̄ by
flipping each bit of m independently with probability ν. Then send the
message (sent, sid) to A and the message (sent, sid, m̄) to the receiver.

3 Emulatable Key Agreement

Key agreement is the problem where two parties, Alice and Bob, want to establish
a common key (a random element from {0, 1}`) so that an eavesdropper Eve

5

has no information about this key. In other words, the goal is to implement the
following functionality FKA.

1

Functionality FKA (Key agreement)

FKA runs with security parameter u, parties P1, P2 and eavesdropper A as
follows:

Establish: Upon receiving (establish, sid, Pi, P3−i) from Pi (where i ∈
{1, 2}), store (sid, Pi, P3−i) and send (sid, Pi, P3−i) to A. If the tuple
(sid, P3−i, Pi) had also been stored, choose k ←R {0, 1}t, send (sent, 1t)
to A and send (key, sid, k) to P1, P2.

In this section, we consider the scenario in which Alice can communicate to
Bob via a wiretap channel FC where each bit is flipped (independently) with
probability δ. Eve can obtain another noisy version of this communication, where
each bit is flipped with probability γ and this noise is independent from Bob’s.
Furthermore, there is a feedback public channel FPub through which Alice and
Bob can communicate.

Functionality FC (Wiretap channel)

FC runs with parameters γ, δ ∈ (0, 1/2), message size `, parties P1, P2 and
eavesdropper A as follows:

Send: Upon receiving (send, sid, P1, P2,m) where m ∈ {0, 1}`:
1. Produce m̄ by flipping each bit of m independently with probability
δ. Furthermore, produce m̃ by flipping each bit of m independently
with probability γ.

2. Send (sent, sid) to P1, (receipt, sid, m̄) to P2 and (receipt, sid, m̃)
to A.

Functionality FPub (Public channel)

FPub runs with message size `, parties P1, P2 and eavesdropper A as follows:

Send: Upon receiving (send, sid, Pi, Pj ,m) where m ∈ {0, 1}`, send
(sent, sid) to Pi and (receipt, sid,m) to Pj and A.

In this setting, we are interested in key agreement protocols with an additional
property that we call emulatability. A key agreement protocol π is emulatable if,

1 In the remainder of this section, we interchangeably call the parties Alice, Bob, Eve
or respectively P1, P2,A.

6

in addition to implementing the key agreement functionality as it should, the
role of Bob can be simulated by some entity E , the emulator, that learns no
information about the messages transmitted through FC, other than their lengths,
and neither Alice nor Eve can distinguish whether Alice is interacting with Bob
or with E .

We formalize this below. We first define a functionality FDC that models a
dummy channel whose task is to erase every information sent through the channel
FC except for the length of the messages.

Functionality FDC (Dummy channel)

FDC runs with message size ` and parties P1, P2 as follows:

Send: Upon receiving (send, sid,m) from P1 where m ∈ {0, 1}`:
If no such command has already been sent, send (sent, sid, |1|`) to P2.
Otherwise, ignore the command.

Definition 1. A key agreement protocol π between Alice and Bob using a wiretap
channel FC and a public channel FPub is emulatable if:

1. It realizes the functionality FKA. That is, there exists a simulator S such that
for all eavesdroppers A,

π � FC � FPub ≡A FKA � S.

2. There exists an emulator E such that the following happens: suppose that we
consider the protocol π′ where we replace Bob by FDC � E, i.e., E is linked to
FC via the dummy channel FDC, and Alice acts as in protocol π, while in both
cases the eavesdropper A receives information from FC and FPub. Then from
the point of view of Alice and all eavesdroppers A, the protocol executions of
π and π′ are indistinguishable.

That is, we have

π � FC � FPub ≡Alice,A π
′ � FC � FPub.

We will need the following property later on.

Proposition 1. Suppose that a key agreement protocol π is emulatable. Then
for any eavesdropper A, if Alice is executing the protocol π′ with the emulator E
as in the definition, A obtains no information about Alice’s output.

This is because, if A could obtain any information about Alice’s output in
the execution of π′, then either she would be able to obtain information about
Alice’s output in the execution of π (contradicting property 1 of emulatability)
or she would be able to distinguish π and π′ (contradicting property 2).

7

3.1 The Emulatable Key Agreement Protocol

We now describe an emulatable key agreement protocol for a wiretap channel
FC with γ < δ, that is, for which the channel to the eavesdropper Eve is more
reliable than the channel to Bob.

This is a small modification of a key agreement protocol from [Mau93, §V].
For each γ, δ, the protocol specifies numbers s, `, n ∈ N, to be determined below.
In addition, ` = 2m+ 1 is an odd number. The protocol consists of three phases:
advantage distillation, information reconciliation and privacy amplification.

The goal of the advantage distillation step is to create a conceptual channel
between Alice and Bob which is more reliable than the one between Alice and
Eve. In our protocol, this step proceeds as follows. Alice samples n random bits
bi and encodes each bit b as a bitstring v in {0, 1}` by selecting uniformly at
random a set J ⊆ {1, . . . , `} of size m and setting the j-th coordinate of v to
be 1− b if j ∈ J and b if j 6∈ J . Note that this means m+ 1 of the bits of the
encoding equal b while the other m bits equal 1− b. Now, if for a given sent bit b,
Bob receives a message of the form (c, c, . . . , c) for some c, we say Bob accepts the
bit b and c is his guess about b. Now Alice creates the bitstring bi1bi2 . . . bis given
by the first s bits accepted by Bob and Bob creates the bitstring ci1ci2 . . . cis of
his guesses. They both disregard the remaining bits. Alternatively, one can see
Alice’s encoding process as first encoding her bit with the repetition code and
then introducing errors in exactly m positions. As we discuss in Section 3.2, the
protocol is similar to that in [Mau93, §V], except that the global error introduced
here is of fixed weight m, rather than flipping each bit with certain probability.
In Section 3.2 below, we discuss why we need this to introduce this modification.
Yet, from the point of view of advantage distillation, the intuition why this
protocol works is the same as in [Mau93]: namely, even though Eve has more
information over messages sent over the wiretap channel than Bob has, she has
less information about the ones accepted by Bob; in other words, the probability
that Bob decodes those bits correctly is higher than that of Eve’s. We formalize
this later.

The information reconciliation step is carried out over the public channel.
After this step, Alice and Bob will share a common bitstring with overwhelming
probability, and Eve is still guaranteed to have some uncertainty about it. In
the description below, we use the information reconciliation protocol in [BS94],
where Alice sends the evaluation on her bitstring of a hash function chosen from a
2-universal family with an appropriate range size. Then Bob corrects his bitstring
by finding the closest bitstring to it which is consistent with this evaluation.

Alice and Bob can then apply privacy amplification to obtain a random
string about which Eve has no information. This can also be done by having
only Alice send information over the public channel. The fact that both the
information reconciliation and privacy amplification steps involve only Alice
sending information over the public channel is important to guarantee the
emulatability property.

We note that the information reconciliation step may in general not be
computationally efficient for Bob; however, in fact any information reconciliation

8

protocol can be used, as long as it is non-interactive. One efficient option is to
employ a fuzzy extractor, as in [DORS08, §8.1], in order to execute both steps.

This description is formalized below. (For simplicity, we omit the description
of the “establish” step introduced in the functionality of Section 3.)

Protocol πKA (Emulatable key agreement)

Parameters:

– σ: security parameter.
– ` := `(γ, δ): an odd natural number which only depends on γ and δ.
– m := `−1

2 .
– s ∈ ω(σ).
– t ∈ Θ(σ).
– n > ds/(δ(1− δ)m)e.
– 0 < ε < 1

2 − δ: a small constant.

Let h denote the binary entropy function and H1 : {0, 1}s → {0, 1}s·h(δ+ε)+σ,
H2 : {0, 1}s → {0, 1}t be 2-universal families of hash functions.

Advantage distillation:

Alice:

Select b1, . . . , bn ∈R {0, 1}.
For i ∈ {1, . . . , n}:
1. Select a set Ji ⊆ {1, . . . , `} of size m uniformly at random.

2. Set vi to be the bitstring in {0, 1}` such that vi[j] = 1− bi for j ∈ Ji
and vi[j] = bi for j /∈ Ji where vi[j] denotes the j-th coordinate of
vi.

3. Send (send,Alice,Bob, sidi, vi) to FC.

Bob:

For i ∈ {1, . . . , n}, await (receipt,Alice,Bob, sidi, v̄i) from FC.

Construct the set I ⊆ {1, . . . , n} consisting of the indices i for which
v̄i = c`i for some ci ∈ {0, 1}
Encode the set I as a bit string u and send (send, sid,Bob,Alice, u) to
FPub.

Alice:

Await (sent, sid,Bob,Alice, u) from FPub.

Alice ↔ Bob:

Alice sets Xs = (bi1 , bi2 , . . . , bis) and Bob sets Y s = (ci1 , ci2 , . . . , cis),
where i1, . . . , is are the first s indices in I.

9

Information reconciliation and privacy amplification:

Alice:

Sample h1 ∈R H1, h2 ∈R H2, send (send, sid,Alice,Bob, h1, h1(Xs), h2)
to FPub.

Output h2(Xs).

Bob:

Await (send, sid,Alice,Bob, h1, h1(Xs), h2) from FPub.

Find the closest (in the Hamming metric) bitstring X̃s to Y s satisfying

h1(X̃s) = h1(Xs).

Output h2(X̃s).

In order to prove that our protocol is indeed an emulatable key agreement
protocol, we introduce the following notation. Let X denote a variable with
the uniform distribution over {0, 1}. Let Y and Z be the random variables that
describe respectively the output bit c of Bob and the received bitstring of Eve
(which is an element in {0, 1}`) when Alice samples a bit b according to X,
encodes it as in our protocol, sends it through the wiretap channel and Bob
accepts. An important point to make is that, since the noise of Bob and Eve are
independent, the probability distribution of Z would be the same if we removed
the conditioning on Bob accepting the bit. We have the following theorem.

Theorem 1. The protocol πKA is an emulatable key agreement protocol.

We use the following lemma which intuitively means that, as ` grows, the
probability that Eve receives a bitstring where most bits are 0 approaches 1/2 if
Alice encoded a 0 (naturally an analogous statement holds if Alice encoded a 1).
The proof of the lemma can be found in Appendix B.

Lemma 1. For i ∈ {0, 1}, let Si ⊆ {0, 1}` be the set of all bitstrings where most
bits are i. Then Pr[Z ∈ Si|X = i]→ 1/2 as `→∞.

Proof (of Theorem 1). The detailed proof is in Appendix C. Here we give a
sketch.

First we argue about the correctness of the protocol. It is not difficult to
see that, for each index i, Bob accepts the corresponding bit with probability
paccept = (δ(1 − δ))m. Furthermore, condition to Bob having accepted a bit,
the probability that he decodes it correctly is again exactly 1 − δ, i.e., the
advantage distillation step creates another conceptual noisy channel where the
noise parameter is still δ,the same as in the original noisy channel.

Since we set n slightly larger than ds/paccepte, for large enough parameters
Bob will, with very high probability, accept at least s bits, of which roughly
δ · s will be incorrect. By the results on information reconciliation in [BS94] our

10

choice of H1 guarantees that Bob corrects to the right string in the information
reconciliation step, and hence that they output the same key at the end of the
protocol.

Next, we consider privacy. Let X and Z be as above. We can use Lemma 1
in order to establish that H∞(X|Z)→ 1 as `→∞. We can then select ` large
enough so that H∞(Xs|Zs, h1, h1(Xs)) ≥ t+ 2σ (see the full proof for details),
and apply the leftover hash lemma to conclude that conditioned on everything
seen by Eve during the protocol, the distribution of h2(Xs) is 2−σ-close to the
uniform distribution over {0, 1}t.

Finally, to show that the protocol is emulatable, we have to construct an
emulator E that satisfies Property 2 in Definition 1. Note the only information
sent by Bob is the description of the set I of indices for which Bob accepted
Alice’s message. Hence, this can be emulated by sampling a random index set
I ⊆ {0, 1}n, where each index belongs to I with independent probability paccept.

3.2 On the Emulatability of Other Key Agreement Protocols

Protocol πKA described above is based on the protocol given in [Mau93, §V]. As a
matter of fact, several key agreement protocols for noisy channels are described
in [Mau93] and subsequent works. However, they are either not emulatable (or,
at least, it seems difficult to show they are) or they do not work for all non-trivial
sets of parameters (γ, δ).

First, [Mau93, §V], considers a slightly different scenario, in which there is
only a public channel available for communication but on the other hand at the
beginning of the protocol Alice, Bob and Eve have noisy versions (respectively
rA, rB and rE) of a common string r, where each bit is independently flipped
with probabilities εA, εB and εE for Alice, Bob and Eve respectively. Then having
Alice mask a message (by xoring it with rA) and send it through the public
channel, induces a conceptual noisy channel where the input of Alice is m, and
the outputs of Bob and Eve are m⊕ rA⊕ rB and m⊕ rA⊕ rE respectively. In the
protocol proposed in [Mau93, §V] Alice encodes random bits with a repetition
code and sends the information over the conceptual channel. From this point,
the protocol proceeds as ours (Bob accepts the bits corresponding to codewords
and they execute information reconciliation and privacy amplification on the
resulting string). It can be shown that any parameters 0 < εA, εB , εE < 1/2 lead
to a secure key agreement protocol.

In our scenario, the players do not start with noisy versions of a common
string, but have a (γ, δ)-wiretap channel. We can reproduce the situation above
in our scenario as follows: in order to send the message m, Alice flips each
bit independently with probability εA > 0 and sends the result through the
(γ, δ)-wiretap channel. This would be an equivalent situation of the above where
εB = γ and εE = δ, and therefore it would lead to a secure key agreement
protocol. However, the protocol would not be emulatable: the reason is that
the probability that Bob accepts a given instance depends on the exact number
of bitflips introduced by Alice. However, because this artificial noise has been
introduced by Alice and not by the channel, this information is known by Alice;

11

on the other hand, the number of bitflips in a given instance cannot be determined
precisely by the emulator, even though it knows εA. Hence, regardless of how we
define the emulator, Alice will be able to distinguish when she is interacting with
it or with Bob.

If Alice does not introduce this artificial noise (i.e., if εA = 0), then there
is an emulator that can reproduce Bob’s answer in every case, but the range
of (γ, δ) for which this protocol is a secure key agreement protocol does not
include all possible 0 < γ, δ < 1/2 and, in fact, it can be seen is exactly the
very same range of parameters (γ, δ) for which [KMS16] shows the existence
of an OT protocol for a (γ, δ)-elastic noisy channel (i.e. those pairs satisfying

δ ≤
(
1 + (4γ(1− γ))−1/2

)−1
).

In our protocol, we solve these problems by having Alice introduce artificial
noise, but making this noise be of a fixed Hamming weight m. This solves the
problem with the existence of the emulator, while still preserving the security of
the protocol.

Finally, we also need to mention that a simpler protocol for key agreement
in our wire-tap channel scenario is presented in [Mau93, Proposition 1]. The
protocol first creates a conceptual channel from Bob to Alice in which Alice
has more information about Bob’s message than Eve does. This protocol works
for all non-trivial wire-tap channel noise parameters. However, the information
reconciliation and privacy amplification steps cannot be performed in such a way
that it is only Alice who sends information (because in this case these steps are
going to correct Alice’s knowledge of Bob’s string). Then, it is unclear whether
this protocol can be made emulatable, because we would also need the emulator
to simulate the information sent by Bob in these steps, and this does not appear
to be straightforward.

4 Semi-honest Protocol

Now we present an OT protocol over the elastic channel FEC(γ, δ) for semi-honest
adversaries. We show that such an oblivious transfer protocol can be constructed
from any emulatable key agreement protocol that works in the setting of Section 3
(where Alice, Bob and Eve are connected by a wiretap channel FC with the noise
parameters being δ for Bob and γ for Eve).

The idea of the protocol is for sender and receiver to engage in two separate
subprotocols. In one, they run the emulatable key agreement protocol with the
sender acting as Alice and the receiver acting as Bob. In the other subprotocol,
the sender follows again the key agreement protocol as Alice, whereas the receiver
runs the emulator, according to Definition 1. The choice bit c determines whether
the receiver will follow the protocol or act as the emulator. Here, the elastic
channel is used as a conceptual wiretap channel FC, where an honest receiver gets
the output of the legitimate (noisier) channel, whereas an adversarial receiver
gets the output of the less noisy channel.

To see why the protocol is secure, we note that since the key agreement
protocol is emulatable, the sender does not know whether she is interacting with

12

Bob (that is, whether she is engaging in the actual key agreement protocol) or
with the emulator. Hence, she does not learn any information about the choice
bit c. This guarantees the receiver’s privacy.

On the other hand, by definition the emulator can generate the transcript for
the key agreement protocol without knowing anything about the exchanged key.
Therefore in this case the receiver has no information about the key output by
Alice at the end of the key agreement protocol.

This proof sketch is formalized in Theorem 2, below.

Protocol πOTSH (Semi-honest oblivious transfer)

Let πKA be an emulatable key agreement protocol, as stated in Definition 1.
We denote the sender’s input as m0,m1 and denote the receiver’s input as c.

Sender ↔ Receiver:

Sender and receiver execute two copies π0, π1 of πKA, where the sender
behaves in both as Alice. In πc, the receiver acts as Bob and in π1−c, it
acts as the emulator E prescribed by π′

KA
.

Receiver:

On completion of π0, π1, record the output of πc as k.

Sender:

Await k0, k1 from π0, π1.

Set m̄i := mi ⊕ ki for i = 0, 1.

Send (send, sid0, m̄0) and (send, sid1, m̄1) to FPub.

Receiver:

Await (sent, sid0, m̄0), (sent, sid1, m̄1) from FPub.

Output mc := m̄c ⊕ k.

Theorem 2. The protocol πOTSH realizes FOT. That is, there exists a simulator S
such that

πOTSH � FEC � FPub ≡Z FOT � S

for all semi-honest environments Z.

Proof. For each activation, the environment Z chooses m0,m1, c. When interact-
ing with the protocol, Z receives m′c, and when interacting with FOT, it receives
mc. We note first that since πc is an instance of πKA, which implements FKA, we
have m′c = mc. All that remains to be shown is that there exists a simulator for
FOT that can reproduce the view of the environment.

First, assume P1 is corrupted, so that Z gets access to P1’s internal state.
During the real execution, it gets access to k0, k1 (through P1), m̄0, m̄1 plus the

13

leakage from π0 and π1 (through the adversary A, which interacts with FEC and
FPub). At the end of the execution, it gets P2’s output, which is given by mc.

In the ideal process, the simulator S corrupts P1, so that it gets access to
m0,m1. S proceeds as follows. First, it executes two copies of FKA � S ′, where S ′
is the simulator for the key agreement protocol. By assumption, this internal sim-
ulator replicates the leakage from π0 and π1, which is relayed to Z. Additionally,
at the end of FKA’s execution, S gets two random keys, which we denote by k′′0 , k

′′
1 .

It then computes m̄i = mi ⊕ k′′i for i = 1, 2 and sends both to Z. Finally, it
sends m0,m1 to FOT, which will then send mc to P2. It is easy to see that FOT � S
provides Z with the same view as in the real protocol.

Now assume P2 is corrupted. Throughout the real execution, Z gets access
to kc (through P2), m̄0, m̄1,mc plus the leakage from π0 and π1 (through the
eavesdropper A). In the ideal process, S gets c by corrupting P2. It proceeds as
follows. It runs one copy of FKA � S ′, obtaining a random key k′′c , and relays c to
FOT. After P2 receives mc from FOT, S computes m̄c = mc ⊕ k′′c and sends it to Z.
Clearly, mc and m̄c have the same distribution as in the real execution.

Finally, we look at the leakage from the execution of π1−c (executing the
instance of π′

KA
with the emulator E). Due to Proposition 1, π1−c gives no in-

formation on k1−c to the eavesdropper A. Therefore m̄1−c gives no additional
information to Z. Moreover, since the execution of E only depends on the outputs
of the dummy channel FDC, its view provides Z with no additional information,
even given the rest of Z’s view. The view of Z is therefore the same in both
scenarios.

5 OT Protocol Secure against a Malicious Receiver

In this section, we make our protocol secure against a malicious receiver. Note
that in our semi-honest protocol, we rely on the fact that the players will engage
in two instances of an emulatable key agreement protocol, where the receiver will
play the role of Bob in one of them and the emulator in the other. Of course, if
the receiver is malicious, he will not necessarily adopt this behaviour. We will use
standard techniques to solve this problem. Namely, we want to use the paradigm
introduced in [GMW86]: we will make the receiver prove in zero knowledge that
he is acting as in the semi-honest protocol.

To do this, we will need that the receiver can commit to bits. Recall that
in [KMS16] it was shown that commitments where the sender commits follow
from any non-trivial EC, but since an EC is asymmetric, it is not clear that this
allows the receiver to commit. Therefore, we solve this problem first.

5.1 Receiver Commitment from any Non-trivial EC

The solution in a nutshell is to observe that the commitment protocol from
[DKS99] will work for receiver commitments on any non-trivial EC, if we slightly
tune some of the parameters.

14

First, note that we can reverse the direction of the EC, by simply having the
sender send a random bit x on the EC, the receiver chooses a bit b to send and
sends x ⊕ b back on the public channel. This is clearly a noisy channel in the
opposite direction. In this subsection we will rename the sender and call him
the verifier V , while the receiver will be called the committer C. What we just
constructed is a “reversed EC” where the C sends and V receives. V always
receives with noise rate δ, but C can reduce his noise rate to γ if he is corrupted
(and hence get a better idea of what V received). The goal is now to build an
unconditionally secure commitment scheme based on such a channel.

In fact, we show that, under a careful choice of parameters, the commitment
protocol from [DKS99] already works with no change. A complete description of
the protocol, as well as an intuition for why it is secure, is provided in Appendix D.

5.2 From Commitment to Security against a Malicious Receiver

Recall that the GMW compiler [GMW86] transforms a semi-honestly secure
protocol into a maliciously secure one by using the following three steps: in the
first step, each party commits to his input; in the second step, each party is forced
to commit to a random tape, where it is important that the tape is hidden from
the other party and is chosen at random. This is done by having the party that is
committing to a random tape commit to a random value. The other party then
sends a random string. The tape is then defined to be the xor of both strings.
This technique is known as coin-tossing in the well. Finally, in the third step,
each player follows the protocol with the committed inputs and their committed
tape and whenever they send a message, they also prove in zero-knowledge that
this is the correct message given their committed input, their committed random
tape and the transcript of the protocol.

In this section, we are only interested in achieving security against a malicious
receiver, so we apply the compiler to the receiver only. This results in the following
approach: In the first step, the receiver will commit to his choice of input c;
this also indicates the instance of the key agreement protocol where he will play
the role of Bob. In the second step, the receiver will be forced to commit to a
random tape t for the emulator using coin-tossing in the well. Then the sender
and receiver will run an augmented version of the semi-honest protocol. Each
instance of the key agreement protocol will be associated to an index b. Each time
a receiver sends a message, the receiver also proves in zero-knowledge: “Either
the given instance of key agreement has index b = c or the message was produced
by following the description of the emulator with random tape t”.

There is, however, one difficulty: In [GMW86], the commitments were compu-
tational. It was therefore possible to prove statements about committed values
directly. For a black-box information-theoretically secure commitment, it is not
directly possible to prove statements that involve the committed values. To fix this
problem, we use a commitment scheme which can indeed be used for any number
of zero-knowledge proofs. This is the commitment scheme from [CvdGT95] which
was later proven UC-secure in [Est04]. As shown in [CvdGT95], this commitment
scheme can be constructed in a black-box manner from any commitment schemes.

15

Although this commitment scheme only allows proofs of xor relationships directly,
one can use techniques such as [BCC88] to prove arbitrary statements involving
the committed values.

Functionality FCOMZK (Commitment with zero-knowledge)

FCOMZK runs with two parties: a sender and a receiver.

Commit: On receiving (commit, cid,m) from the sender:
If such a command has already been sent, ignore the message.
Otherwise, record (cid,m) and send (committed, cid) to A and to the
receiver.

Reveal: On receiving (reveal, cid) from the sender:
If no pair (cid,m) was recorded then ignore the message. Otherwise, send
(open, cid,m) to A and to the receiver.

Proof: On receiving (prove, x, cid1, . . . , cidn, R) from the sender:
Check that for each cidi, there exists a mi such that the pair (cidi,mi)
has been recorded. If this is not the case then ignore the command. Let
w = (m1, . . . ,mn). Check that (x,w) ∈ R. If this is not the case then
ignore the command. Otherwise, send (proven, x, cid1, . . . , cidn, R) to
the receiver and A.

Protocol πOTMR (Oblivious transfer–malicious receiver)
We denote b as the index of the key agreement instance. We denote m0,m1

as the sender’s input and c denotes the receiver’s input. We denote E(t, r),
the next message function of the emulator given transcript t and random
tape r. If the emulator is awaiting a message for a given transcript t, we let
E(t, r) = ⊥. We define the following two relationships: R1 and R2.

R1(a, (b, c)) :=

{
1 a = b⊕ c
0 otherwise

R2((t,m, b), (r, c)) :=

1 if b = c

1 E(t; r) = m

0 otherwise

Receiver:

r1 ∈R {0, 1}k

Send (commit, cid, c), (commit, rid1, r1) to FCOMZK

Sender:

Await (committed, cid), (committed, rid1) from FCOMZK

16

r2 ∈R {0, 1}k

Send r2 to the receiver.

Receiver:

r ← r1 ⊕ r2 (random tape)

Send (commit, rid, r) to FCOMZK (commit to the random tape)

Send (prove, r2, rid1, rid, R1) to FCOMZK (prove that the commited value
associated to rid is indeed a commitment to the random tape)

Sender:

Await (committed, rid) and (proven, r2, rid1, rid, R1) from FCOMZK.

Sender ↔ Receiver:

Sender and receiver run πOTSH as defined in Section 4 where the sender
inputs m0,m1 and the receiver inputs c with the following modification:

Whenever a receiver would send a message m in the semi-honest protocol,
let b be the instance of the key agreement protocol they are executing,
and let t be the transcript up to that point for that instance of the
key agreement protocol. The receiver sends m to the sender and also
sends the command (prove, (t,m, b), rid, cid, R2) to FCOMZK. Whenever the
sender receives a message m from the the receiver, he awaits that FCOMZK

send him (proven, (t,m, b), rid, cid, R2) before proceeding.

Theorem 3. πOTMR securely realizes FOT in the FEC-hybrid model against an envi-
ronment that can only semi-honestly corrupt the sender.

This theorem follows directly from the construction of XOR commitments
from [CvdGT95, Est04], the security of the GMW compiler [GMW86] and the
security of the zero-knowledge protocol from [BCC88, Kil92].

6 Secure Protocol

In this section we consider our oblivious transfer protocol πOTMR from Section 5,
which is secure against a semi-honest sender and a malicious receiver and we show
that, if πOTMR is implemented with the key agreement protocol from Section 3.1,
we can transform πOTMR into a protocol πOT secure against an malicious sender too.

Note that in the aforementioned key agreement protocol, the sender is sup-
posed to send through the channel several bitstrings of length ` and Hamming
weight either m or m+ 1, where ` = 2m+ 1. From now on, we refer to bitstrings
of weights m and m+ 1 as codewords, while the rest will be non-codewords. A
problem that arises when using this key agreement protocol as a basis for our
oblivious transfer protocol, is that an active sender could use non-codewords to
bias the distribution of indices and learn the receiver’s choice. For example, if

17

she sends the all-one bitstring, this index will be accepted by the receiver with
higher probability if he is playing the role of Bob, than it will if he is playing the
role of the emulator.

We will prevent an active sender from using non-codewords in her advantage
by combining cut-and-choose techniques, a typicality test and an OT-combiner.
The protocol works essentially as follows: the sender and receiver will start to
run N instances of πOTMR in parallel. Right after the sender has sent the intended
codewords through the channel FEC in all these instances, the receiver will then
choose half of those instances and request the sender to open her view (i.e., to
reveal the information that she sent through the channel). The receiver now runs
a typicality test on those instances: he counts the number of differences between
what the sender claims to have sent and what he received for those instances.
If this distance is higher than what would be typically expected from the noisy
channel then the receiver aborts. If the test passes then it is guaranteed that,
except with negligible probability, there is at least one unopened instance where
no bad codeword was sent.

The sender and receiver now apply a (1, N/2) OT-combiner on the half
of the instances of πOTMR that have not been opened; in general, a (t, n) OT-
combiner [HKN+05] is a primitive which given (black-box) access to n OT
candidates, implements a secure OT as long as t of them are secure; in our case,
our candidates are the unopened instances of πOTMR and we use a simple XOR-based
OT-combiner which only needs to be secure against a malicious sender (all the
candidates are already guaranteed to be secure against a malicious receiver).
Since the sender has behaved well in at least one of these instances, we achieve a
secure oblivious transfer protocol by applying this combiner.

The sender could also try to cheat in the public channel part of the key
agreement protocol by sending some inconsistent information (for example in
the information reconciliation step) to see the aborting behaviour of the receiver;
however, we have the receiver abort in the global protocol if he sees at least
one inconsistency in some instance of the protocol. Given the properties of the
combiner the only way to obtain information about the receiver’s input bit is
that the sender cheats in one of the key agreement protocols of every unopened
instance and the receiver never aborts, which happens if the sender guesses each
of the bi’s for the unopened instances and in turn this happens with probability
2−N/2 (in fact, we could make her cheating probability even lower by having the
receiver abort if he detects inconsistent information in the opened instances).

6.1 Protocol

The protocol πOT is described below.

Protocol πOT (Oblivious transfer)
The protocol involves two players: the sender and the receiver. The sender
provides inputs m0,m1 ∈ {0, 1} and receives no output. The receiver

18

provides c ∈ {0, 1} and outputs mc. Fix κ a security parameter for πOT.

For the protocol πOTMR secure against a malicious receiver from previous
section instantiated with security parameter x, denote W (x) the expected
number of bits flipped during such protocol if the noise parameter is not
changed (that is, δ times the number of bits sent through the elastic channel).

Now define the following parameters:

Q(x) :=
32

(1− 2δ)2
W (x).

σ := min{x ∈ Z : x− logQ(x)− log κ ≥ κ}.
N := κQ(σ).

τ := W (σ) +
1− 2δ

2
.

and we instantiate πOTMR with security parameter σ.
(Note that, once κ is fixed, σ is well defined because Q(x) is polynomial

in x and hence x− logQ(x) ≥ κ+ log κ for sufficiently large x.)

Sender:

Sample ∆ ∈R {0, 1}.
Sample w1

0, . . . , w
N
0 ∈R {0, 1}.

Sample w1
1, . . . , w

N
1 ∈R {0, 1}.

Let ∆i := wi0 ⊕ wi1 ⊕∆, i = 1, . . . , N .

Receiver:

Sample b1, . . . , bN ∈R {0, 1}.

Sender ↔ Receiver:

Sender and receiver run N instances of the protocol πOTMR as defined in
Section 5. Let (wi0, w

i
1) be the sender’s input and bi be the receiver’s

input in the ith instance. If at some point in one of the instances the
sender sends any information through the public channel that the receiver
detects as invalid (such as incorrectly formed h1, h2, or a value v that is
not of the form h1(Xs) for any string Xs), then the receiver waits until
all instances are completed and then aborts.
Moreover, the sender records the bits that she sends through the elastic
channel in each of the instances as X = {(i, j, xi,j) | 1 ≤ i ≤ N, 1 ≤ j ≤
B}. The receiver records the noisy version of bits that he receives from
each instance as Y = {(i, j, yi,j) | 1 ≤ i ≤ N, 1 ≤ j ≤ B}.

Receiver:

Choose T ∈R {I | I ⊆ {1, . . . , N}, |I| = N/2}.
Send T to receiver.

19

Set L := {1, . . . , N} \ T .

Sender:

Await T .

If |T | 6= N/2 then abort.

Set L := {1, . . . , N} \ T , send S := {(i,∆i) | i ∈ L} and X̃ :=
{(i, j, xi,j) ∈ X | i ∈ T } to the receiver.

Receiver:

Await X̃ and S.

Check that X̃ indeed corresponds to a set of bits that the sender should
have sent in πOTMR (i.e., that the appropriate parts of X̃ correspond to
codewords). If not, abort.

Check that ∑
i∈T ,1≤j≤B

|xi,j − yi,j | ≤
τN

2
.

If it fails, then abort.

Let b :=
⊕
i∈L

bi. Send d := b⊕ c to the sender.

Sender:

Let w0 :=
⊕
i∈L

wi0, w1 := w0 ⊕∆. Send (v0, v1) := (m0 ⊕wd,m1 ⊕w1⊕d)

to the receiver.

Receiver:

Let w :=
⊕
i∈L

wibi ⊕ (bi ∧∆i). Output w ⊕ vc.

In protocol πOT, the parameters N (the number of instances of πOTMR that will
be run), σ (the security parameter of πOTMR) and τ (a threshold parameter for the
test, which is W (σ) plus a small offset) are defined so that we have the following
guarantees:

1. The probability that at least one instance of πOTMR is broken by a dishonest
receiver is smaller than 2−κ: Indeed, each individual instance can be broken
with probability at most 2−σ, and it is easy to see that with our choice of
parameters, it holds that N · 2−σ ≤ 2−κ.

2. The probability that an honest sender passes the typicality test is at least
1− 2−κ: see proof in Appendix E.1.

3. If a malicious sender sends at least one non-valid codeword in at least N/2−κ
instances of πOTMR from the testing set, then she passes the typicality test with
probability at most 2−κ: see proof in Appendix E.1.

20

Note that the third property prevents a malicious sender to cheat except with
probability 2−κ. Indeed, in order for a malicious sender to cheat successfully,
she would need to break each of the N/2 instances of πOTMR from the evaluation
set, and for that she would need to send at least one bad codeword in each of
those instances. By 3., in order to pass the test she needs to send all the correct
codewords in at least κ instances of the testing set. But since she does not know
which instances will be selected for the evaluation set and which for the testing
set, then the probability that none of these (at least) κ correct instances end up
in the evaluation set is at most 2−κ.

With all these remarks in mind, we can show (Appendix E) that

Theorem 4. πOT securely realizes FOT in FEC-hybrid model.

A Universal Composability

The Universal Composability security framework, introduced in [Can01], is based
on the simulation paradigm. Roughly, the idea is to compare the execution of
the actual protocol (the real world) with an idealized scenario (the ideal world)
in which the computations are carried out by a trusted third party (the ideal
functionality) which receives inputs from and hands in outputs to the players.
The goal is to show that these two worlds are indistinguishable. In order to
formalize this goal, we introduce a party called the environment Z, whose task is
to distinguish between both worlds. Furthermore, in the ideal world, we introduce
a simulator S, its task being to simulate any action of the adversary in the real
protocol and thereby to make the two views indistinguishable for any environment.
More precisely, in the real world execution of protocol π, with the adversary A
and environment Z, the environment provides input and receives output from
both A and π. Call RealA,π,Z the view of Z in this execution. In the ideal world
Z provides input and receives output from S and the ideal functionality F . Call
IdealS,F,Z the view of Z in the ideal execution. We can proceed to define what it
means for a protocol to be secure.

Definition 2. A protocol π UC-implements a functionality F against a certain
class of adversaries C if for every adversary A ∈ C there exists a simulator S
such that for every environment Z, RealA,π,Z ≈ IdealS,F,Z .

The cornerstone of the universal composability framework is the composition
theorem, which works as follows. Denote by π �G a protocol π that during its
execution makes calls to an ideal functionality G. The composition proof shows
that if πf �G securely implements F and if πg securely implements G then πf �πg
securely implements F . This provides modularity in construction of protocols
and simplifies proofs dramatically. It is also shown that proving security against
a dummy adversary, one who acts as a communication channel, is sufficient for
proving general security.

21

B Proof of Lemma 1

Clearly, we only need to cover the case i = 0. First, note that Pr[Z ∈ S0|X = 0] ≥
1/2 since γ < 1/2. Let X denote the random variable describing the encoding
of b = 0 by Alice, i.e., X has the uniform distribution over the set of bitstrings
in {0, 1}` of weight exactly m or m + 1. We observe that since Eve’s noise is
independent and identically distributed for each bit sent through the wiretap
channel, for every string x ∈ {0, 1}` of weight m, Pr[Z ∈ S0|X = 0] = Pr[Z ∈
S0|X = x]. So we now compute Pr[Z ∈ S0|X = x] for x = 010101 . . . 010.

For i = 1, . . . ,m, let Vi be the random variable that takes value 1 if Z = z
and z2i−1 = z2i = 1, the value −1 if z2i−1 = z2i = 0 and the value 0 if z2i−1 6= z2i.
Then clearly Pr[Z ∈ S0|X = x] ≤ Pr[

∑m
i=1 Vi ≤ 0].

Now note that Vi are independent identically distributed variables such that
Pr[Vi = 1] = Pr[Vi = −1] = p and Pr[Vi = 0] = 1− 2p where p = γ(1− γ). Hence
Pr[
∑m
i=1 Vi < 0] = Pr[

∑m
i=1 Vi > 0] and clearly (using for example the central

limit theorem) Pr[
∑m
i=1 Vi = 0]→ 0 as ` (and consequently m) grows. Therefore

1/2 ≤ Pr[Z ∈ S0|X = 0] ≤ Pr[

m∑
i=1

Vi ≤ 0]→ 1/2

and consequently Pr[Z ∈ S0|X = 0]→ 1/2.

C Proof of Theorem 1

We first argue that, if we set the parameters adequately, the protocol is correct
and secure, i.e., with overwhelming probability Alice and Bob have a common
string at the end of the protocol about which Eve has a negligible amount of
information.

Remember that for each index i, Alice encodes bi as a bitstring containing
m+ 1 bits equal to bi and m bits equal to (1− bi) and Bob accepts if he receives
c`i . Hence, the probability that Bob accepts i, i.e., the probability that an index i
is in I is paccept = δm(1− δ)m+1 + δm+1(1− δ)m = (δ(1− δ))m.

On the other hand, conditioned on Bob accepting index i, the probability
that ci 6= bi is

δm+1(1− δ)m

(δ(1− δ))m
= δ.

Furthermore these probabilities are independent from each i, so the advantage
distillation step creates another conceptual noisy channel where Alice communi-
cates s bits to Bob and the noise parameter is still δ (independently of how large
` is).

Hence if we set n slightly larger than ds/paccepte for large enough parameters,
Bob will, with very high probability, accept at least s bits, of which roughly δ · s
will be incorrect. By the results on information reconciliation in [BS94], if h1 is
chosen from the 2-universal family of hash functions H1, then Bob can correct to
the right string Xs with very high probability given his original string, h1 and

22

h1(Xs). Hence both Alice and Bob will compute the same value h2(Xs) with
high probability and hence the protocol is correct.

As for privacy, remember that X denotes the uniform distribution over {0, 1}
and Z the variable that represents Eve’s output when Alice chooses b according
to X, encodes it, and sends it through the channel. Then

H∞(X|Z) =
∑

z∈{0,1}`
Pr[Z = z] · (− log(max

b∈{0,1}
Pr[X = b|Z = z])).

Now the maximum of Pr(X = b|Z = z) is reached for b = 0 if z ∈ S0 and for b = 1
if z ∈ S1, where Si is defined as in Lemma 1. On the other hand, for every z ∈ S0,
we have z′ := (1, . . . , 1)−z ∈ S1 and clearly, Pr[X = 0|Z = z] = Pr[X = 1|Z = z′].
Hence we can write

H∞(X|Z) =
∑
z∈S0

2 · Pr[Z = z] · (− log Pr[X = 0|Z = z]).

Now, clearly
∑
z∈S0

2 · Pr[Z = z] = 1 and − log is a convex function. This
means we can apply Jensen’s inequality to get

H∞(X|Z) ≥ − log

(∑
z∈S0

2 · Pr[Z = z] Pr[X = 0|Z = z]

)
.

Now we use that Pr[Z = z] Pr[X = 0|Z = z] = Pr[X = 0] Pr[Z = z|X = 0] =
1
2 Pr[Z = z|X = 0], so after summing over z ∈ S0 we obtain:

H∞(X|Z) ≥ − log Pr[Z ∈ S0|X = 0]→ 1

as ` → ∞ because of lemma 1. Since δ + ε < 1/2, for large enough `, we have
h(δ + ε) < H∞(X|Z) (remember h(·) denotes the binary entropy function).

Now let Xs, Y s denote the random variables denoting the s bits outputted by
Alice and Bob respectively and let Zs be the variable representing the s bitstrings
outputted by Eve. Then clearlyH∞(Xs|Zs) = sH∞(X|Z) > sh(δ+ε)+t+3σ since
t, σ = o(s) and therefore H∞(Xs|Zs, h1, h1(Xs)) ≥ H∞(Xs|Zs)−sh(δ+ε)−σ >
t+ 2σ.

Now, the leftover hash lemma guarantees that conditioned on everything
seen by Eve during the protocol, the distribution of h2(Xs) is 2−σ-close to the
uniform distribution over {0, 1}t.

To show that the protocol is emulatable, we have to construct an emulator E
that satisfies Property 2 in Definition 1. We note that the only information Bob
sends to Eve is the description of the set I of indices for which Bob accepted
Alice’s message. We can construct an emulator for Bob thus. After E receives a
message from the dummy channel FDC, it samples a random index set I ⊆ {0, 1}n,
where each index is chosen according to a Bernoulli distribution with parameter
paccept—the index is included in I if the trial succeeds. E then sends a description
of I to Alice via FPub. It is clear that such an emulator satisfies Property 2.

23

D Commitment Protocol for ECs from [DKS99]

In this section we describe the commitment protocol from [DKS99] and show that,
under the adequate choice of parameters, it is a receiver commitment protocol
for any (γ, δ)-elastic noisy channels.

We define some constants as follows. d0 is defined by δ = γ(1−d0)+d0(1−γ).
That is, d0 is such that adding noise with rate γ and then noise with rate d0
produces total noise rate δ. This means that d0 = (δ − γ)/(1 − 2γ), and from
it follows trivially that since δ < 1/2, we have δ > d0. We can therefore choose
constants d1, d and d∗ such that d0 < d1 < d∗ < d < δ. Finally, we define
δ′ = γ(1− d1) + d1(1− γ). Note that since d1 > d0 we have δ′ > δ.

Furthermore, we define ` to be the logarithm of the number of elements in a
Hamming ball of radius d, and likewise `∗ the logarithm of number of elements
in a Hamming ball of radius d∗.

We will need three families of universal hash functions H,H1,H2 that are 64k-
wise independent and map from {0, 1}k to {0, 1}, {0, 1}`∗ , {0, 1}`−`∗ , respectively.

Finally, remember that, as explained in Section 5.1, we reverse the direction
of the elastic channel, so the protocol that we describe next uses a noisy channel
with noise rate δ where the committer C sends information and the verifier V
receives, but where it is C who can alter the noise rate and reduce it to γ.

Protocol Commit

C:
Sample X ∈R {0, 1}k, send (send, sid, C, V,X) to FEC.

V:
Await (send, sid, C, V,X ′) from FEC

Sample h1 ∈R H1, send (send, sid1, V, C, h1) to FPub.

C:
Await (send, sid1, V, C, h1) from FPub.

Set y1 := h1(X), send (send, sid2, C, V, y1) to FPub.

V:
Await (send, sid2, C, V, y1) from FPub.

Sample h2 ∈R H2, send (send, sid3, V, C, h2) to FPub.

C:
Await (send, sid3, V, C, h2) from FPub.

Sample h ∈R H, set y2 := h2(X) and b := h(X).

Send (send, sid4, C, V, y2) and (send, sid5, C, V, h) to FPub.

Output b.

V:
Await (send, sid4, C, V, y2) and (send, sid5, C, V, h) from FPub.

24

Protocol Open
We define ∆ as the Hamming distance.
C:

Send (send, sid, C, V,X) to FPub.

V:

Await (sent, sid, C, V,X) from FPub.

Check that y1 = h1(X), y2 = h2(X) and ∆(X,X ′) ≤ δ′k. If either
condition is false, then abort.

Output b := h(X).

We have defined our constants slightly differently from what was done in
[DKS99], but d0 is defined in the same way, and the rest of the constants satisfy
the same inequalities. It therefore turns out that exactly the same proofs can
be used to show this version secure. We will not repeat the proofs here, but
give some intuition why the protocol is secure. We let ∆ denote the Hamming
distance, and by negligible we mean negligible as a function of k.

Both parties are honest. In this case we expect X ′ to be at distance δk from
X. Since δ′ > δ, the probability that the distance is greater than δ′k is
negligible, so V will accept the opening.

C is corrupt. We want to argue that there is only one string C can convincingly
open after commitment time. Suppose first that C tries to claim a string X∗

with ∆(X∗, X) > d∗k. Then note than in his view, the received string X ′

is expected to be such that δ(X,X ′) = γk. So we expect that ∆(X∗, X ′) >
(d∗(1 − γ) + γ(1 − d∗))k > δ′k because d∗ > d1. So V would reject with
overwhelming probability in this case. This means that X∗ must be in a
Hamming ball with radius d∗ and center in X. But by sending h1(X), h2(X),
C reveals ` bits of information on X. Since ` > `∗ this is more than required
to identify uniquely an string in a ball of radius `∗, so there is only one string
that can be opened.

V is corrupt. We want to argue that V has essentially no information about
h(X) before opening. Note that in V ’s viewX is in a Hamming ball with radius
δ and center in X ′. Via the hashing V gets only ` bits of information, and
since d < δ, one can show that there are exponentially many candidates left
for X, even after hashing. Now by a standard privacy amplification argument,
it follows that the expected information V has on h(X) is negligible.

E Proof of Security of πOT

E.1 Statements about the Typicality Test

We will need to establish some statements about the typicality test from our
protocol.

25

Define X[µ] to be a binomial variable with expectation µ. By abuse of notation,

we denote by
∑N
i=1 X[µ] the variable defined by sampling N independent random

variables with expectation µ and adding the result.

Probability that an Honest Sender Passes the Typicality Test. We show
that the honest sender passes the typicality test with probability at least 1− 2−κ.

Let T =
∑N/2
i=1 X[W (σ)]. An honest receiver does not pass the typicality test if

and only if T ≥ τN/2. Now let µ = E[T] = N
2 W (σ) and β = 1

2W (σ) . We can

apply Chernoff’s bound to see that

Pr [T ≥ τN/2] = Pr [T ≥ (1 + β)µ] ≤ e−µβ
2/4 ≤ 2−κ.

Probability that a Malicious Sender Breaks the Typicality Test. We
show that if a malicious sender cheats in N/2−κ instances of the testing set, she
passes the typicality test with probability at most 2−κ. Note that in order for the
sender to send something different from a codeword in a given instance, at least
one of the bits she sent does not correspond to the bit she communicates when
she sends X̃. Now note that, for a given bit xi,j communicated by the sender

when she sends X̃, if this bit was indeed correct, then xi,j 6= yi,j with probability
δ, while if she sent 1− xi,j instead, then xi,j 6= yi,j with probability 1− δ. Note
that the difference between these probabilities is 1 − 2δ. This means that, in
expectation, if the sender assumes the cheating behaviour we just described, the
distance between the bitstrings (xi,j) and (yi,j) will grow by an additive factor of
(1− 2δ)(N/2− κ) with respect to the case where the sender would be honest. We
want to show that in these conditions, the malicious sender will fail the test with

high probability. That is, again defining T =
∑N/2
i=1 X [W (σ)], we need to show:

Pr

[
T ≤ τN

2
− (1− 2δ)

(
N

2
− κ
)]
≤ 2−κ.

Let µ = E[T] = N
2 W (σ) and β = (1−2δ)(N−4κ)

2NW (σ) . Chernoff’s bound then says

Pr [T ≤ (1− β)µ] ≤ e−µβ
2/2.

Now it is easy to see that, for the values of µ and β detailed above, (1−β)µ =
τN
2 − (1 − 2δ)

(
N
2 − κ

)
(so this probability is indeed what we want to bound)

and that e−µβ
2/2 ≤ 2−κ.

In the rest of the section we will prove Theorem 4.

E.2 Correctness

If both players are honest, then the protocol is correct with probability at least
1 − 2−κ. Indeed, with at least this probability the honest sender passes the
typicality test and the protocol is completed. Then, note that:

26

wibi ⊕ (bi ∧∆i) =

{
wi0 , if bi = 0

wi1 ⊕∆i = wi0 ⊕∆ , if bi = 1

Hence w = w0 if there is an even number of i ∈ L such that bi = 1, i.e., if
b = 0, and w = w0 ⊕∆ = w1 if b = 1. In other words, w = wb.

On the other hand vc = mc ⊕ wc⊕d = mc ⊕ wb.
Therefore the output of the receiver equals w ⊕ vc = mc, so the protocol

outputs the correct value.

E.3 Security against a Malicious Receiver

Simulation. The simulator S for πOT will first proceed by running N instances
S1, . . . ,SN of the simulator for πOTMR. Upon receiving (choice, bi) from the envi-
ronment, it will record it and send a random wi. If any of the simulators aborts,
then the simulator aborts. In the next step, it awaits the test set T from Z. Now,
the simulator must send a X̃ such that the view of Z for the test instances is the
same as in the real world.

Each of the views produced by the simulators are statistically indistinguishable
(within 2−σ) from real instances of the OT protocol. Therefore, there must be a
distribution D for X̃ that depends only on the transcript between the simulators
and Z that is (1/2κ)-close to one which would be produced in the real world.

Indeed, if this was not the case, since

N

2σ
=
κQ(σ)

2σ
=

1

2σ−logQ(σ)−log κ ≤
1

2κ
,

then Z would be able to distinguish with probability larger than 1/2σ between a
run of the simulated malicious-receiver OT and a run with the malicious-receiver
OT protocol with the elastic channel for at least one of the N instances, which
contradicts the security of πOTMR.
S samples X̃ ∈R D. S sets L = {1, . . . , N} \ T . S samples ∆i ∈R {0, 1}, for

i ∈ L and sets S = {(i,∆i) | i ∈ L}.
S sends S, X̃ to Z. S computes w :=

⊕
i∈L

wi ⊕ (∆i ∧ bi) and b :=
⊕
i∈L

bi. S

awaits that the environment inputs d. S samples a random x ∈R {0, 1}, sets
c = b ⊕ d and sends (choice, c) to FOT. Upon receiving (receipt,m), S sets
u0 = m⊕ w, u1 = x and sends (v0, v1) := (ud, u1⊕d) to Z.

Indistinguishability. This follows from the fact that the given robust OT-combiner
is universally composable and that the underlying OT protocol is secure against
a malicious receiver.

E.4 Security against a Malicious Sender

Simulation. The simulator S employs the following strategy. First, for each
instance of OT, S runs an instance Si of the simulator for the protocol πOTMR (for

27

the semi-honest sender) for as long as Z does not send invalid codewords for that
instance. If any Si aborts, then S aborts.

When, for a given instance, Z sends an invalid codeword, S takes the simulator
Si, samples a bi at random and samples a receiver Ri whose input is bi and whose
view is consistent with what has been sent by the environment for that instance.

From this point on, instead of running the simulator for the given instance, S
runs Ri and whenever Z sends a message which is meant to be communicated
through the elastic channel, S simulates the channel and sends the result to Ri.

Once the instances of OT (both simulated and run with honest receiver) have
completed, S samples a random test set T and sends it to Z. S awaits X̃, S from
the environment. S simulates the typicality test. S takes each instance of OT for
the test that is still run by the simulator for the test cases and replaces it with a
receiver in the same way that was described above. Then once S has produced
the given views, S takes these views and runs the typicality test. If the test fails,
the simulator aborts.

S denotes the set of instances I that were only run by simulators and were
not part of the test set. Let J be the set of instances that were run by the
receivers and were not part of the test set. The simulators provided the values
{(wi0, wi1) | i ∈ I} and the receivers provided the values {wjbj | j ∈ J }.
S samples a u ∈ I and, for each i ∈ I, selects a random bi. S selects

b =
⊕

i∈L,i6=u

bi, w :=
⊕

i∈L,i6=u

wibi⊕(∆i∧bi). S setsm′0 := w⊕wu0 ,m′1 := w⊕wu1⊕∆u.

S samples a random r and sends d = b ⊕ r to Z. S awaits v0, v1 from Z.
S sets m0 := w ⊕ vb⊕r ⊕ m′b⊕r and m1 := w ⊕ vb⊕r⊕1 ⊕ m′b⊕r⊕1. S sends
(send, sid,m0,m1) to FOT.

Indistinguishability. The real-world instances of OT where the sender did not
send bad codewords are indistinguishable from the ideal-world instances run
by local simulators. This follows from the security of πOTSH against semi-honest
adversaries.

Next, we consider, the instances of OT where the sender sent bad codewords.
These are also indistinguishable from instances run by the simulator because,
on seeing a bad codeword, the simulator replaces the local simulator with a
receiver Ri, with random input bi, that acts as in the real world (including
the communication between the sender and this receiver, which is simulated by
imitating the behaviour of the channel). Furthermore, the receiver is constructed
so that it is consistent with what had been previously sent through the channel
and the given choice of inputs.

The last step of our simulation needs, however, to make sure that I is non-
empty, i.e., that there is at least one instance of the evaluation set where Z sends
only correct codewords. But notice that, as we have shown before, if Z would
send a non-codeword in each instance, it would result (except with probability
2−κ) in an abort due to the typicality test.

28

F Acknowledgements

Part of this work was carried out while Ignacio Cascudo was with Aarhus Uni-
versity. The authors acknowledge support from the Danish National Research
Foundation and The National Science Foundation of China (under the grant
61361136003) for the Sino-Danish Center for the Theory of Interactive Compu-
tation and from the Center for Research in Foundations of Electronic Markets
(CFEM), supported by the Danish Strategic Research Council. In addition, Ig-
nacio Cascudo acknowledges support from the Danish Council for Independent
Research, grant no. DFF-4002-00367, Ivan Damgrd was also supported by the
advanced ERC grant MPCPRO and Samuel Ranellucci was supported by Euro-
pean Research Council Starting Grant 279447. We thank Jesper Buus Nielsen,
Maciej Obremski and the anonymous reviewers for their helpful comments.

References

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. Journal of Computer and System Sciences, 37(2):156–
189, 1988.

[BCS96] Gilles Brassard, Claude Crépeau, and Miklos Santha. Oblivious transfers and
intersecting codes. Information Theory, IEEE Transactions on, 42(6):1769–
1780, 1996.

[BS94] Gilles Brassard and Louis Salvail. Secret-key reconciliation by public
discussion. In advances in Cryptology—EUROCRYPT’93, pages 410–423.
Springer, 1994.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In Foundations of Computer Science, 2001. Proceedings.
42nd IEEE Symposium on, pages 136–145. IEEE, 2001.

[CK88] Claude Crépeau and Joe Kilian. Achieving Oblivious Transfer Using Weak-
ened Security Assumptions (Extended Abstract). In 29th Annual Symposium
on Foundations of Computer Science, White Plains, New York, USA, 24-26
October 1988, pages 42–52, 1988.

[CMW05] Claude Crépeau, Kirill Morozov, and Stefan Wolf. Efficient unconditional
oblivious transfer from almost any noisy channel. In Security in Communi-
cation Networks, pages 47–59. Springer, 2005.

[Cré97] Claude Crépeau. Efficient Cryptographic Protocols Based on Noisy Channels.
In Advances in Cryptology - EUROCRYPT ’97, International Conference
on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding, pages 306–317, 1997.

[CS06] Claude Crépeau and George Savvides. Optimal Reductions Between Obliv-
ious Transfers Using Interactive Hashing. In Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, St. Petersburg, Russia, May
28 - June 1, 2006, Proceedings, pages 201–221, 2006.

[CvdGT95] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed Oblivi-
ous Transfer and Private Multi-Party Computation. In Advances in Cryp-
tology - CRYPTO 95, 15th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 27-31, 1995, Proceedings, pages
110–123, 1995.

29

[DFMS04] Ivan Damg̊ard, Serge Fehr, Kirill Morozov, and Louis Salvail. Unfair noisy
channels and oblivious transfer. Springer, 2004.

[DKS99] Ivan Damg̊ard, Joe Kilian, and Louis Salvail. On the (Im)possibility of
Basing Oblivious Transfer and Bit Commitment on Weakened Security
Assumptions. In Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, May 2-6, 1999, Proceeding, pages 56–73, 1999.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith.
Fuzzy extractors: How to generate strong keys from biometrics and other
noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[Est04] Gregory Estren. Universally composable committed oblivious transfer and
multi-party computation assuming only basic black-box primitives. PhD
thesis, McGill University, 2004.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP
statements in zero-knowledge and a methodology of cryptographic protocol
design. In Advances in Cryptology—CRYPTO’86, pages 171–185. Springer,
1986.

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On
robust combiners for oblivious transfer and other primitives. In Advances in
Cryptology - EUROCRYPT 2005, 24th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark,
May 22-26, 2005, Proceedings, pages 96–113, 2005.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, Amit
Sahai, and Jürg Wullschleger. Constant-rate oblivious transfer from noisy
channels. In Advances in Cryptology–CRYPTO 2011, pages 667–684.
Springer, 2011.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages
20–31. ACM, 1988.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In
Proceedings of the twenty-fourth annual ACM symposium on Theory of
computing, pages 723–732. ACM, 1992.

[KMS16] Dakshita Khurana, Hemanta K. Maji, and Amit Sahai. Secure computation
from elastic noisy channels. In Advances in Cryptology - EUROCRYPT 2016
- 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part II, pages 184–212, 2016.

[Mau93] Ueli M. Maurer. Secret key agreement by public discussion from common
information. IEEE Transactions on Information Theory, 39(3):733–742,
1993.

[PDMN11] Adriana C. B. Pinto, Rafael Dowsley, Kirill Morozov, and Anderson C. A.
Nascimento. Achieving Oblivious Transfer Capacity of Generalized Erasure
Channels in the Malicious Model. IEEE Transactions on Information
Theory, 57(8):5566–5571, 2011.

30

