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Abstract Much attention has been given to efficient computation of pairings
on elliptic curves with even embedding degree since the advent of pairing-based
cryptography. The existing few works in the case of odd embedding degrees
require some improvements. This paper considers the computation of optimal
ate pairings on elliptic curves of embedding degrees k = 9, 15 and 27 which
have twists of order three. Mainly, we provide a detailed arithmetic and cost
estimation of operations in the tower extensions field of the corresponding
extension fields. A good selection of parameters enables us to improve the
theoretical cost for the Miller step and the final exponentiation using the
lattice-based method comparatively to the previous few works that exist in
these cases. In particular for k = 15 and k = 27 we obtained an improvement,
in terms of operations in the base field, of up to 25% and 29% respectively
in the computation of the final exponentiation. Also, we obtained that elliptic
curves with embedding degree k = 15 present faster results than BN12 curves
at the 128-bit security levels. We provided a MAGMA implementation in each
case to ensure the correctness of the formulas used in this work.
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1 Introduction

Pairings are bilinear maps defined on the group of rational points of elliptic
or hyper elliptic curves [40]. They enable to realise many cryptographic proto-
cols such as the Identity-Based Cryptosystem [10], Identity-Based Encryption
[12], the Identity-Based Undeniable Signature [30], Short Signatures [11] or
Broadcast Encryption [19]. A survey of some applications of pairings can be
found in [16], [9, Chapter X]. These many applications justify the research
on the efficient computation of pairings. Generally, let E be an ordinary el-
liptic curve defined over a finite field Fp and r a large prime divisor of the
order of the group E(Fp). The embedding degree of E with respect to r and
the prime number p is the smallest integer k such that r | pk − 1. The ρ-
value of the elliptic curve E is the value logp/logr measuring the size of the
base field relatively to the size r of a subgroup of E(Fp). The Tate pairing
and its variants are the most used in cryptography. They map two linearly
independent points of the subgroup of order r of E(Fpk) to the group of r-
th roots of unity in the finite field Fpk . The computation of the Tate pairing
and its variants consists of an application of the Miller algorithm [35] and a
final exponentiation. Efficient computation of pairings requires construction
of pairing-friendly elliptic curves over Fp with prescribed embedding degree
k (see for example [8] or [17]) and efficient arithmetic in the towering fields
associated to Fpk (see [27], [20], [25], [14]). A lot of work has been done for
shortening the Miller loop leading to the concept of pairing lattices [22], or
the optimal pairing described by Vercauteren which can be computed with
the smallest number of iterations in the Miller algorithm [39]. Due to these
advances, the final exponentiation step has became a serious task. In this
work, we concentrate on elliptic curves E over Fp with embedding degree 9, 15
and 27. These curves admit twists of degree three which enable computations

Security Bit length of Bit length of k k
level r pk ρ ≈ 1 ρ ≈ 2
80 160 960− 1280 6− 8 3− 4
128 256 3000− 5000 12− 20 6− 10
192 384 8000− 10000 20− 26 10− 13
256 512 14000− 18000 28− 36 14− 18

Table 1 Bit sizes of curves parameters and corresponding embedding degrees to obtain
commonly desired levels of security.

to be done in subfields and also lead to the denominator elimination tech-
nique. To our knowledge just few works ([29], [36] and [41]) exist in these
cases and much attention have been given only to elliptic curves with even
embedding degree (see for example [1],[18]). Also, another motivation to our
work is the recent results on the resolution of discrete logarithm problem [26].
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Indeed according to the first analysis of this article, as for instance in [21],[4]
the security level for elliptic curves with friable embedding degree should be
taken greater than those presented in Table 1. The main consequence is that
elliptic curves with embedding degree 12 or 18 may not be the one assuring a
nice ratio between the security level and the arithmetic. Elliptic curves with
odd embedding degree could become interesting and more efficient than el-
liptic curves with even embedding degree. Also it is also noticed that elliptic
curves with odd embedding degree especially with k = 27 may be suitable
for computing product of pairings [41]. In this work we consider the following
parameter’s sizes (p ≈ 2343, r ≈ 2257, ρ = 1.33), (p ≈ 2575, r ≈ 2385, ρ = 1.5),
(p ≈ 2579, r ≈ 2514, ρ = 1.12) for curves with k = 9, 15, 27 respectively. This
corresponds to the 128, 192 and 256-bit security levels respectively according
to recommendations in Table 1 [17]. However, considering the recent recom-
mendations based on the advances on Discrete Logarithm computation with
the Number Field Sieve (NFS) algorithm and its variants ([26], [5], [34], [4])
the security level provided by the above parameters may reduce. Indeed, let
2−dexp((c+ o(1))(logQ)1/3( log logQ)2/3 where d and c are constants, be the
runing time of the NFS algorithm, with Q = pk. The base-two logarithm of
this runtime with (o(1) = 0) gives S(Q, c, d) = c(lge)(logQ)1/3(loglogQ)2/3−d.
We then know that the constants c and d, the embedding degree k and the
security level l must satisfy the following Pollard-Rho security and variants
of NFS security constraints logQ/k ≥ 2ρl and S(Q, c, d) ≥ l. Therefore the
previous parameters provide a security level of 109, 168, 214 bits instead of
128, 192, 256-bit respectively for curves with k = 9, 15, 27. But for now we
still consider in Section 4, 5 and 6 recommendation from Table 1 in order to
make a fair comparison with previous works. Later in section 8, we consider
advances in discrete logarithm computation and provide tentative updated pa-
rameters at the 128, 192, 256 bits respectively for curves with k = 9, 15, 27. So
we proposed a detailed arithmetic in the towering fields associated to the fields
Fp9 ,Fp15 and Fp27 . The lattice-based method explained by Fuentes et al. [18]
is applied to compute the final exponentiation in the cases k = 9, 15. We also
find a simple expression and explicit cost evaluation for the optimal pairing
in the cases k = 9 and k = 15 comparatively to the work in [36]. The results
obtained are an improvement with respect to previous works [29], [36] and [41]
respectively for k = 9, 15 and 27. Precisely, our contributions (see Table 3 and
subsection 8.4 for comparison) in this work are:

1. Determination of an explicit cost of the computation of the optimal pairing
for elliptic curves stated above. This includes a good selection of parameters
for a shorter Miller loop and an efficient exponentiation. In particular, we
saved one inversion in Fp27 for the computation of the Miller loop in the
case k = 27.

2. Details on the arithmetic in the tower of subfields of Fp9 ,Fp15 and Fp27 .
Especially, we give the cost of the computation of Frobenius maps and In-
versions in the cyclotomic subgroups of F∗p9 ,F

∗
p15 and F∗p27 , (see Appendices

A, B and C).
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3. Improvement of the costs of the final exponentiation by saving 828M1 +
145S1, 1170M1 + 7767S1 and 8676M1 + 32136S1 operations for elliptic
curves of embedding degrees 9, 15 and 27 respectively, comparatively to
previous works in these cases; where Mk, Sk represent the costs of multi-
plication and squaring in the finite field Fpk .

4. In Section 8 we look for new parameters considering the advances in Dis-
crete Logarithm computation to update the cost of the optimal ate pairings
on the studied curves at the 128, 192 and 256-bit security levels. We then
compare our results with known curves such as BN and BLS curves. In
particular we obtained that elliptic curves with embedding degree k = 15
present faster results than BN12 curves at the 128-bit security levels.

We also provide a MAGMA implementation in each case to ensure the cor-
rectness of the formulas used in this work. The code is available in [?].

The rest of this paper is organised as follows: In Section 2 we briefly present
the Tate and ate pairings together with the Miller algorithm for their efficient
computation, we also recall the concept of optimal ate pairing and the lattice-
based method for computing the final exponentiation. Sections 4, 5 and 6
present arithmetic in subfields, and costs estimation of the Miller step and the
final exponentiation when considering the embedding degrees k = 9, 15 and
27 respectively. Each of these sections includes a comparative analysis with
previous work. Section 7 presents a general comparison of the results obtained
in this work and the previous results in the literature. In Section 8 we look for
new parameters considering the advances in Discrete Logarithm computation
to update the cost of the optimal ate pairings on the studied curves at the
128, 192 and 256-bit security levels. We then compare our results with known
curves such as BN and BLS curves. We conclude the work in Section 9 in which
we suggest as future work the search for parameters to have subgroup secure
ordinary curves [6] and to ensure protection against small-subgroup attacks[32].

Notations
The following notations are used in this work.
Mk, Sk, Ik : Cost of multiplication, squaring and inversion in the field Fpk , for
any integer k.

2 Background and previous works

2.1 Pairings and the Miller Algorithm

Let E be an elliptic curve defined over Fp, a finite field of characteristic p > 3.
Let r be a large prime factor of the group order of the elliptic curve. Let
m ∈ Z and P ∈ E(Fp)[r] a point of E of order r with coordinates in Fp.
Let fm,P a function with divisor Div (fm,P ) = m(P ) − ([m]P ) − (m − 1)(O)
where O denotes the identity element of the group of points of the elliptic
curve. We denote k the smallest integer such that r divides pk − 1, also called
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the embedding degree of E with respect to r. We also consider the point
Q ∈ E(Fpk)[r] of E of order r with coordinates in Fpk and denote µr the
group of r-th roots of unity in F∗pk . The reduced Tate pairing er is a bilinear
and non degenerate map defined as

er : E(Fp)[r]× E(Fpk)[r]→ µr, (P,Q) 7→ fr,P (Q)
pk−1
r

To define a variant of the Tate pairing called ate pairing [23], let’s denote
[i] : P 7−→ [i]P the endomorphism defined on E(Fp) which consists to add P
to itself i times. Let πp : E

(
Fp
)
→ E

(
Fp
)
, (x, y) 7→ (xp, yp) be the Frobenius

endomorphism on the curve where Fp is the algebraic closure of the finite
field Fp. The relation between the trace t of the Frobenius endomorphism and
the group order is given by [40, Theorem 4.3]: ]E(Fp) = p+ 1− t and πp has
exactly two eigenvalues 1 and p. This enables to consider P ∈ G1 = E

(
Fp
)

[r]∩
Ker(πp − [1]) = E(Fp)[r] and Q ∈ G2 = E

(
Fp
)

[r]∩ Ker(πp − [p]). The ate
pairing is defined as follows:

eA : G2 ×G1 → µr; (Q,P ) 7→ ft−1,Q(P )
pk−1
r .

In all variants of pairings, one needs a value fm,U (V ) which is efficiently
computed thanks to the Miller algorithm [35]. Indeed denote hR,S a rational
function with divisor Div(hR,S) = (R) + (S) − (S + R) − (O) where R and
S are two arbitrary points on the elliptic curve. In the case of elliptic curves
in Weierstrass form, hR,S =

`R,S
vR+S

where `R,S is the straight line containing

R and S and vR+S is the corresponding vertical line passing through R + S.
Miller uses the double-and-add method as the addition chains for m (see [3,
Chapter 9] for more details on addition chains) to compute f := fm,U (V ).
Write m = mn2n + ... + m12 + m0 > 0 with mi ∈ {−1, 0, 1}, the (modified)

Miller algorithm that efficiently computes the pairing fm,U (V )(p
k−1)/r of two

points U and V is given as follows:

1: Set f ← 1 and R← U
2: For i = n− 1 down to 0 do
3: f ← f2 · hR,R(V ), R← 2R Doubling step
5: if mi = 1 then
6: f ← f · hR,U (V ) R← R+ U , end if Addition step
7: if mi = −1 then
8: f ← f/hR,U (V ) R← R− U , end for Addition step

10: return e = f
pk−1
r Final exponentiation

The use of twists enables to efficiently do some computations during the exe-
cution of this algorithm as we explain in the next section.
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2.2 Use of Twists

Twists of elliptic curves enable to efficiently compute pairings. Indeed, in the
Miller algorithm the doubling of a point (line 3) and the addition of points
(lines 6 and 8) are done in the extension field Fpk in the case of the ate
pairing. The use of twists enables to perform these operations rather in a sub-
field of Fpk and also leads to the denominator elimination. More precisely, a
twist of an elliptic curve E defined over a finite field Fp is an elliptic curve
E′ defined over Fp which is isomorphic to E over an algebraic closure of
Fp. The smallest integer d such that E and E′ are isomorphic over Fpd is
called the degree or the order of the twist. Elliptic curves of embedding degree
k = 9, 15 and k = 27 admit twists of order three. Explicit constructions of
such curves can be found in [33], [15] and [7]. The general equation of these
curves is given by E : y2 = x3 + b. The equation defining the twist E′ has
the form y2 = x3 + bω6 where {1, ω, ω2} is the basis of the Fpk/3 -vector space
Fpk and the isomorphism between E′ and E is ψ : E′ −→ E; (x′, y′) 7−→
(x′/ω2, y′/ω3). Using this isomorphism, points Q in G2 can be instead taken
as (xω−2, yω−3) where (x, y) ∈ E′(Fpk/3). The function hR,S is defined by

hR,S(x, y) = y+λ(xR−x)−yR
x−xR+S

where λ is the slope of the line passing through

R and S. Observe that using the equation of the curve y2 = x3 + b one has

x − xR+S =
y2−y2R+S

x2+xR+Sx+x2
R+S

. In the present case of ate pairing, the addition

R+S is performed in the extension field Fpk and the function hR,S is evaluated
at a point (xP , yP ) ∈ E(Fp). So using the twist, the points R, S and R+S are
taken in the form (xω−2, yω−3) where (x, y) ∈ E′(Fpk/3). Therefore we have

hR,S(xP , yP ) =
(yPω

5+λ(xRω
2−xPω4)−yRω2)(x2

Pω
4+xR+SxPω

2+x2
R+P )

y2Pω
9−y2R+Pω

3 . We observe

that the denominator is an element of the subfield Fpk/3 and so will be sent
to 1 during the final exponentiation (line 10 in the Miller algorithm) since
pk/3−1 is a factor of pk−1. Consequently we simply ignore that denominator
in the Miller algorithm for an efficient computation. More details on twists
can be found in [13].

2.3 Optimal Pairings

The reduction of Miller’s loop length is an important way to improve the com-
putation of pairings. The latest work is a generalized method to find the short-
est loop, which leads to the concept of optimal pairings due to Vercauteren [39].

Let λ = mr be a multiple of r such that r - m and write λ =
∑l
i=0 cip

i = h(p),
(h(z) ∈ Z[z]). Recall that hR,S is the Miller function defined in section 2.1.

For i = 0, · · · l set si =
∑l
j=i cjp

j ; then the map

eo : G2 ×G1 → µr

(Q,P ) 7−→
(∏l

i=0 f
pi

ci,Q
(P ) ·

∏l−1
i=0 h[si+1]Q,[cipi]Q(P )

) pk−1
r

(1)
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defines a bilinear pairing and non degenerate if
mkpk 6= ((pk − 1)/r) ·

∑l
i=0 icip

i−1 mod r.
The coefficients ci : i = 0, · · · , l can be obtained from the short vectors ob-
tained from the lattice

L =


r 0 0 · · · 0
−p 1 0 · · · 0
−p2 0 1 · · · 0
· · · · · · · · · · · · · · ·

−pφ(k)−1 0 0 · · · 1

 (2)

2.4 Final Exponentiation and the Lattice-Based Method for its Computation

The result of the Miller loop’s step is raised to the power pk−1
r . This step

is called the final exponentiation (line 10 in Miller’s algorithm). The efficient
computation of the final exponentiation has became a serious task. Observe
that this exponent can be divided into two parts as follows:

pk − 1

r
=

[
pk − 1

φk(p)

]
·
[
φk(p)

r

]

where φk(x) is the k-th cyclotomic polynomial. The final exponentiation is

therefore computed as f
pk−1
r =

[
f
pk−1
φk(p)

]φk(p)

r

. The computation of the first

part A = f
pk−1
φk(p) is generally inexpensive as it consists of few multiplications,

inversion and p-th powering in Fpk . The second part A
φk(p)

r is considered more
difficult and is called the hard part. An efficient method to compute the hard

part is described by Scott et al. [37]. They suggested to write d = φk(p)
r in base

p as d = d0+d1p+...+dφ(k)−1p
φ(k)−1 and find a short vectorial addition chains

to compute Ad much more efficiently than the naive method. In [18], based
on the fact that a fixed power of a pairing is still a pairing, Fuentes et al.[18]
suggested to apply Scott et al.’s method with a power of any multiple d′ of d
with r not dividing d′. This could lead to a more efficient exponentiation than
computing Ad directly. Their idea of finding the polynomial d′(x) is to apply
the LLL-algorithm to the matrix formed by Q-linear combinations of the el-
ements d(x), xd(x), ..., xdegr−1d(x). They successfully applied the method in
the case of elliptic curves of embedding degrees 8, 12 and 18 [18]. In Sections 4
and 5 we apply this method to improve the computation of the final exponen-
tiation for elliptic curves of embedding degree k = 9 and 15. A clever method
was used by Zhang et al. [41] to compute the final exponentiation in the case
k = 27.
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3 Arithmetic in the tower of subfields of Fp9 , Fp27 and Fp15

A pairing is computed as an element of the extension field Fpk . But its ef-
ficient computation depends on the arithmetic of subfields of Fpk which is
generally organised as tower of subfields extensions. In this section we recall
the tower extension of finite fields Fp9 ,Fp27 and Fp15 . We also give explicit
cost of the arithmetic operations. For extension-field arithmetic in Fp9 and
Fp27 we consider p ≡ 1 mod 3 motivated by the work of Barreto et al.[7] on
the construction of elliptic curves of embedding degree 9 and 27. This implies
that Fpk can be represented as Fpk/3 [X]/(X3−α), for k = 3i, i = 1, 2, 3 where
α is a cubic non residue modulo p. Since p ≡ 1 mod 3 we have that X3 − 7
irreducible over Fp. Therefore cubic extensions will be constructed using the

polynomials X3 − αi where αi = 71/3
i−1

. A tower extension for Fp27 together
with the one for Fp9 are then given by:

Fp3 = Fp[u] with u3 = 7

Fp9 = Fp3 [v] with v3 = 71/3

Fp27 = Fp9 [w] with w3 = 71/9

The costs of the computation of the Frobenius maps and cyclotomic inversions
are given in Lemma 1 for the extension Fp9 . The proof of this Lemma is given
in Appendix A.

Lemma 1 In the finite field Fp9 ,

1. The computation of the p3; p6-Frobenius maps costs 6M1

2. The computation of the p; p2; p4; p5; p7; p8-Frobenius maps costs 8M1

3. The inverse of an element α of the Gφ3(p3)-order cyclotomic subgroup is

computed as α−1 = αp
3 · αp6 and the cost is 36S1

Similarly, in the finite field Fp27 the Lemma 2 gives the costs of the com-
putation of the Frobenius maps and cyclotomic inversions. The proof of this
Lemma is given in Appendix B.

Lemma 2 In the finite field Fp27 ,

1. The computation of the p3; p6; p9-Frobenius maps costs 18M1

2. The computation of the p; p2; p4; p5; p7; p8-Frobenius maps costs 26M1

3. The inverse of an element α of the Gφ3(p9)-order cyclotomic subgroup is

computed as α−1 = αp
9 · αp18 and the cost is 216S1

In the case of Fp15 , we consider pairing friendly curves over Fp where
p ≡ 1 mod 5 [15]. According to [31, Theorem 3.75] the polynomial X5 − α
is irreducible over Fp[X] if and only if α is neither a cubic root nor a fifth root
in Fp. A tower extension for Fp15 can be constructed as follows:

Fp5 = Fp[u] with u5 = 7

Fp15 = Fp5 [v] with v3 = u. where u ∈ Fp5
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Fields Operations Costs

Fp3
Multiplication M3 6M1

Squaring S3 5S1

Inversion I3 I1 + 9M1 + 2S1

Fp9
Multiplication M9 36M1

Squaring S9 25S1

Inversion I9 I1 + 63M1 + 12S1

Frobenius p3; p6 6M1

Frobenius p; p2; p4; p5; p7; p8 8M1

Inversion in Gφ3(p3)
18M1 + 15S1

Fp27
Multiplication M27 216M1

Squaring S27 125S1

Inversion I27 I1 + 387M1 + 62S1

Frobenius p3; p6; p9 18M1

Frobenius p; p2; p4; p5; p7; p8 26M1

Inversion in Gφ3(p9)
108M1 + 75S1

Fp5
Multiplication M5 9M1

Squaring S5 9S1

Inversion I5 1I1 + 45M1 + 5S1

Fp15
Multiplication M15 45M1

Squaring S15 45S1

Inversion I15 1I1 + 126M1+
23S1

Frobenius p5; p10 10M1

Frobenius p; p2; p3; p4; p6; p7; p8; p9 14M1

Inversion in Gφ3(p5)
27M1 + 27S1

Table 2 Cost of operations in extension fields from [29], [36] and [41] and this work (see
Appendix A, B and C)

Our main contribution in this section is the computation of Frobenius maps
and the inversions in the φn(.)-order cyclotomic subgroup of F∗pk . The costs of
the computation of the Frobenius maps and cyclotomic inversions are given in
Lemma 3.

Lemma 3 In the finite field Fp15 ,

1. The computation of the p5; p10-Frobenius maps costs 10M1

2. The computation of the p; p2; p3; p4; p6; p7; p8; p9-Frobenius maps costs 14M1

3. The inverse of an element α of the Gφ3(p5)-order cyclotomic subgroup is

computed as α−1 = αp
5 · αp10 and the cost is 54S1

Proof The proof is given in Appendix C.

In Table 2 we summarise the overall cost of operations in the tower of subfields
described above. The costs for squaring, multiplication and inversion are from
[29], [36] and [41] respectively for k = 9, 15 and 27. Explicit details of the cost
of Frobenius maps and inversions in the cyclotomic subgroups are given in
Appendix A, B and C.
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4 Elliptic Curves with Embedding Degree 9

This section describes the computation of the optimal ate pairing (Miller step
and the final exponentiation) on the parameterized elliptic curve defined in
[33]. The correctness of the results can be verified with the MAGMA code
available in [?]. This family of elliptic curves has embedding degree 9 and a
ρ-value 1.33 and is parameterized by :

p = ((x+ 1)2 + ((x− 1)2(2x3 + 1)2)/3)/4
r = (x6 + x3 + 1)/3
t = x+ 1

(3)

4.1 Optimal ate pairing

Based on the general framework described by Vercauteren in [39], the short
vector obtained from the lattice L defined by equation (2) gives the optimal

function h(z) =
∑5
i=0 ciz

i = x − z ∈ Z[z]. A straightforward application of
formula (1) yields the optimal pairing

eo : G2 ×G1 −→ µr

(Q,P ) 7−→ fx,Q(P )
p9−1
r

4.2 Cost of the execution of the Miller loop

The Miller loop consists of the doubling steps (line 3 in the Miller algorithm)
and addition steps (line 6 or 8 in the Miller algorithm). These steps use the
Miller function hR,S either in affine coordinates or in projective coordinates.
The work of Zhang et al. [41, Section 3] presents the currently fastest formulas
in projective coordinates. The doubling step costs 9M1 + 3M3 + 9S3 and the
cost of the addition step is 9M1 + 12M3 + 5S3. For an explicit cost of the
computation of fx,Q(P ), we wrote a Pari/GP code to find a suitable x with
low Hamming weight and minimal number of bits for the 128 bit-security level
according to Table 1. The best value we were able to find is x = 243+237+27+1
which gives an r(x) prime of 257 bits and p(x) a prime of 343 bits. The values
p and x are both congruent to 1 modulo 6 so that the corresponding elliptic
curve is y2 = x3 + 1 [29]. The computation of fx,Q(P ) therefore costs 43
doubling steps, 3 additions, 42 squaring and 45 multiplications in Fp9 . Thus
the total cost for the computation of the Miller loop for the optimal pairing on
elliptic curves of embedding degree 9 is 43(9M1+3M3+9S3)+3(9M1+12M3+
5S3) + 42S9 + 45M9. This is equal to 45M9 + 165M3 + 414M1 + 42S9 + 402S3.
Using the arithmetic in Table 2, the overall cost is 3024M1 + 3060S1. To our
knowledge, no other explicit cost with a specific value of x is reported in the
literature.
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4.3 Cost of the computation of the final exponentiation

As explained in Section 2, the final exponentiation in this case can be divided as

f (p
9−1)/r =

(
fp

3−1
)(p6+p3+1)/r

=
(
fp

3−1
)d

. We then used the lattice method

described by Fuentes et al. [18] that we briefly explained in Section 2.4. It is
applied to the following matrix in which the coefficient 243 is used to obtain
integer entries as d = (p6 + p3 + 1)/r is a polynomial with rational coefficients

M =


243d(x)

243xd(x)
243x2d(x)
243x3d(x)
243x4d(x)
243x5d(x)

 (4)

We obtain the following multiple of d: d′ = x3d = k0 + k1p + k2p
2 + k3p

3 +
k4p

4 + k5p
5 where the polynomials ki, i = 0, ..., 5 are as follows

k0 = −x4 + 2x3 − x2, k1 = −x3 + 2x2 − x, k2 = −x2 + 2x− 1,
k3 = x7 − 2x6 + x5 + 3, k4 = x6 − 2x5 + x4, k5 = x5 − 2x4 + x3

They verify the relations (see the code in [?] for verification)

k2 = −(x−1)2, k1 = xk2, k0 = xk1, k5 = −xk0, k4 = xk5, k3 = xk4+3

If we set A = fp
3−1 then

– The cost for the computation of A is 1 p3-Frobenius, 1 Inversion in Fp9
and 1 multiplication in Fp9 .

– The cost of the computation of Ak0 , Ak1 and Ak4 is 3 exponentiations by
x,

– The cost of the computation of Ak5 is one inversion in the cylotomic sub-
group and one exponentiation by x.

– The cost of the computation of Ak2 is one inversion in the cyclotomic
subgroup and two exponentiations by (x− 1).

– The cost of the computation of Ak3 is 2 multiplications, one squaring and
one exponentiation by x.

Note that the inversion in the cyclotomic subgroup Gφ3(p3) of order p6 +p3 +1

is computed as A−1 = Ap
3 · Ap6 (see Appendix A for details and cost). The

cost for the hard part Ad
′

is then 2 exponentiations by x−1, 5 exponentiations
by x, 7 multiplications in Fp9 , one squaring in Fp9 , two cyclotomic inversions
IGφ3(p3)

and p, p2, p3, p4, p5-Frobenius maps. Using the value of x given above,

one exponentiation by x costs 43S9+3M9 whereas one exponentiation by x−1
costs 43S9+2M9. Finally the hard part costs 2(43S9+2M9)+5(43S9+3M9)+
7M9+1S9+2IGφ3(p3)

= 302S9+26M9+2IGφ3(p3)
and p, p2, p3, p4, p5-Frobenius

maps. The total cost of the final exponentiation is 1I9+27M9+302S9+2IGφ3(p3)

and p, p2, 2 ∗ p3, p4, p5-Frobenius maps.
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4.4 Improvement and comparison with previous work

From the results in [29], the hard part costs 309S9 +50M9 and p, p2, p3, p4, p5-
Frobenius maps. If we include the cost 1I9 + 1M9 and p3-Frobenius for the
easy part and using the arithmetic in Table 2, the overall cost is I1+1115M1+
7592S1 for this work and I1 +1943M1 +7737S1 for Le et al. [29]. We therefore
save 828M1 + 145S1 comparatively to their work. Although the sizes of p are
343 bits in this work and 348 bits in [29], the cost of a multiplication is almost
the same in the two corresponding fields (see section 8.4).

5 Elliptic Curves with Embedding Degree 15

In this section we give explicit formulas together with their cost for the Miller
loop in the computation of the optimal ate pairing. We then compute the cost
of the final exponentiation on the parameterized elliptic curve defined in [15].
The correctness of the results can be verified in [?]. This family of elliptic
curves has embedding degree 15 and a ρ-value 1.5 and is parameterized by :

p = (x12 − 2x11 + x10 + x7 − 2x6 + x5 + x2 + x+ 1)/3
r = x8 − x7 + x5 − x4 + x3 − x+ 1
t = x+ 1

(5)

5.1 Optimal ate pairing

The Vercauteren approach described in [39] enabled us to obtain the short
vector from the lattice L defined by equation (2) which lead to the optimal

function h(z) =
∑5
i=0 ciz

i = x − z ∈ Z[z]. A straightforward application of
formula (1) yields the optimal pairing

eo : G2 ×G1 −→ µr

(Q,P ) 7−→ fx,Q(P )
p15−1
r

5.2 Cost of the computation of the Miller loop

In this section, we consider the Miller function given in affine coordinates,
following the analysis of Lauter et al. [28] who suggested to use affine coor-
dinates at higher security level. Miller function used for the computation of
fx,Q(P ) in this case is described in [41, Table 2] with the fastest cost to date.
At 192 bits security level on elliptic curves with k = 15, the best value of x
we were able to find with a Pari/GP code is x = 248 + 241 + 29 + 28 + 1. This
value gives an r(x) prime of 385 bits and p(x) of 575 bits which correspond
to parameters for 192-bit security level according to Table 1. The value of p is
congruent to 1 modulo 5 and a curve equation can be y2 = x3 + 1. The Miller
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loop consists here of computing fx,Q which costs 48 doubling steps, 4 additions
steps, 47 squaring and 51 multiplications in Fp15 . Considering the currently
fastest cost for doubling and addition step in [41, Table 2], the Miller loop
costs 48(15M1 +3M5 +2S5 +I5)+4(15M1 +3M5 +2S5 +I5)+47S15 +51M15,
which is 51M15 +156M5 +780M1 +47S15 +104S5 +52I5. Using the arithmetic
in Table 2, the overall cost is 52I1 + 6819M1 + 3311S1. To our knowledge no
explicit cost is reported in the literature in the case k = 15 with a specific
value of x.

5.3 Cost of the computation of the final exponentiation

The final exponentiation in this case is written in a different way as f (p
15−1)/r =(

fp
5−1
)(p10+p5+1)/r

=
(
fp

5−1
)d

. This decomposition is used instead of p
15−1
r =[

p15−1
φ15(p)

]
·
[
φ15(p)
r

]
as usually done, for efficiency reasons in the computation. Ob-

serve that p15−1
φ15(p)

= p7+p6+p5−p2−p−1 and φ15(p) = p8−p7+p5−p4+p3−p+1

will lead to several multiplications and Frobenius maps operations. Thus the
lattice method described by Fuentes et al. [18] that we briefly explained in Sec-
tion 2.4 is applied to the following matrix M . In the matrix M the coefficient
59049
19683 is used to obtain integer entries as d = (p10 + p5 + 1)/r is a polynomial
with rational coefficients.

M =



59049
19683d(x)
59049
19683xd(x)
59049
19683x

2d(x)
.
.

59049
19683x

7d(x)

 (6)

We then obtained the following multiple of d: d′ = 3x3d = k0 + k1p + ...k9p
9

where the polynomials ki, i = 0, ..., 9 are defined as follows

k0 = −x6 + x5 + x3 − x2, k1 = −x5 + x4 + x2 − x
k2 = −x4 + x3 + x− 1
k3 = x11 − 2x10 + x9 + x6 − 2x5 + x4 − x3 + x2 + x+ 2
k5 = x11 − x10 − x8 + x7 + 3
k4 = x11 − x10 − x9 + x8 + x6 − x5 − x4 + x3 − x2 + 2x+ 2
k6 = x10 − x9 − x7 + x6 k7 = x9 − x8 − x6 + x5

k8 = x8 − x7 − x5 + x4 k9 = x7 − x6 − x4 + x3

The polynomials ki : i = 0, ...9 verify the relations (see the code in [?] for
verification)

k2 = −(x− 1)2(x2 + x+ 1), k1 = xk2, k0 = xk1
k9 = −xk0, k8 = xk9, k7 = xk8
k6 = xk7, k5 = xk6 + 3, k4 = M − (k1 + k7)
k3 = M − (k0 + k6 + k9) where M = (k2 + k5 + k8)
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Set A = fp
5−1 then

– The cost for the computation of A is 1 p5-Frobenius, 1 Inversion in Fp15
and 1 multiplication in Fp15 and .

– The computation of Ak2 is 2 exponentiations by x, 2 exponentiations by
x− 1, 2 multiplications and 1 cyclotomic inversion,

– The cost of the computation of the Ak0 ,Ak1 ,Ak6 ,Ak7 is 5 exponentiations
by x, the computation of Ak9 costs 1 exponentiation by x and 1 cyclotomic
inversion,

– The computation of Ak5 is 1 exponentiation by x, 2 multiplications and 1
squaring in Fp15 ,

– The computation of Ak4 costs 4 multiplications in Fp15 and 1 cyclotomic
inversion,

– The computation of Ak3 costs 3 multiplications in Fp15 and 1 cyclotomic
inversion.

Therefore, the cost of the computation of Ad
′

is 2 exponentiations by x− 1, 9
exponentiations by x, 20 multiplications, one squaring in Fp15 , four inversions

in the cyclotomic subgroup Gφ3(p5) of order p10+p5+1 (note that A−1 = Ap
5 ·

Ap
10

see Appendix C for details) and p, p2, p3, p4, p5, p6, p7, p8, p9-Frobenius
maps. Using the value of x given above, the cost of the hard part is 2(48S15 +
3M15)+9(48S15+4M15)+20M15+1S15+4IGφ3(p5)

= 529S15+62M15+4IGφ3(p5)

and p, p2, p3, p4, p5, p6, p7, p8, p9-Frobenius maps. The total cost of the final
exponentiation in this work is therefore 1I15 + 529S15 + 63M15 + 4IGφ3(p5)

and

p, p2, p3, p4, 2 ∗ p5, p6, p7, p8, p9-Frobenius maps.

Remark 1 The cost given by Le et al. [29] for the hard part is 11 exponen-
tiations by x, 22 multiplications, 2 inversions in Fp15 and 9 Frobenius maps.
The authors said that the cost of an inversion in Fp15 is free with a reference
to a similar computation but on elliptic curves with even embedding degree,
unfortunately we do not see how this is possible. Also, they considered an x
of 64 bits and hamming weight 7 and claimed that the cost is 88M15 + 528S15

instead of 11(6M15 + 64S15) = 88M15 + 704S15. Therefore if we count the
2 inversions in Fp15 (these inverses are in fact in the cyclotomic subgroup
Gφ3(p5)), then their final cost is 88M15 + 704S15 + 2IGφ3(p5)

and 11 Frobenius

maps, whereas our cost is 529S15 + 62M15 + 4IGφ3(p5)
.

5.4 Improvement and comparison with previous work

Considering the previous remark, the cost of the final exponentiation in [29] is
1I15+704S15+89M15+2IGφ3(p5)

and p, p2, p3, p4, 2∗p5, p6, p7, p8, p9-Frobenius

maps. We observe that we have improved the results by saving 26M15 +
175S15 − 2IGφ3(p5)

. Using the arithmetic in Table 2, the overall cost is I1 +

3066M1 + 24071S1 for this work and I1 + 4236M1 + 31838S1 for Le et al. [29].
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We therefore save 26M15 + 175S15 − 2IGφ3(p5)
= 1170M1 + 7767S1 compara-

tively to their work. A MAGMA code for the implementation to ensure the
correctness of the decomposition of the final exponentiation and the Miller
function is available in [?].

6 Elliptic Curves with Embedding Degree 27

The parameterized elliptic curves with embedding degree 27 is defined in [7].
This family has a ρ-value 10/9 and is parameterized by the following polyno-
mials:

p = 1/3(x− 1)2(x18 + x9 + 1) + x
r = 1/3(x18 + x9 + 1)
t = x+ 1

(7)

6.1 The Miller loop and the final exponentiation

The Miller loop and the final exponentiation has been studied in [41]. They

found the optimal function h(z) =
∑17
i=0 ciz

i = x − z ∈ Z[z] and the optimal
pairing is given by

eo : G2 ×G1 −→ µr; (Q,P ) 7−→ fx,Q(P )
p27−1
r

The authors in [41] used the parameter x = 228 + 227 + 225 + 28 − 23 for their
computation at 256-bit security level. The cost of the Miller step that they
obtained is therefore 28(3M9 +2S9 +1I9 +9M1)+4(3M9 +2S9 +1I9 +9M1)+
27(6S9)+30(6M9)+1I27 = 276M9+226S9+32I9+288M1+I27 operations. The
computation of the final exponentiation in [41] requires 1I27+11M27, 17 powers
of x, 2 powers of x − 1 and p, p2, p3, p4, p5, p6, p7, p8, 2 ∗ p9-Frobenius maps.
Therefore the explicit cost of the final exponentiation is 1I27 + 17(4(6M9) +
28(6S9) + 36M1) + 2(5(6M9) + 28(6S9) + 36M1) + 11(6M9) + 228M1 = 1I27 +
648M9 + 3192S9 + 912M1.
Then the explicit cost for the computation of the Miller loop and the final
exponentiation given in that work is 12627M1 +8670S1 +33I1 and 24627M1 +
114998S1 + 1I1 respectively (see [41] for details).

Remark 2 The negative coefficient in the value of x affects the efficiency since
one full inversion in Fp27 is required in the Miller algorithm (line 8) and also 19
inversions in the cyclotomic subgroup are required when raising to the power
of x during the final exponentiation.

In the next section we explain the choice of another parameter to avoid these
additional operations.
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6.2 Improvement and comparison with previous work

We use the arithmetic (especially the computation of inversion in the cy-
clotomic subgroup) and a specific value of x to improve the costs in [41].
Precisely, a careful search with a Pari/GP code enabled us to find the value
x = 229 + 219 + 217 + 214 so that r has a prime factor of 514 bits length
and the prime p has a bit length of 579 for 256-bit security level according to
Table 1. An adequate elliptic curve has the equation y2 = x3 − 2. Although
the corresponding base field is a bit larger (579 bits instead of 573 in [41],
but m579 ≈ m573 see section 8.4 for notations) and we have an extra doubling
step, we avoid the full inversion in Fp27 and 17 inversions in the cyclotomic
subgroup Gφ3(p9) when raising to power x. We perform 2 inversions in the
cyclotomic subgroup only when raising to power x− 1. The cost of the Miller
loop now becomes 29(3M9 + 2S9 + 1I9 + 9M1) + 3(3M9 + 2S9 + 1I9 + 9M1) +
27(6S9) + 30(6M9) = 276M9 + 226S9 + 32I9 + 288M1. Using the arithmetic
in Table 2, the overall cost for the Miller loop is 32I1 + 12240M1 + 6034S1 for
this work where we saved at least one inversion in Fp27 .
Our cost for the final exponentiation is 1I27+17(3(6M9)+29(6S9))+2(4(6M9)+
29(6S9)) + 2IGφ3(p9)

+ 11(6M9) = 1I27 + 420M9 + 3306S9 + 2IGφ3(p9)
and

p, p2, p3, p4, p5, p6, p7, p8, 2 ∗ p9-Frobenius maps. Using the arithmetic in Table
2, the overall cost is I1+15951M1+82862S1 for this work. The implementation
of this pairing is available in [?].

7 General Comparison

In this section, we summarize the different costs obtained in this work and
compare our results with previous works.

Curves References Miller loop Final Exponentiation

k = 9
Previous work [29] No specific cost reported I1 + 1943M1 + 7737S1

128-bit This work 3024M1 + 3060S1 I1 + 1115M1 + 7592S1

k = 15
Previous work [36] No specific cost reported I1 + 4263M1 + 31811S1

192-bit This work 52I1 + 6819M1 + 3311S1 I1 + 3093M1 + 24044S1

k = 27
Previous work [41] 33I1 + 12627M1 + 8670S1 I1 + 24627M1 + 114998S1

256-bit This work 32I1 + 12240M1 + 6034S1 I1 + 15951M1 + 82862S1

Table 3 Comparison of the cost of the Miller loop and the final exponentiation.

If we assume that the cost of a squaring is the same as the cost of a
multiplication then the cost of the final exponentiation is I1 + 27137M1 and
I1 + 36074M1 for this work and previous work [29] respectively for k = 15.
The theoretical improvement obtained in this work is therefore up to 25%.
A similar analysis with k = 9 yields an improvement of 8%. In the case of
curves with k = 27, our results present an improvement of 14% and 29% for
the Miller loop and final exponentiation respectively compare to the work in
[41].
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8 New Parameters for Optimal Ate pairing on Elliptic Curves with
embedding degrees 9, 15 and 27

In this section we consider new parameters for parameterized curves of em-
bedding degrees 9, 15 and 27 at the 128, 192 and 256-bit security levels. We
consider recent advances on the computation of the discrete logarithm thanks
to the Number Field Sieve (NFS) algorithm and its variants described in some
papers as mentioned in the introduction. Mostly, the paper of Barbulescu and
Duquesne [4] presents a detailed approach for computing new parameters for
pairings. Based on their analysis, Scott and Guillevic [38] have proposed ten-
tative general recommended parameters for classical security level and that we
reproduce here in Table 4.

DL Algorithm AES-128 AES-192 AES-256
NFS 3072 7680 15360

exTNFS 3618 9241 18480
SexTNFS 5004 12871 27410

Table 4 Recommended extension fields size (pk) to obtain desired levels of security [38].

Following the Table 4, we searched for new parameters that will ensure
resistance to SexTNFS algorithm at the various security levels for curves of
embedding degrees 9, 15 and 27.

8.1 New parameters and costs for optimal ate pairing at the 128-bit security
level for k = 9 and k = 15

– Case of k = 9. Following the recommendation from Table 4, we found the
value x = 270 + 259 + 246 + 241 + 1. This gives a prime p of 559 bits and a
prime r of 419 bits. We proceed as described in Section 4 to obtain the cost
of the Miller loop and the final exponentiation. The Miller loop costs in
this case 70(9M1 +3M3 +9S3)+4(9M1 +12M3 +5S3)+69S9 +73M9. This
is equal to 73M9 + 258M3 + 666M1 + 69S9 + 650S3. Using the arithmetic
in Table 2, the overall cost is 4842M1 + 4975S1. Using the value of x given
above, the hard part of the final exponentiation costs 2(70S9 + 3M9) +
5(70S9 + 4M9) + 7M9 + 1S9 + 2IGφ3(p3)

= 491S9 + 33M9 + 2IGφ3(p3)
and

p, p2, p3, p4, p5-Frobenius maps. The total cost of the final exponentiation
is 1I9 + 34M9 + 491S9 + 2IGφ3(p3)

and p, p2, 2 ∗ p3, p4, p5-Frobenius maps

for a total cost of I1 + 1367M1 + 12317S1.
– Case of k = 15. Following the recommendation from Table 4, we found the

value x = 231 + 219 + 25 + 22. This gives a prime p of 371 bits and a prime
r of 249 bits. We proceed as described in section 5 to obtain the cost of the
Miller loop and the final exponentiation. The Miller loop costs in this case
3(15M1+13M5+3S5)+31(15M1+6M5+7S5)+30S15+33M15. This is equal
to 33M15 +225M5 +510M1 +30S15 +226S5. Using the arithmetic in Table
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2, the overall cost is 4020M1+3384S1. Using the value of x given above, the
hard part of the final exponentiation costs 2(31S15 + 4M15 + 1IGφ3(p5)

) +

9(31S15 + 3M15) + 20M15 + 1S15 + 4IGφ3(p5)
= 55M15 + 342S15 + 6IGφ3(p5)

and p, p2, p3, p4, p5, p6, p7, p8, p9-Frobenius maps. The total cost of the final
exponentiation is I15 + 56M15 + 342S15 + 6IGφ3(p5)

and p, p2, p3, p4, 2 ∗
p5, p6, p7, p8, p9-Frobenius maps for a total cost of I1 + 2940M1 + 15575S1.

The following table 5 compares our results with previous results at the
128-bit security level.

Curves-Ref. Miller loop Final Exp. Size of p Total(S1 = M1)
k = 15 4020M1 + 3384S1 I1 + 2940M1 371 I1 + 25919M1

(This work) +15575S1

KSS16 [4] 7534M1 I1 + 18542M1 340 I1 + 26076M1

BLS12 [4] 7708M1 I1 + 8295M1 461 I1 + 16003M1

BN12 [4,2] 12068M1 I1 + 7485M1 461 I1 + 19553M1

k = 9 4842M1 + 4975S1 I1 + 1367M1 559 I1 + 23501M1

(This work) +12317S1

Table 5 Comparison of the cost of the Miller loop and the final exponentiation at 128-bit
security level.

8.2 New parameters and costs for pairings at the 192- bit security levels for
k = 15 and k = 27

– Case of k = 15. Following the recommendation from Table 4, we found the
value x = 272+240+29+25+1. This gives a prime p of 863 bits and a prime
r of 577 bits. We proceed as described in section 5 to obtain the cost of the
Miller loop and the final exponentiation. The Miller loop costs in this case
4(15M1 + 13M5 + 3S5) + 72(15M1 + 6M5 + 7S5) + 71S15 + 75M15. This is
equal to 75M15 + 484M5 + 1140M1 + 71S15 + 516S5. Using the arithmetic
in Table 2, the overall cost is 8871M1 + 7839S1. Using the value of x given
above, the hard part of the final exponentiation costs 2(72S15 + 3M15) +
9(72S15 + 4M15) + 20M15 + 1S15 + 4IGφ3(p5)

= 62M15 + 793S15 + 4IGφ3(p5)

and p, p2, p3, p4, p5, p6, p7, p8, p9-Frobenius maps. The total cost of the final
exponentiation is I15 + 63M15 + 793S15 + 4IGφ3(p5)

and p, p2, p3, p4, 2 ∗
p5, p6, p7, p8, p9-Frobenius maps for a total cost of I1 + 3201M1 + 35816S1.

– Case of k = 27. Following the recommendation from Table 4, we found
the value x = 225 + 214 + 217 + 24 + 1. This gives a prime p of 511 bits
and a prime factor of r of 410 bits. We proceed as described in section
6 to obtain the cost of the Miller loop and the final exponentiation. The
Miller loop costs in this case 4(9M1 + 1I9 + 2S9 + 3M9) + 25(9M1 + 1I9 +
2S9 + 3M9) + 24S27 + 27M27. This is equal to 29I9 + 27M27 + 87M9 +
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261M1 + 24S27 + 58S9. Using the arithmetic in Table 2, the overall cost
is 29I1 + 11052M1 + 4798S1. Using the value of x given above, the final
exponentiation costs I27 + 2(25S27 + 3M27) + 17(25S27 + 4M27) + 11M27 +
2IGφ3(p9)

and p, p2, p3, p4, p5, p6, p7, p8, 2∗p9-Frobenius maps for a total cost

of the final exponentiation I1 + 19191M1 + 59587S1.
The cost for the case k = 24 are obtained with the parameter given in [4]
and the formulas from [2]

The following table 6 compares our results with previous results at the
192-bit security level.

Curves-Ref. Miller loop Final Exp. Size of p Total(S1 = M1)
k = 15 8871M1 + 7839S1 I1 + 3201M1 863 I1 + 55727M1

(This work) +35816S1

BLS27 29I1 + 11052M1 I1 + 19191M1 511 30I1 + 94628M1

(This work) +4798S1 +59587S1

KSS18 [4] 15270M1 + 2590S1 8I1 + 7977M1 677 8I1 + 44147M1

+18310S1

BLS24 [4,2] 15495M1 10I1 + 27914M1 554 10I1 + 43409M1

Table 6 Comparison of the cost of the Miller loop and the final exponentiation at 192-bit
security level.

8.3 New parameters and costs for pairings at the 256- bits security levels for
k = 27 and k = 24

– Case of k = 27. Following the recommendation from Table 4, we found
the value x = 251 + 242 + 228 + 29 + 1. This gives a prime p of 1019 bits
and a prime factor of r of 883 bits. We proceed as described in section
6 to obtain the cost of the Miller loop and the final exponentiation. The
Miller loop costs in this case 4(9M1 + 1I9 + 2S9 + 3M9) + 51(9M1 + 1I9 +
2S9 + 3M9) + 50S27 + 53M27. This is equal to 55I9 + 53M27 + 165M9 +
495M1 + 50S27 + 110S9. Using the arithmetic in Table 2, the overall cost
is 55I1 + 21348M1 + 9660S1. Using the value of x given above, the final
exponentiation costs I27 + 2(51S27 + 3M27) + 17(51S27 + 4M27) + 11M27 +
2IGφ3(p9)

and p, p2, p3, p4, p5, p6, p7, p8, 2∗p9-Frobenius maps for a total cost

of the final exponentiation I1 + 19191M1 + 122337S1.
The cost for the case k = 24 are obtained with the parameter given in [4]
and the formulas from [2]

The following table 7 compares our results with previous results at the
256-bit security level.
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Curves-Ref. Miller loop Final Exp. Size of p Total(S1 = M1)
k = 27 55I1 + 21348M1 I1 + 19191M1 1019 56I1 + 172536M1

(This work) +9660S1 +122337S1

BLS24[4,2] 18812M1 10I1 + 43142M1 1029 10I1 + 61954M1

KSS18[4] 32238M1 + 2620S1 8I1 + 7977M1 1495 8I1 + 82355M1

+39520S1

Table 7 Comparison of the cost of the Miller loop and the final exponentiation at 256-bit
security level.

8.4 Comparison

To make a fair comparison of the results in tables 5, 6 and 7, we take note of the
size of the base field. We consider implementations on 64-bit platform. Then
following [2], a Fp element is represented with ` = 1+log2(p) binary coefficients
packed in n64 = d `64e64 bits processor words and a Fp multiplication can be
implemented with approximately 2n264 + n64 operations. We denote mc the
cost of a multiplication in the finite field Fp where p is of c bits. For the Table
5 we have that m461 ≈ 1.35m371. From this we see that, at the 128-bit security
level, the total cost of computing the optimal ate pairing for elliptic curves
with k = 15 is 19199m461 making these curves faster than the well known BN
curves but slower than the KSS16 curves found in [4] as the best one at the
128-bit security level. From Table 6 we have that the cost for computing the
optimal ate pairing for curves with k = 15 is 166067m511 as m863 ≈ 2.98m511

. We conclude that at the 192-bit security level computing the optimal ate
pairing is faster on elliptic curves with embedding degree k = 27 than on
curves with k = 15 and in this case the BLS24 curves remain faster. At the
256-bit security level, we have that the BLS24 curves are the faster.

9 Conclusion

In this work we provided details and important improvements in the com-
putation of the Miller loop and the final exponentiation for the optimal ate
pairing on elliptic curves admitting cubic twists. An explicit cost evaluation
is given for the Miller loop in the case of elliptic curves of embedding degree
9 and 15. In particular for k = 15 and k = 27 we obtained an improvement,
in terms of operations in the base field, of up to 25% and 29% respectively
in the computation of the final exponentiation. Also, we obtained that elliptic
curves with embedding degree k = 15 present faster results than BN12 curves
at the 128-bit security levels. In comparison with curves having even embed-
ding degrees we find that a lot of improvements are still required in the case
of curves with odd embedding degree. One could try to compute compressed
squarings in this case. To ensure the correctness of all the formulas used in
this work, a MAGMA code for the implementation of the three pairings is
given. Furthermore, a brief look at the parameters used in this work reveals
that the curves with odd embedding degrees studied in this work are not sub-
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group secure ordinary curves [6] and are not protected against small-subgroup
attacks[32]. However this is not a particular case of elliptic curves of odd em-
bedding degree but it appears from [6] that most of such parameters that have
been found for curves with even embedding degree such as BN12 curves [8],
KSS16 curves [24] or BLS12 curves [7] do not satisfied these security prop-
erties. As future work we could search for parameters to fulfill this security
issue.
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A Arithmetic in Fp9

Let a = a0 + a1v + a2v2 ∈ Fp9 with ai ∈ Fp3 .

A.1 Cyclotomic inversion

We assume that a lies in the cyclotomic subgroup Gφ3(p3)
, so that ap

6+p3+1 = 1 i.e.

a−1 = ap
6
ap

3
. In order to compute ap

6
ap

3
, we need the values of vp

3
and vp

6
. But vp

3
=

v3(p
3−1)/3+1 = v3(p

3−1)/3v = (v3)(p
3−1)/3v = (71/3)(p

3−1)/3v since v3 = 71/3.

Let µ = (71/3)(p
3−1)/3; we have µ 6= 1 and µ3 = 1 so that µ is a primitive cubic root of

unity in Fp3 . We obtain vp
3

= µv and vp
6

= (vp
3
)p

3
= (µv)p

3
= µ(v)p

3
= µµv = µ2v. We

then have ap
3

= ap
3

0 + ap
3

1 vp
3

+ ap
3

2 (v2)p
3

= a0 + a1vp
3

+ a2(v2)p
3

= a0 + a1µv + a2µ2v2

and ap
6

= (ap
3
)p

3
= a0 + a1(µv)p

3
+ a2(µ2v2)p

3
= a0 + a1µ2v + a2µ4v2. So that when

using v3 = 71/3 and φ3(µ) = µ2 + µ+ 1 = 0, we finally have:

ap
6
ap

3
= (a20 − a1a271/3) + (a2271/3 − a0a1)v + (a21 − a0a2)v2

This costs 3M3 + 3S3 = 18M1 + 15S1 with additional additions.

A.2 Frobenius operators

The pi−Frobenius is the map πi: Fp9 → Fp9 , a 7→ ap
i
. Let a ∈ Fp9 , a = a0 + a1v + a2v2

with ai ∈ Fp3 then π(a) = ap0 + ap1v
p + ap2(v2)p. Now a0 ∈ Fp3 can be written as a0 =

g0 + g1u+ g2u2, gi ∈ Fp so that ap0 = g0 + g1up + g2(u2)p.



24 E.Fouotsa et al.

We have up = u3(p−1)/3+1 = (u3)(p−1)/3u = 7(p−1)/3u and since 7 is not a cube in Fp,
7(p−1)/3 6= 1. Let α = 7(p−1)/3 then α 6= 1 and α3 = 1; it means that α is a primitive cubic
root of unity in Fp and up = αu. Therefore ap0 = g0 + g1up + g2(u2)p = g0 + g1αu+ g2α2u2

and similarly ap1 = g3 + g4up + g5(u2)p = g3 + g4αu+ g5α2u2 and
ap2 = g6 + g7up + g8(u2)p = g6 + g7αu + g8α2u2. Now for the computation of vp observe

that vp = v3(p−1)/3+1 = (v3)(p−1)/3v = (71/3)(p−1)/3v = 7(p−1)/9v so that if β = 7(p−1)/9

then we have β 6= 1, β3 = 7(p−1)/3 = α 6= 1, β9 = 1. Thus β is a primitive ninth root of
unity in Fp and vp = βv.
Finally ap = g0+g1αu+g2α2u2+(g3β+g4αβu+g5α2βu2)v+(g6β2+g7αβ2u+g8α2β2u2)v2

and the following algebraic relations: α = β3, αβ = β4, αβ2 = β5, α2β = β7, α2β2 = β8

yield to ap = (g0+g1β3u+g2β6u2)+(g3β+g4β4u+g5β7u2)v+(g6β2+g7β5u+g8β8u2)v2.
The cost of p-Frobenius: 8M1. This is the same as the cost of p2, p4, p5, p7 and p8-Frobenius.

For the p3-Frobenius operator, observe from A.1 that vp
3

= µv. Then

ap
3

= a0 +a1µv+a2µ2v2 = (g0 +g1u+g2u2)+(g3 +g4u+g5u2)µv+(g6 +g7u+g8u2)µ2v2.
As t = µ2 is precomputed; we finally have

ap
3

= (g0 + g1u+ g2u2) + (g3µ+ g4µu+ g5µu2)v + (g6t+ g7tu+ g8tu2)v2.
The cost of p3-Frobenius: 6M1. This is the same as the cost of p6-Frobenius.

B Arithmetic in Fp27

B.1 Cyclotomic inversion

We follow the same procedure as in A.1. The element a = a0 +a1w+a2w2 ∈ Fp27 with ai ∈
Fp9 in the cyclotomic subgroup Gφ3(Fp9 ) satisfies ap

18+p9+1 = 1 so that a−1 = ap
18
ap

9
.

In order to compute ap
18
ap

9
, we need the values of wp

9
and wp

18
. We have

wp
9

= w3(p9−1)/3+1 = w3(p9−1)/3w = (w3)(p
9−1)/3w = (71/9)(p

9−1)/3w since w3 = 71/9.

Let σ = (71/9)(p
9−1)/3 then σ 6= 1 and σ3 = 1. Hence σ is a primitive cubic root

of unity in Fp9 i.e. φ3(σ) = 0. We obtain wp
9

= σw and we now compute wp
18

as

wp
18

= (wp
9
)p

9
= (σw)p

9
= σ(w)p

9
= σσw = σ2w.

ap
9

= a0 + a1wp
9

+ a2(w2)p
9

= a0 + a1σw + a2σ2w2 and

ap
18

= (ap
9
)p

9
= a0 + a1(σw)p

9
+ a2(σ2w2)p

9
= a0 + a1σ2w + a2σ4w2. After expanding

and reducing using w3 = 71/9 and φ3(σ) = σ2 + σ + 1 = 0 we obtain

ap
18
ap

9
= (a20 − a1a271/9) + (a2271/9 − a0a1)w + (a21 − a0a2)w2

The computation costs 3(36M1) + 3(25S1) = 108M1 + 75S1.

B.2 Frobenius operators

The pi−Frobenius is the map πi: Fp27 → Fp27 , a 7→ ap
i
. Let a = a0 + a1w + a2w2 with

ai ∈ Fp9 an element of Fp27 .

π(a) = ap = (a0 + a1w + a2w2)p = ap0 + ap1w
p + ap2(w2)p. The element a0 ∈ Fp9 can be

written as a0 = (h0 + h1u + h2u2) + (h3 + h4u + h5u2)v + (h6 + h7u + h8u2)v2, hi ∈ Fp.
We have ap0 = (h0 + h1u+ h2u2 + (h3 + h4u+ h5u2)v + (h6 + h7u+ h8u2)v2)p, hpi = hi.

up = u3(p−1)/3+1 = (u3)(p−1)/3u = 7(p−1)/3u. Since 7 is not a cube in Fp, we have
α = 7(p−1)/3 α 6= 1 and α3 = 1. It means that α is a primitive cubic root of unity in Fp
and up = αu. vp = v3(p−1)/3+1 = (v3)(p−1)/3v = (71/3)(p−1)/3v = 7(p−1)/9v.
We have β = 7(p−1)/9 6= 1 and β9 = 1. Thus β is a primitive ninth root of unity in Fp and
vp = βv. Also wp = w3(p−1)/3+1 = (w3)(p−1)/3v = (71/9)(p−1)/3v = 7(p−1)/27v. We also
observe that γ = 7(p−1)/27 6= 1, γ3 = 7(p−1)/9 = β 6= 1, γ9 = 7(p−1)/3 = α 6= 1, γ27 = 1.
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Thus γ is a primitive twenty-seventh root of unity in Fp and wp = γw.

ap0 = ((h0 + h1u+ h2u2) + (h3 + h4u+ h5u2)v + (h6 + h7u+ h8u2)v2)p

= (h0 + h1up + h2(u2)p) + (h3 + h4up + h5(u2)p)vp + (h6 + h7up + h8(u2)p)(v2)p

= (h0 + h1αu+ h2α2u2) + (h3 + h4αu+ h5α2u2)βv + (h6 + h7αu+ h8α2u2)β2v2

= (h0+h1αu+h2α2u2)+(h3β+h4αβu+h5α2βu2)v+(h6β2+h7αβ2u+h8α2β2u2)v2.

ap1 = (h9 + h10u+ h11u2) + (h12 + h13u+ h14u2)v + (h15 + h16u+ h17u2)v2)p

= (h9+h10up+h11(u2)p)+(h12+h13up+h14(u2)p)vp+(h15+h16up+h17(u2)p)(v2)p

= (h9+h10αu+h11α2u2)+(h12+h13αu+h14α2u2)βv+(h15+h16αu+h17α2u2)β2v2

= (h9 + h10αu+ h11α2u2) + (h12β + h13αβu+ h14α2βu2)v + (h15β2 + h16αβ2u+

h17α2β2u2)v2.

ap2 = (h18 + h19u+ h20u2) + (h21 + h22u+ h23u2)v + (h24 + h25u+ h26u2)v2)p

= (h18+h19up+h20(u2)p)+(h21+h22up+h23(u2)p)vp+(h24+h25up+h26(u2)p)(v2)p

= (h18+h19αu+h20α2u2)+(h21+h22αu+h23α2u2)βv+(h24+h25αu+h26α2u2)β2v2.

= (h18 + h19αu+ h20α2u2) + (h21β + h22αβu+ h23α2βu2)v + (h24β2 + h25αβ2u+

h26α2β2u2)v2.

π(a) = (a0 + a1w + a2w2)p = ap0 + ap1w
p + ap2(w2)p = ap0 + ap1γw + ap2γ

2w2

= (h0 + h1αu + h2α2u2) + (h3β + h4αβu + h5α2βu2)v + (h6β2 + h7αβ2u +
h8α2β2u2)v2+

((h9 + h10αu+ h11α2u2) + (h12β + h13αβu+ h14α2βu2)v + (h15β2 + h16αβ2u+

h17α2β2u2)v2)γw+ ((h18 + h19αu+ h20α2u2) + (h21β+ h22αβu+ h23α2βu2)v+

(h24β2 + h25αβ2u+ h26α2β2u2)v2)γ2w2.
We have these following algebraic relations: α = β3, αβ = β4, αβ2 = β5, α2β = β7 and
α2β2 = β8. Therefore
π(a) = ((h0 +h1β3u+h2β6u2)+(h3β+h4β4u+h5β7u2)v+(h6β2 +h7β5u+h8β8u2)v2)+

((h9γ+h10β3γu+h11β6γu2)+(h12βγ+h13β4γu+h14β7γu2)v+(h15β2γ+h16β5γu+

h17β8γu2)v2)w + ((h18γ2 + h19β3γ2u + h20β6γ2u2) + (h21βγ2 + h22β4γ2u +
h23β7γ2u2)v+

(h24β2γ2 + h25β5γ2u+ h26β8γ2u2)v2)w2.
The following values are precomputed: λ0 = β2, λ1 = β3, λ2 = β4, λ3 = β5, λ4 = β6,
λ5 = β7, λ6 = β8, λ7 = γ2 , λ8 = βγ, λ9 = λ0γ, λ10 = λ1γ, λ11 = λ2γ, λ12 = λ3γ,
λ13 = λ4γ, λ14 = λ5γ, λ15 = λ6γ, λ16 = λ0λ7, λ17 = λ1λ7, λ18 = λ2λ7, λ19 = λ3λ7,
λ20 = λ4λ7, λ21 = λ5λ7, λ22 = λ6λ7. λ23 = βλ7.
Thus π(a) = ((h0 + h1λ1u+ h2λ4u2) + (h3β + h4λ2u+ h5λ5u2)v + (h6λ0 + h7λ3u+

h8λ6u2)v2) + ((h9γ+h10λ10u+h11λ13u2) + (h12λ8 +h13λ11u+h14λ14u2)v+

(h15λ9 +h16λ12u+h17λ15u2)v2)w+((h18λ7 +h19λ17u+h20λ20u2)+(h21λ23+

h22λ18u+ h23λ21u2)v + (h24λ16 + h25λ19u+ h26λ22u2)v2)w2.
The cost of p-Frobenius: 26M1 + 18a. This is also equal to the cost of p2, p4, p5, p7, p8

Frobenius
For the p9 Frobenius operator, observe from B.1 that wp

9
= σw. Then

ap
9

= a0 + a1σw + a2σ2w2 = ((h0 + h1u+ h2u2) + (h3 + h4u+ h5u2)v + (h6 + h7u+

h8u2)v2) + ((h9 + h10u + h11u2) + (h12 + h13u + h14u2)v + (h15 + h16u +
h17u2)v2)σw+

((h18 + h19u+ h20u2) + (h21 + h22u+ h23u2)v + (h24 + h25u+ h26u2)v2)σ2w2.

We then have ap
9

= ((h0 +h1u+h2u2) + (h3 +h4u+h5u2)v+ (h6 +h7u+h8u2)v2)+

((h9σ+h10σu+h11σu2)+(h12σ+h13σu+h14σu2)v+(h15σ+h16σu+

h17σu2)v2)w + ((h18σ2 + h19σ2u+ h20σ2u2) + (h21σ2 + h22σ2u+

h23σ2u2)v + (h24σ2 + h25σ2u+ h26σ2u2)v2)w2.

As s = σ2 is precomputed; we have ap
9

= ((h0 + h1u+ h2u2) + (h3 + h4u+ h5u2)v +
(h6 + h7u + h8u2)v2) + ((h9σ + h10σu + h11σu2) + (h12σ + h13σu + h14σu2)v + (h15σ +
h16σu + h17σu2)v2)w + ((h18s + h19su + h20su2) + (h21s + h22su + h23su2)v + (h24s +
h25su+ h26su2)v2)w2.
The cost of p9-Frobenius: 18M1. This is the same as the cost of p3 and p6 Frobenius.
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C Arithmetic in Fp15

The arithmetic of the extension field Fp5 is studied in [36]. In this section we only consider
inversion in cyclotomic subgroup and Frobenius operators.

C.1 Cyclotomic inversion

An element a = a0 + a1v + a2v2 ∈ Fp15 with ai ∈ Fp5 in the cyclotomic subgroup Gφ3(p5)

satisfies ap
10+p5+1 = 1 so that a−1 = ap

10
ap

5
.

vp
5

= v5(p
5−1)/5+1 = v5(p

5−1)/5v = (v5)(p
5−1)/5v = (71/3)(p

5−1)/5v since v5 = 71/3.

Let ω = (71/3)(p
5−1)/5. We have ω 6= 1 and ω5 = 1. Hence ω is a primitive fifth root of

unity in Fp5 . We obtain vp
5

= ωv, and vp
10

= (vp
5
)p

5
= (ωv)p

5
= ω(v)p

5
= ωωv = ω2v.

ap
5

= (a0 + a1v + a2v2)p
5

= ap
5

0 + ap
5

1 vp
5

+ ap
5

2 (v2)p
5

= a0 + a1vp
5

+ a2(v2)p
5

=
a0 + a1ωv + a2ω2v2.

ap
10

= (ap
5
)p

5
= a0 + a1(ωv)p

5
+ a2(ω2v2)p

5
= a0 + a1ω2v + a2ω4v2.

ap
10
ap

5
= (a0 + a1ω2v + a2ω4v2)(a0 + a1ωv + a2ω2v2)

After expanding and reducing using v3 = u and φ5(ω) = 0 we obtain

ap
10
ap

5
= (a20 + (1 + ω4)a1a2u) + ω(a22u+ (1 + ω)a0a1)v + ω2(a21ω + (1 + ω2)a0a2)v2

This costs 3(9M1) + 3(9S1) = 27M1 + 27S1

C.2 Frobenius operators

The pi−Frobenius is the map πi: Fp15 → Fp15 , a 7→ ap
i
. Let a ∈ Fp15 ; a = a0 + a1v + a2v2

with ai ∈ Fp5 . π(a) = ap = (a0 + a1v + a2v2)p = ap0 + ap1v
p + ap2(v2)p. As a0 ∈ Fp5 i.e.

a0 = g0+g1u+g2u2+g3u3+g4u4, gi ∈ Fp, we have ap0 = (g0+g1u+g2u2+g3u3+g4u4)p =
g0 + g1up + g2(u2)p + g3(u3)p + g4(u4)p, since gpi = gi.

Now we have up = u5(p−1)/5+1 = (u5)(p−1)/5u = 7(p−1)/5u and as 7 is not a fifth power
in Fp; so 7(p−1)/5 6= 1. Let θ = 7(p−1)/5, θ 6= 1 and θ5 = 1. It means that θ is a primitive
fifth root of unity in Fp and up = θu. ap0 = g0 + g1up + g2(u2)p + g3(u3)p + g4(u4)p =
g0 + g1θu+ g2θ2u2 + g3θ3u3 + g4θ4u4.
ap1 = g5 + g6up + g7(u2)p + g8(u3)p + g9(u4)p = g5 + g6θu+ g7θ2u2 + g8θ3u3 + g9θ4u4.
ap2 = g10+g11up+g12(u2)p+g13(u3)p+g14(u4)p = g10+g11θu+g12θ2u2+g13θ3u3+g14θ4u4.

vp = v5(p−1)/5+1 = (v5)(p−1)/5v = (71/3)(p−1)/5v = (71/3)(p−1)/5v. 71/3 is not a fifth
power in Fp; so (71/3)(p−1)/5 6= 1.
Set β = (71/3)(p−1)/5, we have β 6= 1; β5 = 1. Thus β is a primitive fifth root of unity in
Fp and vp = βv. ap = (a0 +a1v+a2v2)p = ap0 +ap1v

p+ap2(v2)p = (g0 + g1θu+ g2θ2u2 +
g3θ3u3+g4θ4u4)+(g5+g6θu+g7θ2u2+g8θ3u3+g9θ4u4)vp +(g10+g11θu+g12θ2u2+
g13θ3u3 + g14θ4u4)(vp)2 = (g0 + g1θu + g2θ2u2 + g3θ3u3 + g4θ4u4) + (g5β + g6θβu +
g7θ2βu2 + g8θ3βu3 + g9θ4βu4)v +(g10β2 + g11θβ2u + g12θ2β2u2 + g13θ3β2u3 +
g14θ4β2u4)v2. We precomputed these following values: c0 = θ2 c1 = θ3, c2 = θ4, c3 = β2,
c4 = θβ, c5 = c0β, c6 = c1β, c7 = c2β, c8 = θc3, c9 = c0c3, c10 = c1c3, c11 = c2c3.
So π(a) = (g0 + g1θu + g2c0u2 + g3c1u3 + g4c2u4) + (g5β + g6c4u + g7c5u2 + g8c6u3

+g9c7u4)v + (g10c3 + g11c8u+ g12c9u2 + g13c10u3 + g14c11u4)v2.
The cost of p-Frobenius is 14M1. This is the same cost as computing p2, p3, p4,

p6, p7, p8, p9 Frobenius.

For the p5 Frobenius operator, observe from C.1 that vp
5

= ωv so that ap
5

= (g0 + g1u +

g2u2 + g3u3 + g4u4) + (g5 + g6u+ g7u2 + g8u3 + g9u4)vp
5

+ (g10 + g11u

+g12u2 + g13u3 + g14u4)(vp
5
)2.

= (g0 + g1u+ g2u2 + g3u3 + g4u4) + (g5ω + g6ωu+ g7ωu2 + g8ωu3 + g9ωu4)v
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+(g10ω2 + g11ω2u+ g12ω2u2 + g13ω2u3 + g14ω2u4)v2.
We precomputed d = ω2.

π5(a) = ap
5

= (g0 + g1u+ g2u2 + g3u3 + g4u4) + (g5ω+ g6ωu+ g7ωu2 + g8ωu3 + g9ωu4)v+
(g10d+ g11du+ g12du2 + g13du3 + g14du4)v2. The cost of p5-Frobenius is 10M1. This is the
same as the cost of p10 Frobenius.


