On Finding Short Cycles in Cryptographic
Algorithms

Elena Dubrova! and Maxim Teslenko?

! Royal Institute of Technology, Electrum 229, 164 40 Stockholm, Sweden
dubrova@kth.se
2 Ericsson Research, Ericsson, Farogatan 6, 164 80 Stockholm, Sweden
maxim.teslenko@ericsson.com

Abstract. We show how short cycles in the state space of a crypto-
graphic algorithm can be used to mount a fault attack on its implemen-
tation which results in a full secret key recovery. The attack is based on
the assumption that an attacker can inject a transient fault at a precise
location and time of his/her choice and more than once. We present an
algorithm which uses a SAT-based bounded model checking for finding
all short cycles of a given length. The existing Boolean Decision Diagram
(BDD) based algorithms for finding cycles have limited capacity due to
the excessive memory requirements of BDDs. The simulation-based algo-
rithms can be applied to larger problem instances, however, they cannot
guarantee the detection of all cycles of a given length. The same holds
for general-purpose SAT-based model checkers. The presented algorithm
can find all short cycles in cryptographic algorithms with very large
state spaces. We evaluate it by analyzing Trivium, Bivium, Grain-80 and
Grain-128 stream ciphers. The analysis shows these ciphers have short
cycles whose existence, to our best knowledge, was previously unknown.

Keywords: Shift register, stream cipher, Trivium, Grain, cycle, SAT,
fault attack, fault injection.

1 Introduction

SAT solvers are a powerful tool for finding solutions to Boolean satisfiability
problem. Using backtracking and different heuristics, these solvers explore the
exponential space of variable assignments looking for a satisfying assignment. In
spite of NP-completeness of the SAT problem [1], today’s SAT solvers are able
to handle problem instances involving thousands of variables. This is sufficient
for many practical SAT problems in formal verification, automatic test pattern
generation, and logic synthesis [2].

In the past there were multiple attempts to use SAT solvers in cryptanalysis,
including finding preimages for hash functions [3-5], generating collisions for
hash functions [6], faking RSA signatures [7], recovering RSA private keys [§],
finding (or disproving the existence of) weak keys in stream and block ciphers [9,
10], guess-and-determine attacks on stream ciphers [9], algebraic attacks [11-13],

and side-channel attacks on software implementations of block ciphers [14]. So
called logical cryptanalysis has been introduced by Massacci and Marraro [15]
as a general framework for encoding the low-level properties of cryptographic
algorithms as SAT problems and then using efficient automated theorem-proving
systems and SAT-solvers for reasoning about them. This approach has been
followed by many, including [16-19]. However, it is generally quite difficult to
make SAT solvers to produce meaningful results except for strongly reduced
instances of cryptographic algorithms.

In this paper, we present a SAT-based algorithm which is able to produce
results for important stream ciphers such as Trivium [20] and Grain [21] which
are among the candidates that have continuously attracted attention since the
end of the eStream project [22]. Given that the internal state space of Trivium
is of size 2288, designing an algorithm which guarantees that all cycles of a given
length are detected is far from trivial. To the best of our knowledge, none of the
existing algorithms is able to solve this problem. The existing Boolean Decision
Diagram (BDD) based approaches [23,24] have limited capacity due to the ex-
cessive memory requirements of BDDs. The simulation-based algorithms [25-28]
can be applied to larger problem instances, however, they cannot guarantee
the detection of all cycles of a given length, even if the length is short. The
same holds for the SAT-based algorithms that do not limit cycle length [29] and
general-purpose SAT-based model checkers, e.g. [30]. There are many algorithms
for finding cycles of length one, including [31-33], but they cannot handle larger
cycle lengths.

The presented algorithm finds cycles using a SAT-based bounded model
checking approach [30]. A SAT-solver is used for the identification of paths of a
particular fixed length k in the state transition graph of a deterministic finite
state machine. The input fed into the SAT-solver is a propositional formula rep-
resenting the unfolding of the transition relation by k time steps. A satisfying
assignment to this propositional formula corresponds to a valid path of length
k in the state transition graph. If the last state of this path is equal to its first
state, we can conclude that we found a cycle of length k or a factor of k. We
can then mark all cycle’s states by adding them as constrains to the input for-
mula of the SAT-solver and, in the following iterations, search only for paths in
which the last state is not marked. We repeat the process iteratively until the
SAT-solver cannot find any more satisfying assignments.

We evaluated the presented algorithm by analyzing Trivium, Bivium, Grain
family stream ciphers and found that they have short cycles whose existence,
to our best knowledge, was previously unknown (except for all-0 cycles). We
describe how short cycles can be used to mount a fault attack which results
in a full secret key recovery. This attack is based on the assumption that an
attacker can inject a transient fault at a precise location and time of his/her
choice and more than once. The fact that such an assumption can be realistic
for single faults has been demonstrated by Skorobogatov and Anderson already
in 2002 [34]. They used a focused flash light to set flip-flops implementing in-
dividual SRAM cells in a microcontroller to a fixed value. Clearly in 15 years

feature sizes of transistors scaled considerably, making an individual flip-flop a
more difficult target. However, the equipment and methods for performing fault
attacks advanced as well (see [35-37] for recent overviews). A successful laser
fault injection attack capable of inducing single faults in a successive manner
at the same location has been reported in 2010 for the CRT-RSA running on
a 32-bit ARM Cortex-M3 core [38]. A fault injection attack using two lasers to
inject two faults simultaneously at different locations has been reported in 2016
for the AES implemented in a Xilinx Spartan-6 FPGA manufactured in 45 nm
technology [39]. Therefore, it seems very likely that the attack we present might
be feasible in practice provided that a chip is not protected against fault injec-
tion. Therefore, it is important to bring this problem to the attention of research
community.

The paper is organized as follows. Section 2 gives the background on shift
registers, stream ciphers and SAT-solvers. Section 3 presents the new SAT-based
algorithm. Section 4 summarizes the experimental results for four stream ciphers.
In Section 5 we describe how short cycles can be used to recover a secret key by
a fault attack. Section 6 concludes the paper and discusses open problems.

2 Background

This section describes basic notions used in the paper and gives a background on
stream ciphers and SAT solvers. All stream we consider in this paper are based
on shift registers, therefore we start by introducing shift resisters.

2.1 Shift registers

As a model of a shift register, we use a deterministic finite state machine with a
set of states S = {0,1}"™ and the state transition function f : S — S. We are not
concerned with inputs and outputs in this paper, so we assume that the input
alphabet is empty and there is no output function.

The state transition function f defines the next state s* = (z],23,...,7;)
as f(s), where s = (x1,2a,...,2,) is a current state and x; € {0,1} and = €
{0,1} are Boolean variables representing the bit number ¢ of the current and
next state, respectively, Vi € {1,2,...,n}. The bit number ¢ of the output of f
is computed by the Boolean function f; : S — {0,1}, Vi € {1,2,...,n}. In other
words, the state transition function f defines the mapping

1 fl(zla"'v'rn)
— . (1)

Tp fn(‘r17~"7$n)

Note that such a general definition of shift registers includes the linear and
non-linear feedback shift registers in the Fibonacci and the Galois configura-
tions [40], shift registers with feedforward connections (e.g. used in Trivium), as
well as Golomb’s binary machines [41, p. 21].

®@®
®®®

Fig. 1. The state transition graph of the mapping (2).

Each state transition function f induces a directed graph called the state
transition graph of f in which the nodes represent the states and the edges
represent possible transitions between the states. The node = (the predecessor)
in connected to node y (the successor) by an edge if f(z) = y. Nodes forming
a loop are called a cycle. A node z satisfying f(z) = z is regarded as a cycle
of length 1. Every node has a unique successor, but some nodes may have no
predecessors and some may have more than one predecessor. In general, a state
transition graph consists of a number of cycles and a number of directed trees
rooted in cycles. For example, Figure 1 shows the state transition graph for the
state transition function

T T2
To | = | T3 D x172 (2)
T3 T D T2

where “@” is for the Boolean XOR (the Boolean AND in the product-terms is
omitted).

If the state transition function f is invertible, so that for every y there is
an x satisfying f(x) = y, then the state transition graph of f consists of pure
cycles, without any trees rooted in them.

2.2 Stream ciphers

A stream cipher is a symmetric cryptographic primitive that allows two parties
which share a secret key to communicate confidential information [42]. Stream
ciphers generate a stream of pseudo-random bits, called the keystream, given
a secret key and a public random initialization vector (IV). The keystream is
combined with the plaintext message before the message is sent, typically by
bitwise XORing. The received ciphertext is again XORed with the keystream to
recover the original plaintext. As a result, the message cannot be read while in
transit or storage by unauthorized parties who do not possess the secret key.
The stream ciphers considered in this paper are based on one or more shift
registers with linear or non-linear state transition functions as well as an out-
put function that maps the internal register state to keystream bits. Stream

ciphers have two working phases: (1) an initialization phase and (2) a keystream
generation phase.

During the initialization, key and IV are typically mixed by shifting the
shift registers while updating them with a combination of the state transition
function and possibly also the output function (e.g. output function is used in
Grain-80 and Grain-128, but not in Bivium and Trivium). During the keystream
generation, the shift registers are shifted and their state transition functions are
evaluated, while the keystream is generated from the internal state using the
output function.

2.3 SAT solvers

SAT solvers are software tools that employ efficient heuristics to decide whether
a set of constraints has a solution. Constraints are typically represented by a
propositional formula in the Conjunctive Normal Form (CNF). In a CNF, each
variable symbol in the expression, x or T, is called a literal. A clause is a disjunc-
tion (Boolean OR) of literals. CNF is a conjunction (Boolean AND) of clauses.

SAT solvers are widely used in Electronic Design Automation (EDA) for
formal verification, automatic test pattern generation, and logic synthesis [2],
though they are also popular in a growing number of other domains.

Modern SAT solvers that are typically based on the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [43] which is a refinement of the earlier Davis-
Putnam algorithm [44]. Most efficient DPLL-based SAT solvers include GRASP
[45], where a powerful conflict analysis procedure was introduced, and Chaff [46],
where a particularly efficient implementation of Boolean constraint propagation
and a novel low overhead decision strategy were introduced. Solvers that employ
these techniques are called conflict-driven SAT solvers. In this paper we use Min-
iSat [47], a conflict-driven SAT solver which is designed to be easily adaptable to
different domains. Other reasons for choosing MiniSat is its competitive perfor-
mance, code availability, and flexibility in adding arbitrary Boolean constraints

MiniSat employs a backtracking-based, depth-first search algorithm to find a
satisfying assignment of variables for a set of clauses. The algorithm branches on
a variable by picking it heuristically, guessing its value to be TRUE or FALSE
and examining whether the values of other variables depend on this guess. The
affected variables are then assigned and the search continues until no more as-
signments can be made. During this propagation phase, a conflict may be de-
tected, i.e. a clause that cannot be satisfied may be found (because all its literals
became false). If this happens, a so called conflict clause (or learned clause)
which describes the wrong guesses that lead to the conflict is constructed and
added to the SAT problem. Assumptions are then canceled by backtracking un-
til the conflict clause becomes a unit, at which point it is propagated and the
search process continues. The conflict clauses drive the backtracking, guiding
the algorithm in choosing the best next guess, and speed up future conflicts by
caching the reason for the conflict [47]. Eventually, either a satisfiable assignment
is found, or the search tree is exhausted implying that no satisfying assignment
exists.

3 Description of the Algorithm

The pseudocode of the presented algorithm is given as Algorithm 1. The algo-
rithm 1 finds cycles of length k and factors of k£ induced by a state transition
function f : S — S of a deterministic finite state machine with a set of states
S ={0,1}".

3.1 Transition relation

The state transition function f : S — S can be described by a transition relation
T C S x S which can be represented by the following propositional formula:

n

T(s,sT) = /\(nc:r o filzy, .. x)) (3)

i=1

where “A” and “+” are the Boolean logic operations AND and EQUALITY,
respectively. Recall from Section 2 that x; € {0,1} and z;” € {0,1} are Boolean

variables representing the bit number 4 of the current state s = (x1,x2,...,x,)
and the next state st = (2, 23,...,2}), respectively, and f; : S — {0,1}
is the Boolean function computing the bit number i of the output of f, Vi €
{1,2,...,n}.

For example, the transition relation for the state transition function in the
example (2) is given by:

T(s,s1) = (z] < 22) A (25 © 23 @ 1122) A (2 & 71 © 22). (4)

3.2 Unfolding of transition relation

At step 2 of the algorithm, the unfolding of the transition relation T by k time
steps is constructed.

The unfolding of a transition relation by k time steps is typically performed
by taking the AND of the transition relations from the current state to the
next state, from the next state to the one after next state, etc., from the state
at the time step k — 1 to the state at the time step k [30]. For instance, for
the example defined by (2), the unfolding by two time steps is computed as
T(s,sT)AT(sT,stT), where T'(s,sm) is given by (4) and T'(s*, st*) is given by

T(sT,s™) =@t e ai)A @it o] ozfzd) A (@t © 2 @),
A possible satisfying assignment for the expression T'(s,sT) A T(sT,sTT) is

s = (101), sT = (011), and s = (111). This assignment corresponds to the
path 101 — 011 — 111 in the state transition graph in Figure 1.

Algorithm 1 An algorithm for finding cycles of length £k and factors of k induced
by a state transition function f : {0,1}" — {0,1}".

I T= AL, (zf & fi(z1,...,2n)); /* transition relation induced by f */
T ko= /\;zl_k T'(si,Si+1); /* unfolding of T from the time step —k to 0 */
F =T_y. 0; /* propositional formula representing Tp...— */
F =F A (s—p ¢ s0); /* adding a constrain requiring the last state of a path */
/* of length k, so, to be equal to the first state, s_p */
C(so0) = 0; /* propositional formula representing the set states of all currently */
/* found cycles expressed in terms of variables of the state so */
Find the set My of all factors of k;
9: while Sat(F) do
10: for each m € M}, do

11: if s_,, = so then

12: for (j=0; j>—-m; j——) do

13: C(s0) = C(s0) V (so > aj); /* marking a cycle of length m */

14: /*a; is the assignment of variables of the state s; returned by Sat(F')*/
15: end for

16: F = F AN—C(so); /* adding a constrain describing marked cycles */

17: break;

18: end if

19: end for

20: end while
21: return all cycles contained in C'(so)

3.3 Reverse direction of unfolding

Let Ty, denotes the unfolding of the transition relation T' from the time step
0 to the time step k:

k—1

To.k = /\ T (84, 8i41)-

i=0
Note that we need to switch from the previous notation T'(s, s™) to the notation
T(s;, Si+1) in order to describe longer paths.

It is common to unfold the transition relation 7T in the forward direction,

as shown above, however, in our algorithm we have chosen to unfold 7" in the
reverse order, from the time step —k to the time step 0 (step 2):

—1
Tfk...O = /\ T(si7si+1). (5)
i=—k

In this way, the states from the previous time steps rather than the next ones
are added to the unfolding. As a result, the last state of the unfolded transition
relation is always sg, independently of the depth of unfolding. For example, the
unfolding by two time steps is computed as T2 1,0 = T(s_2,5-1) AT (-1, So)-
In this case, the path 101 — 011 — 111 in the state transition graph in Figure 1
corresponds to the satisfying assignment s_o = (101), s_; = (011), and sy =

(111). This way of unfolding reduces the number of extra clauses added at each
iteration of SAT-solver to the propositional formula F' representing Ty . A
similar strategy was used in the algorithm [29].

3.4 Finding satisfying assignments

Once the transition relation is unfolded, the propositional formula F' representing
the unfolding T—. o is constructed using the standard procedure [30] (step 3).
Then a constrain s_j <> so which means that the last state of a path of length
k, sg, should to be equal to the first state of the path, s_y, is added to F' (step
4) and the SAT-solver is called to find a satisfying assignment for F' (step 9).

The function Sat(F) takes the expression F' and returns TRUE if there exists
an assignment of variables for the states s_g, ..., s1, So which makes F' true. Such
a satisfying assignment corresponds to a path of length k in the state transition
graph induced by the state transition function f. A path has length £ if it makes
k transitions between the states. Since we added to F' the constrain s_j < sq,
we also know that in the path returned by the SAT-solver the last state is equal
to the first. This means the we found a cycle which can either be of length k, or
a factor of k.

To determine the length of the cycle, for each of the factors of k, m, we check
if the last state of the path, s, is equal to s_,, (step 11). In the pseudocode,
the set M} containing all factors of k& is computed at step 8, before the first run
of the SAT-solver. If a shorter than k cycle if found, the for-loop breaks.

For instance, a possible satisfying assignment for the unfolding by two steps
T_ 9 _10 =T(s_2,5-1) ANT(s_1,80) in the example (2) is s_o = (110), s_1 =
(110), and sg = (110). This assignment corresponds to the path 110 — 110 —
110 of length two in the state transition graph in Figure 1. We take the set of
factors of two, My = {1,2}, and check its elements one-by-one to see if s¢ is
equal to s_,,. After the first check, with m = 1, we can see that that this path
corresponds to a cycle of length 1 and terminate the search.

3.5 Identifying and marking cycles

If Algorithm 1 finds that sy = s_,, for some m € Mj, the corresponding cycle
of length m is marked by adding constraints to the input formula of the SAT-
solver, F'. In the following iterations, the algorithm only searches for paths in
which the last state is not marked.

Clearly, if the last state of a path of length k does not belong to a cycle
of length at most k, then no states of this path belongs to such a cycle either.
In our case, the last state of a path is always sg. Therefore, it is sufficient to
express the constraints in terms of variables of the state sg only. By adding these
constraints to F', we restrict F' in such a way that no satisfying assignment for
F returned by the SAT solver contains a state of a previously found cycle.

The constraints are added to F as F' = F A =C(sg) (step 13), where C(sg)
is the propositional formula describing the characteristic function® of the set of
states of all currently found cycles expressed in terms of variables of the state sq
and “=” is the Boolean logic operation NOT. Before the first run of the SAT-
solver, at step 6, C'(sg) is initialized to 0. If the algorithm finds a cycle of length
m (step 11), each of the m states of this cycle, s;, j € {0,1,...,m—1}, is added
to C(sg) as C(so) = C(so) V (so ¢ a;), where a; is an n-bit vector corresponding
to the assignment of variables of the state s; returned by the SAT-solver.

In this way, the number of extra clauses added to F' at each iteration is equal
to the total number of states in the cycles found at this iteration, i.e. at most k.
So, a formula of size O(nk) is added to F', where n is the number of variables.
Contrary, in a general case, a formula of size O(nplogp)), where p is the depth
of unfolding, has to be added to to F' to mark cycles [48].

If a satisfying assignment does not exist, then there is no cycle of length k
or a factor of k among the unmarked states of the state transition graph. This
implies that all cycles of length k and a factor of k are already found and marked.
The algorithm terminates and returns the set of all identified cycles (step 21).

4 Analysis of Trivium, Bivium and Grain

We applied the presented algorithm to Trivium, Bivium, Grain-80 and Grain-128
stream ciphers. This section shows the results. We also compare the presented
algorithm to the SAT-based algorithm from [29], which is the closest related
work.

It might be worth mentioning that a random permutation over a set of p
elements is expected to have an average of logp cycles [49]. The number of
r-cycles is expected to decrease as 1/r, for any fixed integer 1 < r < p [49].

4.1 Analysis of Trivium

Trivium [20] has a 288-bit internal state in which only 3 out of 288 bits are
updated non-trivially. The rest of bits shift the content of the previous bit.

Let (x1,xa,...,x288) be the variables representing the bits of a current state
of Trivium. At each clock cycle, the bit number i of the next state, denoted by
x, is computed as:

o] = Toss B Tos7Tose B Toaz B Teo
9634 = Tg3 D Tg2T91 D T171 D Tes

+ _
Tirg = T177 D T176%175 D T264 D T162

and xj = x,_1 for all other x;, i € {2,3,...,93,95,...,177,179,...,288}.
We searched for cycles of length k, for k =1,2,3,... until the timeout of 12
hours was reached at k = 31. The results are shown in Table 1. The 2nd row in

3 The characteristic function of a set is the function that takes the value 1 for elements
in the set, and the value 0 for elements not in the set.

10

the table shows the number Nj, of cycles of length k found by the Algorithm 1.
The 3rd row shows CPU time, t. The experiments were run on a PC with Intel
Core i7-4600U CPU at 2.1 GHz with 7.7 GB RAM running under Ubuntu 14.04
LTS.

k 1 2 3 4 5 6 7 8 9
Ni| 1 0 21 0 0 0 0 0 0
t 10.004s|0.003s{0.011s{0.004s|0.014s|0.030s|0.040s|0.091s(0.099s

10 11 12 13 14 15 16 17 18
1 1 2 0 0 1 0 0 0
0.359s|0.261s]0.3845|0.034s|0.748s|0.565s|7.275510.604s|53.161s

19 20 21 22 23 24 25
0 0 0 0 0 0 0
1m?2.358s|3m18.442s|3mb5.661s|48.548s(0.285s|15m10.014s|{14m43.513s
26 27 28 29 30
0 0 0 0 0

0.125s|8m46.997s|151m44.853s|0.239s(511m19.397s
Table 1. The number Ny of cycles of length k found in Trivium; ¢ is the runtime.

In total, we found 27 cycles: one cycle of length 1 (all-0), 21 cycles of length
3, one cycle of length 10, one cycle of length 11, 2 cycles of length 12, and one
cycle of length 15. We would like to point out that these cycles do not directly
affect security of Trivium because none of them contains a state required for
Trivium’s initialization. Trivium is initialized by loading the following state into
its state register:

(1‘1,332,...,3}93) = (Kl,...,Kgo,O,...,O)
(o4, Tos5, ..., x177) = IV, ..., IVgo,0,...,0)
(178, 179, . - -, x288) = (0,...,0,1,1,1)

where (K71,. .., Kgg) is an 80-bit key and (IV,.. ., IVgg) is an 80-bit initialization
value (IV), and clocking the cipher 4 x 288 times.

However, as we show in Section 5, short cycles can be used to mount a fault
attack which results in a full secret key recovery.

4.2 Analysis of Bivium

We also applied the presented algorithm to Bivium stream cipher [50], a simpli-
fied version of Trivium.

Bivium [50] has a 177-bit internal state in which only 2 out of 177 bits are
updated non-trivially. Using the same notation as in the previous section, Bivium

11

can be specified as:

+ _
Ty = X177 D T176T175 O Teg © T162

+
Tgy = 93 D T92x91 D T171 D Tee

and o] = x;_; for all other x;, i € {2,3,...,93,95,...,177}.

Due to a smaller search space, the timeout of 12 hours was reached at k = 44.
In Bivium, we found only one cycle of length 1 (all-0) and 5 cycles of length 3. As
in Trivium’s case, these cycles do not directly affect security of Bivium because
none of them contains a state required for Bivium’s initialization. Bivium is
initialized by loading the following state into the state register:

(131,$2,...71‘93) = (Kl,...,Kgo,O,...,O)
(CE94,$95,...,IL’177) = (Ivl,...,I‘/éo,O,...,O)

where (Ki,..., Kgo) is an 80-bit key and (IV7,...,IVg) is an 80-bit IV, and
clocking the cipher 4 times without producing keystream.

However, short cycles can be used to mount a fault attack which results in a
full secret key recovery as we show in Section 5.

4.3 Analysis of Grain-80

The stream cipher Grain-80 [51] is constructed from an 80-bit NLFSR and an
80-bit LFSR. The LFSR is known to have the maximum period of 28° — 1 since
it uses a primitive generator polynomial of degree 80. The period of the NLFSR
is unknown, however, the input stage of the NLFSR is fed from the output stage
of the LFSR to guarantee the lower bound of 289 — 1 on the overall period of the
two combined shift registers.

We investigated the state space of the 80-bit NLFSR of Grain-80 for the case
when it is disconnected from the LFSR. In this case, its state transition function
is specified as

+ _
Ty = T17 D X200 D T2g O T35 D T43 D a7 D T2 O Ts9 D Tes D 71 D Ts0 D T17720
D 243247 O Tes5271 D T20T 28035 D Ta7T52259 D T17X35T52271 D T20L28T43%47

D T17220T59T65 D T17T20228T35T43 D T47T5259T65T71 D Ta8T35X43T47T52T59

and z;7 = ;1 for all other z;, i € {2,3,...,80}.

The timeout of 12 hours was reached at k = 46. We found one cycle of length
1 (all-0), one cycle of length 3 and one cycle of length 12. Note that in the
full version Grain-80, when the NLFSR is combined with the LFSR, the cycles
of length 3 and 12 will translate into the cycles of length 3 x (289 — 1) and
12 x (289 — 1), given that the LFSR is initialized to any not all-0 state.

Grain-80 is initialized by loading an 80-bit key into the NLFSR, loading a
64-bit IV into the first 64-bits of the LFSR, filling the rest of LFSR with 1s, and
clocking the cipher 160 times while updating the FSRs with a combination of the
state transition function and the output function, without producing keystream.
Since no restrictions are imposed on the 80-bit key loaded into the NLFSR, the
key may potentially be one of the states of the short cycles.

12

4.4 Analysis of Grain-128

Similarly to Grain-80, the stream cipher Grain-128 is constructed from an 128-bit
NLFSR and a 128-bit LFSR which is feeding the input stage of the NLFSR [21].

We investigated the state space of the 128-bit NLFSR of Grain-128 for the
case when it is separated from the LFSR. In this case, its state transition function
is specified as

+ _
Ty = X128 D T102 D T72 © T37 D T32 D T125%61 D T1172115 D T111%110 D T101T69

D r88xs30 D Te7T63 D T60Taa

and z;7 = ;1 for all other z;, i € {2,3,...,128}.

The timeout of 12 hours was reached at k = 32. We found one cycle of length
1 (all-0), one cycle of length 7 one cycle of length 8. Note that in the full version
Grain-128, when the NLFSR is combined with the LFSR, the cycles of length 7
and 8 will translate into the cycles of length 7 x (2128 — 1) and 8 x (212 — 1),
given that the LFSR is initialized to any not all-0 state.

Grain-128 is initialized by loading an 128-bit key into the NLFSR, loading a
96-bit I'V into the first 96-bits of the LF'SR, filling the rest of LFSR with ones, and
clocking the cipher 256 times while updating the FSRs with a combination of the
state transition function and the output function, without producing keystream.
Since no restrictions are imposed on the 128-bit key loaded into the NLFSR, the
key may potentially be one of the states of the short cycles.

4.5 Comparison with the SAT-based algorithm from [29]

The closest related work to the presented algorithithm is the SAT-based al-
gorithm from [29] which searches for all cycles in the state space, without re-
stricting their length. It is designed for the analysis of (n,2) random Boolean
networks (also called Kauffman networks) which are used in physics to model
spin glasses [52] and in biology to study cell differentiation [53], immune re-
sponse [54], and evolution [55]. The (n,2) random Boolean networks use non-
invertible state transition functions f : {0,1}" — {0,1}"™ in which each Boolean
function f; : {0,1}™ — {0,1},4% € {1,2,...,n}, depends on at most two variables
assigned at random. The (n,2) random Boolean networks are known to have a
small number of short cycles (of the order of y/n for both, the number and the
length [56]). While very successful for the (n,2) random Boolean network case,
the algorithm from [29] is not suitable for the invertible mappings in which all
2" states belong to some cycle. This makes the search for all cycles unfeasible for
large n. Cryptographic algorithms typically use invertible mappings. For stream
ciphers and hash functions this is important to prevent incremental reduction
of the entropy of the state. For block ciphers, the round function has to be
invertible in order to result in a unique decryption.

We have applied the algorithm from [29] to Trivium, Bivium, Grain-80 and
Grain-128. In all four cases, it was able to find all-0 cycles, but no other short
cycles. Shortly after the program start, the process was killed due to the memory
blow-up.

13

5 Fault Attack Based on Short Cycles

The idea of fault attacks is to intentionally inject a fault in an implementation
of a cryptographic algorithm so that the potential computational error caused
by the fault can be exploited to expose secrets, see [35-37] for recent overviews.

In this section, we how short cycles of Trivium, Bivium, Grain-80 and Grain-
128 can be used to mount a fault attack on their implementations which results
in a full secret key recovery. The presented approach can be potentially applied
to other cryptographic algorithms which are initialized similarly to these ciphers.

We assume that an attacker can inject transient faults in a selected flip-
flop/gate. Moreover, we assume that the attacker can inject these faults at a
precise time of his/her choice and more than once.

5.1 Trivium and Bivium

We start from Trivium and Bivium cases which are easier.
The attack is performed during the initialization phase as follows. Let (Cy, Ca,
..,Ch), C; € {0,1}, be values representing one of the states of a short cycle C
of length m in the state space of the stream cipher under attack. Suppose that
during the initialization phase the k-bit key (K3, Ko, ..., K}y) is loaded into the
bits 1 to k of the internal state of the cipher. Then, rather than loading into the
stream cipher the required initialization state, n — 1 transient faults are injected
so that the loaded state is (K1,Ca,...,C),) instead. The cipher is clocked as
many times as required by the specification (1152 times for Trivium and 708
for Bivium), and then the keystream is generated and analyzed for the presence
of length-m cycle. If there is a cycle of length m, then K; = (. Otherwise,
K is the complement of C. The attack is repeated k£ — 1 times to recover the
remaining bits of the key one by one. To recover the bit K;, n — 1 transient
faults are injected so that the loaded state is (C4,...,Ci—1, K;, Cit1,...,Ch),
fori € {1,2,...,k}.

To summarize, an attacker can recover the complete k-bit key by performing
k times an attack which injects n — 1 transient faults.

The difficulty of implementing the presented fault attack depends on the
mechanism which is used for loading the initialization state into a stream ci-
pher. In the typical scenario when the bits of the initialization state are loaded
sequentially, bit-by-bit, into the input stage of the register and then shifted
further into the register, the attacker needs to identify in the layout of a chip
the flip-flop corresponding to the input stage of the shift register, and, for each
round 4 of the attack, i € {1,2,...,k}, successively set this flip-flop to n — 1
desired values Cj, j € {1,...,i—1,i+1,...,n}, injecting one transient fault per
clock cycle and keeping precise synchronization with the clock. Note that, if all-0
state is used as C', then the attack becomes particularly simple since the attacker
has to inject the same value into the same position during n — 1 clock cycles
(mostly consecutive, with at most one interruption for K;). As we mentioned in
the introduction, feasibility of inducing transient faults at the same location in
a successive manner by a laser has been demonstrated in [38].

14

Many stream ciphers, including Trivium, Bivium and Grain, can be paral-
lelized to process more than one bits, m, at one clock cycle. In this case, the
attacker has to simultaneously inject m faults into the m flip-flops corresponding
to the first m stages of the shift register loaded in parallel. Depending on the
type of fault injection mechanism used and the location of shift register stages
in the layout, this can make the attack either simpler or more difficult.

In the case of parallel load, when the initialization state is loaded as one n-bit
word in one clock cycle, the attacker has to simultaneously inject n — 1 transient
faults into n — 1 different flip-flops.

5.2 Grain-80 and Grain-128

The case of Grain is more difficult because it updates its NLFSR and LFSR with
a combination (XOR) of the state transition function and the output function
during the initialization stage. If K; = C; in (Cy,...,Ci—1, K;,Ciz1,..., Cp)
and the value of the output function is 1, the NLFSR will not go to the next
state of the state (Ci,...,Ci—1, K;,Cit1,...,Cy) in the short cycle, but to its
conjugate?. For an attack based on all-0 cycle, the value of the output function
is 0, so the step we describe below is not necessary. For attacks using other short
cycles, feedback connection from the output function to the XOR gate combining
the state transition function and the output function has to be disabled. This can
be done by injecting a fault which forces the value of the output function to logic-
0. A fault injection attack using two lasers to inject two faults simultaneously at
different locations has been reported recently in [39]. Therefore, an attack which
injects one fault into the input stage of the shift register and simultaneously
injects a second fault to disable the output function might be feasible. The fault
disabling the feedback connection might be injected once for the duration of the
whole initialization stage and all rounds of the attack, if this is easier to do.

Remind that we computed short cycles for Grain assuming that its NLFSR
is disconnected from the LFSR. We can ”disconnect” the LFSR by initializing
it to all-O state. In this case, the NLFSR state transition function will not be
affected by the bit coming from the LFSR because the two values are combined
by the XOR. Since feedback connection from the output function to the LFSR
will be disabled during the initialization phase, the LFSR will never escape the
0-all cycle and therefore will not affect short cycles of the NLFSR.

To summarize, if (C1,Cs, ...,C,) are values representing a state of a short
cycle of the n-bit NLFSR of Grain and (K, Ko, ..., K,) is the key (for Grain
it has the same length as the NLFSR), then, to recover the 1st bit of the key,
we change the 2n-bit initialization state to (K1, Ca,...,Cyp,0,...,0) by injecting
2n — 1 transient faults in which n — 1 have values corresponding to Cs,...,C,
and n have values logic-0. The rest of the attack is the same as for Trivium.

4 Conjugate of a state (C1,Cy, ...,Cy) is the state (C1,Cs, ...,Cyr), where C; is the
complement of C [57].

15

5.3 Countermeasures

The attack based on all-0 cycle can be detected using tests similar to the runtime
health checks for monitoring true Random Number Generators (RNGs). FIPS-
140 mandates that all approved RNGs use a runtime health check that verifies
that the generator has not become stuck, i.e. generating the same value over and
over again [58].

For the case when the bits of the initialization state are loaded sequentially,
bit-by-bit, attacks using not-all-0 states short cycles can be detected by protect-
ing the state using a parity check code. However, this countermeasure will not
work if the stream cipher is parallelized to process an even number of bits, m,
at one clock cycle and the attacker is injecting m faults in parallel.

6 Conclusion

In this paper, we presented a SAT-based algorithm for finding short cycles and
applied it to Trivium, Bivium, Grain-80 and Grain-128 stream ciphers. We found
that all four ciphers contain short cycles whose existence, to our best knowledge,
was previously unknown. We described how short cycles can be used to mount a
fault attack which recovers a secret key and discussed possible countermeasures.

Future work includes searching for short cycles in other cryptographic algo-
rithms. Algorithms which use only a secret key and IV for their initialization
without fixing some state bits to constants seem to be particularly vulnerable.
We also plan to verify our assumptions by attacking FPGA implementations of
Grain-128 and Trivium.

References

1. S. A. Cook, “The complexity of theorem-proving procedures,” in 3rd Annual ACM
Symposium on Theory of Computing, pp. 151-158, 1971.

2. in Logic Synthesis and Verification (S. Hassoun and S. Tsutomu, eds.), Norwell,
MA, USA: Kluwer Academic Publishers, 2002.

3. D. De, A. Kumarasubramanian, and R. Venkatesan, “Inversion attacks on secure
hash functions using SAT solvers,” in Proc. of the 10th Int. Conference on Theory
and Applications of Satisfiability Testing, SAT’07, pp. 377-382, 2007.

4. V. Nossum, SAT-based Preimage Attacks on SHA-1. MSc. Thesis, University of
Oslo, Norway, 2012.

5. P. Morawiecki and M. Srebrny, “A SAT-based preimage analysis of reduced Keccak
hash functions,” Inf. Process. Lett., vol. 113.10-11, pp. 392-397, 2013.

6. I. Mironov and L. Zhang, “Applications of SAT solvers to cryptanalysis of hash
functions,” in Proceedings of the 9th International Conference on Theory and Ap-
plications of Satisfiability Testing, SAT’06, pp. 102-115, 2006.

7. C. Fiorini, E. Martinelli, and F. Massacci, “How to fake an RSA signature by
encoding modular root finding as a SAT problem,” Discrete Appl. Mat.

8. C. Patsakis, “RSA private key reconstruction from random bits using SAT solvers.”
Cryptology ePrint Archive, Report 2013/026, 2013. http://eprint.iacr.org/.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

. F. Lafitte, O. Markowitch, and D. Van Heule, “SAT based analysis of LTE stream

cipher ZUC,” in Proc. of the 6th Int. Conference on Security of Information and
Networks, SIN 13, (New York, NY, USA), pp. 110-116, ACM, 2013.

F. Lafitte, J. Nakahara, and V. D. Heule, “Applications of SAT solvers in cryptanal-
ysis: Finding weak keys and preimages,” Journal of Politics in Latin America;2014,
Vol. 6 Issue 2, p1, vol. 6, 2014.

B. Chen, “Strategies on algebraic attacks using SAT solvers,” in 9th Int. Conference
for Young Computer Scientists, pp. 2204—2209, Nov 2008.

M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT solvers to cryptographic
problems,” in Proc. of the 12th Int. Conference on Theory and Applications of
Satisfiability Testing, SAT 09, pp. 244-257, 2009.

P. Jovanovic and M. Kreuzer, “Algebraic attacks using SAT-solvers,” Groups Com-
plexity Cryptology, vol. 2.2, pp. 247-259, 2010.

N. R. Potlapally, A. Raghunathan, S. Ravi, N. K. Jha, and R. B. Lee,
“Satisfiability-based framework for enabling side-channel attacks on cryptographic
software,” in Proc. of Conf. on Design, Automation and Test in Europe.

F. Massacci and L. Marraro, “Logical cryptanalysis as a SAT problem,” J. Autom.
Reason., vol. 24, pp. 165-203, Feb. 2000.

D. Jovanovi¢ and P. Jani¢i¢, “Logical analysis of hash functions,” in Proceedings of
the 5th International Conference on Frontiers of Combining Systems, FroCoS’05,
(Berlin, Heidelberg), pp. 200215, Springer-Verlag, 2005.

T. Eibach, E. Pilz, and G. Volkel, Attacking Bivium Using SAT Solvers, pp. 63-76.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

E. Homsirikamol, P. Morawiecki, M. Rogawski, and M. Srebrny, Security Margin
Evaluation of SHA-3 Contest Finalists through SAT-Based Attacks, pp. 56-67.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

L. Papay, Use of SAT Solvers in Cryptanalysis. MSc. Thesis, Comenius University,
Bratislava, Slovakia, 2016.

C. D. Canniere and B. Preneel, “TRIVIUM specifications,” cite-
seer.ist.psu.edu/734144.html.

M. Hell, T. Johansson, A. Maximov, and W. Meier, “A stream cipher proposal:
Grain-128,” in IEEFE Int. Symp. on Information Theory, pp. 1614-1618, July 2006.
“eSTREAM: the ECRYPT stream cipher project,” 2008.
http://www.ecrypt.eu.org/stream/.

E. Dubrova, M. Teslenko, and A. Martinelli, “Kauffman networks: Analysis and
applications,” in Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 479-484, November 2005.

A. Garg, I. Xenarios, L. Mendoza, and G. De Micheli in Proc. of 11th Int. Conf.
on Research in Computational Molecular Biology (RECOMB’2007), Springer.

S. Bilke and F. Sjunnesson, “Stability of the Kauffman model,” Physical Review
E, vol. 65, p. 016129, 2001.

J. E. S. Socolar and S. A. Kauffman, “Scaling in ordered and critical random
Boolean networks.” http://arXiv.org/abs/cond-mat/0212306.

C. Oosawa, “Effects of alternative connectivity on behavior of randomly con-
structed Boolean networks,” Physica D: Nonlinear Phenomena, vol. 170, no. 2,
pp. 143-161, 2002.

L. Raeymaekers, “Dynamics of Boolean networks controlled by biologically mean-
ingful functions,” Theoretical Biology, vol. 218, no. 3, pp. 331-41, 2002.

E. Dubrova and M. Teslenko, “A SAT-based algorithm for finding attractors in syn-
chronous Boolean networks,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 8, no. 5, pp. 1393-1399, 2011.

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.
42.
43.
44.

45.

46.

47.

48.

17

A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic model check-
ing using SAT procedures instead of BDDs,” Proceedings of Design Automation
Conference (DAC’99), pp. 317-320, June 1999.

T. Tamura and T. Akutsu, “An improved algorithm for detecting a singleton at-
tractor in a Boolean network consisting of AND/OR nodes,” in Proceedings of the
3rd International Conference on Algebraic Biology (AB’08), vol. 5147 of Lecture
Notes in Computer Science, pp. 216-229, Springer, July-August 2008.

T. Akutsu and T. Tamura, “On finding a fixed point in a Boolean network with
maximum indegree 2,” IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, vol. E92.A, no. 8, pp. 1771-1778, 2009.

A. Naldi, D. Thieffry, and C. Chaouiya, “Decision diagrams for the representation
and analysis of logical models of genetic networks,” in Proceedings of International
Conference on Computational Methods in Systems Biology (CMSB’2007), vol. 4695
of Lecture Notes in Computer Science, pp. 233247, Springer, September 2007.

S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,” in Re-
vised Papers from the 4th International Workshop on Cryptographic Hardware and
Embedded Systems, CHES 02, (London, UK), pp. 2-12, Springer-Verlag, 2003.

A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection attacks
on cryptographic devices: Theory, practice, and countermeasures,” Proceedings of
the IEEE, vol. 100, pp. 3056-3076, Nov 2012.

D. Karaklajic, J. M. Schmidt, and I. Verbauwhede, “Hardware designer’s guide to
fault attacks,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 21, pp. 2295-2306, Dec 2013.

R. Piscitelli, S. Bhasin, and F. Regazzoni, “Fault attacks, injection techniques and
tools for simulation,” in 2015 10th International Conference on Design Technology
of Integrated Systems in Nanoscale Era (DTIS), pp. 1-6, April 2015.

E. Trichina and R. Korkikyan, “Multi fault laser attacks on protected CRT-RSA,”
in Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 75-86, 2010.
B. Selmke, J. Heyszl, and G. Sigl, “Attack on a DFA protected AES by simul-
taneous laser fault injections,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography, pp. 36-46, 2016.

E. Dubrova, “A transformation from the Fibonacci to the Galois NLFSRs,” IEEE
Transactions on Information Theory, vol. 55, pp. 52635271, November 2009.

S. Golomb, Shift Register Sequences. Aegean Park Press, 1982.

M. Robshaw, “Stream ciphers,” Tech. Rep. TR - 701, July 1994.

M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem-
proving,” Commun. ACM, vol. 5, pp. 394-397, July 1962.

M. Davis and H. Putnam, “A computing procedure for quantification theory,” J.
ACM, vol. 7, pp. 201-215, July 1960.

J. P. M. Silva and K. A. Sakallah, “Conflict analysis in search algorithms for
satisfiability,” in Tools with Artificial Intelligence, 1996., Proceedings Fighth IEEE
International Conference on, pp. 467-469, Nov 1996.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: En-
gineering an efficient SAT solver,” in Proceedings of the 38th Annual Design Au-
tomation Conference, DAC ’01, (New York, NY, USA), pp. 530-535, ACM, 2001.
N. Eén and N. Sérensson, An FExtensible SAT-solver, pp. 502-518. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2004.

D. Kroening and O. Strichman, “Efficient computation of recurrence diameters,” in
Proceedings of the 4th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI’2008), vol. 2575 of Lecture Notes in Computer
Science, pp. 298-309, Springer, January 2003.

18

49.

50.

51.

52.

53.

54.

53.

56.

57.

58.

P. Flajolet and A. M. Odlyzko, Random Mapping Statistics, pp. 329-354. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1990.

H. Raddum, “Cryptanalytic results on TRIVIUM.” ECRYPT Stream Cipher
Project, Report 2006/039, 2006. http://www.ecrypt.eu.org/stream.

M. Hell, T. Johansson, and W. Meier, “Grain - a stream cipher for constrained
environments,” citeseer.ist.psu.edu/732342.html.

B. Derrida and H. Flyvbjerg, “Multivalley structure in Kauffman’s model: Analogy
with spin glass,” J. Phys. A: Math. Gen., vol. 19, p. L.L1103, 1986.

S. Huang and D. E. Ingber, “Shape-dependent control of cell growth, differenti-
ation, and apoptosis: Switching between attractors in cell regulatory networks,”
Ezperimental Cell Research, vol. 261, pp. 91-103, 2000.

S. A. Kauffman and E. D. Weinberger, “The NK model of rugged fitness landscapes
and its application to maturation of the immune response,” Theoretical Biology,
vol. 141, pp. 211-245, 1989.

S. A. Kauffman, The Origins of Order: Self-Organization and Selection of Evolu-
tion. Oxford: Oxford University Press, 1993.

M. Aldana, S. Coopersmith, and L. P. Kadanoff, “Boolean dynamics with random
couplings.” http://arXiv.org/ abs/adap-org/9305001.

H. M. Fredricksen, “Disjoint cycles from de Bruijn graph,” Tech. Rep. 225, USCEE,
1968.

“FIPS PUB 140-2, security requirements for cryptographic modules,” 2001.
http://csrc.nist.gov/groups/STM/cmvp/standards.html.

