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A Multiplexer based Arbiter PUF Composition
with Enhanced Reliability and Security
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Abstract—Arbiter Physically Unclonable Function (APUF), while being relatively lightweight, is extremely vulnerable to modeling
attacks. Hence, various compositions of APUFs such as XOR APUF and Lightweight Secure PUF have been proposed to be secure
alternatives. Previous research has demonstrated that PUF compositions have two major challenges to overcome: vulnerability against
modeling and statistical attacks, and lack of reliability. In this paper, we introduce a multiplexer based composition of APUFs, denoted
as MPUF, to simultaneously overcome these challenges. In addition to the basic MPUF design, we propose two MPUF variants
namely cMPUF and rMPUF to improve robustness against cryptanalysis and reliability based modeling attack, respectively. The rMPUF
demonstrates enhanced robustness against reliability based modeling attack, while even the well-known XOR APUF, otherwise robust
to machine learning based modeling attacks, has been modeled using the same technique with linear data and time complexities. The
rMPUF can provide a good trade-off between security and hardware overhead while maintaining a significantly higher reliability level
than any practical XOR APUF instance. Moreover, MPUF variants are the first APUF compositions, to the best of our knowledge, that
can achieve Strict Avalanche Criterion without any additional hardware. Finally, we validate our theoretical findings using Matlab-based
simulations of MPUFs.

Index Terms—Arbiter PUF (APUF), APUF compositions, modeling attack, linear cryptanalysis, reliability based modeling, strict
avalanche criteria (SAC), XOR APUF.

F

1 INTRODUCTION

S INCE the introduction of Arbiter Physically Unclon-
able Function (APUF) in [1], several applications [2]–

[4] of APUF in lightweight and secure protocol design
have been proposed. From the very early days of this
design, it is known that APUF is vulnerable to func-
tional modeling using machine learning techniques like
Logistic Regression (LR) and Support Vector Machine
(SVM) [1], [5]. To improve modeling robustness, the
following compositions of APUFs were proposed: XOR
PUF [5], [6], Lightweight Secure PUF (LSPUF) [7], [8].

One of the most well-studied and exploited compo-
sition of APUFs is the x-XOR APUF, in which outputs
of x APUF instances are XOR-ed to generate the final
output. The XOR PUF is inherently more robust to
modeling attacks than standalone APUF. Nevertheless,
several attempts of modeling XOR APUF with varying
levels of success and practical feasibility were reported
in the literature. These attacks on XOR APUF can be clas-
sified into two following classes: (i) CRP-only modeling
(CM) and (ii) side-channel assisted CRP-based modeling
(SCM), where CRP implies challenge-response pair of
XOR APUF. The CM attacks of x-XOR APUF using
logistic regression (LR) are reported in [5], [9], [10], and
SCM attacks are published in [11]–[15]. In general SCM
attacks are efficient compared to the CM attacks, but
SCM attacks need additional information like power
consumption of device, reliability of CRPs, etc. The most
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powerful SCM attack on XOR APUF, to the best of
our knowledge, is the reliability based modeling attack
proposed by Becker in [15]. For this attack, an attacker
should be able to evaluate PUF instance with the same
set of challenges repeatedly. Since LSPUF outputs are
generated using XOR PUF, most of the attack strategies
developed for XOR PUF is also applicable to LSPUF. In
addition, cryptanalysis attacks on LSPUF have also been
described in [16], [17].

Beside these security issues, x-XOR APUF also suffers
from poor reliability. There are two conflicting proper-
ties of x-XOR APUF: reliability of composition reduces
exponentially with increasing number of primitive APUF
instancess; however, to achieve higher level of security,
composition should employ large number of APUF in-
stances.

In this work, we propose a new APUF composition
that satisfactorily overcomes the reliability issue of XOR
APUF, while providing levels of security comparable
to XOR APUF. The proposed composition employs a
single multiplexer (MUX) with multiple APUFs; hence,
we term it as Multiplexer PUF (MPUF). Besides the
basic MPUF design, we propose two other variants of
MPUF, namely cMPUF and rMPUF, which are robust
against cryptanalysis and reliability based modeling at-
tack, respectively. The rMPUF design is the first APUF
composition that achieves robustness against reliability
based modeling attack, and robustness of a feasible
rMPUF is superior than a practical XOR APUF in-
stance (e.g. 10-XOR APUF) while successfully maintains
reasonable higher reliability level. Moreover, all these
MPUF variants can achieve Strict Avalanche Criterion
(SAC), important for robustness against cryptanalysis
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attacks [17], without using any additional hardware
(unlike the LSPUF which requires an input network).

An application of MUX in the design of robust cryp-
tographic Boolean function can be found in [18]. In the
context of PUF, utilization of MUX as a recombination
function was first suggested in [19]. The design proposed
in [19] used MUX to recombine responses of a single
APUF instance, unlike the MPUF where overall output
depends on outputs of multiple independent APUFs.
However, in [19], authors only suggested this MUX like
recombination operator as an example of possible recom-
bination operators without any accompanying security
or statistical performance analysis. On the other hand,
our work discusses many performance and security
advantages of MUX based composition, which, to the
best of our knowledge, have not been discussed in the
PUF literature earlier.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce a notation system to be used in the
rest of the paper, and a few desirable properties of an
effective PUF composition. In Section 3, we illustrate the
basic MPUF design. The general advantages of MPUF
are explained in Section 4. The performance metrics for
MPUF are analyzed in Section 5. The reliability based
model building of the basic MPUF and design of a robust
MPUF variant (rMPUF) are discussed in Section 6. Sec-
tion 7 explains a linear approximation attack on MPUF,
and introduces a robust MPUF variant (cMPUF). SAC
property of MPUF is discussed in Section 8. Simulation
results are reported in Section 9. A discussion on the
usages of MPUF variants is provided in Section 10. The
concluding remarks and directions of future works are
mentioned in Section 11.

2 PRELIMINARIES

2.1 Notations

The following notation system will be used throughout
the paper. A vector is represented by lowercase letter
in bold font, e.g a. A vector with m-components is
represented as: a = (a[0], . . . ,a[i], . . . ,a[m − 1]), where
a[i] is the i-th component of a. We use a[i : j] as a
sub-vector (a[i], . . . ,a[j]). The normal lowercase letter
denotes a scalar, e.g. n. The ⊕ symbol stands for the
Exclusive-OR (XOR) operation or modulo-2 addition.
A set is represented in the calligraphic font, e.g. D,
and its cardinality is denoted as |D|. A set of natural
numbers that are greater than equal to i and less than
equal to j is dented as [i : j], whereas (i, j) and [i, j]
are used to denote open and closed intervals of real
numbers between i and j. Let f and g be Boolean
functions. The Hamming distance between f and g is
denoted as HD(f, g) and normalized HD with respect to
total number of inputs is denoted by hd(f, g). Similarly,
HW(f) and hw(f) denote HW and normalized HW of
f . The f and g can be functions or binary strings. The
〈a,b〉 denotes dot product of vector a and b.

2.2 Desirable Properties of an Effective PUF Compo-
sition
The main objective of PUF composition is to employ
multiple PUF instances to make the resulting PUF se-
cure against modeling attacks with reasonable reliability
level. Let P0, . . . , Pn−1 be PUF instances to be used in
the composition, and B be a Boolean function used to
combine all PUF units together, i.e. o = B(r0, . . . , rn−1),
where ri is a 1-bit response of PUF instance Pi, i ∈ [0 :
n− 1]. The exploration for an effective PUF composition
B should be driven by the following factors:

1) Lightweight vs. Security. One should not employ
a B with large number of inputs as large number
of primitive PUFs is required for generating those
inputs. However, this type of complex Boolean
function can provide the statistical criteria required
for designing a robust PUF composition against
cryptanalysis and modeling attacks. So, we need
a B with relatively less number of inputs, while
still being robust against modeling and statistical
attacks.

2) Reliability vs. Security. For a given challenge, if re-
sponse of B depends on large number of primitive
PUFs, then reliability of composition would suffer.
In the case, where a composition employs large
number of primitive PUFs to achieve higher degree
of security, reliability can be managed if response of
B for a given challenge relies on a relatively small
subset of primitive PUFs.

3) Nonlinearity vs. Linear Approximation. Nonlin-
earity of B should be good enough such that it
cannot be approximated by a linear function. For
example, an adversary may try to model B as linear
function of its inputs, to enable linear cryptanaly-
sis [20].

4) Balancedness. To achieve good uniformity prop-
erty of a PUF composition, the Boolean function
employed in composition should be a balanced
function.

Next, we discuss multiplexer based APUF composi-
tions, and analyze those designs with respect to above
mentioned properties.

3 OVERVIEW OF MULTIPLEXER BASED APUF
COMPOSITION
Figure 1a depicts an architectural overview of multi-
plexer (MUX) based APUF composition, called MPUF.
Here, a MUX is used to combine the responses of
primitive APUFs. Two important design parameters of
an MPUF are:

1) k: this parameter denotes the number of selection
inputs of a MUX. A MUX with k selection inputs
has 2k data inputs and one output. This param-
eter is an important security parameter, and later
we will discuss how to choose the value for this
parameter to achieve robustness against modeling
attacks.
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Fig. 1: (a) Architectural overview of an (n, k)-MPUF. It
generates a 1-bit response o to an n-bit challenge c. The
APUF instances Adi , 0 ≤ i ≤ 2k − 1 are connected to the
data inputs of MUX, and k-bit selection inputs of MUX
are generated by k APUF instances Asj , 0 ≤ j ≤ k−1. (b)
An example of (n, 3)-MPUF using 2:1 MUXes.

2) n. this parameter denotes the challenge size of
primitive APUFs as well as MPUF, and all prim-
itive APUFs receive n-bit challenge.

We use the notation (n, k)-MPUF (cf. Fig. 1a) to repre-
sent an MPUF with n-bit challenge and a MUX with k
selection inputs. Let X be a set of 2k+k primitive APUFs
used in (n, k)-MPUF, and we partition this set into two
disjoint sets D and S, depending on their usage purpose.
The sets D = {Ad0, . . . , Ad2k−1} and S = {As0, . . . , Ask−1}
represent the primitive APUFs connected to data inputs
and selection inputs of MUX, respectively. The 1-bit
responses of Adi ∈ D and Asj ∈ S are denoted by rdi
and rsj , respectively.

Since, for a given challenge c, response of MPUF is the
same as response of an APUF in D, we can use a control
circuitry to activate the corresponding data input APUF
only, instead of activating all APUFs in D. Selection of
an APUF from D depends on the concatenated responses
of APUFs in S. We denote the concatenated cumulative
response bits of Asj ∈ S by rs = rs0| · · · |rsk−1. By the
statement “rs = i”, let us denote that i is an unsigned
integer corresponding to binary vector rs.

An (k, n)-MPUF instance generates 1-bit response to
an n-bit challenge c, and size of challenge-response space
is 2n. There are 2k APUFs connected to MUX data
inputs, and their challenge-response pairs (CRPs) form
CRP space C of (n, k)-MPUF. Note that all CRPs of an
individual Adi , i ∈ [0, 2k − 1] do not belong to C. Ideally,
data input APUFs Adi , i ∈ [0, 2k − 1] contribute equally
to C, and under such conditions, the number of CRPs
of each Adi , i ∈ [0, 2k − 1] belonging to C is 2n/2k. In
practice, we might observe bias in selection of APUFs
Adi , i ∈ [0, 2k − 1] due to non-uniform distribution of k-
bit selection inputs generated by Asj ∈ S. Hence, data

input APUF instances might not contribute equally to C.
The modeling robustness of an MPUF instance heavily

relies on the fact that an adversary does not have access
to responses of primitive APUFs used in composition,
i.e., all inputs (data and control inputs) of MUX in
MPUF are secret. This security assumption about the
“opaqueness” of design, that denies an adversary the
opportunity to directly observe the internal nodes of a
PUF circuit, is also made for XOR APUF and LSPUF
designs.

4 ADVANTAGES OF MUX BASED COMPOSI-
TION

In light of Section 2.2 on the desirable properties of
an effective composition function, we are in a position
to explain the reasons behind the choice of MUX as
composition operator. Let k be the number of selection
inputs of a MUX; then total number of inputs of a MUX
is m = 2k + k.

4.1 Balancedness
As depicted in Fig. 1a that MPUF instance produces 1-bit
response o to a given n-bit challenge c. This composition
is said to be a balanced composition if distributions of 0’s
and 1’s in response string are uniform, i.e., Pr(o = 0) =
Pr(o = 1) = 1

2 .
We now estimate the probability Pr(o = 0) for (n, k)-

MPUF. Let us consider the response of each APUF
instance Adi , i ∈ [1 : 2k−1] to be a binary random variable
Adi . The Pr(Adi = 0) and Pr(Adi = 1) denote the probabili-
ties that PUF instance Adi generates 0 and 1, respectively,
with the obvious constraint Pr(Adi = 0)+Pr(Adi = 1) = 1.
The random variable As corresponds to PUF instance
As = As0| · · · |Ask−1, and it takes values in [0 : 2k−1]. Since
Adi and As are statistically independent, we compute
Pr(o = 0) for (n, k)-MPUF as:

Pr(o = 0) =

2k−1∑
i=0

Pr(As = i)Pr(Adi = 0|As = i)

=

2k−1∑
i=0

Pr(As = i)Pr(Adi = 0), (1)

where Pr(Adi = 0) = Pr(Adi = 0|As = i) and Pr(Adi =
1) = Pr(Adi = 1|As = i) always hold. Let us assume that
the random variable corresponding to each APUF in-
stance used in composition follows uniform distribution,
and thus Pr(Adi = 0) = Pr(Adi = 1) = 1

2 , Pr(As = j) = 1
2k

for j ∈ [0 : 2k − 1]. Based on these assumptions, we can
rewrite Eq. (1) as follows:

Pr(o = 0) =

2k−1∑
i=0

Pr(As = i)Pr(Adi = 0) (2)

=
1

2k

2k−1∑
i=0

Pr(Adi = 0) =
1

2k

2k−1∑
i=0

1

2
=

2k−1

2k
=

1

2
.
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Thus, output distribution of an MPUF would be uni-
form if none of its input distributions is biased. There can
be another special case where the output distribution of
MUX is uniform, even when all the input distributions
are not uniform. We consider such a situation next; this
special construction would be used later in Section 7.2.

Let us consider a special case of MPUF with the
following data input connection pattern: half of the data
inputs are the bitwise complements of the other half. Hence,
we need 2k−1 APUF instances to generate 2k data inputs
of MUX. Let random variable Ādi be complement of the
binary random variable Adi defined earlier. In this case,
we only assume that the random variable As is uniform,
i.e., Pr(As = j) = 1

2k
for j ∈ [0 : 2k − 1]. Based on these

assumptions and special input connection pattern, we
can rewrite Eq. (1) as:

Pr(o = 0) =

2k−1∑
i=0

Pr(As = i)Pr(Adi = 0) (3)

=
1

2k

2k−1−1∑
i=0

[
Pr(Adi = 0) + Pr(Ādi = 0)

]
=

1

2k

2k−1−1∑
i=0

[
Pr(Adi = 0) + Pr(Adi = 1)

]
=

2k−1

2k
=

1

2
.

According to Eq. (3), it is sufficient for selection input
APUFs of MPUF, with special data input connection, to
be balanced to make MPUF output balanced —it is not
essential for the data input APUFs to be balanced. This
is an important advantage. However, at the same time,
the APUFs connected to data inputs of MUX should not
be completely biased, as this reduces response unpre-
dictability of MPUF. For example, let us consider a case
where Pr(Adi = 0) = 1 and Pr(Ādi = 1) = 1. Intuitively,
the unpredictability of response o must be less in the
above case compared to the case where Pr(Adi = 0) = 1

2
and Pr(Ādi = 1) = 1

2 . Both the cases maintain uniform
distributions of 0’s and 1’s in o.

4.2 Nonlinearity
For an m-variable Boolean function f , its nonlinearity
Nf is defined as:

Nf = min
i∈[0:2m+1−1]

HD(f, ψi),

where ψi is an m-variable affine function. Nonlinearity
bounds of a balanced Boolean function is provided in
the following lemma [21]:

Lemma 1 (Nonlinearity of balanced Boolean function).
Let f : {0, 1}m → {0, 1} be a balanced Boolean function
where n ≥ 3. Then, nonlinearity Nf of f satisfies the
following expression:

Nf ≤
{

2m−1 − 2m/2−1 − 2, m is even
2m−1 − 2bm/2c−1, m is odd

(4)

where bxc denotes the maximum integer less than x.

For the sake of analysis of an m-variable Boolean
function, let us use:

Ef = Nf/2
m (5)

which represents the normalized Nf , and it lies in range
[0,0.5). Ef ≈ 0.5 is desirable for robustness against linear
cryptanalysis [20].

In case of MUX (with k selection inputs) in (n, k)-
MPUF, an affine Boolean function that results in the best
linear approximation has the following form:

ψbest(c; i,u) = Adi (c)⊕

k−1⊕
j=0

u[j]Asj(c)

 , (6)

where Adi , i ∈ [0 : 2k − 1] is the i-th data input APUF of
MUX and Asj is the j-th selection input. The u[j] ∈ {0, 1}
decides whether Asj will appear in ψbest.

Let us recall the notation As used to represent con-
catenation of Asj ∈ S and assume it as a random variable
with values in [0 : 2k − 1]. Now we compute the proba-
bility that output o of (n, k)-MPUF can be approximated
by using single data input APUF Adi , i ∈ [0, 2k − 1] as:

Pr(o = Adi ) = Pr(As = i)Pr(o = Adi |As = i)

+ Pr(As 6= i)Pr(o = Adi |As 6= i)

=
1

2k
+

∑
j∈[0:2k−1]

j 6=i

Pr(As = j)Pr(o = Adi |As = j)

=
1

2k
+

1

2k

∑
j∈[0:2k−1]

j 6=i

Pr(o = Adi |As = j)

=
1

2k
+

1

2k
[(2k − 1)× 1

2
] =

1

2
+

1

2k+1
. (7)

Let us consider ψbest = Adi , and then normalized HD
hd(mux, ψbest)) between MUX and ψbest is as:

hd(mux, ψbest) = 1− Pr(o = Adi ) =
1

2
− 1

2k+1
. (8)

If ψbest = Adi ⊕ 1, then hd(mux, ψbest) = 1
2 + 1

2k+1 . Since⊕k−1
j=0 ujA

s
j is always 0 or 1 whenever Adi is selected as

output of MUX, for any instance of ψbest as in Eq. (8),
hd(mux, ψbest) = 1

2 ± 1
2k+1 . Thus, the normalized nonlin-

earity value (cf. Eq. (5)) of (n, k)-MPUF is:

E(n,k)−MPUF =
1

2
− 1

2k+1
. (9)

This fact suggests that we need to choose parameter k of
MUX such that E(n,k)−MPUF → 1

2 as 1
2k+1 → 0. However,

in case of (n, k)-MPUF, we cannot use arbitrarily large
k value as it results in large number of APUFs for
composition. For k = 4, Eψbest

= 1
2 − 0.03 = 0.47, and

its implies that (n, k)-MPUF with k = 4 has reasonably
good nonlinearity.



5

4.3 Reliability
An interesting and useful fact about (n, k)-MPUF is
that response to a given challenge depends only on a
data input APUF and k selection input APUFs, which
follows from the working principle of MUX. This helps
to achieve relatively good reliability of MPUF, although
the composition exploits many APUF instances. This is
one of the major advantages of MUX based composition over
XOR based compositions, namely XOR APUF and LSPUF.

5 PERFORMANCE METRICS OF MPUF
Typically, performance quality is measured using follow-
ing metrics: uniformity, uniqueness, and reliability [22].
Since uniformity is equivalent to the balancedness prop-
erty discussed in Section 4.1, we exclude its discussion
in this section.

5.1 Uniqueness
Uniqueness property is used as estimate of differences in
challenge-response behavior of PUF instance pairs [22].
The uniqueness metric, denoted by U , has a value
0 ≤ U ≤ 1, and the ideal value U is 0.5, i.e., behavior
of two arbitrary PUF instances of the same type are
uncorrelated. Next, we derive an analytical expression
for uniqueness property of (n, k)-MPUF.

Let us recall the fact that response o to a challenge c in
(n, k)-MPUF depends on (k+1) APUF instances. Without
loss of generality and for simplicity of analysis, let us
assume that uniqueness values of all APUFs are similar,
and it is Q. Let P1 and P2 be two instances of (n, k)-
MPUF, and their responses are denoted by oP1 and oP2,
respectively. The uniqueness metric QM of (n, k)-MPUF
can be expressed as:

QM = Pr(oP1 6= oP2) = 1− Pr(oP1 = oP2). (10)

To estimate QM, we consider the following events based
on primitive PUF responses, for a given challenge, in P1

and P2:
• E1: The (k + 1)-bit responses due to (k + 1) APUFs

contributing to response generation in MPUF in-
stances P1 and P2 are equal; then, Pr(E1) = (1 −
Q)k+1.

• E2: There is at least 1-bit difference between k-bit
responses generated by k selection input APUFs of
MUXes in P1 and P2. The probability Pr(E2) = 1−
(1−Q)k.

• E3: This is an extension of event E2 with an ad-
ditional constraint that outputs oP1 and oP2 are
equal. This implies that two different data inputs
of MUXes in P1 and P2 are selected for challenge
c, but responses of the selected data input APUFs
are equal. Ideally, the probability that outputs of
two different APUF instances being equal is (1−Q).
Then, Pr(E3) = (1−Q)× (1− (1−Q)k).

So, two MPUF instances P1 and P2 have similar outputs
with probability: Pr(oP1 = oP2) = Pr(E1) + Pr(E3) =

(1 − Q). Hence, according to Eq. (10), uniqueness of
(n, k)-MPUF is: QM = 1 − (1 − Q) = Q. In other words,
for a given challenge c, uniqueness of response depends
on the probability that responses of data input APUFs
selected in MPUF instances P1 and P2 are different. Thus,
MPUF can achieve at least the uniqueness of primitive
APUF.

5.2 Reliability

Reliability [22] is a major issue in case of PUF com-
positions. For instance, reliability values of XOR APUF
and LSPUF reduce with increasing number of com-
ponent APUFs. But, for improved security of APUF
compositions, more primitive APUF instances should be
employed. In case of MPUF (also holds for other MPUF
variants to be discussed later), we show that its reliability
is superior to reliability of XOR APUF. In this context,
we have the following lemma:

Lemma 2. The number of APUF present in (n, k)-MPUF
is xM = k + 2k. Though an MPUF employs xM number of
APUFs, reliability of response to a challenge c depends only on
reliability values of (k+1) APUFs. An (n, k)-MPUF instance
is at least as reliable as (k + 1)-XOR APUF.

Proof. Without loss of generality and to simplify the
following analysis, we assume that all APUFs used in
the composition have similar reliability, and it is R,
0 ≤ R ≤ 1. We now quantify reliability of (n, k)-MPUF
and (k + 1)-XOR APUF. First, we consider (k + 1)-XOR
APUF and denote its reliability by RX. In case of (k+1)-
XOR APUF, the response to a given challenge c is reliable
when either responses of all (k + 1) APUFs are reliable
or there are even number of APUFs with unreliable
responses. So, we can compute reliability of (k+1)-XOR
APUF as follows:

RX =
∑

i∈[0,k+1]
i is even

(
k + 1

i

)
(1−R)iRk+1−i (11)

=
(R+ (1−R))

k+1
+ (R− (1−R))

k+1

2

=
1

2
+

(2R− 1)k+1

2
,

as [(a+b)k+1 +(a−b)k+1] = 2× [ sum of terms with even
i in Binomial expansion of (a+ b)k+1], where a = R and
b = (1−R).

To estimate reliability of (n, k)-MPUF, we consider
the following events based on the behavior of primitive
APUFs for a given challenge c:
• E1: The responses of k selection input APUFs and

response of the selected data input APUF of MUX
are reliable. The probability of this event is Pr(E1) =
Rk+1.

• E2: There is at least one APUF which is not reli-
able among k selection input APUFs of MUX. The
probability of this event is Pr(E2) = 1−Rk.
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• E3: This is an extension of E2 with an additional
constraint that output o of MPUF is reliable. Due to
the event E2, a different data input APUF Adj (when
expected data input APUF is Adi , i 6= j) will be
selected. The probability that Adj (c) = Adi (c), i 6= j
is 1

2 . Thus, the probability Pr(E3) = (1−Rk)/2.
So, the reliability of (n, k)-MPUF is:

RM = Pr(E1) + Pr(E3) = Rk+1 +
(1−Rk)

2

=
1

2
+
Rk(2R− 1)

2
. (12)

Form Eqs. (11) and (12), we can write:

RM −RX =
Rk(2R− 1)

2
− (2R− 1)k+1

2
≥ 0⇒ RM ≥ RX,

as (2R − 1) ≤ R and (2R − 1)k ≤ Rk. This
proves Lemma 2.

6 RELIABILITY BASED MODELING OF MPUF
In [15], Becker proposed a linear time modeling attack on
XOR APUF, which seems to be the strongest implemen-
tation attack. In this attack, adversary exploits reliability
information of challenges in model building, instead of
corresponding responses. To the best of our knowledge,
this attack is applicable (with certain modifications) to
majority of existing strong delay PUF compositions,
when PUF primitives themselves are not robust. The ba-
sic MPUF design is also vulnerable to this attack. In this
section, we first demonstrate reliability based modeling
attack on the basic MPUF as its security analysis, and
then we discuss design philosophy of a robust MPUF
design variant, called rMPUF.

Let us briefly describe Becker’s attack on XOR APUF
and then we discuss how it can be adopted for MPUF.
Main objective of this attack is the model building of in-
dividual primitive APUF based on reliability information
of random challenges applied to XOR APUF. Hence, this
attack has linear time and data complexities. Reliability
information hi of challenge ci is estimated based on
the responses obtained from l measurements at a fixed
operating condition. The hi is defined in [15] as follows:

hi =

∣∣∣∣∣ l2 −
l∑
t=1

ri,t

∣∣∣∣∣ , (13)

where ri,t is the response to ci in t-th measurement.
Note that hi lies in [0, l/2]; hi = 0 holds for challenge
with completely unreliable response, and hi = l/2 holds
for challenge with completely reliable response. The Co-
variance Matrix Adaptation Evolution Strategy (CMA-
ES) [15], [23] has been used to learn the individual APUF
based on (ci, hi) pairs of XOR APUF. In CMA-ES, fitness
of a APUF model w for parity vector Φi (derived from
challenge ci) is defined as:

h̃i =

{
1, if 〈w,Φi〉 > ε

0, if 〈w,Φi〉 < ε,
(14)

Algorithm 1 Modeling of MPUF using reliability infor-
mation
Input:

i. Parameters n and k of an (n, k)-MPUF instance
ii. A set D of 3-tuple (c, o, h) where o and h are the

response and reliability values of MPUF, respectively,
for challenge c

Output:
i. Set M of APUF models corresponding to data and

selection inputs

1: Using D, build models for selection input APUFs
Asj , j ∈ [0 : k − 1] following the Becker’s scheme dis-
cussed in [15] for XOR APUF. Let Ms

j , j ∈ [0 : k − 1]
denote a model of Asj , and models are built using
reliability information h.

2: Partition set D into 2k disjoint sets {Di|i ∈ [0 : 2k −
1]} according to the predicted selection inputs values
of MUX using Ms

j , j ∈ [0 : k − 1]. Partition Di is
corresponding to data input APUF Adi .

3: Build a model Md
j for Adj , j ∈ [0 : 2k − 1] using CRP

set Dj and LR [5] based modeling of APUF. In this
step, response o to challenge c is used instead of
reliability information h.

4: return M = {Md
0 , . . . ,M

d
2k−1,M

s
0 , . . . ,M

s
k−1}

where parameter ε should also be learned for each APUF
using CMA-ES along with weight vector w. For each
APUF with n-bit challenge, number of parameters to be
learned using CMA-ES is n+ 2. In case of a good APUF
model w, correlation between h0, . . . , hN and h̃0, . . . , h̃N
would be high, where N denotes number of challenges
required for modeling. According to Becker’s modeling
technique, the same challenge set can be reused for mod-
eling of APUF instances in XOR APUF with multiple
runs of CMA-ES; this is feasible as CMA-ES is a ran-
domized algorithm. Thus, Becker’s modeling technique
does not produce the same model for XOR APUF in
different runs of the algorithm, and time required for
model building might be different for each model.

6.1 Reliability based Modeling of the Basic MPUF

The outline of reliability based modeling of MPUF is
given in Algorithm 1. The input dataset D has 3-tuple
(ci, oi, hi) where hi (cf. Eq. (13)) is the reliability infor-
mation of response oi (majority voted) to challenge ci
computed over l measurements of MPUF at a fixed oper-
ating condition. Like XOR APUF, selection input APUFs
of MPUF have contributed to entire CRP space of MPUF.
However, individual data input APUF has contributed
to only (2−k×100)% of MPUF CRP space. Thus, there is
significantly less correlation between reliability of data
input APUF and reliability of MPUF. This implies that
the adversary can efficiently learn only k selection input
APUFs of (n, k)-MPUF using reliability information. But
this does not imply that MPUF is secure because models
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of selection input APUFs can be used to predict selection
inputs of MUX for a given challenge. Based on these
predicted selection inputs, the adversary can partition
set D into 2k partitions {D0, . . . ,D2k−1} corresponding
to 2k data input APUFs Adj , j ∈ [0 : 2k − 1] of MPUF.
Next, the adversary employs LR [5] approach to build
model Md

j for Adj , j ∈ [0 : 2k − 1] using (ci, oi) ∈ Dj .
In case of XOR APUF, all models are built indepen-

dently of each other, which is not true for MPUF model-
ing. First selection input APUFs are modeled, and then
data input APUFs are modeled based on these models.
Thus, in case of MPUF, prediction accuracy of data input
APUFs should be less than that of selection input APUFs.
This results in a small reduction in overall prediction
accuracy of MPUF. Let ps be the probability that model
of selection input APUF predicts its output correctly. For
the sake of simplified worst-case analysis (from designer
perspective), we assume that these probabilities are the
same for all selection input APUFs. Let us assume that
psa = (ps)

k be the probability that all selection inputs are
predicted correctly, and this probability is an estimation
of correct CRPs in Di which are used for modeling of
Adi .

Let Nd
k be the number of CRPs (with 1−psa probability

of noise in CRPs) required for building a model Md
i of

Adi , i ∈ [0 : 2k − 1] in (n, k)-MPUF. Then, ND
k = Nd

k × 2k

denotes total number of CRPs required for modeling
all data input APUFs. Let Ns

k be the number of CRPs
required for modeling a selection input APUF, and the
same set of CRPs can be reused for modeling other se-
lection input APUFs. Since the CRPs used for modeling
selection input APUFs can be reused for modeling of
data input APUFs, data complexity of complete (n, k)-
MPUF modeling is NM

k = max{ND
k , N

s
k}. Typically,

Ns
k � Nd

k , and if 2k is not a large value, then NM
k = Ns

k .

6.2 rMPUF: a Robust MPUF Variant
Following two facts can be observed from the reliability
based modeling attack on MPUF:

1) Reliability based attack is not feasible on data input
APUFs Adi as the individual contribution of each Adi
on MPUF output is significantly less compared to
the size of total CRP space.

2) Each selection input APUF Asj has contributed to
entire CRP space of MPUF, and thus there is a
significant correlation between reliability of MPUF
and Asj outputs.

To make MPUF design robust against this attack,
we need to ensure that each Asj contributes to a small
subset of the entire CRP space like Adi . Less contribution
on CRP space implies that the adversary needs more
MPUF CRPs to build a high accuracy model of APUF,
as reliability based modeling exploits unreliable CRPs
in the training set. Based on this design philosophy,
we propose an MPUF variant, as shown in Fig. 2a.
We have termed this MPUF variant “rMPUF” as it
is robust against reliability based modeling attack. An
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Fig. 2: (n, k)-rMPUF: (a) architectural overview of (n, 3)-
rMPUF, and (b) impacts of selection (Asj) and data (Adi )
input APUFs on CRP space of (n, 3)-rMPUF. The gray
circle in (b) denotes the entire CRP space of (n, 3)-
rMPUF, and this CRP space is divided into 23 equal size
partitions corresponding to each data input APUF.

(n, k)-rMPUF consists of k stages of 2:1 MUXes, where
selection inputs of 2:1 MUXes are generated by inde-
pendent APUFs. On the other hand, in the basic (n, k)-
MPUF, selection inputs of all 2:1 MUXes belonging to a
specific stage are generated by a single APUF instance
(cf. Fig. 1b). Thus an (n, k)-rMPUF employs more APUF
instances compared to an (n, k)-MPUF.

In case of (n, k)-rMPUF, for a given challenge, re-
sponse of an Adi , i ∈ [0 : 2k − 1] propagates to output
o of rMPUF. Selection of Adi depends on concatenated
responses of Asj ’s lying on the path from Adi to o. In an
(n, k)-rMPUF, there are k+ 1 APUFs, including the data
input APUF, on the path from a particular data input to
MPUF output o (cf. Fig. 2a). Thus, like MPUF, reliability
of (n, k)-rMPUF is similar to (k+1)-XOR APUF. Nonlin-
earity and balancedness properties of (n, k)-rMPUF are
the same as (n, k)-MPUF.

Next, we analyze robustness of rMPUF against reli-
ability based modeling attack. By “robustness against
modeling attack”, we mean that an adversary needs
more CRPs to execute the attack. Unlike MPUF where
model building of all selection input APUFs are per-
formed simultaneously using the same CRP training set,
selection input APUFs in rMPUF lying on a path from
data input to o are modeled sequentially. We explain the
modeling strategy using an example of (n, 3)-rMPUF as
shown in Figs. 2a and 2b. The adversary first builds a
model for As6 using reliability of MPUF responses, and
this is feasible as contribution of As6 on rMPUF CRP
space is 100% (cf. Fig. 2b). Let S3 be a set of CRPs
required to build a model Ms

6 for As6 and N = |S3|.
Once Ms

6 is built, the adversary partitions S3 into two
sets S03 and S13 corresponding to the two predicted
response classes 0 and 1, respectively. Next, S03 and S13
are used in model building of As2 and As5, respectively,
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but these sets do not have sufficient number of CRPs
for reliability based model building. At least another set
S2 of N random CRPs is required. Like S3, set S2 is to
be partitioned into S02 and S12 based on the predicted
response values of Ms

6 . The sets S03 ∪ S02 and S13 ∪ S12
are used for modeling As2 and As5, respectively. Once
models Ms

2 ,M
s
5 ,M

s
6 are built, the adversary follows a

similar approach for modeling of As0, As1, As3, As4 based
on reliability information. After successful modeling of
all selection input APUFs, the adversary builds models
for data input APUFs by following the same approach
used for MPUF modeling in Algorithm 1.

For an (n, k)-rMPUF, total number of distinct CRPs
required for modeling all selection input APUFs is:

NS
k = Ns

k +

k−1∑
j=1

(
Ns
k

2
× 2j

)
= 2k−1Ns

k , (15)

where Ns
k denotes number of CRPs required for reliabil-

ity based modeling of a selection input APUF instance in
(n, k)-rMPUF. The value of Ns

k in (n, k)-rMPUF is similar
to data complexities of (n, k)-MPUF and k-XOR APUF
for reliability based modeling, and it increases linearly
in k. For example, NS

3 = Ns
3 + Ns

3 + 2Ns
3 = 4Ns

3 for
(n, 3)-rMPUF, NS

4 = Ns
4 + Ns

4 + 2Ns
4 + 4Ns

4 = 8Ns
4 for

(n, 4)-rMPUF, and Ns
3 < Ns

4 . Since modeling of data
input APUFs are performed based on the responses
instead of reliability information, less number of CRPs is
required for this purpose. Note that adversary can reuse
NS
k CRPs in the modeling of data input APUFs. Hence,

data complexity of complete (n, k)-rMPUF modeling is
NS
k , and this value increases exponentially in k. On the

other hand, data complexity of k-XOR APUF is linear
in k. This implies that rMPUF is more robust against
modeling attack than XOR APUF. As we mentioned
earlier, advantage of rMPUF is that it can achieve a
good balance between reliability and security at the cost
of hardware overhead as number of APUFs used in
composition is large. However, in practice, this balance
is not feasible for XOR APUF.

Although the APUFs in XOR APUF can be learned
parallely to reduce attack time, this parallel approach is
only applicable to the selection input APUFs in a specific
stage of an (n, k)-rMPUF. The selection input APUFs
belonging to different stages of rMPUF must be learned
sequentially, and thus, time required for modeling an
rMPUF is longer than XOR APUF.

Compared to the (n, 3)-MPUF, (n, 3)-rMPUF requires
four extra APUFs which seems acceptable in practice,
and hence we consider (n, 3)-rMPUF as the preferred
rMPUF variant in practice. In (n, k)-rMPUF, any re-
sponse depends on the k selection input APUFs, and it
is intuitive that number of CRPs required for reliability
based modeling of a selection input APUF is approxi-
mately similar as that of k-XOR APUF modeling. Later
in Section 9.3, we validate this observation using simula-
tion results for (64, 3)-rMPUF. In reference to the results
from Becker’s paper [15, Table 2], the reliability based

modeling of 128-bit 3-XOR APUF requires ≈ 100 × 103

CRPs and for (128, 3)-rMPUF, it should be ≈ 400 × 103

(as theoretically estimated in Eq. (15)) which is similar to
the data complexity of a 10-XOR APUF. The interesting
fact is that the reliability of (n, 3)-rMPUF is similar to
reliability of 4-XOR APUF which is significantly lesser
than reliability of 10-XOR APUF. Thus, (n, 3)-rMPUF
achieves the same security level of 10-XOR APUF with
significantly higher reliability at the cost of additional
five APUF instances.

7 LINEAR CRYPTANALYSIS OF MPUF
In this section, we first discuss linear cryptanalysis of the
basic MPUF, and then propose a MPUF variant (cMPUF)
which is robust against this cryptanalysis attack.

7.1 Linear Cryptanalysis (LC)
Adversary’s objective here is to find a linear approxima-
tion of MPUF. From Section 4.2, it can be observed that
the probability of MPUF output being identical to the
output of an arbitrary data input APUF is:

pmatch = Pr(o = Adi ) =
1

2
+

1

2k+1
. (16)

In other words, Eo drifts from its ideal value 0.5
(cf. Eq. (5)), and makes linear cryptanalysis feasible for
small k value (cf. Table 1). Since adversary does not have
access to output of data input APUF Adi , she needs to
build a model of APUF based on CRPs of MPUF. In this
scenario, she needs to deal with noisy (erroneous) CRPs
during model building, and the probability that a CRP
is noisy:

ε = 1− pmatch =
1

2
− 1

2k+1
. (17)

Table 1 shows values of pmatch and ε with varying k
values. Note that o = Adi is not the only approximation
that satisfy pmatch and ε expression as stated in Eqs. (16)
and (17). Any linear expression in the form of ψbest
in Eq. (6) has the same pmatch and ε values. This implies
that amount of noisy CRPs increases with increasing
value of k.

It should be an obvious choice to the adversary to use
a ψbest expression that can be efficiently modeled using
noisy CRPs with higher degree of prediction accuracy
(i.e., expected accuracy should be greater than 99%).
If adversary cannot find any such ψbest, then linear
approximation based attack will not be feasible. It can
be observed from Eq. (6) that ψbest expression composes
of either a single data input APUF only or XOR of a data

TABLE 1: pmatch and ε for (n, k)-MPUF with different k

k 1 2 3 4
pmatch (%) 75 62.5 56.25 53.13

ε (%) 25 37.5 43.75 46.87
m† 3 6 11 20

† No. of APUFs used in MPUF.
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input APUF and a few selection input APUFs. If ψbest is
a XOR APUF, then computational complexity of model
building would be significantly higher while number of
noisy training CRPs is large.

This linear approximation technique can be used to
develop a modeling attack. The basic idea is to build a
model for each primitive APUF using linear approxima-
tion as follows:
• o = Adi for modeling Adi , i ∈ [0 : 2k − 1], and
• o = Ad0 ⊕Asj for modeling of Asj , j ∈ [0 : k − 1].

Next we propose an MPUF variant (called cMPUF) to
prevent o = Adi linear approximation attack, as modeling
of an APUF is comparatively efficient with noisy CRPs
compared to 2-XOR APUF.

7.2 cMPUF: a Robust MPUF Variant Against LC

We aim to prevent linear approximation like o = Adi
by modifying the data input connection pattern of basic
MPUF design as: half of the data inputs of MUX are
complement of the other data inputs (cf. Figure 3b
for k = 2). We have already introduced this connection
pattern in Section 4.1. We have termed this modified
MPUF design as “cMPUF” due to its complemented data
input. Here, our objective with cMPUF is to introduce
50% noise (i.e., Pr(o = Adi ) = 0.5) in training CRPs
when the adversary attempts to build a model of APUF
using cMPUF’s CRPs, for any k > 1. The reader can
find similar philosophy being used in noise bifurcation
based PUF protocol in [24]. It withstands the adversary
to take advantage of poor nonlinearity of MUX in linear
approximation attack using single APUF. We compute
the probability Pr(o = Adi ) for cMPUF as:

Pr(o = Adi ) = Pr(As = i)Pr(o = Adi |As = i)

+ Pr(As 6= i)Pr(o = Adi |As 6= i)

=
1

2k
+

∑
j∈[0,2k−1]

j 6=i

Pr(As = j)Pr(o = Adi |As = j)

=
1

2k
+

1

2k

∑
j∈[0,2k−1]

j 6=i

Pr(o = Adi |As = j)

=
1

2k
+

1

2k
[(2k − 2)× 1

2
] =

1

2
. (18)

In the last line of Eq. (18), we have used (2k − 2) × 1
2 ,

as we need to exclude the case j = i and another value
of j where complement of Adi is connected. If Adj = Ādi
for some j, then Pr(o = Adi |As = j) = 0. Hence, we use
this data input connection pattern in cMPUF to make
it robust against easier form of linear approximation
attack. The expression of ψbest that provides minimum
HD with cMPUF has following form:

ψbest(c; i,u) = Adi (c)⊕

k−1⊕
j=0

u[j]Asj(c)

 , (19)
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Fig. 3: Example of MPUF variants: (a) the basic (n, 2)-
MPUF and (b) (n, 2)-cMPUF.

where u[j] ∈ {0, 1}, but all u[j] cannot be 0 together.
This implies that for linear approximation attack, the
adversary needs to build a model for at least 2-XOR
APUF using cMPUF’s CRPs, which is infeasible for
(n, k)-cMPUF with k >= 3 due to large amount noise.
So, cMPUF is a preferred MPUF variant than the basic
MPUF to prevent linear approximation attack.

7.3 Nonlinearity Comparison: MPUF vs. cMPUF

The analysis presented above establishes that cMPUF
can only prevent linear approximation of the form o =
Adi . One obvious question in this context is: do the (n, k)-
MPUF and (n, k)-cMPUF have the same nonlinearity for a
given k? Note that (n, 1)-cMPUF is nothing but a 2-XOR
APUF, and for k > 1, we have the following lemma:

Lemma 3. The nonlinearity of (n, k)-MPUF and (n, k+ 1)-
cMPUF are the same, i.e., E(n,k)−MPUF = E(n,k+1)−cMPUF

where E represents the normalized HD between a given
MPUF variant and any affine/linear function.

Proof. According to Eq. (19), the best linear approxima-
tion for cMPUF can be achieved using linear expression
Adi ⊕ Asj for some i ∈ [0 : 2k − 1] and j ∈ [0 : k − 1].
For each assignment of Asj , j ∈ [0 : k − 1], one data
input APUF Adi will be selected when rs = i. Due to
complemented data input connection of cMPUF, output
of cMPUF can be either Adi or Ādi . Let us consider linear
expression Ad0 ⊕ Asj . Since Ad0 and Ād0 are connected to
two different MUX inputs in cMPUF, an adversary can
select an Asj such that:

Asj =

{
0, for Ad0
1, for Ād0.

(20)

Thus, if cMPUF outputs Ad0, then Ad0⊕Asj = Ad0⊕0 = Ad0
also holds. Similarly, if cMPUF outputs Ād0, then Ad0 ⊕
Asj = Ad0 ⊕ 1 = Ād0 holds. Whatever be the data input
connection pattern of cMPUF, for (Ad0, Ā

d
0), there exists an

Asj that satisfies condition mentioned in Eq. (20)). If we
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Fig. 4: SAC properties of APUF, XOR APUF and MPUF. The Pr(Yi = 1) is the output transition probability of PUF
while i-th challenge bit is complemented. These results are based on the Matlab simulation of APUF, XOR APUF
and the basic MPUF.

assume that Asx satisfies this condition for Ad0 in (n, k)-
cMPUF, then:

Pr(o = Ad0 ⊕Asx) =
2

2k
+

2k − 2

2k
× 1

2
=

1

2
+

1

2k
, and

E(n,k)−cMPUF = 1− Pr(o = Ad0 ⊕Adx) =
1

2
− 1

2k
.

Hence it is proved that E(n,k)−MPUF = E(n,k+1)−cMPUF

(cf. Eq. (9)).

From this discussion, it is evident that all possible
connection patterns for complemented data input APUFs
are equivalent with respect to their nonlinearity proper-
ties. Hence, in the rest of the paper, we use the following
connection pattern as default pattern for (n, k)-cMPUF:

Ad0 → 0, Ād0 → 1,

. . . ,

Adi → i, Ādi → (i+ 1),

. . . ,

Ad2k−1−1 → (2k − 2), Ād2k−1−1 → (2k − 1),

where Adi → x implies that data input APUF Adi in
connected to x-th data input of MUX in (n, k)-cMPUF.

8 STRICT AVALANCHE CRITERION OF MPUF
In the context of statistical attack on PUFs, an adver-
sary exploits correlation among CRPs explicitly. The
Strict Avalanche Criterion (SAC) [7], [25] of a PUF is
important to make it robust against statistical attacks.
A PUF instance P is said to satisfy SAC property if its
output changes with probability 0.5, whenever a single

challenge bit is complemented. Let us consider a random
variable Yi defined as:

Yi =

{
1 if P (c)⊕ P (c⊕ ei) = 1

0 if P (c)⊕ P (c⊕ ei) = 0
(21)

where c is a n-bit challenge to PUF P , ei ∈ {0, 1}n and
only the i-th bit of ei is one. Ideally, Pr(Yi = 1) = 0.5
should hold for all i ∈ [0 : n − 1] for n-bit challenge
to satisfy SAC property. If a PUF fails to achieve that,
then adversary can generate related CRPs from a set of
known CRPs.

Since APUF is used as primitive in MPUF variants, we
first discuss SAC property of APUF. Figure 4a depicts
SAC property of 64-bit APUF. Note that i = 0 implies
LSB (least significant bit) of challenge, and i = n − 1 is
MSB (most significant bit) of challenge. APUF achieves
good SAC property when i → n

2 , and it becomes poor
when either i→ 0 or i→ (n− 1).

The SAC property for the basic MPUF is reported
in Fig. 4c based on Matlab simulation results (refer
to Section 9.1 for simulation setup). From SAC properties
of APUF (cf. Fig. 4a) and XOR APUF (cf. Fig. 4b), it
can be observed that SAC values, i.e., Pr(Yi = 1), are
relatively poor for challenge bits towards both left and
right ends of challenge c. On the other hand, in case of
MPUF, Pr(Yi = 1) → 0.1 when i → 0, and thus, only
least significant challenge bits show poor SAC property.
This nature of SAC property for MUPF can be explained
based on SAC property of APUF. Let us consider the
following two extreme cases for APUF: Pr(Y0 = 1) ≈ 0
and Pr(Yn−1 = 1) ≈ 1. For i = 0, value of As remains
the same with very high probability for challenge pair
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(c, c⊕e0), and same data input APUF will be selected for
both challenges. Hence, MPUF also produces the same
output for c and c⊕ e0 with high probability. However,
for i = n− 1, As produces different values for challenge
pair (c, c⊕ en−1) with probability approximately 1, and
it results in different response values for MPUF with
probability approximately 0.5, as two different data in-
put APUFs are selected for challenges c and c⊕ en−1.

The SAC property of LSPUF [25] was improved using
a special XOR input network. Now, we show that the
same can be achieved for MPUF without any input
network. Let crev be reverse of challenge c. If we apply
challenge c and its reverse challenge crev alternatively
to selection input APUFs in MPUF, for example As(c) =
As0(crev)|As1(c)|As2(crev)|As3(c) for k = 4, then outputs
of As(c) and As(c ⊕ ei) would be different with high
probability, for all i ∈ [0 : n − 1]. Hence, two different
data input APUFs would be selected for c and crev. It
results in improved SAC property for (n, k)-MPUF with
k > 1 as shown in Fig. 4d. A similar SAC property can
also be observed for cMPUF and rMPUF.

9 SIMULATION RESULTS

We currently do not have access to ASIC fabrication.
Since APUFs exhibit poor uniqueness property on FP-
GAs as observed by us and reported in multiple publi-
cations previously [26], [27], we do not report FPGA-
based results here. As an alternative, we perform all
PUF characterizations and analyses based on simulation
of the proposed PUF circuits in Matlab, similar to the
approach adopted in [5], [15].

9.1 Simulation Setup

In Matlab simulation, we have considered that all delay
components of APUF are independent and identically
distributed and follow a normal distribution with µ = 10
and σ = 0.05. To observe the effect of experimental noise
on simulated APUF behavior (that happens in real PUF
due to temperature and supply voltage variations), we
have used an additive noise which follows a normal dis-
tribution N (0, σ2

noise) [15]. In the presence of noise, each
delay component of APUF follows N (10, σ2 + σ2

noise).
To control reliability of APUF as well as MPUF, we
have employed the following relationship between σ and
σnoise: σnoise = ασ, where 0 ≤ α ≤ 1. Both APUF and
MPUF were treated to be 100% reliable when α = 0. We
have simulated (n, k)-MPUF for k = 3, 4, (n, k)-cMPUF
for k = 4, 5, and (n, k)-rMPUF for k = 3 with different
challenge size n = 64, 128. For each MPUF variant, we
simulated 50 instances. Each instance was evaluated 25
times with 1 × 105 challenges for three different noise
levels σnoise = ασ with α = 1/2, 1/20, 1/80, to estimate
their performance metrics—uniformity, uniqueness and
reliability.

TABLE 2: Performance metrics (%) of simulated APUFs

n α† Uniformity Uniqueness Reliability
(Avg.,Std.) (Avg.,Std.) (Avg.,Std.)

64
1/2 (50.34,3.58) (50.04,3.96) (96.03,0.46)
1/20 (50.33,3.62) (50.05,3.99) (99.60,0.05)
1/80 (50.33,3.61) (50.05,3.99) (99.90,0.01)

128
1/2 (50.43,2.58) (50.00,2.81) (96.05,0.32)
1/20 (50.42,2.60) (50.01,2.83) (99.60,0.03)
1/80 (50.42,2.60) (50.01,2.83) (99.90,0.01)

† σnoise = σα, where σ is the standard deviation of
delay distribution of delay component.

9.2 Results for Performance Metrics
The performance metrics of primitive APUFs (64-bit
and 128-bit) used in MUX based compositions are pro-
vided Table 2. Table 3 depicts of performance metrics
for MPUF, cMPUF and rMPUF. For each performance
metric, we should consider both average (Avg.) and stan-
dard deviation (Std.), as average value might not provide
an good estimation when values of a given metric for
different PUF instances are significantly different from
each other.

From Table 3, it can be observed that both MPUF and
cMPUF have similar performance metrics. Since nonlin-
earity of (n, k)-MPUF and (n, k+1)-cMPUF are same, for
the sake of security against linear approximation attack,
(n, k+1)-cMPUF is preferable to an application engineer.
But reliability of (n, k)-MPUF is slightly better than that
of (n, k + 1)-cMPUF, as (n, k + 1)-cMPUF has employed
one extra APUF for selection input of MUX. Performance
metrics of rMPUF is also similar to other MPUF variants
with sightly higher standard deviation for each metric.
One reason might the use of independent selection input
APUFs. In Table 3, reliability results of MPUF variants
are compared with reliability values of (k + 1)-XOR
APUF and x-XOR APUF, where x is the number of
APUFs employed in compositions. It was observed that
reliability of MPUF variants are better than that of (k+1)-
XOR APUF and significantly better than x-XOR APUF.
From Tables 2 and 3, it can be observed that uniformity
and uniqueness of MPUF variants are at least as that of
primitive APUFs. Due to composition of APUFs, only
reliability is reduced.

9.3 Results for Reliability based Modeling of MPUF
Variants
As discussed in Section 6.1, the basic MPUF as well as
cMPUF variant are not secure against reliability based
modeling attack. Table 4 depicts modeling accuracy val-
ues and required number of CRPs (data complexity) for
each selection input APUF belonging to (64, 4)-MPUF
with different reliability levels. A same set of CRPs was
used to learn all selection input APUFs. The number
of CRPs required for modeling a data input APUF is
significantly less compared to a selection input APUF,
as data input APUFs are modeled based on CRPs, with-
out any reliability information. For modeling of data
input APUFs, we have reused the CRPs collected for
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TABLE 3: Performance metrics (%) of simulated (n, k)-MPUF/cMPUF/rMPUF

PUF n k α? Uniformity
(Avg.,Std.)

Uniqueness
(Avg.,Std.)

Reliability (Avg.,Std.)
x†(n, k)-MPUF Variant (k+1)-XOR APUF x-XOR APUF

M
PU

F

64

3
1/2 (50.82,3.32) (50.04,1.43) (86.24,0.63) (77.47,1.22) (53.60,0.50)

111/20 (50.33,2.72) (50.02,0.61) (98.91,0.05) (98.28,0.10) (94.62,0.23)
1/80 (50.33,2.71) (50.02,0.61) (99.74,0.01) (99.59,0.03) (98.82,0.05)

4
1/2 (49.57,2.03) (50.01,0.61) (83.57,0.59) (71.99,1.07) (50.16,0.09)

201/20 (49.80,1.67) (50.01,0.32) (98.67,0.06) (97.82,0.11) (89.40,0.35)
1/80 (49.79,1.66) (50.01,0.32) (99.69,0.01) (99.49,0.02) (97.79,0.06)

128

3
1/2 (49.68,2.08) (50.02,0.64) (86.40,0.48) (77.83,0.91) (53.74,0.40)

111/20 (49.79,1.82) (50.01,0.39) (98.92,0.04) (98.31,0.08) (94.69,0.15)
1/80 (49.79,1.81) (50.01,0.39) (99.74,0.01) (99.60,0.02) (98.84,0.04)

4
1/2 (49.87,2.24) (50.00,0.39) (83.61,0.36) (72.13,0.74) (50.15,0.08)

201/20 (49.95,1.73) (50.00,0.21) (98.68,0.04) (97.85,0.08) (89.47,0.25)
1/80 (49.95,1.72) (50.00,0.20) (99.70,0.01) (99.50,0.02) (97.80,0.05)

cM
PU

F

64

4
1/2 (49.80,2.27) (49.99,0.23) (83.76,0.63) (71.80,0.89) (52.64,0.43)

121/20 (49.86,1.77) (50.00,0.16) (98.69,0.06) (97.82,0.08) (94.09,0.25)
1/80 (49.86,1.76) (50.00,0.16) (99.69,0.01) (99.48,0.02) (98.71,0.05)

5
1/2 (50.25,2.09) (50.00,0.18) (78.82,0.70) (64.85,1.15) (50.13,0.08)

211/20 (50.23,1.64) (50.00,0.13) (98.10,0.08) (96.71,0.17) (87.09,0.29)
1/80 (50.23,1.62) (50.00,0.13) (99.55,0.02) (99.22,0.04) (97.12,0.08)

128

4
1/2 (49.65,1.83) (50.00,0.14) (83.78,0.43) (71.83,0.98) (52.66,0.23)

121/20 (49.75,1.46) (50.00,0.10) (98.69,0.04) (97.82,0.11) (94.12,0.17)
1/80 (49.74,1.45) (50.00,0.10) (99.70,0.01) (99.49,0.03) (98.72,0.04)

5
1/2 (49.89,1.34) (50.00,0.11) (78.84,0.40) (64.85,0.64) (50.12,0.08)

211/20 (49.90,1.03) (50.00,0.10) (98.11,0.05) (96.73,0.10) (87.05,0.20)
1/80 (49.91,1.02) (50.00,0.10) (99.55,0.01) (99.23,0.03) (97.11,0.05)

rM
PU

F 64 3
1/2 (50.01,4.40) (49.88,1.02) (85.10,0.41) (78.67,0.78) (60.25,0.45)

15

1/20 (50.04,3.80) (49.95,0.69) (98.67,0.07) (98.02,0.11) (92.93,0.17)
1/80 (50.02,3.81) (49.95,0.69) (99.68,0.02) (99.50,0.04) (98.14,0.08)

128 3
1/2 (49.60,2.24) (49.98,0.62) (85.02,0.32) (78.74,0.57) (60.28,0.35)
1/20 (49.58,1.98) (49.99,0.41) (98.66,0.05) (98.01,0.10) (92.95,0.14)
1/80 (49.59,1.97) (49.99,0.41) (99.68,0.02) (99.50,0.03) (98.13,0.05)

† x represents the number of APUFs used in the MPUF or rMPUF. ? σnoise = ασ, where 0 ≤ α ≤ 1.

TABLE 4: Modeling accuracy of selection input APUFs
in (64, 4)-MPUF

α # CRPs Rel. of MPUF (%) Acc. of APUF (%)
1/2 0.8× 105 83.6 95.60− 96.80

1/20 1.4× 105 98.7 99.59− 99.62
1/80 2.8× 105 99.7 99.88− 99.90
Note Rel.—Reliability Acc.—Prediction Accuracy

TABLE 5: Modeling accuracy of APUFs in k-XOR APUF
k α # CRPs Rel. of XOR APUF (%) Acc. of APUF (%)

4
1/2 0.8× 105 79.55 96.55− 96.95
1/20 1.4× 105 98.32 99.69− 99.70
1/80 1.7× 105 99.60 99.90− 99.92

10
1/2 53.93 90− 91
1/20 5.5× 105 94.11 99.60− 99.67
1/80 98.64 99.92− 99.90

Note Rel.—Reliability Acc.—Prediction Accuracy

modeling of selection input APUFs. This implies that
the number of CRPs required for a successful reliability
based modeling of (64, 4)-MPUF is similar to 4-XOR
APUF (cf. Table 5). Thus, the basic (64, 4)-MPUF design
is vulnerable to reliability based modeling attack even
though it has exploited 2k extra APUFs compared to k-
XOR APUF. This implies that data input APUFs do not
play any significant role to improve robustness against
reliability based modeling attack.

Table 6 shows a range of prediction accuracy values
for a partial set of selection input APUFs used in (64, 3)-
rMPUF (cf. Fig. 2a). We have evaluated only this rMPUF
instance as its resource overhead is in practical range.
The only three selection input APUFs belonging to Stage-
3 (A6) and Stage-2 (A2 and A5) of (64, 3)-rMPUF are
modeled successfully. There are no successful models
for other selection input APUFs belonging to Stage-1
(A0, A1, A3, and A4) when total number of training CRPs

is 6 × 105 and 30 different runs of CMA-ES are used.
We have considered three different levels of noise in
APUF simulation. From results of 64-bit 10-XOR APUF
(cf. Table 5) and (64, 3)-rMPUF, it can be observed that
there is no successful model for rMPUF even using more
training CRPs than that are used for successful modeling
of a 10-XOR APUF. Thus, (64, 3)-rMPUF is at least as
robust as 10-XOR APUF. Another interesting advantage
of (64, 3)-rMPUF is that its reliability level is similar to
4-XOR APUF (cf. Table 3) which is significantly higher
than reliability level of 10-XOR APUF.

Table 7 shows the two partitions of 6 × 105 CRPs
corresponding to outputs 0 and 1 of the model of A6. It
is very difficult to have equal size partitions even in case
of simulation, and it implies that adversary needs more
CRPs to model an APUF with smaller partition. This
results in increase of total number of CRPs required to
build a successful model for rMPUF. In model building
of an selection input APUF, we have used partially
overlapped CRPs in different runs of CMA-ES. For this
reason, the reader can observe that number of CRPs
used for each APUF modeling (cf. Table 6) is lesser
than the size of CRP partition assigned for modeling
corresponding APUF (cf. Table 7).

The reader might think that how an adversary can
estimate the accuracy values of APUFs as reported in Ta-
ble 6. It is true that the adversary cannot compute these
values, and she has to select APUF models based on
fitness value the model generated by CMA-ES. Typically,
a APUF model with best fitness value implies best pre-
diction accuracy in CMA-ES. Since we are the designer
and performing security evaluation of the design, we
have access to some secret information, such as outputs
of each APUF instances used in PUF composition, to



13

TABLE 6: Modeling accuracy of selection input APUFs in (64, 3)-rMPUF

α
Total
#

CRP

#CRPs and Acc. of Selection Input APUF Models
A2 A5 A6

Acc. (%) # CRP Acc. (%) # CRP Acc. (%) # CRP
1/2 90− 91 1.9× 105 94.93− 95.43 2.39× 105 94.95− 95.56 1× 105

1/20 6× 105 99.59− 99.64 2.05× 105 99.66− 99.68 2.68× 105 99.58− 99.61 1.5× 105

1/80 99.82− 98.87 2.69× 105 99.89− 99.96 3.01× 105 99.87− 99.90 3× 105

Note Acc.—Prediction Accuracy

TABLE 7: Two partitions of 6× 106 training CRPs based
on the model of A6

α
A6 = 0 A6 = 1
A2 A5

1/2 258479 341521
1/20 264630 335370
1/80 264985 335015

evaluate security level of the design. When CMA-ES gen-
erates a model of selection input APUF, we have checked
its predicted responses with responses of all selection
input APUFs. This approach helps us to quickly verify
whether modeling of all APUF instances is feasible or
not, and what are the corresponding prediction accuracy
values. Thus, the adversary needs significantly long time
and large number of CRPs to build a successful model
for rMPUF than that are required by a security evalua-
tion engineer having access to some secret information.
For this reason, we have not reported time required for
attacking rMPUF and XOR APUF based on reliability
based information.

9.4 Results for Cryptanalysis of MPUF Variants
Now we present some results for linear approximation
attack discussed in Section 7.1. Table 8 reports modeling
accuracy of data input 64-bit APUFs which are built
based on CRPs of MPUF. With increasing value of k,
both the modeling accuracy of APUF and the probability
of an APUF model approximating MPUF output reduce
gradually. We have provided a range of accuracy values
as different challenge sets of the same size (2 × 105

CRPs) were used in different runs of CMA-ES. There
is no successful model for 64-bit 2-XOR APUF which is
formed using one data input APUF and one selection
input APUF even using 4× 105 CRPs for (64, 2)-MPUF.
So, 2-XOR APUF modeling using CRPs of MPUF is more
difficult compared to a single APUF modeling. Hence,
cMPUF is more robust against linear approximation at-
tack than the basic MPUF. Robustness of rMPUF against
linear cryptanalysis is the same as MPUF while they
follow the same data input connection pattern.

In our reported result in Table 8, we have assumed
that APUFs are perfectly reliable. It is obvious that
in the presence of noise, accuracy will be reduced or
the adversary needs more CRPs to achieve the same
accuracy value reported in Table 8.

10 DISCUSSION
Till now, we have introduced two variants of the basic
MPUF, namely cMPUF and rMPUF. To improve robust-

TABLE 8: Modeling accuracy of data input APUFs built
based on CRPs of (64, k)-MPUF with 100% reliability

k # CRPs Acc. of APUF (%) Pr(o = Ad
i )× 100

1

2× 105

70− 95 70− 76
2 63− 78 64− 67
3 55− 69 60− 65
4 51− 58 56− 59
Note Acc.—Prediction Accuracy

ness against linear approximation attack, one can also
employ complemented data input connection in rMPUF
like cMPUF. Since for k = 3, linear approximation
of rMPUF (without complemented data inputs) is not
leaking significant information, we suggest to use (64, 3)-
rMPUF without complemented data inputs. According
to our discussion, rMPUF is the best variant, and it
should be used in practice where the adversary might
have access to reliability information.

Although main objectives of rMPUF are to improve
security and reliability metrics of APUF composition,
uniformity and uniqueness metrics of rMPUF (also true
for other MPUF variants) can suffer when primitive
PUFs do not have good uniformity and uniqueness
metrics. It is obvious that XOR APUF can improve
uniformity and uniqueness metrics even if primitive
APUFs do not have good values for these metrics. One
can include this feature in rMPUF to a certain extent
without reducing reliability significantly. One such ap-
proach is the use of 2-XOR APUF for each data input
instead of single APUF. To reduce hardware overhead
for data inputs with 2-XOR scheme, we suggest to use
partially overlapped 2-XOR APUFs for 2k data inputs
like (Ad0 ⊕ Ad1), (Ad1 ⊕ Ad2), . . . , (Ad2k−1 ⊕ Ad2k). In this
scheme, only one extra APUF instance is required and
reliability of (n, k)-rMPUF is now similar to (k+2)-XOR
APUF. As a cautionary note, one should not use 2-XOR
scheme for selection inputs as it results in significant
reliability reduction. Note that there will be no reduction
in security level due to the overlapped 2-XOR scheme
for data inputs of MUX, as outputs of two consecutive
overlapped 2-XOR APUFs for a given challenge would
never be available to rMPUF output for cryptanalysis.
In reliability based modeling of rMPUF with 2-XOR
scheme, the adversary needs to model 2-XOR APUF for
data input APUFs.

The reader should not be confused with our introduc-
tions of many MPUF variants. This was done to explore
useful MPUF design space. However, there is a recent
proposal for PUF based lockdown authentication scheme
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using XOR APUF in [28], and our proposed rMPUF can
be used in that protocol to achieve higher number of
secure authentications compared to XOR APUF.

11 CONCLUSION

In this paper, we have introduced three MUX based
APUF compositions, namely MPUF, cMPUF and rMPUF.
Major advantage of MUX composition is that it can
achieve higher reliability than any practical XOR APUF
instance. In addition, we have shown that the proposed
rMPUF is robust against reliability based modeling while
XOR APUF is vulnerable to the same attack. Based
on our experimental results, it is shown that (64, 3)-
rMPUF is at least as robust as 10-XOR APUF with 64-bit
challenge, and its reliability is as high as the reliability of
4-XOR APUF. The rMPUF can be considered as a secure
and reliable alternative for well-known XOR APUF in
practice.
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