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Abstract

We introduce a new cryptographic primitive: Proofs of Space-Time (PoSTs) and construct an extremely simple,
practical protocol for implementing these proofs. A PoST allows a prover to convince a verifier that she spent a
“space-time” resource (storing data—space—over a period of time). Formally, we define the PoST resource as a
trade-off between CPU work and space-time (under reasonable cost assumptions, a rational user will prefer to use the
lower-cost space-time resource over CPU work).

Compared to a proof-of-work, a PoST requires less energy use, as the “difficulty” can be increased by extending
the time period over which data is stored without increasing computation costs. Our definition is very similar to
“Proofs of Space” [ePrint 2013/796, 2013/805] but, unlike the previous definitions, takes into account amortization
attacks and storage duration. Moreover, our protocol uses a very different (and much simpler) technique, making use
of the fact that we explicitly allow a space-time tradeoff, and doesn’t require any non-standard assumptions (beyond
random oracles). Unlike previous constructions, our protocol allows incremental difficulty adjustment, which can
gracefully handle increases in the price of storage compared to CPU work. In addition, we show how, in a crypto-
currency context, the parameters of the scheme can be adjusted using a market-based mechanism, similar in spirit to
the difficulty adjustment for POW protocols.

1 Introduction

A major problem in designing secure decentralized protocols for the internet is a lack of identity verification. It is
often easy for an attacker to create many “fake” identities that cannot be distinguished from the real thing. Several
strategies have been suggested for defending against such attacks (often referred to as “sybil attacks”); one of the most
popular is to force users of the system to spend resources in order to participate. Creating multiple identities would
require an attacker to spend a correspondingly larger amount of resources, making this attack much more expensive.

Any bounded resource can be used as the “payment”; one of the more common is computing resources, since they
do not require any additional infrastructure beyond that already needed to access the Internet. In order to ensure that
users actually do spend the appropriate resource payment, the users must employ a “proof of work”.

Proofs of work have been used for reducing spam [9]], for defending against denial-of-service attacks [23]] and
fairly recently, as the underlying mechanism for implementing a decentralized bulletin-board—this is the technical
heart of the Bitcoin protocol [17].

While effective, proofs-of-work have a significant drawback; they require energy in direct proportion to the re-
source used (i.e., the amount of electricity required to run the CPU during the proof of work generally depends linearly
on the amount of work being performed). This is especially problematic in the context of the Bitcoin protocol, since
the security of the system relies on all honest parties constantly performing proofs of work. In addition to having an
environmental impact, this also sets a lower bound on transaction fees (since rational parties would only participate
in the protocol if their reward exceeds their energy cost). Motivated in large part by the need to replace proofs-of-
work as a basis for crypto-currencies, two (very similar) proposals for Proofs of Space (PoS) have been published
[10,15]. Park et al. also designed an alternative crypto-currency that is based on Proofs of Space [18]], and several new
crypto-currency companies are also basing their protocols on similar ideas [[15} [1, [2].

A PoS is a two-phase protocoﬂ it consists of an initialization phase and (sometime later) an execution phase. In
an (Ny, Ny, T)-PoS the prover shows that she either (1) had access to at least Ny storage between the initialization and
execution phases and at least N; space during the execution phase, or (2) used more than 7 time during the execution
phase.
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At first glance, this definition might seem sufficient as a replacement for proof-of-work. However, in contrast to
work, space can be reused. Using the PoS definition as a “resource payment” scheme thus violates two properties we
would like any such scheme to satisfy:

1. Amortization-Resistance: A prover with access to max (Ny, N;) space can, without violating the formal PoS se-
curity guarantee, generate an arbitrary number of different (Ny, Ny, T)-PoS proofs while using the same amount
of resources as an honest prover generating a single proof; thus, the amortized cost per proof can be arbitrarily
low.

2. Rationally Stored Proofs: Loosely speaking, in a rationally stored proof a verifier is convinced that a rational
prover has expended a space resource over a period of time. There may exist a successful adversarial strategy
that does not require the adversary to expend space over time, but this strategy will be more costly than the
honest one. If we are interested in designing a crypto-currency that replaces CPU work with a space-based
resource, our proof of resource consumption must be a rationally stored proof, otherwise rational parties will
prefer to use the adversarial strategy, and we can no longer claim that the crypto-currency is energy-efficient.

The cost of storage is proportional to the product of the storage space and the time it is used (e.g., in most
cloud storage services, it costs the same to store 10TB for two months or 20TB for one montlﬁ). Under the PoS
definition, a prover can pay an arbitrarily small amount by discarding almost all stored data after the initialization
phase and rerunning the initialization in the execution phase (the prover only needs to store the communication
from the verifier in the initialization phase). More generally, a rational prover will prefer to use computation
over storage whenever the cost of storing the data between the phases is greater than the cost of rerunning the
initialization; when this occurs the PoS basically devolves into a standard proof-of-work in terms of energy
usage.

Even if we ignore energy use, this is a problem if the PoS is used in a protocol where the prover must generate
many proofs, but only some will be verified: the dishonest prover will not have to expend resources on the
unverified proofs in this case.

We note that though the definition of a PoS is insufficient to guarantee rational storage, the existing PoS con-
structions actually do achieve this under some parameters. However, this is more than just a definitional problem.
In particular, in the existing PoS protocols [10} 15} 22} 3] [12} [21], the work performed by the honest prover in the
initialization phase is proportional to the work required to access the graph (i.e., O(Np)). It’s not clear how to increase
the initialization costs without increasing either the memory size or verification cost linearly. This strongly bounds
the time that can be allowed between the initialization and execution phases if we want rational provers to use space
resources rather than CPU work. In the Spacemint protocol, for example, the authors suggest running the proofs
every minute or so [18]. If one wanted to run a proof only once a month, a rational miner might prefer to rerun the
initialization phase each time.

1.1 Our Contributions

“Fixed” Definition. In this paper, we define a new proof-of-resource-payment scheme: a “Proof of Spacetime”
(PoST), that we believe is better suited as a scalable energy-efficient replacement for proof-of-work. Our definition is
similar to a Proof of Space, but addresses both amortization and rationality of storage.

In a PoST, we consider two different “spendable” resources: one is CPU work (i.e., as in previous proofs-of-work),
and the second is “spacetime”: filling a specified amount of storage for a specified period of time (during which
it cannot be used for anything else); we believe spacetime is the “correct” space-based analog to work (which is a
measure of CPU power over time). Like work, spacetime is directly convertible to cost.

Rational Storage vs. Space Rather than require the prover to show exactly which resource was spent in the
execution phase, we allow the prover to choose arbitrarily the division between the two, as long as the total amount of
resources spent is enough.

That is, the prover convinces a verifier that she either spent a certain amount of CPU work, or reserved a certain
amount of storage space for some specified period of time or spent some linear combination of the two. However,
by setting parameters correctly, we can ensure that rational provers will prefer to use spacetime over work; when

20f course, this is also true for a local disk; during the interval in which we are using the disk to store data A, we can’t use it to store anything
else, so our “cost” is the utility we could have gained over the same period (e.g., by renting out the disk to a cloud-storage company).



this is the case we say that a PoST is Rationally Stored (we give a formal definition in Section [2.2.4). In situations
where it is reasonable to assume rational adversaries (such as in crypto-currencies), our definition opens the door to
new constructions that might not satisfy the PoS requirements. For example, the PoS definition essentially requires a
memory-hard function, while our construction is rationally stored but is not memory-hard!

Simple, Novel Construction. We construct a PoST based on incompressible proofs-of-work (IPoW); a variant of
proofs-of-work for which we can lower-bound the storage required for the proof itself. We give two simple candidate
constructions based on the standard “hash preimage” PoW and on storing part of a single hash output. Our protocols
and proofs use a very different technique than existing proofs of space, and are much simpler to implement. (We note
that although the constructions are extremely simple, proving their security is non-trivial.)

Incremental Difficulty Adjustment. Since the relative price of CPU and storage may change over time, use of a
PoST (or PoS) protocol in a crypto-currency setting could require adjusting the parameters (in particular, if the relative
price of storage increases, it may no longer be rational to use storage as the preferred resource). In existing PoS
constructions, this appears to require rerunning the entire initialization protocol. In contrast, our PoST construction
supports simple incremental difficulty adjustment—that is, users only have to pay the marginal work cost between
difficulty levels.

Market-Based Parameter Adjustment. A related issue when designing a crypto-currency based on PoST (or
PoS) is deciding when and how to adjust the initialization difficulty. We show how to do this automatically via a
market-based mechanism (similar in spirit to the difficulty adjustment in PoW-based crypto-currencies). The idea is to
incentivize users to honestly report whether they are recomputing or storing data (see Section [7] for details), allowing
us to build protocols that automatically increase the difficulty when the price of storage rises sufficiently (in which
case we’d expect to see more users choosing computation over storage). The detection technique is general, and may
be of independent interest—it can be applied to existing PoS constructions as well.

Different Parameter Regimes. In comparison with existing PoS constructions, we think of the time between
the initialization and proof phases as weeks rather than minutes (this could enable, for example, a crypto-currency
in which the “miners” could be completely powered off for weeks at a time). One can think of our constructions as
complementary to the existing PoS constructions for different parameter regimes—On the one hand, the proof phase
of our PoST protocol is less efficient (it requires access to the entire storage, so a proof might take minutes rather
than seconds, as is the case for the pebbling-based constructions. This means it is not as well suited to very short
periods between proofs ). On the other hand—unlike the existing PoS constructions—the computational difficulty of
our initialization phase is tunable independently of the amount of space, so it is possible to use it to prove reasonable
storage size over long periods (e.g., weeks or months). In this parameter regime, a proof that takes several minutes
would be reasonable.

Compared to pebbling-based constructions, the big loss of efficiency is on the prover’s side. In our construction,
the prover must read the entire table in order to generate a valid response to a challenge. This is indeed much worse
asymptotically. Of course this is a drawback of our construction, and improving this is certainly a worthwhile goal.
In practical terms, however, our efficiency doesn’t preclude the use-cases we describe (e.g., even on a mid-range
consumer HDD, sequential throughput is about 150MB/s; this means reading through a 100GB table in about 10
minutes, which is reasonable even if challenges occur every few hours, much less every few weeks).

Improvements to Spacemint. Finally, we propose a modification to the Spacemint crypto-currency protocol that
removes some restrictions on the types of PoS protocols it can use—allowing it to use PoSTs rather than the specific
PoS constructions it is currently based on (see Section 8]

1.2 Related Work

Random-Function-Inversion PoS A recent work by Abusalah et al. [3] shows how to construct a PoS protocol
based on inverting a random function. This construction is significantly simpler than the pebbling-based constructions
(although still more complex than our construction). However, the initialization difficulty is also fixed, and it does not
seem trivial to increase initialization difficulty without at the same time increasing verification difficulty linearly, and
it does not appear to support incremental difficulty adjustment. Hence it does not appear suitable for long intervals
between proofs.

Proofs of Storage/Retrievability In a proof-of-storage/retrievability a prover convinces a verifier that she is cor-
rectly storing a file previously provided by the verifier [13 7,16, 14} 20]. The main motivation behind these protocols
is verifiable cloud storage; they are not suitable for use in a PoST protocol due to high communication requirements



(the verifier must send the entire file to the server in the first phase), and because they are not publicly verifiable. That
is, if the prover colludes with the owner of the file, she could use a very small amount of storage space and still be able
to prove that she can retrieve a large amount of pseudorandom data.

Proofs of Replication In a Proof of Replication [11], a party would like to prove that they are storing multiple
redundant copies of a file. The PoRep definitions combine a PoS and a Proof of Retrievability. Similarly to the PoST
definition, PoReps don’t (and can’t) guarantee that the prover actually stores redundant copies of the data, but instead
make it an e-Nash equilibrium (so a rational prover does not lose much by doing so). The existing constructions of
PoReps depend on depth-robust graphs for the PoS and on sequential timing assumptions (the prover must respond to
a challenge quickly, and the timing assumptions ensure that the prover cannot recompute its data in that time)

Memory-Hard Functions Loosely speaking, a memory-hard function is a function that requires a large amount of
memory to evaluate [19] 4]. One of the main motivations for constructing such functions is to construct proofs-of-
work that are “ASIC-resistant” (based on the assumption that the large memory requirement would make such chips
prohibitively expensive). Note that the proposed memory-hard functions are still proofs-of-work; the prover must
constantly utilize her CPU in order to produce additional proofs. PoSTs, on the other hand, allow the prover to “rest”
(e.g., by turning off her computer) while still expending space-time (since expending this resource only requires that
storage be filled with data for a period of time).

Filecoin Filecoin [[15] is a crypto-currency protocol based on Proofs of Replication, whose underlying idea is to base
the consensus algorithm resource on “useful” space. The Filecoin whitepaper also defines a “Proof of Spacetime”ﬂ
however in their definitions the proof must include a proof of the elapsed time (requiring assumptions such sequential
work timing assumptions). Moreover, their constructions make use of very heavy cryptographic machinery (such as
zkSNARKS).

Permacoin Miller, Juels, Shi, Parno and Katz proposed the Permacoin protocol, a cryptocurrency that includes, in
addition to the standard PoWs, a special, distributed, proof of retrievability that allows the cryptocurrency to serve as
a distributed backup for useful data [16]]. In strict contrast to PoSTs, the Permacoin construction is amortizable by
design—an adversary who stores the entire dataset can reuse it for as many clients as it wishes. Thus, Permacoin still
requires regular PoWs, and cannot be used to replace them entirely with a storage-based resource. Also by design,
clients require a large amount of communication to retrieve the data they must store, in contrast to PoSs and PoSTs in
which clients trade computation for communication.

2 Proofs of Spacetime

A PoST deals in two types of resources: one is processing power and the other is storage. All our constructions are in
the random oracle model—we model processing power by counting the number of queries to the random oracle.

Modeling storage is a bit trickier. Our purpose is to allow an energy-efficient proof-of-resource-consumption for
rational parties, where we assume that the prover is rewarded for each successful proof (this is, roughly speaking, the
case in Bitcoin). Thus, simply proving that you used a lot of space in a computation is insufficient; otherwise it would
be rational to perform computations without pause (reusing the same space). Instead, we measure spacetime—a unit
of space “reserved” for a unit of time (and unusable for anything else during that time). To model this, we separate
the computation into two phases; we think of the first phase as occurring at time ¢ = 0 and the second at time 7 = 1
(after a unit of time has passed). After executing the first phase, the prover outputs a state o~ € {0, 1} to be transferred
to the second phase; this is the only information that can be passed between phases. The size of the state |o| (in bits)
measures the space used by the prover over the time period between phases.

Informally, the soundness guarantee of a PoST is that the fotal number of resource units used by the adversary is
lower bounded by some specified value—the adversary can decide how to divide them between processing units and
spacetime units.

We give the formal definition of a PoST in Section 2.2} in Section [3| we present a simple construction of a PoST,
and in Section we prove its security.

3We note that the our PoST definitions precede theirs.



2.1 Units and Notation

Our basic units of measurement are CPU throughput, Space and Time. These can correspond to arbitrary real-world
units (e.g., 23° hash computations per minute, one Gigabyte and one minute, respectively). We define the rest of our
units in terms of the basics:

e Work: CPUxtime; A unit of CPU effort expended (e.g., 2°* hash computations).

e Spacetime: spacextime; A space unit that is “reserved” for a unit of time (and unusable for anything else during
that time).

In our definitions, and in particular when talking about the behavior of rational adversaries, we would like to
measure the total cost incurred by the prover, regardless of the type of resource expended. To do this, we need to
specify the conversion ratio between work and spacetime:

Real-world Cost We define y to be the work-per-spacetime cost ratio in terms of real-world prices. That is, in the
real-world one spacetime unit costs as much as y work units (the value of y may change over time, and depends on the
relative real-world costs of storage space and processing power).

We define the corresponding cost function, the real-world cost of a PoST to be a normalized cost in work units: a
PoST that uses |o| spacetime units and x work units has real-world cost ¢ = y|o| + x.

2.2 Defining a PoST Scheme

A PoST scheme consists of two phases, each of which is an interactive protocol between a prover P = (Pjpit, Pexec) and
a verifier V = (Vin, VexeC)E] (for brevity, we drop the init and exec subscripts when they are clear from the context.)
Both parties have access to a random oracle H™™,

Initialization Phase Both parties receive as input an id string id € {0, 1}*. At the conclusion of this phase, both the
prover and the verifier output state strings (op € {0, 1}* and oy € {0, 1}*, respectively):

[ (vork) Ey(work)

(Tp.oy) — (PE (i), VI (i)
Execution Phase Both parties receive the id and their corresponding state from the initialization phase. At the end of
this phase, the verifier either accepts or rejects (outy € {0, 1}, where 1 is interpreted as “accept”). The prover

has no output:

(work)

Coouty) — (PR (id, op), VI (id. o)) .

exec

The execution phase can be repeated multiple times without rerunning the initialization phase. This is critical,
since the initialization phase requires work, while the execution phase is energy-efficient. Thus, although a single
execution of the PoST does not give any advantage over proof-of-work, the amortized work per execution can
be made arbitrary low.

2.2.1 PoST Parameters

A PoST has three parameters: w, the Honest Initialization Work, m, the Honest Storage Space, and f, the Soundness
Bound,

Honest Initialization Work (w) This is the expected work performed by the honest prover in the initialization
phase. This should be “tunable” to ensure that storing the output remains the rational choice rather than recomputing
the initialization as the space-time to work cost ratio changes.

If the cost of the initialization phase is too low, the adversary can generate a proof more cheaply than an honest
prover by deleting all data after initialization, then rerunning the initialization just before the proof phase. In this
case, the adversary does not store any data between phases, so does not pay any space-time cost. We formalize this
in Definition [2.9) as a rationality attack. Note that this is a general attack that also applies to PoS schemes—hence
they must also have a lower bound on the work required for initialization.

4 Although the definition allows general interaction, in our construction the first phase is non-interactive (the prover sends a single message) and
the second consists of a single round.



Honest Storage Space () This is the amount of storage the honest prover must expend during the period between
the initialization and execution phases (and between successive execution phases).

Definition 2.1 (PoST). A protocol (P, V) as defined above is a (w, m, &, f)-PoST if it satisfies the properties of com-
pleteness and f-soundness defined below.

2.2.2 Completeness

Definition 2.2 (PoST 5-Completeness). We say that a PoST is 5-complete if for every id € {0, 1}P°Y® and every oracle
H(work)’

Prfouty = 1: (op.ov) — (PI" id), VL™ (id)) .

init init
PH(work) id VH(work) i S
(-, outy) « exec (id,op), exec (id,ov))| z 1.

When & = 1 completeness is perfect (in this case we sometimes omit the 7).

2.2.3 Soundness

We define a security game with two phases; each phase has a corresponding adversary. We denote the adversary
A = (A, A,), where A, and A, correspond to the first and the second phases of the game. A, and A, can coordinate
arbitrarily before the beginning of the game, but cannot communicate during the game itself (or between phases).

Definition 2.3 (PoST (n, s, Ty, T>)-Security Game). Each phase of the security game corresponds to a PoST phase:

1. Initialization. A, chooses a set of ids {idy,...,id,} where id; € {0, 1}*. Tt then interacts in parallel with n
independent (honest) verifiers executing the initialization phase of the PoST protocol, where verifier i is given
id; as input. Let o5 be the output of A, after this interaction and (oy,, ..., o7y, ) be the outputs of the verifiers.

2. Execution. The adversary A,(idy, ..., id,, o #) interacts with n independent verifiers executing the execution
phase of the PoST protocol, where verifier i is given (id;, oy,) as inputE]

We say the adversary has succeeded if |05 | < s, A, makes at most T queries to the oracle H (work), A, makes at most
T, queries to the oracle and all of the verifiers output 1 (we denote this event Succ,, s 7,.7,)

Definition 2.4 (PoST f-Soundness). We say a PoST protocol is &, f-sound if for all T}, T,,s,> 0 and all n > 1, for
every adversary A = (A, A,) must satisfy the following conditions in the PoST security game:

1. Rational Storage: If A, made less than & - w queries to the work oracle, then the probability of success is
negligible (in the security parameter).

2. Space-Time Trade-Off: Pr [Suce, 7, 1,] < f(n,s,T1,T>)

The first condition checks that the adversary spends at least an ¢ fraction of the honest work in the initialization
phase. This prevents the adversary from launching a “rationality attack”: if the initialization phase requires very little
computational effort, the prover can “throw out” the stored data from the initialization phase and rerun the phase to
regenerate any needed data during the execution phase. This would make its total space-time cost negligible (since the
“time” component vanishes).

The second condition bounds the trade-off between space-time and work. Intuitively, an PoST satisfying this
definition forces an adversary to trade space for queries. The use of n ids rather than just one prevents an amortization
attack, wherein the adversary reuses the same space for different proofs. Naively, to generate n proofs the prover
would require n times the queries, splitting the storage equally between them. Ideally using anything less we’d like the
adversary to fail with overwhelming probability. However, this is impossible to achieve, even if it might be true for an
individual PoST. This is because the adversary can always “forget” the entire data for a subset of the » instances, and
rerun the initialization phase for those instances in the proof phase.

SEach of the verifiers runs a copy of the honest verifier code with independent random coins; .7(2, however, can correlate its sessions with the
verifiers.



2.2.4 Rationally Stored Proofs of Work

Our high-level goal in this paper is to construct energy-efficient proofs, by forcing provers to use storage rather than
work. Unfortunately, our definitions (and contructions) don’t allow a prover to prove they used storage (this is actually
impossible if the adversary can simulate the initialization phase without a lot of storage—which is always the case
unless communication in the initialization phase is proportional to storage or we use non-standard assumptions).
However, we can still give conditions under which a rational prover (whose goal is to minimize expected total cost)
would prefer to use storage. As long as these conditions are met, it seems reasonable to assume that real-world
users would choose storage over work (especially in a crypto-currency setting, where profit is the main motive for
participating).

Definition 2.5 ((y, &’)-Rationally-Stored PoST). We say a PoST is (y, &')-rationally stored if, when the real-world
cost of a space unit is less than vy, then for any given resource budget C, the optimal execution strategy (maximizing
the expected number of successful PoST proofs for that budget) requires that at least an &’-fraction of the budget be
used for storage).

We don’t count the initialization cost in Definition This is because it is only incurred once, while the cost of
the execution phase is incurred repeatedly.
We can identify a sufficient condition for a PoST to be rationally stored:

Lemma 2.6. If a (w,m, &, f)-PoST is n-complete, and for all C > 0, s < & - C/y it holds that
Zf(i,s,C—7~S) <n-C/(y -m)
i=1

then it is (y, &')-Rationally-Stored.
(Note that we assume f(i, s, T) < 1 for all values if i,s and T — otherwise we use instead f*(i, s, T) = min {1, f(i, s, T)}.)

Proof. Denote #G the random variable for the number of successful PoST proofs produced by the adversary. Then

00

E[#G]=Zi-Pr[#G:i]:ii-(Pr[#GZi]—Pr[#GZi—Fl])
i=1

i=1

= ZPr[#G > .
i=1

By the definition of f-soundness, for an adversary using s space and C — v - s oracle queries, the expectation is thus
bounded by

E[#G] < Zf(i,s,C—y- 5)
i=1

On the other hand, using the honest proof strategy, and allocating the entire C budget to space will give C/(y - m)
proofs, each successful with probability at least 1, hence the expected number of successful proofs for the honest
space-only strategy is i7 - C/(y - m).

Thus, the honest proof strategy generates, in expectation, more successful proofs (i.e., higher reward) than any
adversarial strategy that spends less than an &’ fraction of its budget on storage space. O

Note that the adversary can always rerun the initialization phase instead of storing data, so for any n-complete,
(w,m, g, {)-PoST we must have f(i,0,i- w) > n, hence if y - m > w the condition of Lemmacannot be satisfied.
2.2.5 Comparison with the PoS definition

As we remarked in the introduction, an (Ny, N1, T)-PoS does not give any formal security guarantees with respect to
the PoST definition (even if we ignore amortization), since it does not address rationality attacks at all. In the other
direction, even an optimally-sound (w, m, f)-PoST can’t guarantee a (x, x, w)-PoS, for any x € (0, w), since we don’t



place any lower bound on the space required to generate a proof—the adversary can always trade space for polynomial
work. Thus, the parameters are not truly comparable.

Note that even if we did add a space lower bound, similar to the PoS definition, in order to make use of it in
practice one would have to add additional non-standard assumptions (such as timing assumptions); this is because the
adversary can perform the space-time tradeoff at the level of entire PoS instances (e.g., generate n instances, but use
space for only a single instance at a time).

Thus, one can think of the two definitions as being targeted at different “regimes”: a PoS forces the prover to use
a lot of space, but is not well suited to high storage costs and requires frequent proof phases (to prevent a space/time
tradeoff), while the PoST definition does allow long periods of elapsed time between proofs (with a suitably hard
initialization step), but relies on the rationality of the adversary to enforce use of storage rather than work.

2.2.6 Non-Interactive Proofs of SpaceTime (NIPSTs)

Sigma-PoST A Sigma-PoST is a PoST scheme that has the form of a Sigma-protocol: Pj,;(id) sends a single com-
mitment message to the verifier; Vi responds with a random challenge string, after which Pj,; sends a single response
message. For the execution phase, the commitment message is the same as the initialization commitment (hence does
not need to be resent); Vexec sends a random challenge string, and Pey. responds in turn with a single message.

We note that our PoST construction is a Sigma-PoST.

Making Sigma-PoSTs Non-Interactive The initialization phase of a Sigma-PoST can be made non-interactive in
the random oracle model by using the Fiat-Shamir heuristic (replacing the verifier’s response with a hash of the
commitment message). However, interaction cannot be removed entirely—the execution phase requires a challenge
that cannot be predicted by the prover at initialization time—hence, under standard assumptions it cannot be solely a
function of the prover’s inputs.

Using Proofs of Sequential Work By introducing a sequential timing assumption, we can make the proof entirely
non-interactive; the idea is to use the output of the initialization phase (or the previous execution phase if we’re running
multiple times) as the input to a publicly-verifiable proof of sequential work (PoSW). We can then use (a hash of) the
output of the PoSW as the challenge to the execution phase. If we assume a lower bound on the elapsed time for an
adversary to perform a given amount of sequential work, this construction ensures that the adversary must have used
sufficient spacetime resources between the initialization and execution phases.

This NIPST construction appears to violate our main goal—it requires continuous CPU work even for an honest
user. The trick is that a single PoOSW instance can be shared between an arbitrary number of provers, so the amortized
CPU cost vanishes as the number of users grows. Instead of using the previous proof directly as the input to the PoOSW,
we create a Merkle tree whose leaves are the inputs from each prover, and use the root of the tree as the input to the
single, shared PoSW.

The full NIPST consists of (1) the initialization phase output, (2) a Merkle path from the output to the root of the
tree, (3) a PoSW whose input is the Merkle root and (4) the execution phase proof, with the PoSW as the challenge.

We note that some PoSW constructions (such as that of Cohen and Pietrzak [8]) don’t have unique proofs; an
adversary can generate multiple different proofs for the same input that will all be accepted by a verifier. When used in
a NIPST, this means the PoST execution-phase challenges come from a distribution that can be biased by the adversary.
However, our PoST construction can handle this as long as the distribution has enough min-entropy (which must be
the case, since otherwise an adversary could solve the PoSW by trying to guess the result and running the verifier to
check—this can be done in parallel, so would violate the sequential work security of the PoOSW).

2.3 Constructing a PoST: High-Level Overview

Our proof of spacetime has each prover generate the data they must store on their own. To ensure that this data is
cheaper to store than to generate (and to allow public verifiability), we require the stored data to be a proof-of-work.
We construct our protocol using the abstract notion of an incompressible-proof-of-work (IPoW); this is a proof-of-
work (PoW) that is non-compressible in the sense that storing n different IPOWs requires » times the space compared
to storing one IPoW (we define them more formally below; see Section [2.4).

As long as the cost of storing an IPoW proof is less than the cost of recomputing it, the prover will prefer to store
it. However, this solution is very inefficient: it requires the prover to send its entire storage to the verifier. In order to



verify the proof with low communication, instead of one large proof of work, we generate a table containing 7 entries;
each entry in the table is a proof of work that can be independently verified.

Why the Naive Construction Fails At first glance, it would seem that there is an easy solution for verifying that the
prover stored a large fraction of the table:

1. In the initialization phase: the prover commits to the table contents (using a Merkle tree whose leaves are the
table entries)

2. In the execution phase: the verifier sends a random set of indices to the prover, who must then respond with the
corresponding table entries and commitment openings (merkle paths to the root of the tree).

Unfortunately, this doesn’t work: the prover can discard the entire table and reconstruct only those entries requested
by the verifier during the execution phase.

A Simple Solution Our construction overcomes this problem by forcing the prover to commit to the entire table at
the time of the challenge, and only then learn the random entries to be sent back (this is made non-interactive using the
Fiat-Shamir heuristic). Intuitively, the prover is forced to either reconstruct a large fraction of the table (in which case it
must either store many [PoWs, or recompute them), or spend a lot of computational work trying to find a commitment
that will produce a “good” challenge. By setting the parameters correctly, we can ensure that in the second case the
amount of work the prover must do is more than the initialization cost (see Section for details).

2.4 Incompressible Proofs of Work

The standard definitions of PoWs do not rule out an adversary that can store a small amount of data and can use it to
regenerate an entire table of proofs with very low computational overhead. Thus, to ensure the adversary must indeed
store the entire table we need a more restrictive definition:

An Incompressible Proof of Work (IPoW) can be described as a protocol between a verifier V and a prover P:

1. The prover P is given a challenge ch as input, and outputs a “proof™ 7:
2. The verifier receives (ch, ) and outputs 1 (accept) or O (reject).

For simplicity, we denote [IPoW (ch) the output of the honest prover on challenge ch (this is a random variable that
depends on the random oracle and the prover’s coins).

2.4.1 Defining an IPoW

Let qf, denote the number of oracle calls made by P in the protocol (this is a random variable that depends on ch and
the random coins of P).

Definition 2.7 (W', m, f)-IPoW). A protocol is a (W', m, f)-IPoW if:
1. E [q*,ﬁ] < w’ (the honest prover’s expected work is bounded by w’),
2. |x| < m (the honest prover’s storage is bounded by m) and
3. The IPoW is complete (c.f. Definition[2.8)) and f-sound (c.f. Definition [2.9)

Definition 2.8 (IPoW Completeness). An IPoW protocol is complete if, for every challenge ch, the probability that
the verifier rejects is negligible in the security parameter (the probability is over the coins of the prover and the random
oracle).

Definition 2.9 (IPoW f(n, s, T)-Soundness). We say A = (A, A,) is an [n, s, T]-adversary if A, outputs a string
o with length |o| < s, while A, gets o as input, makes at most T queries to the random oracle and outputs n pairs
(chy,my,...,ch,,m,).

Denote Succ the event (over the randomness of ‘A and the random oracle) that all the challenges are distinct and
Vi e [n]: V(ch;,m;) = 1. An IPoW protocol is f-sound if for every adversary andalln > 1, s>0and 7 > 0

Pr[Succ] < f(n, s, T)



Note that we don’t restrict the number of queries (A, makes to the oracle.

As in the PoST definition, this condition bounds the trade-off between space-time and work for the [PoW adversary.
Ideally, we’d like f to be negligible when s < n-m and T < n - w’ (this implies that the adversary must either store
the same amount as the honest prover, or do enough work to reconstruct the proof from scratch). Unfortunately, we
can’t hope to achieve this; for example, for any i € (0, n). if an adversary stores only i [PoWs, and reconstructs the
remaining n — i, it will have overwhelming probability of success while storing i - m bits and doing (n — i) - w’ work.
Moreover, the adversary can always “forget” j bits of storage and guess them correctly with 27/ probability. Thus, in
any f-sound [IPoW, we must have, for all j > O and i € (0,n) that f(n,i-m — j,(n —1)-w',T) > 27/ — ¢ for some
negligible € (that depends on the completeness of the protocol).

3 Our Simple PoST Construction: The Details

Formally, we describe the protocol in the presence of two types of random oracles, a “work” oracle H"°™ and
“Merkle” oracles H; (fori # j, H; and H; are independent random oracles)ﬂ We assume the work oracle has a much
higher cost than the calls to the Merkle oracles (in implementation, we can think of the Merkle oracles as a single
iteration of a fast hash function, while the work oracle can be implemented by a slower hash function or multiple
sequential iterations). In the analysis, we track the number of calls separately, using T to denote the number of calls
to H™°™® and T* the number of calls to the Merkle oracles.

The formal PoST protocol description appears as Protocol To construct it, we use a (W', m, f)-IPoW. (We
construct two oracle-based IPoW schemes in Section[d})

The soundness of our Simple PoST protocol is summarized in the following theorem. (For our construction we
allow A, unbounded access to the work oracle, so don’t include a T'; parameter.)

Theorem 3.1 (PoST Soundness). Let k., be the min-entropy of the distribution from which PoST challenges are
sampled. The Simple PoST protocol, instantiated with an f’-sound IPoW, is f-sound for

S, s, T{,(T,T")) = minf
I%I}) {f’(s n-t,s+n- (kg +logT" +71),T)+T"- gk} + (T - 27k e ke
£€(0,
2—kH-(n—max{Ti*,T*})}

(Note that the second term in the outer min is relevant only when n > max {Ti‘, T*}.)

Corollary 3.2. When instantiated with the m-Partial-Hash IPoW, the Simple PoST is f-sound for
* VY . —(en-t-m—(T-m+s+n-(ky+log T*+7)) x k
fOu, 5T}, (T,77) = min {2 " +T7 6k

(T 27k 17 27k

3.1 Security Proof

Proof Proof of Theorem@ Let A = (A, A,) be an adversary that wins the (n, s, T, (T, T*))-PoST security game

with probability p. For every & < 1, we can use A to construct an [PoW adversary AW = (AW ATOW) ag
follows:
Let chy, ..., ch, be random challenges independently selected from a distribution with min-entropy kch

IPoW Adversary Initialization (A""):

1. Execute A, recording the n ids id,, . . ., id, and storing its output o~

OThis is just for convenience of notation, we can implement them all using a single oracle by assigning a unique prefix to the oracle queries (e.g.,
H; (x) = H (@llx).)
"These can be chosen by hardwiring a seed in the code of both ﬂ(llpow) and ﬂ(ZIP”W), and computing ch; using the Merkle oracle, which is not

counted against the query budget of ﬂ(zm’w).
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Protocol 1 StmpLE-PoST
Public Parameters: ky: hash output size, k: security parameter, 7: table size and IPoW (ch) is a (W', m, f)-IPoW.

Storing Phase: (Performed by the prover P)
Inputs: id € {0, 1}".

1. Generate an array G of size 7 as follows:
Foreach 0 < i < 7, set G[i] = IPoW (id||i) (where the [PoW is given access to HWo™ a5 jts underlying work
oracle).

2. Run the proof phase with fixed challenge 0.

3. Publish the string id and the initial proof.

Proof Phase: (Performed by the prover P)

Upon receiving a challenge ch from the verifier V:
1: Construct a Merkle tree whose leaves are labeled with the entries of G, and each internal node’s label is the
output of the random oracle H,;, on the concatenation of its children’s labels. Let com be the root label.
2: parse H.y, (com) as a set of k indices (iy,..., i) € {0,7 — 1),
3: Let rr; be the Merkle path from the table entry G[i;] to the root com // The first element of r; is the table
entry itself
4: Output com, 7y, ...,m. [/ This can be made more communication efficient by eliminating common labels

The honest prover does not need any calls to H®°™ | but needs up to 27 calls to the Merkle oracle (or temporary space
to store the Merkle tree).

Proof Phase: (Performed by the verifier V)

Generate a random challenge ch and send it to the prover. Wait to receive the list com,m; ..., m;
1: parse H.y, (com) as a set of k indices (iy, ..., ) € {0,7 — 1}k,
2: forall je{l,...,k}do
3; Verify that G[i;] (the first element of 7;) is a valid IPoW for the challenge id||i; (using the oracle H¥°™).
4: Verify that 7r; is a valid Merkle path from the leaf i; to the root com (using the oracle H., ).
5: end for

11



2. Execute A,, with input idy, ..., id,, o and challenges chi,...,ch,. While executing, keep track of all calls to
Hcy, . Denote comy,. .., com, the first elements of each A, proof (which, for an honest prover, would each
correspond to the root of a merkle tree).

3. Foralli € [n]:

(a) Denote Q; the set of queries to Hey, .

(b) For every g € Q;, attempt to reconstruct a merkle tree with root Hy, (¢). Obviously, this may not be
possible for every query ¢, and even when possible may not result in a full tree. We will say a leaf (i, j)
exists for q if some subset of Q; comprises a valid Merkle path from the leaf j to the root H, (¢). (Note that
the reconstruction doesn’t make any additional calls to the Merkle oracle, it just uses the stored results.)

(c) For all g, and every existing leaf (7, j) for g, run the IPoW verifier with challenge id;||j to check if the leaf
is a valid IPoW proof. In this case, we say the leaf (i, j) is valid for q.

(d) We say a query q is e-good if there exist € - T different leaves that are valid for q.

(e) If there does not exist an e-good query in Q;, output L and abort. Otherwise, denote g; the index of the
first e-good query in Q;, and let v; be a bit-vector indicating the valid leaves (v; ; = 1 iff (i, j) is a valid leaf
for gg,).

4. Output (o, idy, ... idy, 81+ s 8ns Ve -+ »Vn)-

Note that the output length for ﬂ(llp"w) iss+n-ky+n-logT*+n-7v=s+n-(ky+logT* + 1) bits (since for all i,
|Q;] < T*, and assuming, w.l.0.g, that the id size is ky—we can always use a hash of the id if its larger).

IPoW Adversary Prover (ﬂ;’pow)):
1. Run Steps|2|and 3| from the execution of ﬂ(llP"W).

2. For each i € [n], reconstruct the Merkle tree rooted at Hy, (¢,,) and for every valid leaf (i, j), as indicated by v;,
output id;||j as an IPoW challenge and leaf (i, j) as the corresponding proof.

Note that ﬂ(ZIPOW) makes at most 7" calls to the work oracle and 7™ calls to the Merkle oracle, since it executes A,
exactly once.

When ﬂ;’P”W) succeeds, we’re guaranteed that for each of the n challenges it can extract an e-fraction of valid
leaves, hence it outputs at least € - n - T valid IPoW proofs.

The storage space it requires is at most s+n-(ky+log T*+7) bits. Thus, AYP°Y) is an (e-n-1, s+n-(ky+log T*+1), T)-
[PoW adversary.

IPoW Adversary Success Probability: To bound the probability of success, we first rule out two “catastrophic”
events:

e A, makes a query to Hcy, . Since A makes at most 77 queries in total to the Merkle oracles, and ch; is chosen
from a distribution with min-entropy k., the probability of this occurring for challenge ch; is at most 77 - 2 ke,

e A, finds a collision in H.,, for some i. Since the Merkle oracle has output length ky, and A, makes at most 7~
queries to Hy, , by the Birthday Bound the probability of finding any collision is less than (7*)* - 27%#.

Now, consider instance i of the PoST proofs generated by A,. We claim that unless p < 27k com; must be the
result of a query A, makes to Hey, . To see this, recall that we assume A, did not query H,, on any input. Thus, if
A, did not receive com; as the result of an oracle query, the probability that it can generate a valid Merkle path that
terminates at com; is at most 27%#.

Since A, can make at most 7* Merkle queries, each execution of A, can have at most T* potential Merkle roots
for instance i.

Denote Bad; the event that there are no e-good queries in Q;. Denote Succe the event that A, is successful (for all

n instances). We claim that for all i, T, ..., T, such that Pr [Bad,- /\’}:1 |0/l = Tj*] > (), it holds that

Pr|Succ|Bad; /\ |Q;|=T; |< T} -&".

n
J=1
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To see this, consider an execution of A,. In order for A, to be successful, it must output a good PoST proof for
instance id;. This means it must output a Merkle root com; and the k merkle paths from valid leaves that are selected
by Hey, (com,).

For every new query g; made by A,, conditioned on Bad; the probability that H.y, (¢;) selects k valid leaves in any
Merkle tree in A,’s view is at most £F; this is because, conditioning on Bad;, no Merkle tree in A,’s view has more
than an e-fraction of valid leaves. Since g; has not been previously queried, H, (g;) is independent of the view up to
that point, hence the probability that k random indices are all valid is at most &*. Since there are exactly T 7 queries to
H, , the claim follows by the union bound.

Denote Bad = Bad, Vv - -- v Bad, the event that for some i there did not exist an e-good query. Since A is bounded
by T* queries to the Merkle oracles, it must hold that 7, |Q;| < T*. Thus,

Pr[Succ A Bad]

= Pr [Succ ABad A Z 0] < T*

i=1

=Pr [Succ A (Bad; vV --- Vv Bad,) A Z Qi <T*
i=1

- 3 |-
i=1

Suce A (Bad; V --- v Bad,) A Z 10l < T*
]

Pr

n
N1oil=1;
i=1

n

n
= Z Pr /\|Q,~| = T;|Pr|Succ A (Bad, V --- v Bad,) /\IQ,-I =T;
Y i=1 i=1
nTH<T*

i=1 7

By the union bound,

< Z PrV\ 10| = T;‘]Zﬂ]Pr Suce A Bad; /\ 0/ = T;
TT ..... T, i=1 i=1 j=1
noTH<T*

i=1 %=

By the definition of conditional probability,

n

- 3 m|fer-r
7T i=1
noTr<T*

i=1 1=

Bad; Pr|Succ

Bad; /\ 10, = T;fU

n
Z (Pr
i=1 J=1

n
Niej=1;
j=1

Since Pr [Bad;] < 1,

n

< > Pr{A|Qi|=T;‘

T:,..T; i=1
noTrLT*

i=1 %=

Succ

Zn: Pr
i=1

Bad; /\ 10//=T;
j=1
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By our bound on Pr [Succ|Bad;] above,

PR

= gk Z Pr[/n\|Q,-|=T
i=1

T

i=1

T*

<& Z Pr[/n\|Q,-|=T;

Therefore
Pr[-Bad] > Pr[Succ A -Bad] = Pr[Succ] — Pr[Succ A Bad] > p — T - &

Note that if the event Bad did not occur, and neither catastrophic event occurred, then 3{(1“3 W) does not abort and
?l(ZIP"W) is guaranteed to be successful.

Since AW isa (e-n-t,s+n-(ky +log T* +7), T)-IPoW adversary that succeeds with probability p —7* - &, by
the f”-soundness of the IPoW it follows that p < f'(e-n-7,s+n-(ky+log T* +7), T)+ T* - &+ (T*)? - 27k + T . 27Fa,

Finally, note that if n > max {Tf, T*}, then there are at least n — max {T{‘, T*} challenges which the adversary did

not query at all; in this case its success probability is bounded by ki (n=max{T}.T"})
O

4 Hash-Preimage IPoW

One of the most popular proofs of work is the hash-preimage PoW: given a challenge ch € {0, l}],‘{, interpret the random
oracle’s output as a binary fraction in [0, 1] and find x € {0, 1}’;1 S.t.

H™™®(ch||x) < p 4.1)

p is a parameter that sets the difficulty of the proof. For any adversary, the expected number of oracle calls to
generate a proof-of-work of this form is at least 1/p.

At first glance, this might seem to be an incompressible PoW already—after all, the random oracle entries are
uniformly distributed and independent, so compressing the output of a random oracle is information-theoretically
impossible. Unfortunately, this intuition is misleading. The reason is that we need the proof to be incompressible even
with access to the random oracle. However, given access to the oracle, it’s enough to compress the input to the oracle.
Indeed, the hash-preimage PoW is vulnerable to a very simple compression attack: Increment a counter x until the
first valid solution is found, but don’t store the zero prefix of the counter. Since the expected number of oracle calls
until finding a valid x is only 1/p, on average that means only log % bits need to be stored (rather than the full length
of an oracle entry).

We show that this is actually an optimal compression scheme. Therefore, to make this an incompressible PoW,
we instruct the honest user to use this strategy, and store exactly the [log zlv-‘ least significant bits of the counter. We
note that % is the expected number of attempts—in the worst case the prover may require more; thus, we allow the
prover to search up to £ entries; the verifier will check k possible prefixes for the log L bits sent by the prover (with
overwhelming probability, there will be a valid solution in this range). Thus, the verifier may have to make k oracle

queries in the worst case in order to check a proof (however, in expectation it will be only slightly more than one)E]
Formally,

8We note that this computation can be performed by the prover instead, but it will simplify our analysis to assume the verifier performs the
checks.
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Definition 4.1 (w’-Hash-Preimage IPoW). The honest prover and verifier are defined as follows: Set p = 1/w’.

0.1 5 in lexicographic order, returning as the proof x
0.1y B

the least significant log % bits of the first x for which H®*™(y||x) < p.

Prover Given a challenge y, calls H™°™ on the inputs {y||x}

Verifier Given challenge y and proof 7, verifies that || < log % and that there exists a prefix z of length log k such that
HY®(y)||zlm) < p (where  is zero-padded to the maximum length).

The security of the Hash-Preimage IPoW is summarized in the following theorem:
Theorem 4.2. The w’-hash-preimage protocol is a (W', 1ogw’, f)-IPoW for f(n, s, T) = 2~(logw'=s=nQ+log[T/n))

(The proof appears in Section[6.1])

5 Partial Hash IPoW

Our choice of parameters for the IPoW is constrained by several real-world variables:
e The maximal time period between proofs that we would like to support

e The amount of storage we would like to fill

The cost of storage per time period

The cost of a hash invocation

e The maximum cost we can tolerate for PoST initialization.

For the Hash Preimage IPoW, given a maximum initialization cost and the cost of a hash invocation, we can upper
bound the amount of storage we can fill: each hash invocation can “contribute” at most a single bit to the total storage
(this is because the amount of space needed to store a single Hash-Preimage IPoW is logarithmic in the expected
number of hash invocations needed to generate the proof; hence the largest space is taken when each proof requires on
average only a single invocation).

If we would like to fill more space without increasing our initialization cost, we need to use a different IPoW.

The Partial Hash IPoW is a simple solution that can fill up to k bits per hash invocation (but at least one bit per
invocation). In this case, the amount of work per IPoW is always a single hash invocation, as is the verification cost.
We parameterize with the amount of space required to store an [PoW.

Formally,

Definition 5.1 (m-Partial-Hash IPoW). The honest prover and verifier are defined as follows (where m is the space
required to store an IPoW for the honest user):

Prover Given a challenge y, calls H"°™)(y) and returns as the proof the m least-significant bits of H™°™(y).

Verifier Given challenge y and proof 7, verifies that 7 consists of the m least-significant bits of H™°™(y).
The security of the Partial-Hash [PoW is summarized in the following theorem:

Theorem 5.2. The m-partial-hash IPoW protocol is a (1,m, f(n, s, T) = 2~ m=Tm+9)_1poW,

(The proof appears in Section[6.2])
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6 IPoW Security Analysis

In the proofs of security for both of our IPoW schemes, we use the following simple claim bounding the probability
to compress a random string.

Let (Compress, Decompress) be an arbitrary pair of probabilistic algorithms (possibly computationally unbounded),
such that Compress : {0, 1}* {{0, 1y bot} and Decompress : {0, 1} {0, 1}¥, and for all (x,y) € {0, 1}¥ x
{0, 1}¥™ if y € F(Compress(x)) then Decompress(y) = x. (That is, if Compress “succeeds” then decompression is
perfect).

Claim 6.1. Let Uy be a uniformly selected from {0, 1}%. Then Pr [Compress(U;) # L] <27™.

Proof. Denote Y = 3(Compress)\{L}. Then |Y| < 2k=m_Note that since decompression is perfect, for any y € Y there
can be only a single pre-image (if we have x; # x; such that Compress(x;) = y = Compress(x,), then for at least one
of them Decompress(y) will fail with non-zero probability). Let X = {x|Compress(x) € Y}. Then |X| < 2%~ By the
definitions of p and X, p = Pr [Compress(U;) # 1] = Pr[U, € X], but since |X| < 257 and Uy is uniform, we have
p<2™ O

6.1 Proof of Theorem

Proof. The honest prover uses w’ expected queries, by the setting of p = 1/w’ and stores log% = logw’ bits. Given
an (n, s, T)-adversary A = (A, A,) that succeeds with probability p, we can construct a compression algorithm as
described in Protocols 2 and

Protocol 2 Hash-IPoW Decompression algorithm

1: function DECOMPRESS(Z)
2: Parse Z as (0, A, Ay Axen, H(qu), - .. H(gr ), Hlx\o. Hl-xug)

3: Reconstruct X = {i|lg; € X’} from Ay, .. SAxr Xi =X = 1'A;. (note: we know when we’ve reached Ajyj+1
when the sum is exactly T - n)
4: Execute A, with o~ as input

e For the i query made by A, (0):

- If i € X then reconstruct H(g;) by reading the k — m next bits and treating them as a k-bit value with m
zero MSBs
- If i ¢ X then reconstruct H(g;) by reading the k next bits
The execution will give Q and X as output.
5: Reconstruct H, X \ Q by reading the next (n — [X’|)(k — m) bits and treating them as (n — |X’[) values
Reconstruct H|-xug) by reading the next Q= +T -n—|X'|)k bits.
7: end function

a

This algorithm can, with probability p, compress a string of length 2¢ - k into a string of length 2k — (nlogw’ —
s —n(2 + log [T /n])) (the analysis of the encoding length appears in the algorithm description). Thus, by Claim [6.1]
we must have p < 2-(logw/=s—n@+log[T/n]) o

6.2 Proof of Theorem[5.2]

Proof. The space requirements for the honest prover follow by inspection, as does the perfect completeness.

To prove soundness, assume that there exists an (n, s, T')-adversary that succeeds in convincing a verifier with
probability p. We construct a compression algorithm for random strings based on this adversary.

The compression protocol appears in Protocol When successful, it encodes a string of length 2 - k (parsed as
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Protocol 3 Hash-IPoW Compression algorithm

1:
2
3:
4
5

17:

function Compress(H) // Treat H € {0, 1}2["‘ as the truth table of a function: H : {0, 1}’ — {0, 1}"
Run A, to get o. // Assume w.l.o.g that |o| = s
Run A, with o~ and H as input.
Let X = (chil|xi, ..., chyllx,) be the outputs of A,, sorted lexicographically.
Let QO = (q1,...,qr) be the set of oracle queries made by A,, sorted lexicographically. (We can assume
wl.o.g. that |Q| =T.)
if Vi, the logw’ MSBs of H(chl|x;) are all Os then // the output of A, verifies; occurs w.p. p
Let X' =XNQ=(x],..., xl'x,l), the subset of outputs that were also queried.
forall je{1,...,|X'|} do
Denote idx(j) the index of x} in Q (i.e., giax(j) = x;.).
Let A; = idx(j) — idx(j — 1) // we define idx(0) = 1
end for

Let Ay =T — z'}?‘z’}*l A; //z'j‘:’} Aj=T

return (0, Ay, ..., Ax|, Ay, H(qh), ..., H(gqr), Hlx\0, Hl-xug))

e We will represent A; in the following way:

- l%J represented in unary (between 0 and [7'/n] one bits)

— a zero bit.
— Ajmod ([T /n]) represented in binary (log [T /n] bits)

Since Zj Aj < T, the total number of bits in the unary representations is at most n. Thus, in total we
use at most n + |X’|(1 + log [T /n]) bits.

o We represent H(g;) as follows:

- If g; € X', we store the k — logw’ LSBs of H(g;)
— Otherwise, we store the full k bits.

In total, this uses |X’|(k — logw’) + (|0] — |X’|)k bits.

e We represent H|x\o by storing the k — logw’ LSBs of each entry. The entries are stored consecutively
without padding. This uses (n — |X’|)(k — log w’) bits.

o We will represent H|(xug) by storing the full entries. The entries are stored consecutively without
padding. This uses 2¢ = n - 10| + | X’k bits.

All together, since |X’| < n, the length of the encoding is at most

Z=s+n+|X'|(1 +1og[T/n)) + |X'|(k — logw’)+
(101 = 1X'Dk + (n = X"k — log w') + 2° = n = Q| + X'k
<2k — (nlogw’ — s —n(2 +1og[T/n))) .
else
return L

end if
end function
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the truth function of a random oracle) to a string of length:

Y=s+T ky+|X\ Q- (ks —m) + (2 = T - 1X,\ Ql) kns
= s+ T ky+1X,\ Ql -k = X, \ Q- m +2%ky = T - kyy — X, \ Qlk
=20 ky+s—1X,\ Q- m
<2l ky+s-m-T)-m
=20 ky—(n-m—=(T -m+ys))

(The analysis for the encoding length appears in the algorithm description.) The decoding is perfect (this can be
verified by inspection). Thus, by Claim|6.1] this implies that p < 271n=(s+Tm),

Protocol 4 Partial Hash Compression algorithm

1: function Compress(H) // Treat H € {0, 1}2("‘” as the truth table of a function: H : {0, 1}* — {0, 1}';,
2 Run A, to get o. // Assume w.l.o.g that |o| = s
3: Run A, with o and H as input.
4 Let Q = (q1,...,qr) be the set of oracle queries made by A,, in the order the queries were made (we can
assume w.l.o.g that |Q| = T, and that every query is unique).

Let X, = (chy,...,ch,) be the output indices of A, sorted lexicographically, and X, = (xi,...,x,) be the
corresponding proofs.

wn

6: if Vi, the m LSBs of H(ch;) equal x; then // the output of A, verifies; this happens w.p. p
7: return (o, H(q1), . .., H(gr), H|x,\0> H|-~(x,00))

e We represent H(g;) by storing the full kg-bit entries (this uses T - kg bits).

e We represent H|x, g by storing the k — m MSBs of each entry (the LSBs will be reconstructed by A,).
The entries are stored consecutively without padding. This uses |X, \ Q| - (kg — m) bits.

o We will represent H|xy¢) by storing the full ky-bit entries. The entries are stored consecutively without
padding. This uses (2 - T — |X, \ QDky bits.

8: else
9: return L.
10: end if

11: end function

12: function DECOMPRESS(Z)

13: Parse Z as (0-9 H(Ql), s H(QT), Hqu\Qa Hl—v(XqUQ))
14: Run A, with o as input.

15: When A, makes the i query to H, record ¢; and simulate the response H(g;) using the value from Z.

16: Let X, X, be the output indices and proofs given by A,.

17: // Since this execution of A, was given identical input to its execution in COMPRESs, its output will be identical.
18: We can fully reconstruct H by completing H|x,\o using the corresponding X, values, and inserting the values

of H| X,U0 into H Iﬁ(xqug) in the correct places (the indices of Q and X,)).
19: end function

7 Market-Based Mechanisms for Difficulty Adjustment

One of the very nice properties of PoW-based cryptocurrency schemes is that the tunable parameter of PoWs—their
difficulty—can be set dynamically using a market-based solution: by counting the number of published PoW solu-
tions, we can estimate the total computational power expended on producing PoWs, and thus update the difficulty
accordingly.

A PoST scheme has two main tunable parameters—the amount of space it requires (m), and the computational cost
of initialization, or difficulty parameter (w). The first parameter determines the cost of generating a good proof (since
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amortized over multiple proofs, the initialization cost becomes irrelevant). This parameter can be set dynamically in a
similar fashion to the PoW-based schemes, by counting the total amount of space invested over a specified time period.

The difficulty parameter, on the other hand, determines the rationality of storage: the higher the cost of storage, the
higher the difficulty parameter must be set in order to ensure that rational provers will prefer storage over recomputing
the PoST. Unfortunately, the price of storage (relative to computation cost) can’t readily be estimated simply by ob-
serving the PoST proofs (in particular, the proofs generated by recomputing the initialization are identical to “honest”
proofs).

However, by choosing an appropriate incentive scheme, it turns out that we can dynamically set the difficulty. The
main idea is to give a prover two identifiable options for generating proofs: the standard, storage-based PoST, and an
alternative that is computation-based. By giving a small “bonus” reward for solutions that use the computation-based
proofs, we incentivize users to identify themselves as “computational solvers” when the price of storage is high enough
to make computation a more attractive option. When we observe that the fraction of computational solvers changes,
we can adjust the difficulty parameter to compensate.

The challenge in instantiating such a scheme is that we must ensure that (1) the difficulty of the alternative proof
is equivalent to the difficulty of recomputing the PoST proof and (2) that the work expended in the alternative proof is
tied to a specific instance of the PoST proof phase (i.e., that it can’t be amortized across multiple instances).

To solve both of these problems, we use the PoST initialization itself as the basis for the alternative proof. However,
instead of allowing an arbitrary id string, we require the id for the proof to be a function of the original id and the
challenge from the PoST proof phase.

7.1 PoSTs With Computation Bonus

More formally, we define a PoST with Computational Bonus to be a PoST scheme with an additional “computational”
prover Pponys and corresponding verifier Vionys-

Definition 7.1 (PoST with Computational Bonus). P = (Pinit, Pexecs Poonus) s V = (Vinit> Vexecs Vbonus) 18 @ (W, m, &, f)-
PoST with a computational bonus if P’ = (Pipit, Pexec) and V' = (Vipit, Vexec) comprise an (w, m, g, f)-PoST and the
prover Pponus and verifier Vs comprise a w’-PoW such that w’ < w

7.1.1 Computational Solvers Will Self-Identify

To receive the computational bonus, we will require the prover to send the proof for Pponys. The expected cost to
compute this proof is w’, while the expected cost to recompute the PoST initialization is w > w’. Thus, the strategy
of using Pponys dominates the strategy of recomputing the PoST, meaning that rational computational solvers will
self-identify.

7.1.2 Rational Storage is Still Preferred

The adversary’s expected cost for using the computational proof is w’. Thus, the expected number of successful proofs
for a given budget C using the bonus proof method is C/w’. Denote 8 the bonus multiplier (i.e., a successful “standard”
proof gets reward 1, while a computational bonus proof gets reward £3).

Lemma 7.2. If a PoST is (y, €')-rationally stored and B < ';—':n then the PoST with a B computational bonus is (y, g')-
rationally stored.

Proof. Suppose the adversary uses a - C of its budget for the standard PoST proofs (using an optimal adversarial
strategy) and (1 — @) - C for computational bonus proofs.

For every choice of «, if the adversary allocates less than &’ - @ - C of the budget to storage, then the expected reward
for the adversary is bounded by

E[#G]<B-(1—a) -C/w + g {Z; fli,s,a-C - ys)}

using the (y, &’)-rational storage property:

<B-(1-a)-C/w +n-a C/(y m)
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By our assumption about 3

<Y —a)-Cw Hn-a- Clly - m)
Y-m

=n-(1-a)-C/(y m)+n-a-C/(y-m)=n-C/(y-m).

In particular, this holds for @ = 1, which gives the desired result. O

7.2 Constructing PoSTs with Computational Bonus (Sketch)

Given any (w,m, g, f)-PoST with a non-interactive initialization phase (e.g., as can be construction from a Sigma-
PoST), we can extend it to a PoST with computational bonus by defining the following computational prover and
verifier:

Let id be the id used in the PoST initialization phase. The computational prover/verifier are defined to be

Pbonus(idv Ch) = Pinit(id||Ch) and Vbonus(idv Ch) = Vinit(id”Ch)

The security of this construction (with w = w”)) follows immediately from the rational storage condition of PoST
soundness: this implies that PoST initialization is a proof of work. Moreover, since we use the same parameters as the
underlying PoST (just with a different id), the cost is identical to initializing the PoST.

7.3 Incremental Difficulty Adjustment

Although in our analysis we treat the initialization phase as a one-time operation (and hence can amortize away its
complexity), if we increase the difficulty, the data generated by a previous init phase will no longer be valid (since the
IPoWs in our PoST table will not satisfy the new difficulty level).

However, a nice property of the hash-based Simple-PoSTs is that we can incrementally increase the difficulty.
For the Hash-Preimage [PoW, if we increase difficulty from p to p’ < p, then on average p/p’ of the entries will
already satisfy the new difficulty level. Moreover, for those that do not, since we stored the last index we reached in
the search for a good solution, we can simply “continue” running the Hash-IPoW solver where it left off. Thus, the
total work we expend (including the first initialization phase) will be only 1/p’. For the Partial-Hash IPoW, increasing
the difficulty means reducing the number of bits stored per [PoW; this requires the prover to delete some data, and
generate additional IPoWs (increasing the number of table entries) in order to maintain the same amount of space.

8 Using PoSTs in Spacemint

Spacemint is a crypto-currency based on PoSs rather than PoWs [18]]. Spacemint was designed to be used with the
pebbling-based PoS constructions; our PoST construction is not a drop-in replacement. However, we believe some
simple modifications to Spacemint would allow it to be used with PoSTs as well (and thus provide an option for an
even more “restful” crypto-currency). Below, we briefly sketch the main problem encountered in using the unmodified
Spacemint with PoSTs, and how we overcome it. (We note that the Spacemint construction is fairly complex, and we
do not include an in-depth description here. For more details on Spacemint, we refer the reader to [18].)

Like Bitcoin, Spacemint is based on a blockchain, in which blocks are generated by “lottery”; the winner of the
lottery is allowed to add her block to the chain and claim the associated rewards. In Bitcoin, the winner is the first
miner to solve a hash-puzzle. Thus, the probability of winning depends on the ratio between the miner’s hashrate
and that of the entire network. In Spacemint, the winner of the lottery is the miner whose answer (i.e., proof) to a
PoS challenge has the best “quality”. To prevent all miners from flooding the network with their proofs, miners first
test their proof against a basic “quality threshold”, and only if it passes do they post the entire proof. Like the hash
difficulty, the quality threshold can be set so that the expected communication is constant, and does not depend on the
total number of miners.

Unfortunately, this solution runs into a problem when replacing their PoS construction with our PoST: Unlike the
pebbling-based PoS, our PoST construction allows many valid proofs for each challenge. Thus, rational users would
“grind”, wasting computational power on finding a good proof.
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8.1 The Alternative Lottery Mechanism

Our alternative lottery mechanism uses two new ideas:

Two-phase challenge We separate the lottery into two challenge phases: In the first challenge phase, an initial
challenge is revealed, and every miner must generate a PoST proof using that challenge. The miners then publish a
commitment to their proof (and must do so before the second phase). In the second challenge phase, a second challenge
is revealed, and miners use this second challenge to test the quality of their proof (e.g., by hashing the proof together
with the second challenge). As in the original Spacemint, the valid proof with the highest quality wins, and all miners
with a proof that passes the quality threshold will publish their entire proofs.

Since we allow each miner only a single commitment, and miners must commit before learning the second chal-
lenge, griding is useless—there is no way to determine the quality of a proof when generating it.

Note that the challenges themselves can be generated in the same manner as Spacemint. Here we benefit from the
fact that the challenge in Spacemint is produced ahead of the actual block generation time; this allows us to run the
two-phase protocol without delaying block generation.

Initial quality filter The two-phase challenge, by itself, still requires all miners to send a commitment, making the
total communication at least linear in the number of miners. To reduce the communication, we propose a further
modification: a pre-filter that does not use the PoST at all—just the commitment to the stored data. The idea is that
the first challenge will be used to select a subset of entries in the stored data table. Only if the hash of these entries
is greater than an initial “quality” filter will the miner be eligible to generate a proof and participate in the full lottery
(the miners will prove they are eligible by sending the relevant entries together with a Merkle path opening).

This reduces communication, and also greatly increases the time between PoST proofs (since miners who don’t
pass the initial filter will not have to run the PoST proof phase); here we make strong use of the fact that it is rational
to store the PoST data for long periods rather than rerun the initialization phase.

9 Discussion and Open Questions

Improving Proving Complexity Compared to PoS, our prover complexity (at least asymptotically) is much worse:
the PoST prover has read the entire table in order to generate a proof. It might be possible to combine the PoS pebbling-
based protocols with our [PoW construction to get both fast proving time and finely-tunable difficulty—by having each
pebble be an IPoW (whose challenge is given by the hash of its predecessor pebbles)ﬂ Proving the security of this
construction appears to be non-trivial, however.

Best-of-Both-Worlds? All the existing PoS constructions that don’t require the prover to read its entire data don’t
support incremental difficulty adjustment. An interesting open question is whether it is possible to get a “best of both
worlds” construction, combining low prover complexity with incremental difficulty adjustment.

Constructing additional IPoW constructions using different techniques is also an interesting open question.
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