
On the Leakage-Resilient Key Exchange

Janaka Alawatugoda

Department of Computer Engineering

University of Peradeniya, Peradeniya 20400

Sri Lanka

janaka.alawatugoda@qut.edu.au

Abstract

Typically, secure channels are constructed from an authenticated key exchange (AKE) protocol,
which authenticates the communicating parties based on long-term public keys and establishes secret
session keys. In this paper we address the partial leakage of long-term secret keys of key exchange
protocol participants due to various side-channel attacks. Security models for two-party authenticated
key exchange protocols have developed over time to provide security even when the adversary learns
certain secret values. This paper combines and extends the advances of security modelling for AKE
protocols addressing more granular partial leakage of long-term secrets of protocol participants.

Keywords: Public Key Cryptography, Key Exchange Protocols, Leakage-Resilient Cryptography

This technical report is based on the PhD thesis of Alawatugoda [8], which combines and extends some of the previous
papers on leakage-resilient key exchange [43, 4, 6, 7].

1

mailto:janaka.alawatugoda@qut.edu.au

Contents

1 Introduction 4
1.1 Side-Channel Attacks and Countermeasures . 4

1.1.1 Local versus Remote Side-Channel Attacks. 5
1.1.2 Countermeasures for Side-Channel Attacks. 5

1.2 Leakage-Resilient Cryptography . 6

2 Prelimineries 7
2.1 Computational Assumptions . 7

2.1.1 Computational Diffie-Hellman (CDH) Assumption 7
2.1.2 Decisional Diffie-Hellman (DDH) Assumption . 7
2.1.3 Gap Diffie-Hellman (GDH) Assumption . 7
2.1.4 Oracle Diffie-Hellman (ODH) Assumption [1] . 8

2.2 Cryptographic Tools . 8
2.2.1 Key Derivation Functions . 8
2.2.2 Pseudo Random Functions . 8

2.3 Leakage-Resilient Primitives . 9
2.3.1 Leakage-Resilient Storage . 9
2.3.2 Adaptively Chosen Ciphertext After-the-fact Leakage Secure (CCLA2) Public-Key

Cryptosystems . 10
2.3.3 After-the-fact Leakage-resilient Semantically Secure (CPLA2) Public-Key Cryp-

tosystems . 10
2.3.4 Unforgeability Against Chosen Message Leakage Secure UFCMLA Signature Schemes 11

3 Key Exchange Security Models 11
3.1 Extended Canetti-Krawczyk Model (eCK) [36] . 13
3.2 eCK-Secure Key Exchange Protocols . 15
3.3 eCK-type Leakage Security Models for Key Exchange: Moriyama-Okamoto Model 16

3.3.1 Moriyama-Okamoto Freshness . 17

4 Continuous After-the-fact Leakage in Restricted-eCK Model 18
4.1 Continuous After-the-fact Leakage (CAFL) Model [4] . 18

4.1.1 Modelling Leakage . 18
4.1.2 Adversarial Powers . 18
4.1.3 Defining Security . 19
4.1.4 Practical Interpretation of Security of CAFL Model 21

4.2 Constructing CAFL-secure Key Exchange Protocols . 22
4.2.1 Protocol Construction . 22
4.2.2 Security of the Protocol π1 in the CAFL Model . 23
4.2.3 Leakage Tolerance of the CAFL-secure Protocol π1 23

5 Bounded/Continuous After-the-fact Leakage eCK Model 23
5.1 After-the-fact Leakage-eCK ((·)AFL-eCK) Model [6] . 24

5.1.1 Modelling Leakage . 24
5.1.2 Adversarial Powers . 24
5.1.3 Bounded After-the-fact Leakage-eCK (BAFL-eCK) Model 25
5.1.4 Continuous After-the-fact Leakage-eCK (CAFL-eCK) Model 25
5.1.5 Defining Security . 26
5.1.6 Practical Interpretation of Security of AFL-eCK Model 26

5.2 Generic Construction of (·)AFL-eCK-secure Key Exchange Protocol 27
5.2.1 Weakening the (·)AFL-eCK Model . 28
5.2.2 Protocol Construction . 29
5.2.3 Security of the Protocol π in the w(·)AFL-eCK Model 29
5.2.4 Leakage Tolerance of the w(·)AFL-eCK-secure Protocol π: wBAFL-eCK-Secure

Instantiation . 30
5.3 Concrete CAFL-eCK-secure Key Exchange Protocol [7] 30

5.3.1 Leakage-Resilient Construction of Protocol P2 . 31
5.3.2 Protocol Construction . 31

2

5.3.3 Security of the Protocol P2 in the CAFL-eCK Model 32
5.3.4 Leakage Tolerance of the Protocol P2 . 32

6 Comparison of Key Exchange Security Models and Protocols 33
6.1 Comparison of Security Models . 33
6.2 Comparison of Key Exchange Protocols . 33

A Proof of the Theorem 4.1 36

B Proof of the Theorem 5.1 43

3

1 Introduction

As the Internet developed, more and more individuals and organizations connect their computers and
private networks to the Internet. Since the Internet is a publicly available resource, the security of
the information exchanged via the Internet is not guaranteed. Therefore, ensuring the security of the
information becomes an important task. For many years, confidentiality, integrity and availability (known
as the CIA triad) are known as the core principles of the information security [39].

Cryptography is engaged with communication systems to enforce the security of the information by
establishing a secure channel for communication. A secure channel assures that no third party can see
or modify the actual messages that are being transferred. Particularly, in the real world scenario the
TLS/SSL protocol suite is used for this purpose. First, the TLS/SSL handshake protocol (key exchange
protocol) exchanges a secret session key. Thereafter the TLS/SSL record protocol uses that secret session
key to encrypt the messages. During the handshake protocol, both parties agree on an algorithm to
encrypt data in the TLS/SSL record layer.

With the development of side-channel attacks, a necessity arises to develop cryptosystems in a leakage-
resilient manner. Being one of the important cryptographic primitives, key exchange protocols were
considered to be constructed in a leakage-resilient manner. Even though most of the current key exchange
security models like Bellare-Rogaway (BR) model [9], Canetti-Krawczyk (CK) model [15], extended
Canetti-Krawczyk (eCK) model [36] address different adversarial capabilities, they do not address the
partial leakage of long-term secret parameters due to the side-channel attacks. Those do not suffice for
analyzing the security of existing key exchange protocols in a leaky environment. In order to address
leakage resilience of key exchange protocols, it is necessary to construct key exchange security models
which allow the adversary to obtain partial leakage of secret parameters of protocol participants. The
ultimate goal is to come up with a security model which addresses strong leakage features, with no
additional restrictions than existing strong security models such as eCK. Then construct leakage-resilient
key exchange protocols, which are proven secure in the new security model. This way it is possible to
construct strong key exchange protocols, which are resilient to side-channel attacks.

This paper combines and extends results from few of the previous papers on leakage-resilient key
exchange [43, 4, 6, 7], and fix some flaws in security proofs. We will discuss in detail about,

• Side-channel attacks and countermeasures.

• Various leakage models which could possibly be incorporated with security models/games to address
side-channel attacks.

• Practical interpretation of various leakage security models for key exchange.

• Leakage-resilient protocol constructions and fix some flows in their security proofs.

• Compare and contrast previous security models and key exchange protocols.

1.1 Side-Channel Attacks and Countermeasures

The revolutionary idea of side-channel attacks was first introduced by Kocher [33] by presenting timing
attacks on Diffie-Hellman, RSA, DSS and other implementations. Although the cryptographic schemes
are designed in such a way that they are hard to break computationally, leaking information from
the implemented system may give sufficient power to the adversary to break the system by recovering
the secret parameters such as secret keys. There are various kinds of side channels available such
as timing information, electromagnetic radiation, acoustic signals, visual or light signals and leaking
information about power consumption. Since it is very difficult to fully stop the information leakage
from cryptosystems, side-channel attacks become a huge threat for the security of cryptosystems [26].
Moreover, it is very useful to study different types of side-channel attacks in the literature, to understand
how they extract information and proceed to extract the secrets from the targeted cryptosystem. In the
following, we concentrate on timing attacks, power analysis attacks and electromagnetic emission based
attacks, to understand the nature of side channel attacks.

Timing Attacks. Timing attacks enable the attacker to reveal secrets from the cryptosystem by
measuring the amount of time taken for different computations. Cryptosystems take different amount
of time for different operations. If the attacker can get the different timing information from the
targeted cryptosystem, the attacker may be able to determine what is happening inside the system.

4

As mentioned before, Kocher [33] stated that by measuring the amount of time required for secret key
operations, attackers might be able to find fixed Diffe-Hellman exponents, factor RSA keys and break
other cryptosystems. He also stated that these kinds of attacks are computationally inexpensive and
often need only a known ciphertext. Actual systems are potentially at risk whenever attackers can get
accurate timing measurements, especially when the amount of time required to perform an operation
is variable and dependent on a secret key or protected value. Bernstein demonstrated an attack on the
implementation of Advanced Encryption Standard (AES) algorithm and showed that the standard AES
algorithm is vulnerable for cache-timing attacks [12]. Even though the brute-force search takes thousands
of years to attack AES, Bernstein’s attack could be completed within days as long as the adversary has
the power to study the cache-timing information from the targeted system.

Power Analysis Attacks. Power analysis attacks are initiated by measuring the power consumption
of a cryptographic device which is used to implement the cryptosystem. Messerges et al. [40] applied this
idea to attack an actual smart card, which uses Data Encryption Standard (DES). They examined the
noise characteristics of the power signals and developed an approach to model the signal-to-noise ratio.
They showed that the signal-to-noise ratio can be significantly improved using a multiple-bit attack. It
is not difficult to attach a device which can measure the power consumption of an ATM machine and
sending that information to the adversary. By analyzing the information an adversary can reveal the
secret keys of smart cards used on the ATM.

Electromagnetic (EM)-Emission-based Attacks. EM-emission-based attacks are another possible
type of side-channel attack. Electric circuits generate EM radiation as they operate. Attackers can use
these radiation emission and analyze them to extract the secrets of the cryptosystem. Hutter et al. [27]
discussed the effectiveness of EM emission based attacks on electronic passports and contact-less payment
systems which use passive 13.56 MHz radio frequency identification devices. They stated that these
devices can be successfully attacked with less than 1000 EM traces. Unlike power analysis attacks, EM
emission based attacks can be performed remotely. Receivers can be used to catch emission radiation and
more powerful receivers can get information from distant systems.

Cold Boot Attacks. A cold boot attack is a type of side-channel attack in which an attacker physically
accesses a system and retrieves secret keys from a running operating system after a cold reboot (boot
process in which the system starts from a powerless state) to restart the system. This attack relies on the
data remanence property of DRAM and SRAM to retrieve memory contents that remain readable in the
seconds to minutes after power has been removed.

1.1.1 Local versus Remote Side-Channel Attacks.

Side-channel attacks can be mounted locally (local attacks) or remotely (remote attacks) from the targeted
system. Local attacks need some kind of physical access to the target system or proximity. For instance,
side-channel attacks such as power analysis attacks, EM-emission based attacks, cold boot attacks need
physical access to the targeted system or proximity to capture the leakage. Alternatively, remote attacks
can be mounted from a long distance. For instance, the side-channel attacks such as timing attacks can
be mounted from remotely, as the adversary can measure response time or ciphertext lengths from a
distance system.

1.1.2 Countermeasures for Side-Channel Attacks.

Considering the countermeasures of side-channel attacks, mainly there are two approaches. One is a
hardware based approach where the focus is to design hardware that minimizes the leakage of secret
information. Bernstein has proposed ideas to design CPUs which provides protection against timing
attacks on cache memory, as well as many ideas to mask leaking timing information by software based
AES implementations [12]. Besides this there are other software based countermeasures which are mostly
focusing on masking the leaking information. Alawatugoda et al. [5] have presented three methods for
masking leaking timing information: injecting some randomness to the leaking cache-timing information,
dedicating cache portions to fetch data from different memory portions and pre-fetching from the memory
before the algorithm accesses the required memory portions and hence inject random timing information
and change the cache access pattern respectively. Obviously, those types of countermeasures protect

5

systems only against some specific attacks that are known at the moment. Those countermeasures are
known as ad-hoc solutions.

Above we discussed a few known side-channel attacks and possible countermeasures against them.
There may be many unknown side-channel attacks as well. Therefore, it is important to defend against
both known and unknown side-channel attacks.

1.2 Leakage-Resilient Cryptography

As discussed above side-channels leak some amount of information about the secret parameters to the
adversary. The basic idea of leakage-resilient cryptography is, even though some leaking information is
visible to the adversary, the security of the cryptographic scheme remains. Trying to stop the leakage is
nearly impossible because electronic devices have their physical limitations.

Even though a cryptographic scheme may be proven secure in a strong security model which does not
address leakage attacks, it is not possible to say anything about the security of the cryptographic scheme
in an environment where the adversary is capable of obtaining leakage information. In order to analyze
the leakage resiliency of cryptographic schemes we need to construct security models where the adversary
is given capability of obtaining leakage information.

Different leakage models have been introduced to capture side-channel attacks. They provide leakage
based information to the adversary under different constraints. In order to achieve leakage resilience in
a particular leakage model, the scheme should be proven secure even when the adversary is capable of
accessing leakage information in that particular leakage model.

Continuous Leakage Model. In the pioneering work of Micali and Reyzin [41], a general framework
was introduced to model the leakage that occurs when computation takes place on secret parameters.
This framework relies on the assumption that “only computation leaks information”. Further, Micali and
Reyzin mentioned that leakage only occurs from the secret memory portions which are actively involved
in computations, and the amount of leakage per occurrence is less than the size of the corresponding
secret memory portion, hence bounded by a leakage parameter λ. The adversary is allowed to obtain
leakage from an arbitrarily large number of computations, hence the overall leakage amount is unbounded
and it can be larger than the size of the secret key. This leakage model addresses side-channel attacks
such as timing attacks, power analysis attacks and EM emission based attacks, which obtain leakage of
secret values whenever computations take place on them.

This model is suitable to analyze stateful leakage-resilient cryptographic schemes [23, 45], where at
the end of each ith execution round a new secret key state ski+1 is computed using the current secret key
state ski. ski+1 is going to be used as the secret parameter of the next execution round i+ 1. Before the
ith round an attacker chooses (adaptively) a leakage function fi and after the execution of the round, it
receives fi(ski), under the constrain that |fi(ski)| ≤ λ.

Bounded Leakage Model. Inspired by “cold boot” attacks Akavia, Goldwasser and Vaikuntanathan
constructed a general framework to model memory attacks [3]. The adversary can adaptively choose
an efficiently computable arbitrary leakage function, fi and send it to the leakage oracle. The leakage
oracle gives fi(sk) to the adversary where sk is the secret key. The only restriction comes here is that
Σ|fi(sk)| ≤ λ, where λ is the leakage parameter, which is smaller than the size of sk.

This model is suitable to analyze stateless leakage-resilient cryptographic schemes which are not using
new secret states for each round.

After-the-fact Leakage. Leakage which happens after the challenge is given to the adversary is
considered as after-the-fact leakage. In security experiments for public-key cryptosystems, the challenge
to the adversary is, given a ciphertext, distinguish the corresponding plaintext. In key exchange security
models, the challenge to the adversary is to identify the real session key of a chosen session from a random
session key [9, 15, 36]. In leakage models for public-key cryptosystems, after-the-fact leakage is the leakage
which happens after the challenge ciphertext is given whereas in leakage-resilient key exchange security
models, after-the-fact leakage is the leakage which happens after the session key is established.

Earlier leakage models only consider the leakage which happens before the challenge is given (before-
the-fact leakage). Hence the adversary is not allowed to obtain leakage after the challenge is given. Recent
leakage models facilitate more granular leakage by allowing the adversary to issue leakage functions,
and obtain leakage even after the challenge is given, either under the bounded or continuous leakage
assumptions as explained above.

6

For leakage-resilient public-key encryption there are three properties which may be important dif-
ferentiators for the different models. One is whether the model allows access to decryption of chosen
ciphertexts before (CCA1) and after (CCA2) the challenge is known. The second is whether the leakage
allowed to the adversary is continuous or bounded. The third is whether the leakage is allowed only before
the challenge ciphertext is known or also after the fact.

In earlier models, such as that of Naor and Segev [44], it was expected that although the adversary is
given access to the decryption oracle (CCA2), the adversary cannot be allowed to obtain leakage after
the challenge ciphertext is given. This is because the adversary can encode the decryption algorithm
and challenge ciphertext with the leakage function and by revealing a few bits of the decrypted value
of the challenge ciphertext trivially win the challenge. Subsequently, Halevi and Lin [25] introduced
after-the-fact leakage-resilient semantic security (CPLA2) on public-key cryptosystems, in the bounded
leakage model. In their security experiment, the adversary is not allowed to access the decryption oracle.
Dziembowski and Faust [22] defined an adaptively-chosen ciphertext after-the-fact leakage (CCLA2) in
which the adversary is allowed to access the decryption oracle adaptively and obtain leakage information
even after the challenge ciphertext is given. Furthermore, they allow continuous leakage, so the total
leakage amount is unbounded.

2 Prelimineries

Here we describe several background concepts that help to understand the paper.

2.1 Computational Assumptions

2.1.1 Computational Diffie-Hellman (CDH) Assumption

Let k be the security parameter, G be a group generation algorithm and (G, q, g)← G(1k), where g is
the generator and q is the order of G. The CDH problem is to compute gab given a random instance
(g, ga, gb) for a, b ∈ Zq.

We say that computational Diffie-Hellman assumption holds in G if for all PPT algorithms A, the
probability of solving the CDH problem in G given as,

PrCDH
g,q (A) = Pr

(
A(G, g, q, ga, gb) = gab

)
is negligible for a given security parameter k.

2.1.2 Decisional Diffie-Hellman (DDH) Assumption

Let k be the security parameter, G be a group generation algorithm and (G, q, g)← G(1k), where g is the
generator and q is the order of G. Consider the following two distributions:

DHG = {(g, ga, gb, gab); a, b $←− Zq}

and
RG = {(g, ga, gb, gc); a, b, c $←− Zq} .

It is said that DDH assumption holds in G if for all PPT algorithms A, the advantage in distinguishing
the two distributions DH and R given as,

AdvDDH
g,q (A) =

∣∣∣Pr[A(DHG) = 1]− Pr[A(RG) = 1]
∣∣∣

is negligible for a given security parameter k.

2.1.3 Gap Diffie-Hellman (GDH) Assumption

Let k be the security parameter, G be a group generation algorithm and (G, q, g)← G(1k), where g is the
generator and q is the order of G. Given a random instance (g, ga, gb) for a, b ∈ Zq, the GDH problem is
to find gab given an oracle O that solves the Decisional Diffie-Hellman problem in G.

It is said that GDH assumption holds in G if for all PPT algorithms A, the probability of solving the
GDH problem is given as,

PrGDH
g,q (A) = Pr

(
A(G, g, q,O, ga, gb) = gab

)
is negligible for a given security parameter k.

7

2.1.4 Oracle Diffie-Hellman (ODH) Assumption [1]

Let k be the security parameter, G be a group generation algorithm and (G, q, g)← G(1k), where g is the
generator and q is the order of G, and H be arbitrary efficiently computable function. A PPT adversary
R is interacting with the Oracle Diffie-Hellman challenger, which is defined using the following game:

• u, v $←− Zq

• Z0 ← H(guv);Z1
$←− {0, 1}k

• b $←− {0, 1}

• b′ ← ROODH

(gu, gv, Zb)

• R wins if b′ = b

OODH Oracle

• If X = gu, return ⊥

• Else return H(Xv)

It is said that ODH assumption holds in G if for all PPT algorithms R, the the advantage of winning
the ODH challenge is negligible in k.

2.2 Cryptographic Tools

2.2.1 Key Derivation Functions

We review the definitions of key derivation functions by Krawczyk [35]. Secure and efficient key derivation
functions are available in the literature, for example based on HMAC [35].

Definition 2.1 (Key Derivation Function). Let k be the security parameter. A key derivation function
KDF is an efficient algorithm that accepts as input four arguments: a value σ sampled from a source of
keying material Σ, a length value ` and two additional arguments, a salt value r defined over a set of
possible salt values and a context variable c, both of which are optional i.e., can be set to a null. The
KDF output is a string of ` bits.

Definition 2.2 (Source of Key Material). A source of keying material Σ is a two-valued (σ, κ) probability
distribution generated by an efficient probabilistic algorithm, where σ is the secret source key material to
be input to the KDF and κ is some public knowledge about σ or its distribution.

Definition 2.3 (Security of key derivation function with respect to a source of key material). A key
derivation function KDF is said to be secure with respect to a source of key material Σ, if no feasible
attacker B can win the following distinguishing game with probability significantly better than 1/2. In
other words the advantage: AdvKDF(B) of winning the following game is negligible in k.

1. (σ, κ)
$←− Σ(1k). (Both the probability distribution as well as the generating algorithm have been

referred to Σ)

2. A salt value r is chosen at random from the set of possible salt values defined by KDF (r may be
set to a constant or a null value if so defined by KDF).

3. The attacker B is provided with κ and r.

4. B chooses arbitrary value ` and c.

5. A bit b
$←− {0, 1} is chosen at random. If b = 0, attacker B is provided with the output of

KDF(σ, r, `, c) else B is given a random string of ` bits.

6. B outputs a bit b′ ← {0, 1}. B wins if b′ = b.

2.2.2 Pseudo Random Functions

Following we review the security definition of pseudo random function according to Katz and Lindell [29].

Definition 2.4 (Pseudo Random Functions). Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length-
preserving, keyed function. F is a pseudo random function if for all PPT distinguishers J , there is a
negligible function negl such that:∣∣∣Pr[J F (key,·)(1k) = 1]− Pr[J frnd(·)(1k) = 1] ≤ negl(k)

∣∣∣,
8

where the first probability is taken over uniform choice of key ∈ {0, 1}k and the randomness of J , and
the second probability is taken over uniform choice of frnd and randomness of J , and J is not given a
key key.

2.3 Leakage-Resilient Primitives

2.3.1 Leakage-Resilient Storage

We review the definitions of leakage-resilient storage according to Dziembowski and Faust [22]. The
idea behind their construction is to split the storage of elements into two parts using a randomized
encoding function. As long as leakage is limited from each of its two parts, no adversary can learn useful
information about an encoded element. The key observation of Dziembowski and Faust is then to show
how such encodings can be refreshed in a leakage-resilient way so that the new parts can be re-used. To
construct a continuous leakage-resilient primitive the relevant secrets are split, used separately, and then
refreshed between any two usages.

Definition 2.5 (Dziembowski-Faust leakage-resilient storage scheme). For any m,n ∈ N, the storage
scheme Λn,mZ∗q

= (Encoden,mZ∗q
,Decoden,mZ∗q

) efficiently stores elements s ∈ (Z∗q)m where:

• Encoden,mZ∗q
(s) : sL

$←− (Z∗q)n\{(0n)}, then sR ← (Z∗q)n×m such that sL · sR = s and outputs (sL, sR).

• Decoden,mZ∗q
(sL, sR) : outputs sL · sR.

In the model we expect an adversary to see the results of a leakage function applied to sL and sR. This
may happen each time computation occurs.

Definition 2.6 (λ-limited adversary). If the amount of leakage obtained by the adversary from each
of sL and sR is limited to λ = (λ1, λ2) bits in total respectively, the adversary is known as a λ-limited
adversary.

Definition 2.7 ((λΛ, ε1)-secure leakage-resilient storage scheme). We say Λ = (Encode,Decode) is

(λΛ, ε1)-secure leakage-resilient, if for any s0, s1
$←−M and any λΛ-limited adversary C, the leakage from

Encode(s0) = (s0L, s0R) and Encode(s1) = (s1L, s1R) are statistically ε1-close. For an adversary-chosen
leakage function f = (f1, f2), and a secret s such that Encode(s) = (sL, sR), the leakage is denoted as(
f1(sL), f2(sR)

)
.

Lemma 2.1 ([22]). Suppose that m < n/20. Then Λn,mZ∗q
= (Encoden,mZ∗q

,Decoden,mZ∗q
) is (λ, negl(n))-secure

for some negligible function negl and λ = (0.3 · n log q, 0.3 · n log q).

The encoding function can be used to design different leakage resilient schemes with bounded leakage.
The next step is to define how to refresh the encoding so that a continuous leakage is also possible to
defend against.

Definition 2.8 (Refreshing of Leakage-Resilient Storage [22]). Let (L′, R′) ← Refreshn,mZ∗q
(L,R) be a

refreshing protocol that works as follows:

• Input : (L,R) such that L ∈ (Z∗q)n and R ∈ (Z∗q)n×m.

• Refreshing R :

1. A
$←− (Z∗q)n\{(0n)} and B ← non singular (Z∗q)n×m such that A ·B = (0m).

2. M ← full rank (Z∗q)n×n such that L ·M = A.

3. X ←M ·B and R′ ← R+X.

• Refreshing L :

1. Ã
$←− (Z∗q)n\{(0n)} and B̃ ← full rank (Z∗q)n×m such that Ã · B̃ = (0m).

2. M̃ ← non-singular (Z∗q)n×n such that M̃ ·R′ = B̃.

3. Y ← Ã · M̃ and L′ ← L+ Y .

• Output : (L′, R′)

9

Let Λ = (Encode,Decode) be a (λΛ, ε1)-secure leakage-resilient storage scheme and Refresh be a
refreshing protocol. We consider the following experiment Exp, which runs Refresh for ` rounds and lets
the adversary obtain leakage in each round. For refreshing protocol Refresh, a λRefresh-limited adversary

B, ` ∈ N and s
$←−M, we denote the following experiment by Exp(Refresh,Λ)(B, s, `):

1. For a secret s, the initial encoding is generated as (s0
L, s

0
R)← Encode(s).

2. For j = 1 to ` run B against the jth round of the refreshing protocol.

3. Return whatever B outputs.

We require that the adversary B outputs a single bit b ∈ {0, 1} upon performing the experiment Exp

using s
$←− {s0, s1} ∈ M. Now we define leakage-resilient security of a refreshing protocol.

Definition 2.9 ((`,λRefresh, ε2)-secure Leakage-Resilient Refreshing Protocol). For a (λΛ, ε1)-secure
leakage-resilient storage scheme Λ = (Encode,Decode) with message space M, Refresh is (`,λRefresh, ε2)-
secure leakage-resilient, if for every λRefresh-limited adversary B and any two secrets s0, s1 ∈ M, the
statistical distance between Exp(Refresh,Λ)(B, s0, `) and Exp(Refresh,Λ)(B, s1, `) is bounded by ε2.

Theorem 2.2 ([22]). Let m/3 ≤ n, n ≥ 16 and ` ∈ N. Let n,m and Z∗q be such that Λn,mZ∗q
is (λ, ε)-

secure leakage-resilient storage scheme (Definition 2.5 and Definition 2.7). Then the refreshing protocol
Refreshn,mZ∗q

(Definition 2.8) is a (`,λ/2, ε′)-secure leakage-resilient refreshing protocol for Λn,mZ∗q
(Definition

2.9) with ε′ = 2`p(3pmε+mp−n−1).

2.3.2 Adaptively Chosen Ciphertext After-the-fact Leakage Secure (CCLA2) Public-Key
Cryptosystems

Dziembowski and Faust [22] constructed an adaptively chosen ciphertext after-the-fact leakage-resilient
public-key cryptosystem, which is secure against continuous leakage.

Definition 2.10 (Security Against Adaptively Chosen Ciphertext After-the-fact Leakage Attacks
(CCLA2)). This is a modification of the IND-CCA2 security notion. Let k ∈ N be the security parameter,
λ be the leakage parameter and fi be arbitrary, efficiently computable adaptive leakage functions. Let
PKE = (KG,Enc,Dec) be a public-key encryption scheme, we define AdvCCLA2

PKE (D) as the advantage of
any PPT adversary D, winning the following game:

1. (sk, pk)
$←− KG(1k).

2. (m0,m1, state) ← DDec(sk,·,fi)(pk) such that
|m0| = |m1|

3. b
$←− {0, 1}

4. C ← Enc(pk,mb)

5. b′
$←− DDec 6=C(sk,·,fi)(C, state)

6. Output b′. D wins if b′ = b

Decryption Oracle

• Dec(sk, c, fi) → (sk′,m) where m is the cor-
responding plaintext of the ciphertext c and
sk′ is the update of the secret key sk.

• compute fi(sk) whenever |fi(sk)| ≤ λ

• Update the secret state sk to sk′

• returns (m, fi(sk)) to A

PKE is CCLA2-secure, if AdvCCLA2
PKE (D) is negligible in k.

2.3.3 After-the-fact Leakage-resilient Semantically Secure (CPLA2) Public-Key Cryptosys-
tems

Splitting the secret key into arbitrarily number of parts is known as the split-state model. The leakage is
allowed from the splits of the secret key independently. The secret key is split into an arbitrary number
ñ parts such that s = (s1, . . . , sñ). The tuple leakage function f = (f1j , . . . , fñj) is an adversary chosen
efficiently computable adaptive tuple leakage function, which consists of ñ arbitrary leakage functions,
and j indicates the jth leakage occurrence. Each leakage function fij leaks fij(si) from each si split of
the secret key individually.

Halevi and Lin [25] constructed a generic after-the-fact leakage-resilient semantically secure public-key
cryptosystem, which is secure against bounded leakage in the split-state model. It can be instantiated
with the DDH-based leakage-resilient public-key cryptosystem of Naor and Segev [44].

10

Definition 2.11 (After-the-fact Leakage-resilient Semantic Security (CPLA2)). This is a modification
of the IND-CPA security notion. Let k ∈ N be the security parameter and λ = (λpre,λpost) be a tuple of
two vectors, where λpre = (λpre1 , . . . , λpreñ) is the leakage bound vector before the challenge ciphertext
is issued, and λpost = (λpost1 , . . . , λpostñ) is the leakage bound vector after the challenge ciphertext is
issued. Let f be the leakage function as described above. Let PKE = (KG,Enc,Dec) be a public-key
cryptosystem, we define AdvCPLA2

PKE (D) as the advantage of any probabilistic polynomial time (PPT)
adversary D, winning the following game:

1. (s, p)
$←− KeyGen(1k).

2. (m0,m1) ← DLeak(f)(p) such that |m0| = |m1|, for i = 1, . . . , ñ, Leak(f) returns fij(si) if∑
j

|fij(si)| ≤ λprei .

3. b
$←− {0, 1}.

4. C
$←− Enc(pk,mb).

5. b′ ← DLeak(f)(p, C) for i = 1 to i = ñ, Leak(f) returns fij(si) if
∑
j

|fij(si)| ≤ λposti .

6. D wins if b′ = b.

PKE is CPLA2-secure, if AdvCPLA2
PKE (D) is negligible in k.

2.3.4 Unforgeability Against Chosen Message Leakage Secure UFCMLA Signature Schemes

Katz et al. [30] constructed an unforgeability against chosen message leakage attacks secure signature
scheme in bounded leakage model. It contains signing and verification operations based on NIZK proofs.

Definition 2.12 (Unforgeability Against Chosen Message Leakage Attacks (UFCMLA)). This is a
modification of the UFCMA security notion. Let k ∈ N be the security parameter, λ be the leakage
parameter and fi be arbitrary efficiently computable adaptive leakage functions. Let SIG = (KG,Sign,Vfy)
be a signature scheme, we define AdvUFCMLA

SIG (E) as the advantage of any PPT adversary E , winning the
following game:

1. r
$←− {0, 1}∗

2. (sk, vk)
$←− KG(1k, r); st← r

3. (m∗, σ∗)← EOUFCMLA(·,·)(vk)

4. If Vfy(vk,m∗, σ∗) = “true” and m∗ is not
been previously signed, then E wins.

OUFCMLA(m, fi)

• ri
$←− {0, 1}∗

• σ $←− Sign(sk,m, ri)

• st← st ∪ ri

• compute γ ← fi(st) whenever
∑
i

|fi(st)| ≤ λ

• Return (σ, γ) to E

SIG is UFCMLA-secure, if AdvUFCMLA
SIG (E) is negligible in k.

If we think about the split-state setting for the UFCMLA security notion, above notion is same as
the case where ñ = 1, because the signing key sk has not been split.

3 Key Exchange Security Models

In 1976, Diffie and Hellman introduced a key exchange primitive [19], which enables two parties to
exchange a secret key (session key) by communicating over a public channel. Users Alice and Bob agree
on a group G of prime order q and on a generator g of this group. This is done before executing the rest

of the protocol, and g and q are assumed to be public. Alice picks a random integer a
$←− Zq and computes

A← ga and sends it to Bob. Then Bob picks a random integer b
$←− Zq and computes B ← gb and sends

it to Alice. After that, Alice computes Ba = (gb)a = s ∈ G and Bob computes Ab = (ga)b = s ∈ G. Thus,

11

both Alice and Bob end up with the same value s ∈ G. An eavesdropper who watches this communication
can see A and B values, but should be unable to determine the values of s (assuming CDH holds).

Many key exchange protocols have been created based on the Diffie-Hellman key exchange primitive
[13, 20, 28]. In these key exchange protocols, different types of keys may be used to compute session
keys: long-term secret keys are the static secrets belong to the protocol participants which are often
used to add authentication to the session key, ephemeral keys are the session specific secrets belong to
protocol participants which are used to add freshness to the session key. There are number of known
attacks against key exchange protocols:

Implicit Key Authentication. If a protocol provides a guarantee that no party apart from the
protocol participants can compute the session key, that key exchange protocol is said to provide implicit
key authentication. If a key exchange protocol provides implicit key authentication that protocol is said
to be an authenticated key exchange protocol.

Key Confirmation. If a key exchange protocol provides a guarantee that each party is assured that all
other participants possess the session key, that key exchange protocol is said to provide key confirmation.

Known Key Security. The knowledge of a session key should not enable the adversary to learn the
session keys in other sessions; all session keys should not be depended on the session keys of other sessions.

Unknown Key Share (UKS) Security. It should not happen that a party A shares a session key
with some party B, but believing that it is sharing the session key with some one else C. That means
public keys and identities of the parties should be certified and confirmed or incorporated into protocol
execution.

Key Compromise Impersonation (KCI) Resistance. Knowing the long-term secret key of a party
A should not enable the adversary to impersonate other honest parties to A.

Forward Secrecy. An adversary who knows the long-term secret keys of parties should not be able to
compute the session keys of past sessions between those two particular parties.

In order to analyze the security of key exchange protocols, a formal methodology is needed. Therefore,
key exchange security models have been created. A security model is a formal security statement of certain
security features. Generally, security models are designed to reflect real world adversarial capabilities,
addressing the known attacks (mentioned earlier). At the same time, it is natural to design security
models with theoretical adversaries which have more capabilities than real world adversaries, because
that way it is possible to address more powerful attacks which may exist in the future. Following is the
general structure of a security model.

• Definition of the algorithm: Inputs, outputs and abstract description of the algorithm.

• Adversary capabilities: How the adversary can interact with the system and which information
the adversary is allowed to learn, usually in the form of queries. As a usual practice the adversary
is made as strong as possible by giving more capabilities to the adversary.

• Security game: The way in which the adversary perform queries.

• Security goal: The requirement for the adversary to win the security game.

In a security model, there is a predefined list of queries that an adversary can perform (adversary
capabilities). Those queries reveal information such as session keys, ephemeral keys, long-term secret
keys etc. Even after performing the queries, within the constraints defined in the security model, if the
adversary’s advantage of distinguishing the real session key from a random key chosen from the same
distribution is negligible, the protocol is said to be secure in the particular security model. The session in
which the adversary tries to distinguish the real session key from a random key, is known as the target
session.

The Bellare-Rogaway models (BR93 [9], BR95 [11]), the Canetti-Krawczyk (CK) model [15], and the
extended Canetti-Krawczyk (eCK) model [36] are a few such security models, and protocol designers use
them to analyze the security of key exchange protocols. We briefly look at a few of the earlier models
such as the BR models and the CK model, and then discuss the eCK model in detail, as it is a more
recent and widely used security model.

12

The Bellare-Rogaway Models. The BR93 model [9] is the first formal security model for key exchange
protocols, in which the adversary is defined as a probabilistic polynomial time machine that initiates and
controls all the communications between the protocol participants. Moreover, the adversary is allowed
to reveal the session keys, learn the complete internal state of the protocol participants by corrupting
the protocol participants, and overwrite the long-term secret key of the corrupted participant with any
value of her choice. The Bellare-Rogaway models defined a notion for partner sessions. The definition of
partner sessions is used in the security definition, to restrict the adversary’s reveal and corrupt operations
to sessions that are not partners of the target session. In the BR models security is defined on the notions
of partner sessions and the indistinguishability of session keys.

The BR93 model defines the partnership using the notion of matching conversations, where a
conversation is defined to be the sequence of messages sent and received by a particular protocol instance
(session) of a protocol participant. In the BR95 model, the partnership is defined using the notion of
a partner function, which uses the transcript containing the record of all messages sent and received
by a particular protocol instance (session) of a protocol participant, to determine the partner sessions.
However, such partner definitions can easily go wrong [16].

Canetti-Krawczyk Model. In the CK model, the adversary is allowed to initiate and control all the
communications between the protocol participants, reveal the session keys, learn the complete internal
state of the protocol participants by corrupting the protocol participants and overwrite the long-term
secret key of the corrupted participant with any value of her choice, as in the BR models, and additionally
reveal the internal state of the protocol participants (but not the long-term secret keys). The partner
sessions are defined using the notion of matching session identifiers (SIDs) and partner identifiers (PIDs).
There is no formal definition of how SIDs should be defined and the values of SIDs are not specified in the
CK model. It is assumed that the SIDs are known by the protocol participants before the protocol begins.
Such an assumption may not be practical, because it requires some form of communication between the
protocol participants before the protocol begins. The definition of partner sessions is used in the security
definition, to restrict the adversary’s session key reveal, session state reveal and corrupt operations to
sessions that are not partners of the target session. In the CK model security is defined on the notions of
partner sessions and the indistinguishability of session keys, which is similar to the security definition of
the BR models.

3.1 Extended Canetti-Krawczyk Model (eCK) [36]

Parties and Long-term Keys. Let U = {U1, . . . , UNP
} be a set of NP parties. Each party Ui where

i ∈ [1, NP] has a pair of long-term public and secret keys, (pkUi
, skUi

). Each party Ui owns at most NS
number of protocol sessions.

Sessions. Each party may run multiple instances of the protocol concurrently or sequentially; we use
the term principal to refer a party involved in a protocol instance, and the term session to identify a
protocol instance at a principal. The notation Πs

U,V represents the sth session at the owner principal U ,
with intended partner principal V . The principal which sends the first protocol message of a session is the
initiator of the session, and the principal which responds to the first protocol message is the responder of
the session. A session Πs

U,V enters an accepted state when it computes a session key. Note that a session
may terminate without ever entering into the accepted state. The information of whether a session has
terminated with or without acceptance is public.

Partnering. Legitimate execution of a key exchange protocol between two principals U and V makes
two partnering sessions owned by U and V respectively. Two sessions Πs

U,V and Πs′

U ′,V ′ are said to be
partners if all of the following hold:

1. both Πs
U,V and Πs′

U ′,V ′ have computed session keys;

2. messages sent from Πs
U,V and messages received by Πs′

U ′,V ′ are identical;

3. messages sent from Πs′

U ′,V ′ and messages received by Πs
U,V are identical;

4. U ′ = V and V ′ = U ;

5. Exactly one of U and V is the initiator and the other is the responder.

The protocol is said to be correct if two partner sessions compute identical session keys.

13

Adversarial Powers. The adversary A is a probabilistic polynomial time algorithm in the security
parameter k, that has the control over the whole network. A interacts with set of sessions which represent
protocol instances. A can adaptively ask following queries.

• Send (U, V, s,m) query- This query allows A to run the protocol. It sends the message m to the

session
∏s
U,V as coming from the session

∏s′

V,U .
∏s
U,V will return to A the next message according

to the protocol conversation so far or decision on whether to accept or reject the session. A can also
use this query to initiate a new protocol instance with blank m. This query captures capabilities of
active adversary, who can initiate sessions and modify or delay protocol messages.

• Session-Key reveal (U, V, s) query- If a session
∏s
U,V has accepted and holds a session key, A

gets the session key of
∏s
U,V . A session can only accept a session key once. This query captures the

known key attacks.

• Ephemeral-Key reveal (U, V, s) query- Gives all the ephemeral keys (per session randomness) of
the session

∏s
U,V to A.

• Corrupt (U) query- A gets all the long-term secrets of the principal U . But this query does not
reveal any session keys to A. This query captures the key compromise impersonation (KCI) attacks,
unknown key share (UKS) attacks and forward secrecy.

• Test (U, s) query- Once a session
∏s
U,V has accepted and holds a session key, A can attempt to

distinguish it from a random key. When A asks the Test query, the session
∏s
U,V first chooses a

random bit b ∈ {0, 1} and if b = 1, the actual session key is returned to A, otherwise a random
session key is chosen uniformly at random from the same session key distribution, and is returned
to A. This query is only allowed to be asked once.

Freshness. A session
∏s
U,V is said to be fresh if and only if all of the following hold:

1. The session
∏s
U,V and its partner (if it exists),

∏s′

V,U have not been asked the Session- Key reveal

query.

2. If partner
∏s′

V,U exists none of the following combinations have been asked:

(a) Corrupt(U) and Ephemeral-Key reveal(U, V, s)

(b) Corrupt(V) and Ephemeral-Key reveal(V,U, s′)

3. If partner
∏s′

V,U does not exist none of the following combinations have been asked

(a) Corrupt(V)

(b) Corrupt(U) and Ephemeral-Key reveal(U, V, s)

Security Game.

• Stage 0: The challenger generates the keys by using the security parameter k.

• Stage 1: A is executed and may ask any of Send, Session-Key reveal, Ephemeral-Key reveal

and Corrupt queries to any session at will.

• Stage 2: At some point A chooses a fresh session and asks the Test query.

• Stage 3: A may continue asking Send, Session-Key reveal, Ephemeral- Key reveal and
Corrupt queries. The only condition is that A cannot violate the freshness of the test session.

• Stage 4: At some point A outputs the bit b′ ∈ {0, 1} which is its guess of the value b on the test
session. A wins if b′ = b.

14

Definition of Security. Let SuccA be the event that the adversary A wins the eCK game.

Definition 3.1. A protocol (π) is said to be secure in the eCK model if there is no PPT adversary A
who can win the eCK game with non-negligible advantage in the security parameter k. The advantage of
an adversary A is defined as AdveCK

π (A) = |2Pr(SuccA)− 1| .

In the BR models and the CK model, the adversary is not allowed to learn the long-term secret key of
the owner of the target session, before it expires. Therefore, those models are not capable of addressing
the key compromise impersonation attacks, whereas the eCK model allows the adversary to learn the
long-term secret key of the owner of the target session. Therefore the eCK model addresses the KCI
attacks. Moreover, the BR models and the CK model do not allow the adversary to reveal the session
states or ephemeral keys of the target session or its partner session. Therefore, those models are not
capable of addressing the ephemeral key leakage attacks, whereas the eCK model allows the adversary to
reveal both of the ephemeral keys of the target session, as long as the owner and the partner principals
to the target session are not corrupted. Therefore, the eCK model addresses the ephemeral key reveal
attacks. In the CK model, after the target session has expired, the adversary is allowed to learn the
long-term secret keys of the protocol participants of the target session, regardless of whether the adversary
actively interfered with the target session, whereas the eCK model only allows the adversary to learn
the long-term secret keys of both protocol participants of the target session when the adversary has not
actively interfered with the target session. Therefore, the CK model addresses the perfect forward secrecy,
while the eCK model only addresses the weak perfect forward secrecy.

The essential difference between the eCK [36] and the CK model is that the eCK model substitutes
the adversarial operation of revealing the complete internal state of the protocol participants with a new
operation to reveal the ephemeral secret key, which reveals the randomness used in the specified session.
The important point to note is that the ephemeral key does not include the session state that has been
computed using the long-term secret of the protocol participant. This is not the case in the CK model,
in which the adversary is allowed access to all the inputs (including the randomness, but excluding the
long-term secret itself) and the results of all the computations done as part of a session. Among the
other models the eCK model is clearly defined to capture most of the demanding security features of
key exchange protocols, and thus widely used as a strong security model to analyze the security of key
exchange protocols. We chose the eCK model for detailed discussion, because the eCK model is used as
the base of the leakage security models which are discussed in this paper.

3.2 eCK-Secure Key Exchange Protocols

The initial effort of constructing the eCK-secure key exchange protocols is combining the long-term secret
key and the ephemeral secret key using a random oracle function [10] to obtain a pseudo ephemeral value.
This trick is first introduced by LaMacchia et al. [36] in their protocol named NAXOS, and now it is

widely known as the NAXOS trick. A “psuedo” ephemeral key ẽsk is computed as the random oracle

function of the long-term key lsk and the actual ephemeral key esk: ẽsk ← H(esk, lsk). The value ẽsk is
never stored, and thus in the eCK model the adversary must learn both esk and lsk in order to be able to

compute ẽsk. Note however, that in the NAXOS protocol, the initiator must compute ẽsk = H(esk, lsk)

twice: once when sending its Diffie–Hellman ephemeral public key gẽsk, and once when computing the
Diffie–Hellman shared secrets from the received values. This is to avoid storing a single value that, when
compromised, can be used to compute the session key. There are some key exchange protocols created
using the NAXOS trick [36, 46].

NAXOS Protocol. The NAXOS protocol [36] was originally published with the eCK model, and it is
proven secure in the eCK model. Table 1 shows the NAXOS protocol. Let G be a group of prime order q
with generator g. Here a and Ā are the long-term secret and public keys of A, while x and X are the
ephemeral secret and public keys of A. The important feature we can see is that the long-term secret
key and the ephemeral secret key are combined using a hash function H1. The trick of combining the
long-term secret key and the ephemeral secret key is known as “NAXOS trick”. In this protocol both
hash functions H1 and H are modeled as random oracles.

CMQV Protocol. Using the MQV [37], the HMQV [34] and the NAXOS protocols Ustaoglu [46]
created a new key exchange protocol called “Combined MQV” (CMQV). Table 2 shows the CMQV
protocol. Let G be a group of prime order q with generator g. Here a and Ā are the long-term secret and

15

A B

a
$←− Zq b

$←− Zq
Ā← ga B̄ ← gb

x
$←− Zq y

$←− Zq
x̄← H1(x, a) ȳ ← H1(y, b)

X = gx̄
X−→ Y = gȳ

Y←−
κ = H(Y a, B̄H1(x,a), Y H1(x,a), A,B) κ = H(ĀH1(y,b), Xb, XH1(y,b), A,B)

κ is the session key

Table 1: NAXOS protocol

public keys of A, while x and X are the ephemeral secret and public keys of A. The main advantages
of the CMQV protocol are, better efficiency than the NAXOS protocol and proven-security in the eCK
model. The CMQV protocol uses the NAXOS trick to achieve the eCK security. As for the NAXOS
protocol, the CMQV security proof also uses the random oracle assumption, because hash functions H1,
H2 and H are modeled as random oracles.

A B

a
$←− Zq b

$←− Zq
Ā← ga B̄ ← gb

x
$←− Zq y

$←− Zq
x̄ = H1(x, a) ȳ = H1(y, b)
X = gx̄ Y = gȳ

(B,A,X)−−−−−→
(A,B,X,Y)←−−−−−−−

E = H2(Y,A,B) D = H2(X,A,B)
σ = (Y B̄E)x̄+Da σ = (XĀD)ȳ+Eb

κ = H(σ,X, Y,A,B) κ = H(σ,X, Y,A,B)
κ is the session key

Table 2: Two-pass CMQV protocol

eCK Security without NAXOS Trick. Recently, some researchers worked on constructing eCK-
secure key exchange protocols without NAXOS trick [42, 47, 32, 7]. The motivation for such research
can be explained as follows: The eCK model addresses the leakage of the ephemeral secret key. It is
unnatural to assume that the ephemeral secret key is leaked, while the exponent of the ephemeral public
key (eg:- the pseudo ephemeral value in the NAXOS protocol) remains safe, without leaking. Therefore,
it seems that there is an unnatural and indirect assumption of a leakage-free exponentiation computation
or leakage-free random source, in the eCK-security proof of the NAXOS-style key exchange protocols.
Therefore, eliminating the NAXOS trick and still preserving the eCK security would be more realistic.

Table 3 shows the key exchange protocol P1 [7], which is a Diffie-Hellman-type, NAXOS-free and
eCK-secure key exchange protocol. The reason to present this protocol is that, it is used as a building
block for a leakage-resilient key exchange protocol which is presented in section 5. Let G be a group of
prime order q with generator g. Here a and A are the long-term secret and public keys of Alice, while
x and X are the ephemeral secret and public keys of Alice. After exchanging the public values both
principals compute a Diffie-Hellman-type shared secret, and then compute the session key using a random
oracle H.

In order to compute the session key, the protocol P1 combines four components (Z1 ← Ba, Z3 ← Y a,
Z4 ← Y x, Z2 ← Bx) using the random oracle function H. These four components cannot be recovered by
the attacker without both the ephemeral and long-term secret keys of at least one protocol principal.

3.3 eCK-type Leakage Security Models for Key Exchange: Moriyama-Okamoto
Model

Earlier key exchange security models, such as the Bellare–Rogaway [9], Canetti–Krawczyk [15], and
extended Canetti–Krawczyk (eCK) [36] models, aim to capture security against an adversary who can

16

Alice (Initiator) Bob (Responder)

a
$←− Z∗q , A← ga b

$←− Z∗q , B ← gb

x
$←− Z∗q , X ← gx

Alice,X−−−−−→ y
$←− Z∗q , Y ← gy

Bob,Y←−−−−
Z1 ← Ba, Z2 ← Bx Z ′1 ← Ab, Z ′2 ← Xb

Z3 ← Y a, Z4 ← Y x Z ′3 ← Ay, Z ′4 ← Xy

K ← H(Z1, Z2, Z3, Z4, Alice,X,Bob, Y) K ← H(Z ′1, Z
′
2, Z

′
3, Z

′
4, Alice,X,Bob, Y)

K is the session key

Table 3: Concrete construction of Protocol P1

fully compromise some, but not all secret keys. For example, in the eCK model, a session key should be
secure even if the adversary has compromised either the long-term or ephemeral key at the client, and
either the long-term or ephemeral key at the server, but not all of the values at one party. This is not a
very granular form of leakage, and thus is not fully suitable for modelling side-channel attacks.

Moriyama and Okamoto have presented a suitable security model to capture leakage, and a proven
secure protocol in that model [43]. The security model introduced by Moriyama and Okamoto is based
on the eCK model. The Moriyama-Okamoto model allows the adversary to obtain leakage of a long-term
secret key sk, of a protocol principal U , by issuing adaptively-chosen arbitrary leakage functions fi and
specifying the identity of the protocol principal U . Hence, in addition to the adversarial powers in the
eCK, model Moriyama-Okamoto model provides:

• StaticKeyLeakage(f, U) query: From this query the adversary obtains fi(sk) where sk denotes
the long-term secret key of the principal U .

Further, it is important to study the constraints in the Moriyama-Okamoto model. We can identify
two main limitations in Moriyama-Okamoto model.

1. The adversary is allowed to obtain leakage from long-term secrets of protocol participants; this
leakage is bounded by some parameter λ.

2. The model does not allow the adversary to obtain leakage after the test session is activated.

Since the Moriyama-Okamoto model is restricted to the bounded leakage, it can only address the
side-channel attacks such as cold boot attacks (to some extent), which happen due to the leakage of
bounded amount of information from the secret memory. The Moriyama-Okamoto model allows the
adversary to reveal either the long-term secret key or the ephemeral secret key of the target session
(same as in the eCK model). Additionally, the the Moriyama-Okamoto model allows bounded amount of
leakage of the long-term secret key with the ephemeral secret key reveal from the target session. Thus
the Moriyama-Okamoto model addresses the cold boot attacks to some extent by addressing following
situations: the attacker reveals either (i) the long-term secret key, (ii) the ephemeral secret key, or (iii)
the ephemeral secret key and part of the long-term secret key of the target session.

Differently, side-channel attacks which happen due to the continuous leakage of secret keys, such
as timing attacks or power analysis attacks can not be modelled using the Moriyama-Okamoto model.
Because the Moriyama-Okamoto model does not address continuous leakage of the long-term secret keys,
which happens whenever computations use the long-term secret keys. Further, restricting the leakage
to occur only before the target session is activated is not a natural restriction. Therefore, although the
Moriyama-Okamoto model addresses side-channel attacks for some extent, there is some gap between the
Moriyama-Okamoto model and real world side-channel attacks.

Those two limitations are considered when defining the freshness of a session in the Moriyam-Okamoto
model.

3.3.1 Moriyama-Okamoto Freshness

A session
∏s
U,V is λ-leakage fresh if the following conditions hold:

•
∏s
U,V is a fresh session in the sense of the eCK model.

• Before the adversary activates the session
∏s
U,V , the total amount of leakage that the adversary

obtains from each partner principal of the session
∏s
U,V : U and V , is bounded by the leakage

parameter λ.

17

• After the session
∏s
U,V is activated, no leakage is allowed from the partner principals of the session∏s

U,V .

Apart from the freshness condition, partnering and the security game are the same as in the eCK
model.

4 Continuous After-the-fact Leakage in Restricted-eCK Model

As mentioned above, there are two central limitations in the Moriyama–Okamoto model as we pointed
out in section 3.3. The first restriction is troublesome because, in practice, ongoing executions of a
protocol may reveal a small amount of leakage each time, and we would like to provide security against
this “continuous” leakage. The latter restriction is problematic because we would like to provide security
of one session, even if some leakage happens in subsequent sessions.

The above limitations thus restrict the adversary in the Moriyama–Okamoto model. In this section,
we present a model and a protocol of Alawatugoda et al. [4], that allows the adversary to adaptively
obtain an unbounded amount of total continuous leakage, albeit with the restriction that the amount
of leakage obtained in each leakage request is limited; this addresses the first restriction of previous
models. Secondly, the adversary is allowed to obtain leakage after the test session is activated, addressing
the second restriction of the Moriyama–Okamoto model. The model we present in this section enforces
restrictions on the freshness condition, in addition to the eCK-style freshness condition defined in the
Moriyama–Okamoto model. We explain the additional restrictions on the freshness condition further in
this section.

4.1 Continuous After-the-fact Leakage (CAFL) Model [4]

In the CAFL model, the adversary is allowed to adaptively obtain partial leakage on the long-term secret
keys even after the test session is activated, as well as reveal session keys, long-term keys, and ephemeral
keys.

4.1.1 Modelling Leakage

This key exchange security model considers continuous leakage of the long-term secret keys of protocol
principals, because long-term secret keys are not one-time secrets, but they last for multiple protocol
sessions. Leakage of long-term secret key from one session affects the security of another session which
uses the same long-term secret key. Considering side-channel attacks which can be mounted against key
exchange protocols, the most realistic way to obtain the leakage information of long-term secret keys
is from the protocol computations which use long-term secret keys. Hence, following the premise “only
computation leaks information” [41], the leakage is modelled to occur where computation takes place
using secret keys. By issuing a Send query, the adversary will get a protocol message which is computed
according to the normal protocol computations. Therefore, the instance of a Send query would be the
appropriate instance to address the leakage which occurs due to a computation which uses a long-term
secret key. Thus, sending an adversary-chosen leakage function, f , with the Send query would reflect
the premise “only computation leaks information”. The leakage function f is an efficiently computable,
adaptive leakage function.

Further, the amount of leakage of a secret key is bounded by a leakage parameter λ, per computation.
The adversary is allowed to obtain leakage from many computations continuously. Hence, the overall
leakage amount is unbounded.

4.1.2 Adversarial Powers

The adversary (a probabilistic algorithm) controls all interaction and communication between parties. In
particular, the adversary initiates sessions at parties and delivers protocol messages; it can create, change,
delete, or reorder messages. The adversary can also compromise certain short-term and long-term secrets.
Notably, whenever the party performs an operation using its long-term key, the adversary obtains some
leakage information about the long-term key.

The following query allows the adversary A to run the protocol, modelling normal communication.

• Send(U, V, s,m, f) query: The session Πs
U,V , computes the next protocol message according to the

protocol specification on receipt of m, and sends it to the adversary A, along with the leakage

18

f(skU) as described in Section 4.1.1. A can also use this query to activate a new protocol instance
as an initiator with blank m.

The following queries allow the adversary A to compromise certain session specific ephemeral secrets
and long-term secrets from the protocol principals.

• SessionKeyReveal(U, V, s) query: A is given the session key of the session Πs
U,V , if the session

Πs
U,V is in the accepted state.

• EphemeralKeyReveal(U, V, s) query: A is given the ephemeral keys of the session Πs
U,V .

• Corrupt(U) query: A is given the long-term secrets of the principal U . This query does not reveal
any session keys or ephemeral keys to A.

Remark 1 (Corrupt query vs Leakage queries). By issuing a Corrupt query, the adversary gets the party’s
entire long-term secret key. Separately, by issuing leakage queries (using leakage function f embedded
with the Send query) the adversary gets λ-bounded amount of leakage information about the long-term
secret key. It may seem paradoxical to consider Corrupt and Leakage queries at the same time. But
there are good reasons to consider both.

• A non-leakage version of CAFL model (Send query without f) addresses KCI attacks, because the
adversary is allowed to corrupt the owner of the test session before the activation of the test session.
In the CAFL model, we allow the adversary to obtain leakage from the partner of the test session,
in addition to allowing the adversary to corrupt the owner of the test session.

• A non-leakage version of CAFL model (Send query without f) addresses partial weak forward
secrecy, because the adversary is allowed to corrupt either of the protocol principals, but not both,
after the test session is activated. In the CAFL model, we allow the adversary to obtain leakage
from the uncorrupted principal, in addition to allowing the adversary to corrupt one of the protocol
principals.

Hence, the CAFL model allows the adversary to obtain more information than a non-leakage version
of CAFL model.

4.1.3 Defining Security

In this section we give formal definitions for partner sessions, freshness of a session and security in the
CAFL model.

Definition 4.1 (Partner sessions in CAFL model). As in the eCK model, two sessions Πs
U,V and Πs′

U ′,V ′

are said to be partners if:

1. Πs
U,V and Πs′

U ′,V ′ have computed session keys and

2. Sent messages from Πs
U,V = Received messages to Πs′

U ′,V ′ and

3. Sent messages from Πs′

U ′,V ′ = Received messages to Πs
U,V and

4. U ′ = V and V ′ = U and

5. If U is the initiator then V is the responder, or vice versa.

A protocol is said to be correct if two partner sessions compute identical session keys in the presence
of a passive adversary.

We now define what it means for a session to be λ− CAFL-fresh in the CAFL model.

Definition 4.2 (λ− CAFL-freshness). Let λ be the leakage bound per occurrence. A session Πs
U,V is

said to be λ− CAFL-fresh if and only if:

1. The session Πs
U,V or its partner, Πs′

V,U (if it exists) has not been asked a SessionKeyReveal.

2. If the partner Πs′

V,U exists, none of the following combinations have been asked:

(a) Corrupt(U) and Corrupt(V).

(b) Corrupt(U) and EphemeralKeyReveal(U, V, s).

19

(c) Corrupt(V) and EphemeralKeyReveal(V,U, s′).

(d) EphemeralKeyReveal(U, V, s) and EphemeralKeyReveal(V,U, s′).

3. If the partner Πs′

V,U does not exist, none of the following combinations have been asked:

(a) Corrupt(V).

(b) EphemeralKeyReveal(U, V, s).

4. For each Send(U, ·, ·, ·, f) query, the output of f is at most λ bits.

5. For each Send(V, ·, ·, ·, f) query, the output of f is at most λ bits.

Limitations of λ− CAFL-freshness. When the adversary asks Corrupt and EphemeralKeyReveal

queries, there are two Corrupt–EphemeralKeyReveal query combinations which trivially expose the
session key of a session, in a scenario that a partner to that particular session exists.

1. Corrupt(U) and EphemeralKeyReveal(U, V, s).

2. Corrupt(V) and EphemeralKeyReveal(V,U, s′).

As in the other models we have compared with [36, 43] CAFL does not allow above combinations in the
freshness condition, as they trivially expose the session key of sessions Πs

U,V and Πs′

V,U . Differently, in the
other models we have compared with, there are four Corrupt–EphemeralKeyReveal query combinations
which do not trivially expose the session key a session, in a scenario that a partner to that particular
session exists.

1. Corrupt(U) and Corrupt(V).

2. Corrupt(U) and EphemeralKeyReveal(V,U, s).

3. Corrupt(V) and EphemeralKeyReveal(U, V, s′).

4. EphemeralKeyReveal(V,U, s) and EphemeralKeyReveal(U, V, s′).

All the models we consider [36, 43] allow above combinations in the freshness condition, whereas the
CAFL model does not allow the query combinations 1 and 4 in the freshness condition.

When the adversary asks EphemeralKeyReveal and Corrupt queries, there are two query combinations
which trivially expose the session key of a session, in a scenario that a partner to that particular session
does not exist.

1. Corrupt(V).

2. Corrupt(U) and EphemeralKeyReveal(U, V, s).

As in the other models we have compared with [36, 43] the CAFL does not allow above combinations in
the freshness condition, as they trivially expose the session key of sessions Πs

U,V and Πs′

V,U . Weakening that
condition, the CAFL model does not allow following two query combinations in the freshness condition,
when a partner to the test session does not exist.

1. Corrupt(V).

2. EphemeralKeyReveal(U, V, s). (instead of EphemeralKeyReveal(U, V, s) and Corrupt(U) as in
other models)

Thus, the freshness of a non-leakage variant of the CAFL model (without conditions 4 and 5) is
weaker than the eCK-freshness definition, because of the restriction enforced in the conditions (2)-a
and (2)-d. Differently, the λ − CAFL-freshness allows partial leakage of the long-term secret key of
a protocol principal, even when the partner principal is corrupted or EphemeralKeyReveal query is
asked to the partner session. In some sense that is stronger than the eCK-freshness definition, because
according to the eCK-freshness, once EphemeralKeyReveal query have been asked to a session, revealing
the long-term secret key of the partner is not allowed. Hence, although the freshness of a non-leakage
variant of the CAFL model is weaker than the eCK-freshness in some sense, λ−CAFL-freshness achieved
an improvement over eCK-freshness by means of partial leakage of long-term secrets.

20

We explain why the additional restrictions are introduced (restriction enforced in the conditions (2)-a
and (2)-d) to the freshness condition of the CAFL model, more than in the freshness condition of the eCK
model as follows: Their aim was to construct a simple leakage-resilient two-pass key exchange protocol,
using a leakage-resilient public-key encryption scheme, in which each of the principals randomly chooses
its ephemeral secret key, encrypts it with the public key of the intended partner principal, and sends the
encrypted message to the intended partner principal. Defining eCK-style freshness makes it impossible to
prove the security of the simple two-pass key exchange protocol, because corrupting both principals to the
target session or revealing the ephemeral key from both sessions to the target session will trivially expose
the session key. Therefore, additional restrictions are enforced to the λ− CAFL-freshness condition, but
allow the partial leakage of long-term secret keys, as the aim is to model the side-channel attacks.

Security of a key exchange protocol in the CAFL model is defined using the a security game (similar
to the security game in the eCK model), which is played by a probabilistic polynomial time adversary
A against the protocol challenger. SuccA is the event that A wins the security game. The security is
defined as follows:

Definition 4.3 (λ−CAFL-security). A protocol π is said to be λ−CAFL-secure if there is no probabilistic
polynomial time algorithm A that can win the security game with non-negligible advantage. The advantage
of an adversary A is defined as Advλ−CAFL

π (A) = |2 Pr(SuccA)− 1|.

4.1.4 Practical Interpretation of Security of CAFL Model

We review the relationship between the CAFL model and real world attack scenarios.

• Active adversarial capabilities: Send queries address the powers of an active adversary who
can control the message flow over the network. In the previous security models, this property is
addressed by introducing the send query.

• Side-channel attacks: Leakage functions are embedded with the Send query. Thus, assuming
that the leakage happens when computations take place in principals, a wide variety of side-channel
attacks such as timing attacks, EM emission based attacks, power analysis attacks, which are
based on continuous leakage of long-term secrets are addressed. This property is not addressed
in the earlier security models such as the BR models, the CK model, the eCK model and the
Moriyama-Okamoto model.

• Cold boot attacks: The CAFL model allows the adversary to reveal either the long-term secret
key (Corrupt query) or the ephemeral secret key (EphemeralKeyReveal query) of the target session
(same as in the eCK model and the Moriyama-Okamoto model). Thus these queries address the
cold boot attacks to some extent, where the cold boot attacks reveal either (i) the long-term secret
key or (ii) the ephemeral secret key of the target session. Note that the Moriyama-Okamoto model
addresses the cold boot attacks by additionally covering the situation, where the attacker reveals
(iii) the ephemeral secret key and part of the long-term secret key of the target session. Thus, the
Moriyama-Okamoto model is more suitable to model cold boot attacks.

• Malware attacks: EphemeralKeyReveal queries cover the malware attacks which steal stored
ephemeral keys, given that the long-term keys may be securely stored separately from the ephemeral
keys in places such as smart cards or hardware security modules. Separately, Corrupt queries
address malware attacks which steal the long-term secret keys of protocol principals. In the previous
security models, this property is addressed by introducing the ephemeral-key reveal, session-state
reveal and corrupt queries.

• Weak random number generators: Due to weak random number generators, the adversary
may correctly determine the produced random number. EphemeralKeyReveal query addresses
situations where the adversary can get the ephemeral secrets. In the previous security models, this
property is addressed by introducing the ephemeral-key reveal query or the session-state reveal
query.

• Known key attacks: SessionKeyReveal query covers the attacks which can be mounted by
knowing past session keys. In the previous security models, this property is addressed by introducing
the session key reveal query.

21

• Key compromise impersonation attacks: λ−CAFL-freshness allows the adversary to corrupt
the owner of the test session before the activation of the test session. Hence, the CAFL model
security protects against the key compromise impersonation attacks. In the eCK model and the
Moriyama-Okamoto model, this property is addressed by introducing the long-term key reveal query
to the owner of the target session, before the session is completed. Earlier models such as the BR
models and the CK model do not allow the adversary to reveal the long-term secret key of the
owner of the target session before it is expired, and hence do not address this property.

• Partial weak forward secrecy: λ − CAFL-freshness allows the adversary to corrupt either of
the protocol principals, after the test session is activated. Hence, the CAFL model addresses partial
weak forward secrecy. The eCK model and the Moriyama-Okamoto model allow the adversary to
reveal the long-term secret keys of both protocol principals of the target session after the target
session is activated, as long as the adversary is passive. Hence they address weak forward secrecy.
The CK model allows the adversary to reveal the long-term secret keys of both protocol principals
of the target session, after the session is expired but regardless of whether the adversary is passive
or active. Therefore, the CK model address perfect forward secrecy.

4.2 Constructing CAFL-secure Key Exchange Protocols

Table 4 shows the generic construction of protocol π1, which is CAFL-secure. The protocol π1 is a key
agreement protocol, in which each of the principals randomly chooses its ephemeral secret key, encrypts
it with the public key of the intended partner principal, and sends the encrypted message to the intended
partner principal. After exchanging the ephemeral secrets both principals compute the session key with
ephemeral secrets, identities of the two principals and the protocol message sequence, using a pseudo
random function. Updating the secret keys of protocol principals is an essential ingredient in achieving
CAFL security. For this generic protocol construction, the underlying public-key encryption scheme is
chosen to be a continuous leakage-resilient public-key encryption scheme, which updates the secret key
after each decryption operation. This public-key encryption scheme is used to achieve the continuous
leakage resiliency of the key exchange protocol.

The generic CAFL-secure protocol construction that is initially presented in Alawatugoda et al. [4],
is vulnerable against active adversary. Following we explain the reason: In that protocol construction,
the inputs to the key derivation function KDF contain the two ephemeral values, rA and rB, and the
identities of the initiator and the responder, A and B, respectively: KDF(rA||rB ,⊥, k, A||B). Assume
that the target session is in A, if the adversary corrupts A, decrypts the protocol message from CB,
then re-encrypt the corresponding plaintext again using pkA, that makes a different plaintext C ′B, due
to probabilistic encryption. Then if the adversary sends C ′B to A, instead of CB, and executes the
rest of the protocol, it results that A’s session and B’s session are not matching, because the message
CB computed by B is different from the message C ′B received by A, but compute the same session
key. Thus, the adversary can issue SessionKeyReveal query to the session at B and thus trivially
learn the session key of the target session. Cremers [18] showed that such attacks can be avoided
by using the session identifier in the key derivation step together with other shared secrets. In this
paper we re-design the protocol accordingly to ensure that mismatching sessions do not compute same
session keys. Thus, the session key is derived using a pseudo random function (two calls to the PRF)
as K ← PRF(rA, A||CA||B||CB) ⊕ PRF(rB , A||CA||B||CB), such that it contains the session identifier
A||CA||B||CB as an input to the pseudo random function.

Here we use a multiple-call pseudo random function PRF, instead of a key derivation function KDF,
to ensure that the adversary chosen rA xor rB, can be used in the session key derivation, when the
presence of an active adversary. Since the input σ = rA||rB to the KDF should be uniformly random
in the security definition of the KDF, using adversary chosen rA xor rB in the σ of KDF input is not
allowed.

4.2.1 Protocol Construction

In Table 4, we show the construction of protocol π1 with the fixture to the mentioned problem. KG,
Enc and Dec are the key generation, encryption and decryption algorithms of the underlying adaptively
chosen ciphertext after-the-fact leakage (CCLA2) secure public-key cryptosystem PKE (Section 2.3.2).
PRF is a pseudo random function (Section 2.2.2) which generates the session key of length k.

22

A (Initiator) B (Responder)
Initial Setup

skA, pkA ← KG(1k) skB , pkB ← KG(1k)
Protocol Execution

rA ← {0, 1}k rB ← {0, 1}k

CA ← Enc(pkB , rA)
A,CA−−−→ (sk′B , rA)← Dec(skB , CA)

skB ← sk′B

(sk′A, rB)← Dec(skA, CB)
B,CB←−−−− CB ← Enc(pkA, rB)

skA ← sk′A
K ← PRF(rA, A||CA||B||CB) K ← PRF(rA, A||CA||B||CB)
⊕PRF(rB , A||CA||B||CB) ⊕PRF(rB , A||CA||B||CB)

K is the session key

Table 4: Generic CAFL-secure protocol construction: Protocol π1

4.2.2 Security of the Protocol π1 in the CAFL Model

Theorem 4.1. The protocol π1 is λ− CAFL-secure, whenever the underlying public-key cryptosystem
PKE is CCLA2-secure and PRF is a pseudo random function.

Let U = {U1, . . . , UNP
} be a set of NP parties. Each party Ui owns at most Ns number of protocol

sessions. Let A be any PPT adversary against the key exchange protocol π1. Then the advantage of A
against the CAFL-security of the protocol π1, Advλ−CAFL

π1 is:

Advλ−CAFL
π1 (A) ≤ N2

PN
2
s

(
AdvCCLA2

PKE (D) + AdvPRF(B)
)
.

where B,D are efficient algorithms constructed using the adversary A, against the underlying pseudo
random function, PRF, and the public-key cryptosystem, PKE, respectively.

The detailed proof of this theorem is in Appendix A.

4.2.3 Leakage Tolerance of the CAFL-secure Protocol π1

In the created protocol, a principal simply encrypts a randomly-chosen ephemeral key using a CCLA2-
secure public key encryption scheme, and sends it to the partner principal. Therefore, the leakage
tolerance is exactly same as the leakage tolerance of the underlying CCLA2-secure public key encryption
scheme.

Dziembowski and Faust. [22] constructed a CCLA2-secure public-key cryptosystem, where the

secret key sk = (x1, x2) ∈ (Z∗q)2 is split into two parts `sk, rsk such that `sk
$←− (Z∗q)n at random and

rsk ← (Z∗q)n×2 holding `sk · rsk = sk, where n is the statistical security parameter. They proved their
public-key cryptosystem is CCLA2-secure for λ = 0.15 ·n · log q−1. So if we consider n = 20 and log(q−1)
to be 1024, we can allow λ = 3072 bits of leakage, from each split per occurrence. Considering only the
most expensive computations, the computation cost of Enc and Dec is 5 exponentiations for each.

5 Bounded/Continuous After-the-fact Leakage eCK Model

The continuous after-the-fact leakage key exchange security model (CAFL) mentioned in the section 4
enforces more restrictions to the freshness definition, more than in the eCK model [36] or Moriyama-
Okamoto model [43]: it does not allow to reveal the ephemeral keys of both principals as to corrupt both
protocol principals of the target session etc. So there is a necessity to accommodate a reasonable security
model which addresses more granular leakage and at the same time does not enforce more restrictions
than currently existing key exchange security models.

In this section, we present a generic leakage-security model for key exchange protocols, which can
be instantiated as a bounded leakage variant as well as a continuous leakage variant [6]. In the bounded
leakage variant, the total amount of leakage is bounded, whereas in the continuous leakage variant, a
protocol execution may reveal a small amount of leakage each time. Further, the adversary is allowed
to obtain the leakage even after the session key is established for the session in which the adversary
tries to distinguish the real session key from a random session key. The leakage functions are arbitrary
polynomial time functions with output length restrictions.

23

5.1 After-the-fact Leakage-eCK ((·)AFL-eCK) Model [6]

The generic after-the-fact leakage eCK ((·)AFL-eCK) model can be instantiated in two different ways
which leads to two security models. Namely, bounded after-the-fact leakage eCK (BAFL-eCK) model and
continuous after-the-fact leakage eCK (CAFL-eCK) model. The BAFL-eCK model allows the adversary
to obtain a bounded amount of leakage of the long-term secret keys of the protocol principals, as well as
reveal session keys, long-term secret keys and ephemeral keys. Differently, the CAFL-eCK model allows
the adversary to continuously obtain arbitrarily large amount of leakage of the long-term secret keys of
the protocol principals, enforcing the restriction that the amount of leakage per observation is bounded.

In both instantiations of the generic (·)AFL-eCK model the partnering definition and the adversarial
powers are same. The freshness conditions differ according to the leakage allowed. So it is possible to
define the partnering and adversarial powers in the generic (·)AFL-eCK model and define the freshness
separately in each BAFL-eCK and CAFL-eCK models.

5.1.1 Modelling Leakage

Considering side-channel attacks which can be mounted against key exchange protocols, the most realistic
way is to obtain the leakage information of secret keys from the protocol computations which use secret
keys for computations. Following the premise “only computation leaks information”, the leakage is
modelled in a place where a computation takes place on secret keys. After issuing a Send query, the
adversary will get a protocol message which is computed according to the normal protocol computations.
So sending an adversary-chosen adaptive leakage function with the Send query reflects the premise “only
computation leaks information”.

A tuple of ñ adaptively chosen efficiently computable leakage functions f = (f1j , f2j , . . . , fñj) are
introduced; the size ñ of the tuple is protocol-specific, and j indicates the jth leakage occurrence. A key
exchange protocol may use more than one cryptographic primitive and each primitive uses a distinct
secret key or secret state (in signature schemes). Hence, it is needed to address the leakage of secret
keys or secret states from each of those primitives. Also, some cryptographic primitives which have been
used to construct a key exchange protocol may be stateful cryptographic primitives. The execution of a
stateful cryptographic primitive is split into a number of sequential stages and each of these stages uses
one part of the secret key. The tuple of leakage functions f = (f1j , f2j , . . . , fñj) leaks information from
the secret key of each of the underlying primitives or each split of the secret keys at occurrence j. There
exists a leakage parameter λ = (λ1, . . . , λñ) where each λi bounds the leakage for the corresponding
primitive as key split.

5.1.2 Adversarial Powers

The adversary A is a probabilistic polynomial time (PPT) algorithm that controls the whole network.
A interacts with a set of sessions which represent protocol instances. The following query allows the
adversary A to run the protocol.

• Send(U, V, s,m, f) query: The session Πs
U,V , computes the next protocol message according to the

protocol specification and sends it to the adversary A, along with the leakage f(skU). A can also
use this query to activate a new protocol instance as an initiator with blank m.

The following set of queries allow the adversary A to compromise certain session specific ephemeral
secrets and long-term secrets from the protocol principals.

• SessionKeyReveal(U, V, s) query: A is given the session key of the session Πs
U,V .

• EphemeralKeyReveal(U, V, s) query: A is given the ephemeral keys (per-session randomness) of
the session Πs

U,V .

• Corrupt(U) query: A is given the long-term secrets of the principal U . This query does not reveal
any session keys or ephemeral keys to A.

Once the session Πs
U,V has accepted a session key, the adversary A attempt to distinguish it from a

random session key by asking the following query. The Test query is used to formalize the notion of the
semantic security of a key exchange protocol.

• Test(U, s) query: When A asks the Test query, the challenger first chooses a random bit b
$←− {0, 1}

and if b = 1 then the actual session key is returned to A, otherwise a random string chosen from

24

the same session key space is returned to A. This query is only allowed to be asked once across all
sessions.

Remark 2 (Corrupt query vs Leakage queries). By issuing a Corrupt query, the adversary gets the
party’s entire long-term secret key. Separately, by issuing leakage queries (using a tuple leakage function
f embedded with the Send query) the adversary gets respectively λ-bounded leakage information about
the long-term secret key(s). It may seem paradoxical to consider Corrupt and Leakage queries at the
same time. But there is a good reason to consider both.

The eCK model addresses KCI attacks, because the adversary is allowed to corrupt the owner of the
test session before the activation of the test session. In the generic (·)AFL-eCK model, we allow the
adversary to obtain leakage from the partner of the test session, in addition to allowing the adversary to
corrupt the owner of the test session.

Hence, the generic (·)AFL-eCK model allows the adversary to obtain more information than the eCK
model. Moreover, none of the existing security models such as BR, CK, CKHMQV, eCK allow a Send

query with a tuple leakage function f . Hence, we can see that (·)AFL-eCK allows the adversary to obtain
leakage information which none of the existing security models allow.

5.1.3 Bounded After-the-fact Leakage-eCK (BAFL-eCK) Model

In the BAFL-eCK model the total amount of leakage of each secret key of the underlying cryptographic
primitives or each split of the secret key of the underlying stateful cryptographic primitives are bounded
by leakage parameters. The leakage parameters are primitive-specific.

If the total leakage bound of the ith cryptographic primitive (or the total leakage bound of the ith

state of the stateful cryptographic primitive) is λi and the leakage function fij outputs leakage bits of
the secret key of the ith cryptographic primitive (or leakage bits of the ith split of the secret key), then
for leakage resilience of ith cryptographic primitive (or the stateful cryptographic primitive), we need

that
∑
j

|fij(si)| ≤ λi.

Definition 5.1 (λ− BAFL-eCK-freshness). Let λ = (λ1, . . . , λñ) be a vector of ñ elements (same size
as f in Send query). A session Πs

U,V is said to be λ− BAFL-eCK-fresh if and only if:

1. The session Πs
U,V or its partner, Πs′

V,U (if it exists) has not been asked a SessionKeyReveal.

2. If the partner Πs′

V,U exists, none of the following combinations have been asked:

(a) Corrupt(U) and EphemeralKeyReveal(U, V, s).

(b) Corrupt(V) and EphemeralKeyReveal(V,U, s′).

3. If the partner Πs′

V,U does not exist, none of the following combinations have been asked:

(a) Corrupt(V).

(b) Corrupt(U) and EphemeralKeyReveal(U, V, s).

4. For all Send(U, ·, ·, ·, f) queries,
∑
j

|fij(skUi
)| ≤ λi.

5. For all Send(V, ·, ·, ·, f) queries,
∑
j

|fij(skVi
)| ≤ λi.

5.1.4 Continuous After-the-fact Leakage-eCK (CAFL-eCK) Model

In the CAFL-eCK model, continuous leakage of each secret key of the underlying cryptographic primitives
or each split of the secret key of the underlying stateful cryptographic primitives is allowed. The only
restriction is that the amount of leakage per occurrence is bounded by leakage parameters. The leakage
parameters are primitive-specific.

If the leakage bound of the ith cryptographic primitive is λi per leakage occurrence and the leakage
function fij outputs leakage bits of the secret key of the ith cryptographic primitive, then for leakage
resilience of ith cryptographic primitive we need that |fij(ski)| ≤ λi, per leakage occurrence. If the
leakage bound of the ith state of the stateful cryptographic primitive is λi per leakage occurrence and the
leakage function fij outputs leakage bits of the ith split of the secret key, then for leakage resilience of the
stateful cryptographic primitive we need that |fij(ski)| ≤ λi, per leakage occurrence.

25

Definition 5.2 (λ− CAFL-eCK-freshness). Let λ = (λ1, . . . , λñ) be a vector of ñ elements (same size
as f in Send query). A session Πs

U,V is said to be λ− CAFL-eCK-fresh if and only if: Conditions (1)-(3)
of Definition 5.1 hold, and

4. For each Send(U, ·, ·, ·, f) query, size of the output of |fij(skU i)| ≤ λi.
5. For each Send(V, ·, ·, ·, f) queries, size of the output of |fij(skV i)| ≤ λi.

5.1.5 Defining Security

In this section we give formal definitions for partner sessions and security in the (·)AFL-eCK model.

Definition 5.3 (Partner sessions in generic (·)AFL-eCK model). Two sessions Πs
U,V and Πs′

U ′,V ′ are said
to be partners if all of the following hold:

1. both Πs
U,V and Πs′

U ′,V ′ have computed session keys;

2. messages sent from Πs
U,V and messages received by Πs′

U ′,V ′ are identical;

3. messages sent from Πs′

U ′,V ′ and messages received by Πs
U,V are identical;

4. U ′ = V and V ′ = U ;

5. Exactly one of U and V is the initiator and the other is the responder.

The protocol is said to be correct if two partner sessions compute and accept identical session keys.

Security of a key exchange protocol in the λ−BAFL-eCK model is defined using the a security game
(similar to the security game in the eCK model). If we consider λ− BAFL-eCK-freshness, the security
game is BAFL-eCK, otherwise if we consider λ− CAFL-eCK-freshness, it is CAFL-eCK security game.

SuccA is the event that the adversary A wins the security game. The security is defined as follows:

Definition 5.4 (λ− (·)AFL-eCK-security). A protocol π is said to be λ− (·)AFL-eCK-secure if there
is no PPT algorithm A that can win the λ− (·)AFL-eCK security game with non-negligible advantage.

The advantage of an adversary A is defined as Advλ−(·)AFL-eCK
π (A) = |2 Pr(SuccA)− 1|.

5.1.6 Practical Interpretation of Security of AFL-eCK Model

The generic (·)AFL-eCK model addresses the real world attack scenarios which were discussed in section
4.1.4, with the following differences.

• Cold boot attacks: The (·)AFL-eCK model allows the adversary to reveal either the long-term
secret key (Corrupt query) or the ephemeral secret key (EphemeralKeyReveal query) of the target
session. The bounded leakage instantiation of the (·)AFL-eCK model, BAFL-eCK model, allows
bounded amount of leakage of the long-term secret key with the ephemeral key reveal. Thus these
queries address the cold boot attacks to some extent, where the cold boot attacks reveal either (i)
the long-term secret key, (ii) the ephemeral secret key, or (iii) the ephemeral secret key and part of
the long-term secret key of a protocol principal, which is same as in the Moriyama-Okamoto model.
The improvement of the BAFL-eCK model is that it allows the adversary to obtain the partial
leakage of long-term secret key even after the test session is established, which is not allowed in the
Moriyama-Okamoto model.

• Weak forward secrecy: (·)AFL-eCK-freshness allows the adversary to corrupt both of the
protocol principals of the target session, after the test session is activated, as long as the adversary
is passive. Hence, the (·)AFL-eCK model addresses weak forward secrecy, as for the eCK model
and the Moriyama-Okamoto model.

• eCK security: The generic (·)AFL-eCK model is a leakage-resilient version of the eCK model [36],
hence, the generic (·)AFL-eCK model captures all possible attacks from ephemeral and long-term key
compromises. More precisely, in sessions where the adversary does not modify the communication
between parties (passive sessions), the adversary is allowed to reveal both ephemeral secrets, both
long-term secrets, or one of each from two different parties, whereas in sessions where the adversary
may forge the communication of one of the parties (active sessions), the adversary is allowed to
reveal the long-term or ephemeral key of the other party.

26

The main reason to introduce a generic security model, (·)AFL-eCK model, and then present two
instantiations (BAFL-eCK model and CAFL-eCK model) is to offer more flexibility to construct leakage-
resilient key exchange protocols. The generic (·)AFL-eCK model gives a reasonable security framework
for key exchange protocols capturing a wide range of practical attacks including side-channel attacks. The
only difference between the two instantiations is the leakage allowance (bounded or continuous). If we
need to implement a key exchange protocol which is resilient to cold boot attacks we use the BAFL-eCK
model as the security framework, whereas if we need to implement a key exchange protocol which is
secure against continuous-leakage side-channel attacks such as timing, power analysis and EM radiation,
we use the CAFL-eCK model as the security framework.

5.2 Generic Construction of (·)AFL-eCK-secure Key Exchange Protocol

The motivation of LaMacchia et al. [36] in designing the eCK model was that an adversary should have
to compromise both the long-term and ephemeral secret keys of a party in order to recover the session
key. In their NAXOS protocol, the main way this is accomplished is using what is now called the NAXOS
trick.

Leakage-Resilient NAXOS Trick [6]. Moving to the leakage-resilient setting requires rethinking
the NAXOS trick. In the model “only computation leaks information”, we must consider leakage at
any place the long-term secret key is used. Thus, some kind of leakage-resilient NAXOS trick is needed.

As noted above, the initiator must not store the pseudo-ephemeral value, ẽsk, and instead must apply
the NAXOS trick twice for each session. The hash function H is replaced with a new leakage-resilient
NAXOS trick to compute the pseudo-ephemeral value. The requirement is, given the long-term secret
key and a particular ephemeral key, the NAXOS trick should always compute the same pseudo-ephemeral
value, such that without knowing both the long-term and ephemeral keys the adversary is unable to
compute the pseudo-ephemeral value. Moreover, the NAXOS trick computation should be resilient to the
leakage of the long-term secret key, which happens even after the test session is activated.

A leakage-resilient NAXOS trick is achieved by using the decryption function of a CPLA2-secure
public-key cryptosystem [25]. Since decryption is deterministic, given the long-term secret key and a
randomly chosen ciphertext, it will output the corresponding plaintext. So one can randomly choose an
ephemeral key and use it as the ciphertext to the decryption function, and obtain the corresponding
plaintext (output of the decryption function) as the pseudo-ephemeral value. Without knowing both
the long-term and ephemeral keys, it is infeasible to compute the pesudo-ephemeral value. Thus, a
leakage-resilient NAXOS trick can be achieved and the pseudo-ephemeral value can be computed. Further,
bounded or continuous leakage-resilient key exchange protocol can be constructed, if the underlying
public-key cryptosystem is bounded or continuous leakage-resilient.

Pair Generation Indistinguishability [6]. Using a decryption algorithm of a CPLA2-secure public-
key cryptosystem does not work for our requirement unless the public-key cryptosystem has a special
property: any randomly chosen ciphertext should be decrypted without rejection. A randomly chosen
ciphertext can be rejected with a significant probability if NIZK proofs have been used for CPLA2-secure
public-key cryptosystems. In NIZK proofs, the party which creates a ciphertext should provide a proof of
knowledge of the plaintext, and the party which decrypts the ciphertext first verifies the proof, then only
if the proof is correct it decrypts the ciphertext, otherwise rejects. Use of a CPLA2-secure public-key
cryptosystem without the special property would allow the adversary to break the protocol with a
significant probability, whenever a randomly chosen ciphertext is rejected. The special property is defined
as pair generation indistinguishability.

Definition 5.5 (Pair Generation Indistinguishability). Let PKE = (KeyGen,Enc,Dec) be a public-key

cryptosystem. For (p, s)
$←− KeyGen(1k), let D

(p,s)
1 , D

(p,s)
2 be two distributions such that D

(p,s)
1 =

{(m, c) : m
$←−M, c

$←− Enc(p,m)} and D
(p,s)
2 = {(m, c) : c

$←− C,m← Dec(s, c)} where M is the message
space and C is the ciphertext space. For ε ≥ 0, the public-key cryptosystem PKE is ε-pair-generation-

indistinguishable (ε− PG-IND) if for all (p, s)
$←− KeyGen(1k), SD(D

(p,s)
1 , D

(p,s)
2) ≤ ε.

Recall that the statistical distance, SD, between two distributions X and Y over a domain U is defined
as SD(X,Y) = 1

2

∑
u∈U

∣∣Pr[X = u]− Pr[Y = u]
∣∣.

The notion of pair generation indistinguishability shares some resemblance with the pseudorandom
decapsulation notion introduced by Abdalla et al. [2], where the notion was needed for the construction of

27

verifiable random functions from identity-based key encapsulation schemes. They presented a methodology
to construct verifiable random functions (VRFs) from a class of identity based key encapsulation
mechanisms (IB-KEM) that is called VRF suitable. An IB-KEM is VRF suitable if it provides an
unique decryption (i.e. given a ciphertext C produced with respect to an identity ID, all the secret
keys corresponding to identity ID′, decrypt to the same value, even if ID = ID′) and it satisfies an
additional property that is called pseudorandom decapsulation. Pseudorandom decapsulation means
that if one decrypts a ciphertext C, produced with respect to an identity ID, using the decryption key
corresponding to any other identity ID′ the resulting value looks random to a polynomially bounded
observer. Both the pair generation indistinguisbability and the pseudorandom decapsulation notions are
similar, except that the pseudorandom decapsulation is in the identity-based setting whereas the pair
generation indistinguishability is in the public key setting.

We show a 0 − PG-IND public-key cryptosystem available in the literature. Naor and Segev [44]
described the framework of a hash proof system [17] as a key-encapsulation mechanism using the notion of
Kiltz et al. [31]. Let K be the symmetric key space, C be the valid ciphertext space and M be the message
space. Both K and C are the same size and elements of M are µ-bit strings. The leakage-resilient public-key

cryptosystem of Naor and Segev encrypts an arbitrary message m
$←− M as (Ψ, c, seed), where c

$←− C with

the corresponding witness ω (of the fact that c is indeed a valid ciphertext from C), seed
$←− {0, 1}t is a

random seed and Ψ = Ext(Pub(p, c, ω), seed)⊕m. Ext : K× {0, 1}t → {0, 1}µ is a public average-case
strong extractor function [21], p is the public key and Pub is the deterministic public evaluation function
of the underlying key-encapsulation mechanism. Pub receives as input a public key p, a valid ciphertext
c ∈ C and the corresponding witness ω, and outputs an encapsulated key in K. Whenever a random
(Ψ, c, seed) is sampled, the decryption, m← Ψ⊕ Ext(Priv(s, c), seed) corresponds to a random m ∈ M.
Priv is a private evaluation algorithm of the underlying key-encapsulation mechanism, receives as input
the secret key s (of the public key p) and a valid ciphertext c, and outputs an encapsulated key in K.
Thus, the leakage-resilient public-key cryptosystem of Naor and Segev is 0−PG-IND. The generic CPLA2-
secure public-key cryptosystem of Halevi and Lin [25] can be instantiated using the leakage-resilient
public-key cryptosystem of Naor and Segev Hence, instantiation of the generic CPLA2-secure public-key
cryptosystem of Halevi and Lin is also 0− PG-IND.

Authenticating Protocol Messages. After computing the pseudo-ephemeral value by the NAXOS
trick, a principal computes a Diffie-Hellman exponentiation and sends it to the other protocol principal.
If that value is sent alone, the protocol is not secure because there is no authentication for the protocol
messages, and hence an attacker can simply replace the original protocol message with its own value.
In order to prevent this, it is necessary to provide authenticity to the protocol messages. There are
unforgeable against chosen message leakage (UFCMLA) secure signature schemes available in the literature
[30, 24, 38, 14], which can be used to sign the protocol messages and provide authenticity. Further, the
key exchange protocol is bounded or continuous leakage-resilient, if the underlying signature scheme is
bounded or continuous leakage-resilient.

5.2.1 Weakening the (·)AFL-eCK Model

When we consider the EphemeralKeyReveal query in the (·)AFL-eCK model, it allows the adversary to
learn the randomness used in the session, including the randomness used in signing. Full leakage of the
randomness is not allowed in leakage-resilient signature schemes. We notice that Alawatugoda et al. [6]
missed this fact. In order to use available leakage-resilient signature schemes in the protocol instantiation,
we will assume that the EphemeralKeyReveal query will not reveal the randomness used to compute the
signature. Therefore, in this generic protocol construction, the security model we consider is slightly
weaker than the actual (·)AFL-eCK model, as it does not reveal the randomness used for signing with
the EphemeralKeyReveal query. We name the weaker model as w(·)AFL-eCK model.

We found that the generic protocol construction of Alawatugoda et al. [6], is vulnerable against
active adversary. Following we explain the reason: In that protocol construction, the inputs to the key
derivation function contain the Diffie-Hellman shared secret, and the identities of the initiator and the
responder, A and B, respectively: KDF(gr̃Ar̃B ,⊥, k, A||B). Assume that the target session is in B, if the
adversary corrupts B and gets the signing key of B, re-sign the protocol message XB computing the new
signature σ′B , that makes a different signature from σB , due to probabilistic signing algorithm. Then if
the adversary sends B,A,XB , σ

′
B to B, instead of B,A,XB , σB , and executes the rest of the protocol, it

results that A’s session and B’s session are not matching, because the message B,A,XB , σB computed by
B is different from the message B,A,XB , σ

′
B received by A, but compute the same session key. Thus, the

28

adversary can issue SessionKeyReveal query to the session at A and thus trivially learn the session key
of the target session. Cremers [18] showed that such attacks can be avoided by using the session identifier
in the key derivation step together with other shared secrets. Thus, in this paper we re-design the protocol
accordingly to ensure that mismatching sessions do not compute same session keys. Thus, the session
key is derived using a pseudo random function as K ← PRF(ms,A||XA||σA||B||XB ||σB), such that it
contains the session identifier A||XA||σA||B||XB ||σB as an input to the pseudo random function. The

shared secret ms is derived as ms← KDF(X r̃A
B ,⊥, k,⊥). The σ input to the KDF is the Diffie-Hellman

shared secret value X r̃A
B , and it is a uniformly random element of the group, and therefore we can use

KDF in the simulation without any problem.

5.2.2 Protocol Construction

In Table 5, we show the construction of protocol π with the fixture to the mentioned problem. KeyGen,
Enc and Dec are the key generation, encryption and decryption algorithms of the underlying CPLA2-
secure (Section 2.3.3), ε− PG-IND-public-key cryptosystem PKE with ciphertext space Ĉ. Moreover, we
choose the message space M of the underlying public-key encryption scheme PKE to be equal to Z∗q . KG,
Sign and Vfy are the key generation, signature generation and signature verification algorithms of the
underlying leakage-resilient signature scheme SIG (Section 2.3.4). The protocol π is a Diffie-Hellman-type
[19] key agreement protocol where G is a group of prime order q with generator g. After exchanging the
public values both principals compute a Diffie-Hellman-type shared secret value, KDF is a secure key
derivation function (Section 2.2.1) which generates a shared secret key (ms) using the Diffie-Hellman-type
shared secret key, and PRF is a pseudo random function (Section 2.2.2) that is used to compute the
session key using that shared key, ms, and the protocol message sequence. The computations which leak
information are underlined.

Remark 3. In Table 5, let Ĉ be the ciphertext space: in a setting like Naor and Segev [44], the random r

values are not just chosen from C, but from Ĉ = {0, 1}µ × C× {0, 1}t, which gives random r
$←− Ĉ in the

form (Ψ, c, seed).

A (Initiator) B (Responder)
Initial Setup

skA, vkA
$←− KG(1k) skB , vkB

$←− KG(1k)

sA, pA
$←− KeyGen(1k) sB , pB

$←− KeyGen(1k)
Protocol Execution

rA
$←− Ĉ If Vfy(vkA, XA, σA) = “true”

{
r̃A ← Dec(sA, rA) rB

$←− Ĉ
XA ← gr̃A r̃B ← Dec(sB , rB)

σA
$←− Sign(skA, (A,B,XA))

A,B,XA,σA−−−−−−−→ XB ← gr̃B
B,A,XB ,σB←−−−−−−−− σB

$←− Sign(skB , (B,A,XB))

1-1 If Vfy(vkB , (B,A,XB), σB) = “true”
{

r̃A ← Dec(sA, rA)

ms←KDF(X r̃A
B ,⊥, k,⊥) ms←KDF(X r̃B

A ,⊥, k,⊥)
K ← PRF(ms,A||XA||σA||B||XB ||σB) K ← PRF(ms,A||XA||σA||B||XB ||σB)} }

K is the session key

Table 5: Generic w(·)AFL-eCK-secure protocol construction: Protocol π

5.2.3 Security of the Protocol π in the w(·)AFL-eCK Model

We prove the security of the generic protocol π in the w(·)AFL-eCK model. If the underlying primitives
are secure in the bounded or continuous leakage model, the protocol π is BAFL-eCK-secure or CAFL-eCK-
secure respectively (with the restriction that EphemeralKeyReveal query does not reveal the randomness
used in the signature computation).

Theorem 5.1. The protocol π is Advλ−w(·)AFL-eCK
π -secure, whenever the underlying public-key cryp-

tosystem PKE is CPLA2-secure and ε− PG-IND, the key derivation function KDF is secure with respect
to an uniformly random source key material, the signature scheme SIG is UFCMLA-secure, PRF is a
pseudo random function, the DDH and the ODH [1] assumptions hold.

Let U = {U1, . . . , UNP
} be a set of NP parties. Each party Ui owns at most Ns number of protocol

sessions. Let A be any PPT adversary against the protocol π. Then the advantage of A against
λ− w(·)AFL-eCK-security of protocol π, Advλ−w(·)AFL-eCK

π is:

29

Advλ−w(·)AFL-eCK
π (A) ≤ max

[
N2
PN

2
s

[(
AdvDDH

q,g (C) + AdvKDF(B) + AdvPRF(J)
)
+

1

q

]
,

N2
PN

2
s

[(
AdvDDH

q,g (C) + AdvKDF(B) + AdvPRF(J) + 2AdvCPLA2
PKE (D) + 2ε

)
+

1

q

]
,

N2
PN

2
s

[(
AdvODH

q,g (R) + AdvPRF(J) + 2AdvCPLA2
PKE (D) + 2ε

)
+

1

q

]
, NPAdvUFCMLA

SIG (E)
]
.

where B, C,D, E ,J ,R are efficient algorithms constructed using the adversary A, against the underlying
key derivation function, KDF, DDH problem, public-key cryptosystem, PKE, the signature scheme, SIG,
pseudo random function, PRF, and Oracle Diffie-Hellman problem respectively. The PKE is ε−PG-IND.

The detailed proof of this theorem is in Appendix B.

5.2.4 Leakage Tolerance of the w(·)AFL-eCK-secure Protocol π: wBAFL-eCK-Secure Instan-
tiation

In the presented protocol, a principal uses a decryption function of a CPLA2-secure ε−PG-IND-public-key
cryptosystem to compute the NAXOS value in a leakage-resilient manner and sets the Diffie-Hellman
exponent as the decrypted message. Then, the principal uses a UFCMLA-secure signature scheme to
authenticate the message. Therefore, the leakage tolerance from the secret key used to compute the
NAXOS value is exactly same as the leakage tolerance of the underlying CPLA2-secure public key
encryption scheme, and the leakage tolerance from the secret key used to compute the signature is exactly
same as the leakage tolerance of the underlying UFCMLA-secure signature scheme.

Halevi and Lin [25] constructed a generic CPLA2-secure public-key cryptosystem which is secure
against bounded leakage and also satisfies pair generation indistinguishability. It can be instantiated with
the DDH-based leakage-resilient public-key encryption scheme of Naor and Segev [44] with decryption cost
of 4 exponentiations, and for a key length k the leakage is bounded by (1−o(1))k. Katz and Vaikuntanathan
[30] constructed an UFCMLA-secure signature scheme in the bounded leakage model, where a signature
can be generated with cost of 2 exponentiations, and verified with cost of 4 exponentiations (with a
simple NIZK proof). The signature scheme of Katz and Vaikuntanathan contains signing and verification
operations based on NIZK protocols. For a key length k, the signature scheme tolerates leakage of
(1− kt) · k, for any constant t < 1. Hence, this protocol can be instantiated with the above mentioned
leakage-resilient signature scheme and the public-key encryption scheme, and achieve leakage tolerance
according to the leakage parameters specified in the above mentioned cryptographic constructions.

5.3 Concrete CAFL-eCK-secure Key Exchange Protocol [7]

In section 5.2 we presented a generic construction for a protocol which is proven secure in the w(·)AFL-eCK
security model. However, when it comes to a concrete construction, the presented generic protocol can
only be instantiated in a way that is secure in the bounded version of the security model and the model
we considered is slightly weaker than the desired (·)AFL-eCK model. Up to now there are no suitable
cryptographic primitives which can be used to instantiate the generic protocol in the continuous leakage
variant of the security model, as well as in the desired (·)AFL-eCK model. Now we present a concrete
protocol construction [7] which is proven secure in the continuous leakage instantiation of the generic
(·)AFL-eCK, namely CAFL-eCK model. Moreover, this construction does not require a weaker variant of
the model for the security proof.

Moving to the leakage-resilient setting of the eCK-style secure key exchange requires rethinking
the NAXOS trick. We have presented a generic construction of a weak after-the-fact leakage eCK
(w(·)AFL-eCK)-secure key exchange protocol in Section 5.2, which uses a leakage-resilient NAXOS
trick. The leakage-resilient NAXOS trick is obtained using a decryption function of an after-the-fact
leakage-resilient public key encryption scheme. A concrete construction of a wBAFL-eCK-secure protocol
is possible since there exists a bounded after-the-fact leakage-resilient public key encryption scheme
which can be used to obtain the required leakage-resilient NAXOS trick, but it is not currently possible
to construct a CAFL-eCK-secure protocol since there is currently no continuous after-the-fact leakage-
resilient public-key encryption scheme available. Therefore, an attempt to construct a CAFL-eCK-secure
key exchange protocol using the leakage-resilient NAXOS approach is not possible at this stage.

In section 3.2 we presented a eCK-secure protocol construction [7], which does not use the NAXOS
trick, namely the protocol P1. The protocol P1 is based on Diffie-Hellman key exchange, which requires

30

exponentiation computations. Moving to the leakage-resilient setting requires rethinking the exponentia-
tion computation in a leakage-resilient manner. Since there exist leakage-resilient encoding schemes and
leakage-resilient refreshing protocols for them (Definition 2.5 and 2.8), the aim is to compute the required
exponentiations in a leakage-resilient manner using the available leakage-resilient storage and refreshing
schemes.

5.3.1 Leakage-Resilient Construction of Protocol P2

Protocol P1 is an eCK-secure key exchange protocol. The eCK model considers an environment where
partial information leakage does not take place. Following the concept that only computation leaks
information, it is assumed that the leakage of long-term secret keys happens when computations are
performed using them. Then, instead of the non-leakage eCK model which is used for the security proof of
protocol P1, the CAFL-eCK model is used, which additionally allows the adversary to obtain continuous
leakage of long-term secret keys.

The idea is to perform the computations which use long-term secret keys (exponentiation operations)
in such a way that the resulting leakage from the long-term secrets should not leak sufficient information
to reveal them to the adversary. To overcome that challenge a leakage-resilient storage scheme and a
leakage-resilient refreshing protocol are used, and the architecture of the protocol P1 is modified, in such a
way that the secret keys s are encoded into two portions sL, sR, Exponentiations are computed using two
portions sL, sR instead of directly using s, and the two portions sL, sR are being refreshed continuously.

Obtaining Leakage Resiliency by Encoding Secrets. In this setting a secret s is encoded using an
Encode function of a leakage-resilient storage scheme Λ = (Encode,Decode). So the secret s is encoded as
(sL, sR)← Encode(s). The leakage-resilient storage scheme randomly chooses sL and then computes sR
such that sL · sR = s. A tuple leakage parameter λ = (λ1, λ2) is defined as follows: λ-limited adversary
A sends a leakage function f = (f1j , f2j) and obtains at most λ1, λ2 amount of leakage from each of the
two encodings of the secret s respectively: f1j(sL) and f2j(sR).

As mentioned in Definition 2.8, the leakage-resilient storage scheme can continuously refresh the
encodings of the secret. Therefore, after executing the refreshing protocol it outputs new random-looking
encodings of the same secret. So for the λ-limited adversary again the situation is as before. Thus,
refreshing the encodings will help to obtain leakage resilience over a number of protocol executions.

The computation of exponentiations is also split into two parts. Let G be a group of prime order

q with generator g. Let s
$←− Z∗q be a long-term secret key and E = ge be a received ephemeral value.

Then, the value Z needs to be computed as Z ← Es. In the leakage-resilient setting, in the initial
setup the secret key is encoded as sL, sR ← Encoden,1Z∗q

(s). So the vector sL = (sL1, · · · , sLn) and the

vector sR = (sR1, · · · , sRn) are such that s = sL1sR1 + · · · + sLnsRn. Then the computation of Es

can be performed as two component-wise computations as follows: compute the intermediate vector
T ← EsL = (EsL1 , · · · , EsLn) and then compute the element Z ← T sR = EsL1sR1EsL2sR2 · · ·EsL1sR1 =
EsL1sR1+···+sLnsRn = Es.

5.3.2 Protocol Construction

Using the above ideas, by encoding the secret using a leakage-resilient storage scheme, and refreshing the
encoded secret using a refreshing protocol, it is possible to hide the secret from a λ-limited adversary.
Further, it is possible to successfully compute the exponentiation using the encoded secrets. A CAFL-eCK-
secure key exchange protocol is constructed, using an eCK-secure key exchange protocol as an underlying
primitive.

Let Λn,1Z∗q
= (Encoden,1Z∗q

,Decoden,1Z∗q
) be the leakage-resilient storage scheme which is used to encode

secret keys and Refreshn,1Z∗q
be the (`,λ, ε)-secure leakage-resilient refreshing protocol of Λn,1Z∗q

.

As we can see, the obvious way of key generation (initial setup) in a protocol principal of this

protocol is as follows: first pick a
$←− Z∗q as the long-term secret key, then encode the secret key as

(a0
L, a

0
R) ← Encoden,1Z∗q

(a), then compute the long-term public key A = ga using the two encodings

(a0
L, a

0
R), and finally erase a from the memory. The potential threat to that key generation mechanism is

that even though the long-term secret key a is erased from the memory, it might not be properly erased
and can be leaked to the adversary during the key generation. In order to avoid such a vulnerability, two

values a0
L

$←− (Z∗q)n\{(0n)}, a0
R

$←− (Z∗q)n×1\{(0n×1)} are picked at random and use them as the encodings
of the long-term secret key a of a protocol principal. As explained earlier, a0

L, a
0
R are used to compute

31

the corresponding long-term public key A in two steps as a′ ← ga
0
L and A← a′a

0
R . Thus, it is possible to

avoid exposing the un-encoded secret key a at any point of time in the key generation and hence avoid
leaking directly from a at the key generation step. Further, the random vector a0

L is multiplied with the
random vector a0

R, such that a = a0
L · a0

R, which will give a random integer a in the group Z∗q . Therefore,

this approach is same as picking a
$←− Z∗q at first and then encode, but in the reverse order. During the

protocol execution both a0
L, a

0
R are continuously refreshed and refreshed encodings ajL, a

j
R are used to

exponentiation computations.
Table 6 shows the protocol P2 of Alawatugoda et al. [7]. Leakage of a long-term secret key does

not happen directly from the long-term secret key itself, but from the two encodings of the long-term
secret key (the leakage function f = (f1j , f2j) directs to the each individual encoding). During the
exponentiation computations and the refreshing operation collectively at most λ = (λ1, λ2) leakage is
allowed to the adversary from each of the two portions independently. Then, the two portions of the
encoded long-term secret key are refreshed and in the next protocol session another λ-bounded leakage is
allowed. Thus, continuous leakage is allowed.

Alice (Initiator) Bob (Responder)
Initial Setup

a0
L

$←− (Z∗q)n\{(0n)}, a0
R

$←− (Z∗q)n×1\{(0n×1)} b0L
$←− (Z∗q)n\{(0n)}, b0R

$←− (Z∗q)n×1\{(0n×1)}
a′ ← ga

0
L , A← (a′)a

0
R b′ ← gb

j
L , B ← (b′)b

0
R

Protocol Execution

x
$←− Z∗q , X ← gx

Alice,X−−−−−→ y
$←− Z∗q , Y ← gy

Bob,Y←−−−−
T1 ← Ba

j
L , Z1 ← T

ajR
1 T3 ← Ab

j
L , Z ′1 ← T

bjR
3

Z2 ← Bx T4 ← XbjL , Z ′2 ← T
bjR
4

T2 ← Y a
j
L , Z3 ← T

ajR
2 Z ′3 ← Ay

Z4 ← Y x Z ′4 ← Xy

(aj+1
L , aj+1

R)← Refreshn,1Z∗q
(ajL, a

j
R) (bj+1

L , bj+1
R)← Refreshn,1Z∗q

(bjL, b
j
R)

K ← H(Z1, Z2, Z3, Z4, Alice,X,Bob, Y) K ← H(Z ′1, Z
′
2, Z

′
3, Z

′
4, Alice,X,Bob, Y)

K is the session key

Table 6: Concrete construction of Protocol P2

5.3.3 Security of the Protocol P2 in the CAFL-eCK Model

Theorem 5.2. [7] If the underlying refreshing protocol Refreshn,1Z∗q
is (`,λ, ε)-secure leakage-resilient

refreshing protocol of the leakage-resilient storage scheme Λn,1Z∗q
and the underlying key exchange protocol

P1 is eCK-secure key exchange protocol, then the protocol P2 is λ− CAFL-eCK-secure.
Let A be any PPT adversary against the key exchange protocol P2. Then the advantage of A against

the CAFL-eCK-security of the protocol P2, Advλ−CAFL-eCK
P2 is:

Advλ−CAFL-eCK
P2 (A) ≤ NP

(
AdveCK

P1 (A) + ε
)
. (1)

5.3.4 Leakage Tolerance of the Protocol P2

The order of the group G is q. Let m = 1 in the leakage-resilient storage scheme Λn,1Z∗q
. According to

the Lemma 2.1, if m < n/20, then the leakage parameter for the leakage-resilient storage scheme is
λΛ = (0.3n log q, 0.3n log q). Let n = 21, then λΛ = (6.3 log q, 6.3 log q) bits. According to the Theorem
2.2, if m/3 ≤ n and n ≥ 16, the refreshing protocol Refreshn,1Z∗q

of the leakage-resilient storage scheme Λn,1Z∗q
is tolerant to (continuous) leakage up to λRefresh = λΛ/2 = (3.15 log q, 3.15 log q) bits, per occurrence.

When a secret key s (of size log q bits) of the protocol P2 is encoded into two parts, the left part sL
will be n · log q = 21 log q bits and the right part sR will be n · 1 · log q = 21 log q bits. For a tuple leakage
function f = (f1j , f2j) (each leakage function f(·) for each of the two parts sL and sR), there exists a
tuple leakage bound λ = (λ, λ) for each leakage function f(·), such that λ = 3.15 log q bits, per occurrence,

which is 3.15 log q
21 log q × 100% = 15% of the size of a part. The overall leakage amount is unbounded since

continuous leakage is allowed.

32

6 Comparison of Key Exchange Security Models and Protocols

In this paper, we have presented two security models for key exchange protocols, addressing more granular
partial leakage of long-term secret keys, namely continuous after-the-fact leakage model (CAFL) and
the generic after-the-fact leakage eCK model ((·)AFL-eCK) (and w(·)AFL-eCK) model). Further, we
presented generic protocol constructions for each of CAFL and w(·)AFL-eCK) models and a concrete
protocol construction for the continuous leakage variant of the (·)AFL-eCK model, the CAFL-eCK model.

6.1 Comparison of Security Models

Table 7 summarizes the adversarial powers of the two instantiations of the generic (·)AFL-eCK model and
the CAFL model, in comparison with the adversarial powers of the eCK model [36] and the Moriyama–
Okamoto (MO) model [43]. There are four Corrupt–EphemeralKeyReveal query combinations which do
not trivially expose the session key. In the column “Combinations” of Table 7, we mention how many
of them are allowed in the corresponding security model. We discussed query combinations in detail in
Section 4.1.3. The ∗ indicates that the w(·)AFL-eCK model does not allow the EphemeralKeyReveal

query to reveal the randomness used in the underlying signature scheme.

Security model Combinations Leakage model After-the-fact
eCK[36] 4/4 No No
MO[43] 4/4 Bounded No
CAFL (Section 4) 2/4 Continuous Yes
(·)AFL-eCK (Section 5) 4/4 Bounded/Continuous Yes
w(·)AFL-eCK (Section 5) 4∗/4 Bounded/Continuous Yes

Table 7: Key exchange security models with reveal queries and leakage allowed

The eCK model is a non-leakage security model and Moriyama and Okamoto have constructed a
leakage security model based on eCK model. The Moriyama-Okamoto model allows bounded leakage,
only before the target session is established. The CAFL model, allows continuous leakage even after the
target session is established, while enforcing additional restrictions to the eCK-style freshness condition.
Therefore, the strength of the CAFL model is not directly comparable with eCK or Moriyama-Okamoto
models, but the CAFL model clearly allows more granular partial leakage. The generic (·)AFL-eCK
releases the additional restrictions to the freshness condition which had been introduced in the CAFL
model. Thus, the two instantiations of the generic (·)AFL-eCK model, namely the BAFL-eCK and
CAFL-eCK models are stronger than the eCK, the Moriyama-Okamoto and the CAFL models.

6.2 Comparison of Key Exchange Protocols

Table 8 compares the protocol π1 of section 4, the protocol π of section 5 and the protocol P2 of section
5, with the NAXOS protocol [36] and the Moriyama–Okamoto protocol [43].

Protocol Security Model Assumptions Construction

NAXOS [36] eCK GDH, RO Concrete
MO [43] MO DDH, HPS, PRF, (λ, ε)-Ext Concrete

π1 of Section 4 CAFL CCLA2-secure PKE, PRF, Generic
π of Section 5 w(·)AFL-eCK DDH, ODH, ε− PG-IND and CPLA2-secure PKE, secure KDF, PRF Generic
P2 of Section 5 CAFL-eCK GDH, RO Concrete

Table 8: Comparison of key exchange protocols

The NAXOS protocol is the first concrete protocol which is proven secure in the eCK model. Being
an eCK-secure protocol, NAXOS does not provide any security guarantee for side-channel attacks. The
Moriyama-Okamoto protocol is the first concrete protocol which is proven secure in a leakage security
model, namely the Moriyama-Okamoto model. The Moriyama-Okamoto protocol is resistant to a bounded
amount of leakage of long-term secret keys only before the target session is activated. We presented a
generic CAFL-secure protocol, which can be instantiated using any suitable leakage-resilient public-key
encryption scheme, in a way that it is secure against continuous leakage of long-term secret keys even
after the target session is activated. Then we presented a generic w(·)AFL-eCK-secure protocol in a
way that it is possible to instantiate a wBAFL-eCK or wCAFL-eCK-secure key exchange protocol using
any suitable leakage-resilient public-key encryption scheme and a leakage-resilient signature scheme.
Since there are currently no suitable leakage-resilient public-key encryption schemes to instantiate the
continuous leakage-resilient variant of the generic protocol, we presented a concrete CAFL-eCK-secure

33

protocol, namely protocol P2, using leakage-resilient storage schemes. Protocol P2 is proven secure in
the strongest leakage-security model for key exchange, guaranteeing the eCK-style security as well as
tolerance against continuous leakage of long-term secret keys even after the target session is activated.

The generic CAFL-secure protocol of section 4 can be instantiated with the CCLA2-secure public-key
encryption scheme of Dziemboski and Faust [22], whereas the generic w(·)AFL-eCK-secure protocol of
section 5 can be instantiated as a wBAFL-eCK-secure protocol using the CPLA2-secure pair generation
indistinguishable public-key encryption scheme of Halevi and Lin [25] and the UFCMLA-secure signature
scheme of Katz and Vaikuntanathan [30]. Table 9 compares these protocol instantiations and the
protocol P2 with the NAXOS protocol [36] and the Moriyama-Okamoto (MO) protocol [43], in terms of
computation cost and the security model.

Protocol Initiator Cost Responder Cost Security Model
NAXOS [36] 4 Exp 4 Exp eCK

MO [43] 8 Exp 8 Exp MO
π1 of Section 4 instantiation 10 Exp 10 Exp CAFL
π of Section 5 instantiation 12 Exp 12 Exp wBAFL-eCK

P2 protocol of Section 5 6 Exp 6 Exp CAFL-eCK

Table 9: Security and efficiency comparison of key exchange protocols

Acknowledgements

I would like to acknowledge Dr. Douglas Stebila and Professor Colin Boyd for numerous discussions on
key exchange protocols and leakage-resilient cryptography.

References

[1] M. Abdalla, M. Bellare, and P. Rogaway. The oracle diffie-hellman assumptions and an analysis of
DHIES. In Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at RSA Conference
2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings, pages 143–158, 2001.

[2] M. Abdalla, D. Catalano, and D. Fiore. Verifiable random functions from identity-based key encap-
sulation. In Advances in Cryptology - EUROCRYPT 2009, 28th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings, pages 554–571, 2009.

[3] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptography
against memory attacks. In Theory of Cryptology Conference, pages 474–495, 2009.

[4] J. Alawatugoda, C. Boyd, and D. Stebila. Continuous after-the-fact leakage-resilient key exchange.
In Information Security and Privacy - 19th Australasian Conference, ACISP 2014, Wollongong,
NSW, Australia, July 7-9, 2014. Proceedings, pages 258–273, 2014.

[5] J. Alawatugoda, D. Jayasinghe, and R. Ragel. Countermeasures against Bernstein’s remote cache
timing attack. In 6th IEEE International Conference on Industrial and Information Systems (ICIIS),
pages 43 –48, Aug. 2011.

[6] J. Alawatugoda, D. Stebila, and C. Boyd. Modelling after-the-fact leakage for key exchange. In 9th
ACM Symposium on Information, Computer and Communications Security, ASIA CCS ’14, Kyoto,
Japan - June 03 - 06, 2014, pages 207–216, 2014.

[7] J. Alawatugoda, D. Stebila, and C. Boyd. Continuous after-the-fact leakage-resilient eck-secure key
exchange. In Cryptography and Coding - 15th IMA International Conference, IMACC 2015, Oxford,
UK, December 15-17, 2015. Proceedings, pages 277–294, 2015.

[8] J. A. B. Alawatugoda. On the leakage resilience of secure channel establishment. PhD thesis,
Queensland University of Technology, 2015.

[9] M. Bellare and P. Rogaway. Entity authentication and key distribution. In CRYPTO, pages 232–249,
1993.

34

[10] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993.

[11] M. Bellare and P. Rogaway. Provably secure session key distribution - the three party case. pages
57–66. ACM Press, 1995.

[12] D. J. Bernstein. Cache-timing attacks on AES. Technical report, 2005.
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[13] V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated key exchange using
Diffie-Hellman. In Proceedings of the 19th international conference on Theory and application of
cryptographic techniques, EUROCRYPT’00, pages 156–171, Berlin, Heidelberg, 2000. Springer-Verlag.

[14] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole in the bucket:
Public-key cryptography resilient to continual memory leakage. IACR Cryptology ePrint Archive,
Report 2010/278, 2010.

[15] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels. In EUROCRYPT, pages 453–474, 2001.

[16] K. R. Choo, C. Boyd, Y. Hitchcock, and G. Maitland. On session identifiers in provably secure
protocols: The bellare-rogaway three-party key distribution protocol revisited. In Security in
Communication Networks, 4th International Conference, SCN 2004, Amalfi, Italy, September 8-10,
2004, Revised Selected Papers, pages 351–366, 2004.

[17] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In EUROCRYPT, pages 45–64. Springer, 2002.

[18] C. Cremers. Examining indistinguishability-based security models for key exchange protocols: the
case of ck, ck-hmqv, and eck. In Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security, ASIACCS 2011, Hong Kong, China, March 22-24, 2011, pages 80–91,
2011.

[19] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, pages 644 – 654, 1976.

[20] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and authenticated key exchanges.
Des. Codes Cryptography, 2(2):107–125, 1992.

[21] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys from biometrics
and other noisy data. In EUROCRYPT, pages 523–540, 2004.

[22] S. Dziembowski and S. Faust. Leakage-resilient cryptography from the inner-product extractor. In
ASIACRYPT, pages 702–721, 2011.

[23] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In IEEE Symposium on Foundations
of Computer Science, pages 293–302, 2008.

[24] S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum. Leakage-resilient signatures. IACR Cryptology
ePrint Archive, Report 2009/282, 2009.

[25] S. Halevi and H. Lin. After-the-fact leakage in public-key encryption. In Theory of Cryptology
Conference, pages 107–124, 2011.

[26] I. Herath and R. Ragel. Side channel attacks: Measures and countermeasures. In 14th Annual
Conference of the IET Sri Lanka Network, 2007.

[27] M. Hutter, S. Mangard, and M. Feldhofer. Power and EM attacks on passive 13.56MHz RFID
devices. In CHES, pages 320–333, 2007.

[28] D. P. Jablon. Strong password-only authenticated key exchange. SIGCOMM Comput. Commun.
Rev., 26(5):5–26, Oct. 1996.

[29] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC Press, 2007.

35

[30] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage resilience. In ASIACRYPT,
pages 703–720, 2009.

[31] E. Kiltz, K. Pietrzak, M. Stam, and M. Yung. A new randomness extraction paradigm for hybrid
encryption. In EUROCRYPT, pages 590–609, 2009.

[32] M. Kim, A. Fujioka, and B. Ustaoglu. Strongly secure authenticated key exchange without naxos’
approach. In Advances in Information and Computer Security, 4th International Workshop on
Security, IWSEC 2009, Toyama, Japan, October 28-30, 2009, Proceedings, pages 174–191, 2009.

[33] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems.
pages 104–113. Springer-Verlag, 1996.

[34] H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In CRYPTO, pages
546–566, 2005.

[35] H. Krawczyk. On extract-then-expand key derivation functions and an HMAC-based KDF.
http://webee.technion.ac.il/ hugo/kdf/kdf.pdf, 2008.

[36] B. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key exchange. In
ProvSec, pages 1–16, 2007.

[37] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for authenticated key
agreement. Technical report, Designs, Codes and Cryptography, 1998.

[38] T. Malkin, I. Teranishi, Y. Vahlis, and M. Yung. Signatures resilient to continual leakage on memory
and computation. In Theory of Cryptology Conference, pages 89–106, 2011.

[39] J. R. McCumber. Information systems security : A comprehensive model. In Proceedings of the 14th
National Computer Security Conference, October 1991.

[40] T. Messerges, E. Dabbish, and R. Sloan. Examining smart-card security under the threat of power
analysis attacks. IEEE Transactions on Computers, pages 541–552, 2002.

[41] S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In Theory of
Cryptology Conference, pages 278–296, 2004.

[42] D. Moriyama and T. Okamoto. An eck-secure authenticated key exchange protocol without random
oracles. In Provable Security, Third International Conference, ProvSec 2009, Guangzhou, China,
November 11-13, 2009. Proceedings, pages 154–167, 2009.

[43] D. Moriyama and T. Okamoto. Leakage resilient eCK-secure key exchange protocol without random
oracles. In ASIACCS, pages 441–447, 2011.

[44] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO, pages 18–35.
2009.

[45] K. Pietrzak. A leakage-resilient mode of operation. In Proceedings of the 28th Annual International
Conference on Advances in Cryptology: the Theory and Applications of Cryptographic Techniques,
EUROCRYPT ’09, pages 462–482, Berlin, Heidelberg, 2009. Springer-Verlag.

[46] B. Ustaoglu. Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS.
Des. Codes Cryptography, 46(3):329–342, 2008.

[47] Z. Yang. Efficient eck-secure authenticated key exchange protocols in the standard model. In
Information and Communications Security - 15th International Conference, ICICS 2013, Beijing,
China, November 20-22, 2013. Proceedings, pages 185–193, 2013.

A Proof of the Theorem 4.1

Proof. Assume that the adversary A can win the challenge against the protocol π1 challenger with
advantage Advλ−CAFL

π1 (A). We split the proof into two cases: partner to the test session exists and
partner to the test session does not exist.

36

Case 1: Partner to the test session exists

In this case we consider three sub cases as follows:

1. Adversary corrupts the owner of the test session, but does not corrupt the peer.

2. Adversary corrupts the peer of the test session, but does not corrupt the owner.

3. Adversary corrupts neither the owner nor the partner of the test session

Case 1.1: Adversary corrupts the owner of the test session, but does not corrupt the peer

In this case we consider the situation that A corrupts the owner of the test session but not the partner.

Game 1. This game is the original game. When the Test query is asked, the Game 1 challenger chooses

a random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen

from the same session key space is given.

Game 2. Same as Game 1 with the following exception: before A begins, two distinct random principals
U∗, V ∗ ← {U1, . . . , UNP

} are chosen and two random numbers s∗, t∗ ← {1, . . . , Ns} are chosen, where NP
is the number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗

is chosen as the target session and the session Πt∗

V ∗,U∗ is chosen as the partner to the target session. If the

test session is not the session Πs∗

U∗,V ∗ or the partner to the session is not Πt∗

V ∗,U∗ , the Game 2 challenger
aborts the game.

Game 3. Same as Game 2 with the following exception: the Game 3 challenger chooses a random value

r′
$←− {0, 1}k.

• If the test session is on the initiator, the challenger computes the session key in the test session
K ← PRF(r′, U∗||CU∗ ||V ∗||CV ∗)⊕ PRF(rV ∗ , U

∗||CU∗ ||V ∗||CV ∗).

• If the test session is on the responder, the challenger computes the session key in the test session
K ← PRF(rV ∗ , V

∗||CV ∗ ||U∗||CU∗)⊕ PRF(r′, V ∗||CV ∗ ||U∗||CU∗).

The session key is computed in the same way in the partner to the test session.

Game 4. Same as Game 3 with the following exception: In the Test query, in the target session, the

Game 4 challenger randomly chooses K
$←− {0, 1}k and sends it to the adversary A as the answer to the

Test query. In sessions at V ∗ which has the same incoming message to V ∗ as in the target session, the

session key is randomly chosen as K
$←− {0, 1}k.

Differences between games. In this section the adversary’s advantage of distinguishing each game
from the previous game is investigated. AdvGame x(A) denotes the advantage of the adversary A of
winning Game x.

Game 1 is the original game. Hence,

AdvGame 1(A) = Advλ−CAFL
π1,Case 1.1(A). (2)

Game 1 and Game 2. The probability of Game 2 to be halted due to incorrect choice of the test
session is 1− 1

N2
PN

2
s

. Unless the incorrect choice happens, Game 2 is identical to Game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (3)

37

Game 2 and Game 3. We introduce an algorithm D which is constructed using the adversary A. If
A can distinguish the difference between Game 2 and Game 3, then D can be used against the CCLA2
challenger of the underlying public-key cryptosystem, PKE. The algorithm D uses the public key of the
CCLA2 challenger as the public key of the protocol principal V ∗ and generates public/secret key pairs for
all other protocol principals. D runs a copy of A and interacts with A, such that A is interacting with
either Game 2 or Game 3. D picks two random strings, r′0, r

′
1 ← {0, 1}k and passes them to the CCLA2

challenger. From the CCLA2 challenger, D receives a challenge ciphertext C such that C ← Enc(pkV ∗ , r
′)

where r′ = r′0 or r′ = r′1. The following describes D’s procedure of answering queries.

• Send(U, V, s,m, f) query:

– U = U∗, V = V ∗, s = s∗:

∗ If U∗ is the initiator, D sends the ciphertext C to A as the first message of the test session.
Upon receiving the second protocol message computes the session key K ← PRF(r′1, U

∗

||CU∗ ||V ∗||CV ∗)⊕ PRF(rV ∗ , U
∗||CU∗ ||V ∗||CV ∗).

∗ If U∗ is the responder, upon receiving the first protocol message sends C toA, and computes
the session key K ← PRF(r′1, V

∗||CV ∗ ||U∗||CU∗)⊕ PRF(rV ∗ , V
∗||CV ∗ ||U∗||CU∗).

– U = U∗, V = V ∗, s 6= s∗: Executes the protocol normally.

– U = U∗, V 6= V ∗: Executes the protocol normally.

– U = V ∗:

∗ If this is the initiator and it is the first message, then executes the protocol normally.

∗ If this is the initiator and the second protocol message, or the responder:

· If C has come as the incoming message uses r′1 as the decryption of the incoming
message. To obtain the corresponding leakage, D first encrypts r′1 using pkV ∗ , gets
that ciphertext and access the leakage oracle of CCLA2 challenger with the ciphertext
of r′1.

· Else uses the decryption oracle to decrypt incoming messages.

– U, V 6= U∗ or V ∗: Executes the protocol normally.

For all other leakage queries f(skV ∗), D obtains the leakage accessing the leakage oracle of the
CCLA2 challenger, whereas for all the other leakage queries, D can compute the leakage by its
own, because D knows all other secret keys.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session or
the partner of the target session. D can compute all the session keys by executing the protocol.

– For sessions involving the principal V ∗, and the incoming message to V ∗ is the same message
which has come to V ∗ in the target session, uses r′1 as the decryption.

– For other sessions involving the principal V ∗, D can decrypt the incoming messages to V ∗ by
using the decryption oracle.

– Otherwise, D can decrypt all the other incoming messages to protocol principals by its own.

Then compute the session key using the PRF.

• EphemeralKeyReveal(U, V, s) query: For all EphemeralKeyReveal queries allowed in the freshness
condition, D can answer correctly, because D has the ephemeral keys.

• Corrupt(U) query: Except for V ∗, algorithm D can answer all other Corrupt queries. In this case
we consider the situation in which the adversary is not allowed to corrupt the partner principal of
the target session, so in fact, D can answer all legitimate Corrupt queries.

• Test(U, V, s) query: Answers with the K which is computed at the Send query when U = U∗, V =
V ∗, s = s∗.

If r′1 is the decryption of C in the target session, the simulation constructed by D is identical to
Game 2 whereas if r′0 is the decryption of C, the simulation constructed by D is identical to Game
3. If A can distinguish the difference between Game 2 and Game 3, then D can distinguish whether
C ← Enc(pkV ∗ , r

′
0) or C ← Enc(pkV ∗ , r

′
1).

The algorithm D plays the CCLA2 game against the public-key cryptosystem PKE according to the
Definition 2.10 since D does not ask the decryption of the challenge ciphertext C. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvCCLA2
PKE (D). (4)

38

Game 3 and Game 4. If A can distinguish the difference between Game 3 and Game 4, then A can
be used as a subroutine of an algorithm B, which is used to distinguish whether the session key value
K is computed using the real PRF with a hidden key, or using a random function. The adversary A is
given a K, such that it is computed using the PRF or randomly chosen from the session key space. The
following describes B’s procedure of answering queries.

• Send(U, V, s,m, f) query:

– U = U∗, V = V ∗, s = s∗:

∗ If U∗ is the initiator, upon receiving the second protocol message computes the session
key K ← OraclePRF(U∗||CU∗ ||V ∗||CV ∗)⊕ PRF(rV ∗ , U

∗||CU∗ ||V ∗||CV ∗).
∗ If U∗ is the responder, upon receiving the first protocol message computes the session key
K ← OraclePRF(U∗||CU∗ ||V ∗||CV ∗)⊕ PRF(rV ∗ , U

∗||CU∗ ||V ∗||CV ∗).
– U = U∗, V = V ∗, s 6= s∗: Executes the protocol normally.

– U = U∗, V 6= V ∗: Executes the protocol normally.

– U = V ∗:

∗ If this is the initiator and it is the first message, then executes the protocol normally.

∗ If this is the initiator and the second protocol message, or the responder:

· If the same message that came to V ∗ in the test session has come as the incoming
message, computes the session key using the OraclePRF.

· Otherwise, executes the protocol normally.

– U, V 6= U∗ or V ∗: Executes the protocol normally.

For all leakage queries, B can compute the leakage by its own, because B knows all the secret
keys.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session or
its partner. B can compute all the session keys by executing the protocol.

– For sessions involving the principal V ∗, and the incoming message to V ∗ is the same message
which has come to V ∗ in the target session, B uses OraclePRF to compute the session key.

– For all other sessions, B computes the session key by using the PRF.

• EphemeralKeyReveal(U, V, s) query: B can answer all EphemeralKeyReveal queries, which are
allowed by the freshness condition, because B has the ephemeral keys.

• Corrupt(U) query: Except for V ∗, algorithm B can answer all other Corrupt queries. In this case
we consider the situation in which the adversary is not allowed to corrupt the partner principal of
the target session, so in fact, B can answer all legitimate Corrupt queries.

• Test(U, V, s) query: Answers with the K which is computed at the Send query when U = U∗, V =
V ∗, s = s∗.

If the oracle is using the real PRF with a hidden key, the simulation is identical to Game 3, whereas
if the oracle is using a random function, the simulation constructed is identical to Game 4. If A can
distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine of an
algorithm B, which is used to distinguish whether the PRF challenger is real or random. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvPRF(B). (5)

Semantic security of the session key in Game 4. Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 4. Hence,

AdvGame 4(A) = 0. (6)

Combining the results above, we find,

Advλ−CAFL
π1,Case 1.1(A) ≤ N2

PN
2
s

(
AdvCCLA2

PKE (D) + AdvPRF(B)
)
. (7)

39

Case 1.2: Adversary corrupts the peer of the test session, but does not corrupt the owner.

In this case we consider the situation that A corrupts the partner of the test session but not the owner.
The proof structure and games are similar to the previous case. The differences in this case is that the
algorithm D uses the public key of the CCLA2 challenger as the public key of the protocol principal
U∗ (difference between Game 2 and Game 3), and OraclePRF is used when the incoming message to U∗

in the test session is used as the incoming message to U∗ in any other sessions (Game 3 and Game 4
analysis). We find,

Advλ−CAFL
π1,Case 1.2(A) ≤ N2

PN
2
s

(
AdvCCLA2

PKE (D) + AdvPRF(B)
)
. (8)

Case 1.3: Adversary corrupts neither the owner nor the partner of the test session

In this case we consider the situation that A corrupts neither the owner nor the partner of the test session.
So D can set the public key of the CCLA2 challenger as the public key of either U∗ or V ∗. The proof
structure and games are similar to the previous case. We consider two sub cases under this case as follows:

• (a) Adversary does not ask EphemeralKeyReveal(V ∗, U∗, t∗): simulation and analysis of this case
is similar to the Case 1.2, because here D can set the public key of the CCLA2 challenger as the
public key of the protocol principal U∗ and proceed with the simulation as in the Case 1.2 (only
difference is that here the adversary does not corrupt the partner principal of the test session, as in
the Case 1.2, but rest of the simulation is same as in the Case 1.2). Thus,

Advλ−CAFL
π1,Case 1.3.a(A) ≤ N2

PN
2
s

(
AdvCCLA2

PKE (D) + AdvPRF(B)
)
. (9)

• (b) Adversary does not ask EphemeralKeyReveal(U∗, V ∗, s∗): simulation and analysis of this case
is similar to the Case 1.1, because here D can set the public key of the CCLA2 challenger as the
public key of the protocol principal V ∗ and proceed with the simulation as in the Case 1.1 (only
difference is that here the adversary does not corrupt the owner of the test session, as in the Case
1.1, but rest of the simulation is same as in the Case 1.1). Thus,

Advλ−CAFL
π1,Case 1.3.b(A) ≤ N2

PN
2
s

(
AdvCCLA2

PKE (D) + AdvPRF(B)
)
. (10)

Case 2: Partner to the test session does not exist

Game 1. This game is the original game. When the Test query is asked, the Game 1 challenger chooses
a random bit b← {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen
from the same session key space is given.

Game 2. Same as Game 1 with the following exception: before A begins, two distinct random principals
U∗, V ∗ ← {U1, . . . , UNP

} are chosen and a random number s∗ ← {1, . . . , Ns} is chosen, where NP is the
number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗ is

chosen as the target session. If the test session is not the session Πs∗

U∗,V ∗ , the Game 2 challenger aborts
the game.

Game 3. Same as Game 2 with the following exception: the Game 3 challenger chooses a random value

r′
$←− {0, 1}k.

• If the test session is on the initiator, the challenger computes the session key in the test session
K ← PRF(r′, U∗||CU∗ ||V ∗||CV ∗)⊕ PRF(rV ∗ , U

∗||CU∗ ||V ∗||CV ∗).

• If the test session is on the responder, the challenger computes the session key in the test session
K ← PRF(rV ∗ , V

∗||CV ∗ ||U∗||CU∗)⊕ PRF(r′, V ∗||CV ∗ ||U∗||CU∗).

The session key is computed in the same way in the partner to the test session.

Game 4. Same as Game 3 with the following exception: In the Test query, in the target session the

Game 4 challenger randomly chooses K
$←− {0, 1}k and sends it to the adversary A as the answer to the

Test query. In sessions at V ∗ which has a same incoming message to V ∗ as in the target session, the

session key is randomly chosen as K
$←− {0, 1}k.

40

Differences between games. Game 1 is the original game. Hence,

AdvGame 1(A) = Advλ−CAFL
π1,Case 2(A). (11)

Game 1 and Game 2. The probability of Game 2 to be halted due to incorrect choice of the test
session is 1− 1

N2
PNs

. Unless the incorrect choice happens, Game 2 is identical to Game 1. Hence,

AdvGame 2(A) =
1

NP
2Ns

AdvGame 1(A). (12)

Game 2 and Game 3. We introduce an algorithm D which is constructed using the adversary A. If
A can distinguish the difference between Game 2 and Game 3, then D can be used against the CCLA2
challenger of underlying public-key cryptosystem, PKE. The algorithm D uses the public key of the
CCLA2 challenger as the public key of the protocol principal V ∗ and generates public/secret key pairs
for all other protocol principals. D runs a copy of A and interacts with A, such that it is interacting with
either Game 2 or Game 3. D picks two random strings, r′0, r

′
1 ← {0, 1}k and passes them to the CCLA2

challenger. From the CCLA2 challenger, D receives a challenge ciphertext C such that C ← Enc(pkV ∗ , r
′)

where r′ = r′0 or r′ = r′1. The following describes the procedure of answering queries.

• Send(U, V, s,m, f) query:

– U = U∗, V = V ∗ and s = s∗:

∗ If U∗ is the initiator, D sends the ciphertext C to A as the first message of the test session.
Upon receiving the second protocol message computes the session key K ← PRF(r′1, U

∗

||CU∗ ||V ∗||CV ∗)⊕ PRF(rV ∗ , U
∗||CU∗ ||V ∗||CV ∗).

∗ If U∗ is the responder, upon receiving the first protocol message sends C toA, and computes
the session key K ← PRF(r′1, V

∗||CV ∗ ||U∗||CU∗)⊕ PRF(rV ∗ , V
∗||CV ∗ ||U∗||CU∗).

– U = U∗, V = V ∗, s 6= s∗: Executes protocol normally.

– U = U∗, V 6= V ∗: Executes the protocol normally.

– U = V ∗:

∗ If this is the initiator and it is the first message, then executes the protocol normally.

∗ If this is the initiator and the second protocol message, or the responder:

· If C has come as the incoming message uses r′1 as the decryption of the incoming
message. To obtain the corresponding leakage, D first encrypts r′1 using pkV ∗ , gets
that ciphertext and access the leakage oracle of CCLA2 challenger with the ciphertext
of r′1.

· Else uses the decryption oracle to decrypt incoming messages.

– U, V 6= U∗ or V ∗: Executes the protocol normally.

For all other leakage queries f(skV ∗), D obtains the leakage accessing the leakage oracle,
whereas for all other leakage D can compute the leakage by its own because D knows all other
secret keys.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session or
its partner.

– For sessions involving the principal V ∗, and the incoming message to V ∗ is the same message
which has come to V ∗ in the target session, uses r′1 as the decryption.

– For other sessions involving the principal V ∗, D can decrypt the incoming messages to V ∗ by
using the decryption oracle.

– Otherwise, D can decrypt all the other incoming messages to protocol principals by its own.

Then compute the session key using the PRF.

• EphemeralKeyReveal(U, V, s) query: For all EphemeralKeyReveal queries allowed in the freshness
condition, D can answer correctly, because D has the ephemeral keys.

41

• Corrupt(U) query: Except for V ∗, algorithm D can answer all other Corrupt queries. In this case
we consider the situation in which the adversary is not allowed to corrupt the partner principal of
the target session, so in fact, D can answer all Corrupt queries.

• Test(U, V, s) query: To compute the answer to the Test(U∗, V ∗, s∗) query, the algorithm D uses
r′1 as the decryption of the ciphertext C and computes the session key using the r′1 value as the
ephemeral key of the principal U∗.

If r′1 is the decryption of C coming to, V ∗ in the test session, the simulation constructed by D is
identical to Game 2 whereas if r′0 is the decryption of C, the simulation constructed by D is identical
to Game 3. If A can distinguish the difference between Game 2 and Game 3, then D can distinguish
whether C ← Enc(pkV ∗ , r

′
0) or C ← Enc(pkV ∗ , r

′
1).

The algorithm D plays the CCLA2 game against the public-key cryptosystem PKE according to the
Definition 2.10 since D does not ask the decryption of the challenge ciphertext C. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvCCLA2
PKE (D). (13)

Game 3 and Game 4. If A can distinguish the difference between Game 3 and Game 4, then A can
be used as a subroutine of an algorithm B, which is used to distinguish whether the session key value
K is computed K is computed using the real PRF with a hidden key, or using a random function. The
adversary A is given a K, such that it is computed using the PRF or randomly chosen from the session
key space. The following describes B’s procedure of answering queries.

• Send(U, V, s,m, f) query:

– U = U∗, V = V ∗ and s = s∗:

∗ If U∗ is the initiator, upon receiving the second protocol message computes the session
key K ← OraclePRF(U∗||CU∗ ||V ∗||CV ∗)⊕ PRF(rV ∗ , U

∗||CU∗ ||V ∗||CV ∗).
∗ If U∗ is the responder, upon receiving the first protocol message computes the session key
K ← OraclePRF(U∗||CU∗ ||V ∗||CV ∗)⊕ PRF(rV ∗ , U

∗||CU∗ ||V ∗||CV ∗).
– U = U∗, V = V ∗, s 6= s∗: Executes protocol normally.

– U = U∗, V 6= V ∗: Executes the protocol normally.

– U = V ∗:

∗ If this is the initiator and it is the first message, then executes the protocol normally.

∗ If this is the initiator and the second protocol message, or the responder:

· If the same message that came to V ∗ in the test session has come as the incoming
message, computes the session key using the OraclePRF.

· Otherwise, executes the protocol normally.

– U, V 6= U∗ or V ∗: Executes the protocol normally.

For all leakage queries, B can compute the leakage by its own, because B knows all the secret keys.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session or
its partner.

– For sessions involving the principal V ∗, and the incoming message to V ∗ is the same message
which has come to V ∗ in the target session, B uses OraclePRF to compute the session key.

– For all other sessions, B computes the session key by using the PRF.

• EphemeralKeyReveal(U, V, s) query: B can answer all EphemeralKeyReveal queries B which are
allowed in the freshness condition, because B has the ephemeral keys.

• Corrupt(U) query: Except for V ∗, algorithm B can answer all other Corrupt queries. In this case
we consider the situation in which the adversary is not allowed to corrupt the partner principal of
the target session, so in fact, B can answer all Corrupt queries.

• Test(U, V, s) query: Answers with the K computed in Send query when U = U∗, V = V ∗ and
s = s∗.

42

If the oracle is using the real PRF with a hidden key, the simulation is identical to Game 3, whereas
if the oracle is using a random function, the simulation constructed is identical to Game 4. If A can
distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine of an
algorithm B, which is used to distinguish whether the PRF challenger is real or random. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvPRF(B). (14)

Semantic security of the session key in Game 4. Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 4. Hence,

AdvGame 4(A) = 0. (15)

Combining the results above, we find,

Advλ−CAFL
π1,Case 2(A) ≤ N2

PNs
(
AdvCCLA2

PKE (D) + AdvPRF(B)
)
. (16)

Combine Case 1 and Case 2

According to the analysis we can see the adversary A’s advantage of winning against the protocol π1
challenger is

Advλ−CAFL
π1 (A) ≤ N2

PN
2
s

(
AdvCCLA2

PKE (D) + AdvPRF(B)
)
.

B Proof of the Theorem 5.1

Proof. The proof is split into two main cases: when the partner to the test session exists, and when it
does not.

Case 1: A partner session to the test session exists

In this case, the adversary is allowed to corrupt both principals or reveal ephemeral keys from both
sessions. We assume that the adversary A can win the λ− w(·)AFL-eCK challenge against the protocol

π with advantage Advλ−w(·)AFL-eCK
π (A). We split this case into four sub cases as follows:

1. Adversary corrupts both the owner and partner principals to the test session.

2. Adversary corrupts neither owner or nor partner principal to the test session.

3. Adversary corrupts the owner to the test session, but does not corrupt the partner to the test
session.

4. Adversary corrupts the partner to the test session, but does not corrupt the owner to the test
session.

Case 1.1: Adversary corrupts both the owner and partner principals to the test session

Game 1. This game is the original game. When the Test query is asked, the Game 1 challenger chooses

a random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen

from the same session key space is given. This is the original game. Hence,

AdvGame 1(A) = Adv
λ−w(·)AFL-eCK
π,Case 1.1 (A). (17)

Game 2. Abort the simulation if there exists two sessions outputting the same ephemeral public keys
(Same X = gx values). Since the ephemeral keys are coming from Z∗q , the total number of ephemeral

keys are q. Total number of session in the simulation is NP
2Ns

2, because NP is the number of protocol
principals and each protocol principal owns Ns number of sessions. Hence,

|AdvGame 1(A)−AdvGame 2(A)| ≤ NP
2Ns

2

q
. (18)

43

Game 3. Before A begins, two distinct random principals U∗, V ∗
$←− {U1, ..., UNP

} are chosen and two

random numbers s∗, t∗
$←− {1, ...Ns} are chosen, where NP is the number of protocol principals and Ns is

the number of sessions on a principal. The session Πs∗

U∗,V ∗ is chosen as the target session and the session

Πt∗

V ∗,U∗ is chosen as the partner to the target session. If the test session is not the session Πs∗

U∗,V ∗ or

partner to the session is not Πt∗

V ∗,U∗ , the Game 3 challenger aborts the game. Unless the incorrect choice
happens, Game 3 is identical to Game 2. Hence,

AdvGame 3(A) =
1

NP
2N2

s

AdvGame 2(A). (19)

Game 4. Game 4 challenger randomly chooses z
$←− Z∗q and computes the session key of the target session

and its partner session, using the KDF and the PRF as ms ← KDF(gz,⊥, k,⊥) and K ← PRF(ms,
U∗||XU∗ ||σU∗ ||V ∗||XV ∗ ||σV ∗), when U∗ is the initiator, or K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗||XU∗ ||σU∗),
when U∗ is the responder.

We construct an algorithm C against the DDH challenge, using the adversary A. The DDH challenger

sends values (X = gx, Y = gy, Z = gz) such that either z = xy or z
$←− Z∗q , as the inputs to the algorithm

C. C uses the value X as the ephemeral public key of U∗ and Y as the ephemeral public key of V ∗ in the
test session, and computes the session key using Z as the input to the KDF in the session key derivation
process.

If C’s input is a Diffie-Hellman triple, the simulation constructed by C is identical to Game 3, otherwise
it is identical to Game 4. If A can distinguish whether gz = gxy or not, then C can answer the DDH
challenge. Note that EphemeralKeyReveal(U∗, V ∗, s∗) or EphemeralKeyReveal(V ∗, U∗, t∗) is prohibited
since the adversary corrupts both the owner and the partner to the test session. C can answer all the
adversarial queries allowed in this case, because it has all the long-term and ephemeral secret keys of the
allowed queries. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvDDH
q,g (C). (20)

Game 5. The Game 5 challenger randomly chooses ms
$←− {0, 1}k and computes the session key of the

target session and its partner session, using the PRF as K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗||XV ∗ ||σV ∗),
when U∗ is the initiator or K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗||XU∗ ||σU∗), when U∗ is the responder.

We construct an algorithm B against a KDF challenger, using the adversary A. The KDF challenger
sends a ms value which is either generated using the KDF or randomly chosen. B uses the received ms
value to compute the session key of the target session using the PRF.

If ms is computed using the KDF, simulation constructed by B is identical to Game 4, otherwise it is
identical to Game 5. If A can distinguish the difference between Game 4 and Game 5, then A can be
used as a subroutine of an algorithm B, which is used to distinguish whether the ms value is computed
using KDF or randomly chosen. B can answer all the adversarial queries allowed in this case, because it
has all the long-term and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 4(A)−AdvGame 5(A)| ≤ AdvKDF(B). (21)

Game 6. The Game 6 challenger randomly chooses K
$←− {0, 1}k as session key of the target session

and its partner session.
We construct an algorithm J against an OraclePRF, using the adversary A. The OraclePRF sends a

K value which is either generated using the PRF with a hidden key, or a random function. J uses the
received K as the session key of the target session.

If K is generated using the PRF with a hidden key, simulation constructed by J is identical to Game
5, otherwise it is identical to Game 6. If A can distinguish the difference between Game 5 and Game
6, then A can be used as a subroutine of an algorithm J , which is used to distinguish whether the
OraclePRF is real or a random function. J can answer all the adversarial queries allowed in this case,
because it has all the long-term and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 5(A)−AdvGame 6(A)| ≤ AdvPRF(J). (22)

44

Semantic security of the session key in Game 6. Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 6. Hence,

AdvGame 6(A) = 0. (23)

We find,

Adv
λ−w(·)AFL-eCK
π,Case 1.1 (A) ≤ N2

PN
2
s

[(
AdvDDH

q,g (C) + AdvKDF(B) + AdvPRF(J)
)

+
1

q

]
.

Case 1.2: Adversary corrupts neither owner or nor partner principal to the test session

Game 1. This game is the original game. When the Test query is asked, the Game 1 challenger chooses

a random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen

from the same session key space is given. This is the original game. Hence,

AdvGame 1(A) = Adv
λ−w(·)AFL-eCK
π,Case 1.2 (A). (24)

Game 2. Abort the simulation if there exists two sessions outputting the same ephemeral public keys
(Same X = gx values). Since the ephemeral keys are coming from Z∗q , the total number of ephemeral

keys are q. Total number of session in the simulation is NP
2Ns

2, because NP is the number of protocol
principals and each protocol principal owns Ns number of sessions. Hence,

|AdvGame 1(A)−AdvGame 2(A)| ≤ NP
2Ns

2

q
. (25)

Game 3. Before A begins, two distinct random principals U∗, V ∗
$←− {U1, ..., UNP

} are chosen and two

random numbers s∗, t∗
$←− {1, ...Ns} are chosen, where NP is the number of protocol principals and Ns is

the number of sessions on a principal. The session Πs∗

U∗,V ∗ is chosen as the target session and the session

Πt∗

V ∗,U∗ is chosen as the partner to the target session. If the test session is not the session Πs∗

U∗,V ∗ or

partner to the session is not Πt∗

V ∗,U∗ , the Game 3 challenger aborts the game. Unless the incorrect choice
happens, Game 3 is identical to Game 2. Hence,

AdvGame 3(A) =
1

NP
2N2

s

AdvGame 2(A). (26)

Game 4. Game 4 challenger randomly chooses a pseudo-ephemeral value r̃U∗
$←− Z∗q , and computes the

ephemeral key rU∗
$←− Enc(pU∗ , r̃U∗), in the target session.

We introduce an algorithm F which is constructed using the adversary A, against the ε-pair-generation
indistinguishability challenger (ε-PG). F receives a pair (rU∗ , r̃U∗) such that r̃U∗ = Dec(sU∗ , rU∗). F
uses rU∗ as the ephemeral key of U∗ and r̃U∗ as the pseudo-ephemeral key of U∗ in the target session.

If a random ephemeral key rU∗
$←− Z∗q is chosen first and the pseudo-ephemeral value r̃U∗ ←

Dec(sU∗ , rU∗) is computed, then the simulation constructed by F is identical to Game 3. Otherwise if a

random pseudo-ephemeral value r̃U∗
$←− Z∗q is chosen first and the ephemeral key rU∗

$←− Enc(pU∗ , r̃U∗)
is computed, then the simulation constructed by F is identical to Game 4. If A can distinguish the
difference between Game 3 and Game 4, then F can distinguish whether a message/ciphertext pair (m, c)
belongs to the distribution D1 or D2 (ε-pair-generation indistinguishability challenge). F can answer all
the adversarial queries allowed in this case, because it has all the long-term and ephemeral secret keys of
the allowed queries. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ ε. (27)

Game 5. Game 5 challenger randomly chooses a pseudo-ephemeral value r̃′U∗
$←− Z∗q , and uses it as the

pseudo ephemeral value of U∗ in the target session.
We introduce an algorithm D which is constructed using the adversary A, against the CPLA2

challenger. The algorithm D uses the public-key of the CPLA2 challenger as the public key of the

45

protocol principal U∗ and generates public/secret key pairs for all other protocol principals. D generates

signing/verification key pairs for every protocol principal. D picks two random strings, r0, r1
$←− {0, 1}k

and passes them to the CPLA2 challenger. From the CPLA2 challenger, D receives a challenge ciphertext

C1 such that C1
$←− Enc(pU∗ , rθ) where rθ = r0 or rθ = r1. The following describes the procedure of

answering queries:

• Send(U, V, s,m, f) query: When U = U∗, V = V ∗ and s = s∗, D takes r1 as r̃′U∗ , computes gr̃
′
U∗

and computes its signature using the signing key skU∗ . Then D creates the protocol message and
sends it to A with the leakage f(sU∗), where the leakage f(sU∗) is obtained by accessing the leakage
oracle of the CPLA2 challenger.

For all other Send queries, D can execute the protocol normally, because D has all the public keys
and can compute protocol messages accordingly. Except U∗ D can compute the leakage by its own,
and for U∗ D accesses the leakage oracle to obtain the leakage.

• SessionKeyReveal(U, V, s) query: D will abort if SessionKeyReveal(U∗, V ∗, s∗) or SessionKeyReveal(V ∗, U∗, t∗)
query is asked. D can easily compute the answers using the corresponding psuedo-ephemeral keys
for other SessionKeyReveal queries.

• EphemeralKeyReveal(U, V, s) query: For the EphemeralKeyReveal(U∗, V ∗, s∗) query, D uses C1

as the answer. For all other EphemeralKeyReveal queries D will answer with the corresponding
ephemeral-key which is computed by encrypting a pseudo-ephemeral value with the secret key of
the corresponding principal.

• Corrupt(U) query: Except for U∗ and V ∗, algorithm D can answer all other Corrupt queries. In
this case we consider the situation in which the adversary corrupts neither owner or nor partner
principal to the test session, so these exceptions will not occur.

• Test(U, s) query: The algorithm D will abort the game if the adversary issues a Test query other
than Test(U∗, s∗). To compute the answer to the Test(U∗, s∗) query, the algorithm D computes:

– If U∗ is the initiator, computes ms← KDF(X
r̃′
U∗
V ∗ ,⊥, k,⊥), K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗

||XV ∗ ||σV ∗) where r̃′U∗ = r1.

– If U∗ is the responder, computes ms ← KDF(X
r̃′
U∗
V ∗ ,⊥, k,⊥), K ← PRF(ms, V ∗||XV ∗ ||σV ∗

||U∗||XU∗ ||σU∗).

Then using K answers the Test query.

If θ = 1, then r1 is the decryption of C1 and the simulation constructed by D is identical to Game
4 whereas if θ = 0, then r0 is the decryption of C1 and the simulation constructed by D is identical to
Game 5. If A can distinguish the difference between Game 4 and Game 5, then D can be used against a
CPLA2 challenger. Hence,

|AdvGame 4(A)−AdvGame 5(A)| ≤ AdvCPLA2
PKE (D). (28)

Game 6. Game 6 challenger randomly chooses a pseudo-ephemeral value r̃V ∗
$←− Z∗q , and computes the

ephemeral key rV ∗
$←− Enc(pV ∗ , r̃V ∗) in the partner to the target session.

We introduce an algorithm F which is constructed using the adversary A, against the ε-pair-generation
indistinguishability challenger (ε-PG). F receives a pair (rV ∗ , r̃V ∗) such that r̃V ∗ = Dec(sV ∗ , rV ∗). F
uses rV ∗ as the ephemeral key of V ∗ and r̃V ∗ as the pseudo-ephemeral key of V ∗.

If a random ephemeral key rV ∗
$←− Z∗q is chosen first and the pseudo-ephemeral value r̃V ∗ ←

Dec(sV ∗ , rV ∗) is computed, then the simulation constructed by F is identical to Game 5. Otherwise if a

random pseudo-ephemeral value r̃V ∗
$←− Z∗q is chosen first and the ephemeral key rV ∗

$←− Enc(pV ∗ , r̃V ∗)
is computed, then the simulation constructed by F is identical to Game 6. If A can distinguish the
difference between Game 5 and Game 6, then F can distinguish whether a message/ciphertext pair (m, c)
belongs to the distribution D1 or D2 (ε-pair-generation indistinguishability challenge). F can answer all
the adversarial queries allowed in this case, because it has all the long-term and ephemeral secret keys of
the allowed queries. Hence,

46

|AdvGame 5(A)−AdvGame 6(A)| ≤ ε. (29)

Game 7. Game 7 challenger randomly chooses a pseudo-ephemeral value r̃′V ∗
$←− Z∗q , and uses it as the

pseudo ephemeral value of V ∗ in the partner to the target session.
We introduce an algorithm D which is constructed using the adversary A, against the CPLA2

challenger. The algorithm D uses the public-key of the CPLA2 challenger as the public key of the
protocol principal V ∗ and generates public/secret key pairs for all other protocol principals. D generates

signing/verification key pairs for every protocol principal. D picks two random strings, r′0, r
′
1

$←− {0, 1}k
and passes them to the CPLA2 challenger. From the CPLA2 challenger, D receives a challenge ciphertext

C2 such that C2
$←− Enc(pV ∗ , r

′
θ) where r′θ = r′0 or r′θ = r′1. The following describes the procedure of

answering queries:

• Send(U, V, s,m, f) query: When U = V ∗, V = U∗ and s = t∗, D takes r′1 as r̃′V ∗ , computes gr̃
′
V ∗

and computes its signature using the signing key skV ∗ . Then D creates the protocol message and
sends it to A with the leakage f(sV ∗), where the leakage f(sV ∗) is obtained by accessing the leakage
oracle of the CPLA2 challenger.

For all other Send queries, D can execute the protocol normally, because D has all the public keys
and can compute protocol messages accordingly. Except V ∗ D can compute the leakage by its own,
and for V ∗ D accesses the leakage oracle to obtain the leakage.

• SessionKeyReveal(U, V, s) query: D will abort if SessionKeyReveal(U∗, V ∗, s∗) or SessionKeyReveal(V ∗,
U∗, t∗) query is asked. D can easily compute the answers using the corresponding psuedo-ephemeral
keys for other SessionKeyReveal queries.

• EphemeralKeyReveal(U, V, s) query: For the EphemeralKeyReveal(V ∗, U∗, t∗) query, D uses C2

as the answer. For all other EphemeralKeyReveal queries D will answer with the corresponding
ephemeral-key which is computed by encrypting a pseudo-ephemeral value with the secret key of
the corresponding principal.

• Corrupt(U) query: Except for U∗ and V ∗, algorithm D can answer all other Corrupt queries. In
this case we consider the situation in which the adversary corrupts neither owner or nor partner
principal to the test session, so these exceptions will not occur.

• Test(U, s) query: The algorithm D will abort the game if the adversary issues a Test query other
than Test(U∗, s∗). To compute the answer to the Test(U∗, s∗) query, the algorithm D computes:

– If U∗ is the initiator, computes ms← KDF(X
r̃′
V ∗
U∗ ,⊥, k,⊥), K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗

||XV ∗ ||σV ∗).

– If U∗ is the responder, ms ← KDF(X
r̃′
V ∗
U∗ ,⊥, k,⊥), K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗||XU∗

||σU∗).

Then using K answers the Test query.

If θ = 1, then r′1 is the decryption of C2 and the simulation constructed by D is identical to Game
6 whereas if θ = 0, then r′0 is the decryption of C2 and the simulation constructed by D is identical to
Game 7. If A can distinguish the difference between Game 6 and Game 7, then D can be used against a
CPLA2 challenger. Hence,

|AdvGame 6(A)−AdvGame 7(A)| ≤ AdvCPLA2
PKE (D). (30)

Game 8. Game 8 challenger randomly chooses z
$←− Z∗q and computes the session key of the target session

and its partner session, using the KDF and the PRF as ms ← KDF(gz,⊥, k,⊥) and K ← PRF(ms,
U∗||XU∗ ||σU∗ ||V ∗||XV ∗ ||σV ∗), when U∗ is the initiator or K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗||XU∗ ||σU∗),
when U∗ is the responder.

We construct an algorithm C against the DDH challenge, using the adversary A. The DDH challenger

sends values (X = gx, Y = gy, Z = gz) such that either z = xy or z
$←− Z∗q , as the inputs to the algorithm

47

C. C uses the value X as the ephemeral public key of U∗ and Y as the ephemeral public key of V ∗ in the
test session, and computes the session key using Z as the input to the KDF in the session key derivation
process.

If C’s input is a Diffie-Hellman triple, the simulation constructed by C is identical to Game 7, otherwise
it is identical to Game 8. If A can distinguish whether gz = gxy or not, then C can answer the DDH
challenge. C can answer all the adversarial queries allowed in this case, because it has all the long-term
and ephemeral secret keys of the allowed queries. In this case EphemeralKeyReveal query is not allowed
to the target session and its partner. Hence,

|AdvGame 7(A)−AdvGame 8(A)| ≤ AdvDDH
q,g (C). (31)

Game 9. The Game 9 challenger randomly chooses ms
$←− {0, 1}k and computes the session key of the

target session and its partner session, using the PRF as K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗||XV ∗ ||σV ∗),
when U∗ is the initiator or K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗||XU∗ ||σU∗), when U∗ is the responder.

We construct an algorithm B against a KDF challenger, using the adversary A. The KDF challenger
sends a ms value which is either generated using the KDF or randomly chosen. B uses the received ms
value to compute the session key of the target session using the PRF.

If ms is computed using the KDF, simulation constructed by B is identical to Game 8, otherwise it is
identical to Game 9. If A can distinguish the difference between Game 8 and Game 9, then A can be
used as a subroutine of an algorithm B, which is used to distinguish whether the ms value is computed
using KDF or randomly chosen. B can answer all the adversarial queries allowed in this case, because it
has all the long-term and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 8(A)−AdvGame 9(A)| ≤ AdvKDF(B). (32)

Game 10. The Game 10 challenger randomly chooses K
$←− {0, 1}k as session key of the target session

and its partner session.
We construct an algorithm J against an OraclePRF, using the adversary A. The OraclePRF sends a

K value which is either generated using the PRF with a hidden key, or a random function. J uses the
received K as the session key of the target session.

If K is generated using the PRF with a hidden key, simulation constructed by J is identical to Game
9, otherwise it is identical to Game 10. If A can distinguish the difference between Game 9 and Game
10, then A can be used as a subroutine of an algorithm J , which is used to distinguish whether the
OraclePRF is real or a random function. J can answer all the adversarial queries allowed in this case,
because it has all the long-term and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 9(A)−AdvGame 10(A)| ≤ AdvPRF(J). (33)

Semantic security of the session key in Game 10. Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 10. Hence,

AdvGame 10(A) = 0. (34)

We find,

Adv
λ−w(·)AFL-eCK
π,Case 1.2 (A) ≤ N2

PN
2
s

[(
AdvDDH

q,g (C) + AdvKDF(B) + AdvPRF(J)

+2AdvCPLA2
PKE (D) + 2ε

)
+

1

q

]
.

Case 1.3: Adversary corrupts the partner, but not the owner to the test session

Game 1. This game is the original game. When the Test query is asked, the Game 1 challenger chooses

a random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen

from the same session key space is given. This is the original game. Hence,

AdvGame 1(A) = Adv
λ−w(·)AFL-eCK
π,Case 1.3 (A). (35)

48

Game 2. Abort the simulation if there exists two sessions outputting the same ephemeral public keys
(Same X = gx values). Since the ephemeral keys are coming from Z∗q , the total number of ephemeral

keys are q. Total number of session in the simulation is NP
2Ns

2, because NP is the number of protocol
principals and each protocol principal owns Ns number of sessions. Hence,

|AdvGame 1(A)−AdvGame 2(A)| ≤ NP
2Ns

2

q
. (36)

Game 3. Before A begins, two distinct random principals U∗, V ∗
$←− {U1, ..., UNP

} are chosen and two

random numbers s∗, t∗
$←− {1, ...Ns} are chosen, where NP is the number of protocol principals and Ns is

the number of sessions on a principal. The session Πs∗

U∗,V ∗ is chosen as the target session and the session

Πt∗

V ∗,U∗ is chosen as the partner to the target session. If the test session is not the session Πs∗

U∗,V ∗ or

partner to the session is not Πt∗

V ∗,U∗ , the Game 3 challenger aborts the game. Unless the incorrect choice
happens, Game 3 is identical to Game 2. Hence,

AdvGame 3(A) =
1

NP
2N2

s

AdvGame 2(A). (37)

Game 4. Game 4 challenger randomly chooses a pseudo-ephemeral value r̃U∗
$←− Z∗q , and computes the

ephemeral key rU∗
$←− Enc(pU∗ , r̃U∗) in the target session.

We introduce an algorithm F which is constructed using the adversary A, against the ε-pair-generation
indistinguishability challenger (ε-PG). F receives a pair (rU∗ , r̃U∗) such that r̃U∗ = Dec(sU∗ , rU∗). F
uses rU∗ as the ephemeral key of U∗ and r̃U∗ as the pseudo-ephemeral key of U∗ in the target session.

If a random ephemeral key rU∗
$←− Z∗q is chosen first and the pseudo-ephemeral value r̃U∗ ←

Dec(sU∗ , rU∗) is computed, then the simulation constructed by F is identical to Game 3. Otherwise if a

random pseudo-ephemeral value r̃U∗
$←− Z∗q is chosen first and the ephemeral key rU∗

$←− Enc(pU∗ , r̃U∗)
is computed, then the simulation constructed by F is identical to Game 4. If A can distinguish the
difference between Game 3 and Game 4, then F can distinguish whether a message/ciphertext pair (m, c)
belongs to the distribution D1 or D2 (ε-pair-generation indistinguishability challenge). F can answer all
the adversarial queries allowed in this case, because it has all the long-term and ephemeral secret keys of
the allowed queries. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ ε. (38)

Game 5. Game 5 challenger randomly chooses a pseudo-ephemeral value r̃′U∗
$←− Z∗q , and uses it as the

pseudo ephemeral value of U∗ in the target session.
We introduce an algorithm D which is constructed using the adversary A, against the CPLA2

challenger. The algorithm D uses the public-key of the CPLA2 challenger as the public key of the
protocol principal U∗ and generates public/secret key pairs for all other protocol principals. D generates

signing/verification key pairs for every protocol principal. D picks two random strings, r0, r1
$←− {0, 1}k

and passes them to the CPLA2 challenger. From the CPLA2 challenger, D receives a challenge ciphertext

C1 such that C1
$←− Enc(pU∗ , rθ) where rθ = r0 or rθ = r1. The following describes the procedure of

answering queries:

• Send(U, V, s,m, f) query: When U = U∗, V = V ∗ and s = s∗, D takes r1 as r̃′U∗ , computes gr̃
′
U∗

and computes its signature using the signing key skU∗ . Then D creates the protocol message and
sends it to A with the leakage f(sU∗), where the leakage f(sU∗) is obtained by accessing the leakage
oracle of the CPLA2 challenger.

For all other Send queries, D can execute the protocol normally, because D has all the public keys
and can compute protocol messages accordingly. Except U∗ D can compute the leakage by its own,
and for U∗ D accesses the leakage oracle to obtain the leakage.

• SessionKeyReveal(U, V, s) query: D will abort if SessionKeyReveal(U∗, V ∗, s∗) or SessionKeyReveal(V ∗, U∗, t∗)
query is asked. D can easily compute the answers using the corresponding psuedo-ephemeral keys
for other SessionKeyReveal queries.

49

• EphemeralKeyReveal(U, V, s) query: For the EphemeralKeyReveal(U∗, V ∗, s∗) query, D uses C1

as the answer. For all other EphemeralKeyReveal queries D will answer with the corresponding
ephemeral-key which is computed by encrypting a pseudo-ephemeral value with the secret key of
the corresponding principal.

• Corrupt(U) query: Except for U∗, algorithm D can answer all other Corrupt queries. In this case
we consider the situation in which the adversary does not corrupt the partner to the test session, so
these exceptions will not occur.

• Test(U, s) query: The algorithm D will abort the game if the adversary issues a Test query other
than Test(U∗, s∗). To compute the answer to the Test(U∗, s∗) query, the algorithm D computes:

– If U∗ is the initiator, computes ms← KDF(X
r̃′
U∗
V ∗ ,⊥, k,⊥), K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗

||XV ∗ ||σV ∗).

– If U∗ is the responder, computes ms ← KDF(X
r̃′
U∗
V ∗ ,⊥, k,⊥), K ← PRF(ms, V ∗||XV ∗ ||σV ∗

||U∗||XU∗ ||σU∗).

Then using K answers the Test query.

If θ = 1, then r1 is the decryption of C1 and the simulation constructed by D is identical to Game
4 whereas if θ = 0, then r0 is the decryption of C1 and the simulation constructed by D is identical to
Game 5. If A can distinguish the difference between Game 4 and Game 5, then D can be used against a
CPLA2 challenger. Hence,

|AdvGame 4(A)−AdvGame 5(A)| ≤ AdvCPLA2
PKE (D). (39)

Game 6. Game 6 challenger randomly chooses z
$←− Z∗q and computes the session key of the target session

and its partner session, using the KDF and the PRF as ms ← KDF(gz,⊥, k,⊥) and K ← PRF(ms,
U∗||XU∗ ||σU∗ ||V ∗||XV ∗ ||σV ∗), when U∗ is the initiator, or K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗||XU∗ ||σU∗),
when U∗ is the responder.

We construct an algorithm C against the DDH challenge, using the adversary A. The DDH challenger

sends values (X = gx, Y = gy, Z = gz) such that either z = xy or z
$←− Z∗q , as the inputs to the algorithm

C. C uses the value X as the ephemeral public key of U∗ and Y as the ephemeral public key of V ∗ in the
test session, and computes the session key using Z as the input to the KDF in the session key derivation
process.

If C’s input is a Diffie-Hellman triple, the simulation constructed by C is identical to Game 5, otherwise
it is identical to Game 6. If A can distinguish whether gz = gxy or not, then C can answer the DDH
challenge. C can answer all the adversarial queries allowed in this case, because it has all the long-term
and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 5(A)−AdvGame 6(A)| ≤ AdvDDH
q,g (C). (40)

Game 7. The Game 7 challenger randomly chooses ms
$←− {0, 1}k and computes the session key of the

target session and its partner session, using the PRF as K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗||XV ∗ ||σV ∗),
when U∗ is the initiator or K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗||XU∗ ||σU∗), when U∗ is the responder.

We construct an algorithm B against a KDF challenger, using the adversary A. The KDF challenger
sends a ms value which is either generated using the KDF or randomly chosen. B uses the received ms
value to compute the session key of the target session using the PRF.

If ms is computed using the KDF, simulation constructed by B is identical to Game 6, otherwise it is
identical to Game 7. If A can distinguish the difference between Game 6 and Game 7, then A can be
used as a subroutine of an algorithm B, which is used to distinguish whether the ms value is computed
using KDF or randomly chosen. B can answer all the adversarial queries allowed in this case, because it
has all the long-term and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 6(A)−AdvGame 7(A)| ≤ AdvKDF(B). (41)

50

Game 8. The Game 8 challenger randomly chooses K
$←− {0, 1}k as session key of the target session

and its partner session.
We construct an algorithm J against an OraclePRF, using the adversary A. The OraclePRF sends a

K value which is either generated using the PRF with a hidden key, or a random function. J uses the
received K as the session key of the target session.

If K is generated using the PRF with a hidden key, simulation constructed by J is identical to Game
7, otherwise it is identical to Game 8. If A can distinguish the difference between Game 7 and Game
8, then A can be used as a subroutine of an algorithm J , which is used to distinguish whether the
OraclePRF is real or a random function. J can answer all the adversarial queries allowed in this case,
because it has all the long-term and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 7(A)−AdvGame 8(A)| ≤ AdvPRF(J). (42)

Semantic security of the session key in Game 8. Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 8. Hence,

AdvGame 8(A) = 0. (43)

We find,

Adv
λ−w(·)AFL-eCK
π,Case 1.3 (A) ≤ N2

PN
2
s

[(
AdvDDH

q,g (C) + AdvKDF(B) + AdvPRF(J)

+AdvCPLA2
PKE (D) + ε

)
+

1

q

]
.

Case 1.4: Adversary corrupts the owner, but not the partner to the test session

Game 1. This game is the original game. When the Test query is asked, the Game 1 challenger chooses

a random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen

from the same session key space is given. This is the original game. Hence,

AdvGame 1(A) = Adv
λ−w(·)AFL-eCK
π,Case 1.4 (A). (44)

Game 2. Abort the simulation if there exists two sessions outputting the same ephemeral public keys
(Same X = gx values). Since the ephemeral keys are coming from Z∗q , the total number of ephemeral

keys are q. Total number of session in the simulation is NP
2Ns

2, because NP is the number of protocol
principals and each protocol principal owns Ns number of sessions. Hence,

|AdvGame 1(A)−AdvGame 2(A)| ≤ NP
2Ns

2

q
. (45)

Game 3. Before A begins, two distinct random principals U∗, V ∗
$←− {U1, ..., UNP

} are chosen and two

random numbers s∗, t∗
$←− {1, ...Ns} are chosen, where NP is the number of protocol principals and Ns is

the number of sessions on a principal. The session Πs∗

U∗,V ∗ is chosen as the target session and the session

Πt∗

V ∗,U∗ is chosen as the partner to the target session. If the test session is not the session Πs∗

U∗,V ∗ or

partner to the session is not Πt∗

V ∗,U∗ , the Game 3 challenger aborts the game. Unless the incorrect choice
happens, Game 3 is identical to Game 2. Hence,

AdvGame 3(A) =
1

NP
2N2

s

AdvGame 2(A). (46)

Game 4. Game 4 challenger randomly chooses a pseudo-ephemeral value r̃V ∗
$←− Z∗q , and computes the

ephemeral key rV ∗
$←− Enc(pV ∗ , r̃V ∗), in the partner to the target session.

We introduce an algorithm F which is constructed using the adversary A, against the ε-pair-generation
indistinguishability challenger (ε-PG). F receives a pair (rV ∗ , r̃V ∗) such that r̃V ∗ = Dec(sV ∗ , rV ∗). F
uses rV ∗ as the ephemeral key of V ∗ and r̃V ∗ as the pseudo-ephemeral key of V ∗ in the partner to the
target session.

51

If a random ephemeral key rV ∗
$←− Z∗q is chosen first and the pseudo-ephemeral value r̃V ∗ ←

Dec(sV ∗ , rV ∗) is computed, then the simulation constructed by F is identical to Game 3. Otherwise if a

random pseudo-ephemeral value r̃V ∗
$←− Z∗q is chosen first and the ephemeral key rV ∗

$←− Enc(pV ∗ , r̃V ∗)
is computed, then the simulation constructed by F is identical to Game 4. If A can distinguish the
difference between Game 3 and Game 4, then F can distinguish whether a message/ciphertext pair (m, c)
belongs to the distribution D1 or D2 (ε-pair-generation indistinguishability challenge). F can answer all
the adversarial queries allowed in this case, because it has all the long-term and ephemeral secret keys of
the allowed queries. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ ε. (47)

Game 5. Game 5 challenger randomly chooses a pseudo-ephemeral value r̃′V ∗
$←− Z∗q , and uses it as the

pseudo ephemeral value of V ∗ in the partner to the target session.
We introduce an algorithm D which is constructed using the adversary A, against the CPLA2

challenger. The algorithm D uses the public-key of the CPLA2 challenger as the public key of the
protocol principal V ∗ and generates public/secret key pairs for all other protocol principals. D generates

signing/verification key pairs for every protocol principal. D picks two random strings, r′0, r
′
1

$←− {0, 1}k
and passes them to the CPLA2 challenger. From the CPLA2 challenger, D receives a challenge ciphertext

C2 such that C2
$←− Enc(pV ∗ , r

′
θ) where r′θ = r′0 or r′θ = r′1. The following describes the procedure of

answering queries:

• Send(U, V, s,m, f) query: When U = V ∗, V = U∗ and s = t∗, D takes r′1 as r̃′V ∗ , computes gr̃
′
V ∗

and computes its signature using the signing key skV ∗ . Then D creates the protocol message and
sends it to A with the leakage f(sV ∗), where the leakage f(sV ∗) is obtained by accessing the leakage
oracle of the CPLA2 challenger.

For all other Send queries, D can execute the protocol normally, because D has all the public keys
and can compute protocol messages accordingly. Except V ∗ D can compute the leakage by its own,
and for V ∗ D accesses the leakage oracle to obtain the leakage.

• SessionKeyReveal(U, V, s) query: D will abort if SessionKeyReveal(U∗, V ∗, s∗) or SessionKeyReveal(V ∗,
U∗, t∗) query is asked. D can easily compute the answers using the corresponding psuedo-ephemeral
keys for other SessionKeyReveal queries.

• EphemeralKeyReveal(U, V, s) query: For the EphemeralKeyReveal(V ∗, U∗, t∗) query, D uses C2

as the answer. For all other EphemeralKeyReveal queries D will answer with the corresponding
ephemeral-key which is computed by encrypting a pseudo-ephemeral value with the secret key of
the corresponding principal.

• Corrupt(U) query: Except for U∗ and V ∗, algorithm D can answer all other Corrupt queries. In
this case we consider the situation in which the adversary does not corrupt the partner principal to
the test session, so these exceptions will not occur.

• Test(U, s) query: The algorithm D will abort the game if the adversary issues a Test query other
than Test(U∗, s∗). To compute the answer to the Test(U∗, s∗) query, the algorithm D computes:

– If U∗ is the initiator, ms ← KDF(X
r̃′
V ∗
U∗ ,⊥, k,⊥), K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗||XV ∗

||σV ∗) where r̃′U∗ = r1..

– If U∗ is the responder computes ms← KDF(X
r̃′
V ∗
U∗ ,⊥, k,⊥), K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗

||XU∗ ||σU∗).

Then using K answers the Test query.

If θ = 1, then r′1 is the decryption of C2 and the simulation constructed by D is identical to Game
4 whereas if θ = 0, then r′0 is the decryption of C2 and the simulation constructed by D is identical to
Game 5. If A can distinguish the difference between Game 4 and Game 5, then D can be used against a
CPLA2 challenger. Hence,

|AdvGame 4(A)−AdvGame 5(A)| ≤ AdvCPLA2
PKE (D). (48)

52

Game 6. Game 6 challenger randomly chooses z
$←− Z∗q and computes the session key of the target session

and its partner session, using the KDF and the PRF as ms ← KDF(gz,⊥, k,⊥) and K ← PRF(ms,
U∗||XU∗ ||σU∗ ||V ∗||XV ∗ ||σV ∗), when U∗ is the initiator, or K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗||XU∗ ||σU∗),
when U∗ is the responder.

We construct an algorithm C against the DDH challenge, using the adversary A. The DDH challenger

sends values (X = gx, Y = gy, Z = gz) such that either z = xy or z
$←− Z∗q , as the inputs to the algorithm

C. C uses the value X as the ephemeral public key of U∗ and Y as the ephemeral public key of V ∗ in the
test session, and computes the session key using Z as the input to the KDF in the session key derivation
process.

If C’s input is a Diffie-Hellman triple, the simulation constructed by C is identical to Game 5, otherwise
it is identical to Game 6. If A can distinguish whether gz = gxy or not, then C can answer the DDH
challenge. C can answer all the adversarial queries allowed in this case, because it has all the long-term
and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 5(A)−AdvGame 6(A)| ≤ AdvDDH
q,g (C). (49)

Game 7. The Game 7 challenger randomly chooses ms
$←− {0, 1}k and computes the session key of the

target session and its partner session, using the PRF as K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗||XV ∗ ||σV ∗),
when U∗ is the initiator or K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗||XU∗ ||σU∗), when U∗ is the responder.

We construct an algorithm B against a KDF challenger, using the adversary A. The KDF challenger
sends a ms value which is either generated using the KDF or randomly chosen. B uses the received ms
value to compute the session key of the target session using the PRF.

If ms is computed using the KDF, simulation constructed by B is identical to Game 6, otherwise it is
identical to Game 7. If A can distinguish the difference between Game 6 and Game 7, then A can be
used as a subroutine of an algorithm B, which is used to distinguish whether the ms value is computed
using KDF or randomly chosen. B can answer all the adversarial queries allowed in this case, because it
has all the long-term and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 6(A)−AdvGame 7(A)| ≤ AdvKDF(B). (50)

Game 8. The Game 8 challenger randomly chooses K
$←− {0, 1}k as session key of the target session

and its partner session.
We construct an algorithm J against an OraclePRF, using the adversary A. The OraclePRF sends a

K value which is either generated using the PRF with a hidden key, or a random function. J uses the
received K as the session key of the target session.

If K is generated using the PRF with a hidden key, simulation constructed by J is identical to Game
7, otherwise it is identical to Game 8. If A can distinguish the difference between Game 7 and Game
8, then A can be used as a subroutine of an algorithm J , which is used to distinguish whether the
OraclePRF is real or a random function. J can answer all the adversarial queries allowed in this case,
because it has all the long-term and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 7(A)−AdvGame 8(A)| ≤ AdvPRF(J). (51)

Semantic security of the session key in Game 8. Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 8. Hence,

AdvGame 8(A) = 0. (52)

We find,

Adv
λ−w(·)AFL-eCK
π,Case 1.4 (A) ≤ N2

PN
2
s

[(
AdvDDH

q,g (C) + AdvKDF(B) + AdvPRF(J)

+AdvCPLA2
PKE (D) + ε

)
+

1

q

]
.

53

Case 2: A partner session to the test session does not exist

When the partner session does not exist, the owner of the test session shares the session key with the
active adversary. In this situation adversary is not allowed to corrupt the intended partner principal to
the test session. We split this case into two sub cases as follows:

1. Test session is at the responder.

2. Test session is at the initiator.

Case 2.1: Test session is at the responder Let V ∗ be the initiator and U∗ be the responder. Let
XU∗ be the ephemeral public key of U∗, and XV ∗ be the ephemeral public key of V ∗, in the target
session. In this case there are three sub cases, which address the three different situations occur when
the challenger interacts with the adversary. We will analyze the adversaries advantage in winning the
w(·)AFL-eCK challenge in following three different cases.

• (a) There is no session at peer V ∗ with XV ∗ : Here the adversary tries to compute the protocol
message from V ∗ to U∗, by its own.

• (b) There exists a session at V ∗ with XV ∗ and XU∗ (but σU∗ computed by U∗ is different from the
σU∗ received to V ∗ with the protocol message, in the target session): For instance the adversary
corrupts U∗, re-sign the protocol message from U∗ to V ∗, executes the protocol and makes a
non-matching session at V ∗. Then, tries to reveal the session key of that non-matching session at
V ∗, and win the game.

• (c) There exists a session at V ∗ with XV ∗ and X ′U∗ 6= XU∗ : Here the adversary, changes the message
from U∗ to V ∗, such that there is no matching session at V ∗.

Case 2.1.a: There is no session at V ∗ with XV ∗

Assume that the adversary A asks a Send query to some fresh session, such that it accepts, but the
signature used in the query is not generated by a legitimate party.

Game 1. This game is the original game. Hence,

AdvGame 1(A) = Adv
λ−w(·)AFL-eCK
π,Case 2.1.a (A). (53)

Game 2. Before A begins, the Game 2 challenger guesses the identity, V ∗, of the partner principal to
the test session and if the guess is incorrect it aborts the game. The probability of Game 2 to be aborted
due to incorrect guess of the partner principal to the test session is 1− 1

NP
. Unless the incorrect guess

happens, Game 2 is identical to Game1. Hence,

AdvGame 2(A) =
1

NP
AdvGame 1(A). (54)

The algorithm E sets the verification key of the signature scheme challenger to the principal V ∗. The
owner principal accepts the message coming from the intended partner, because the owner computes
Vfy(vkV ∗ , XV ∗ , σV ∗) is “true”. But the principal V ∗ is not corrupted and the message XV ∗ is not signed
by the principal V ∗, because there is no partner to the test session. Hence,

AdvGame 2(A) = AdvUFCMLA
SIG (E). (55)

We find,

Adv
λ−w(·)AFL-eCK
π,Case 2.1.a (A) = NPAdvUFCMLA

SIG (E).

Case 2.1.b: There exists a session at V ∗ with XV ∗ and XU∗ (but σV ∗ computed by V ∗ is
different from the σV ∗ received to U∗ with the protocol message)

Game 1. This game is the original game. When the Test query is asked, the Game 1 challenger chooses

a random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen

from the same session key space is given. This is the original game. Hence,

AdvGame 1(A) = Adv
λ−w(·)AFL-eCK
π,Case 2.1.b (A). (56)

54

Game 2. Abort the simulation if there exists two sessions outputting the same ephemeral public keys
(Same X = gx values). Since the ephemeral keys are coming from Z∗q , the total number of ephemeral

keys are q. Total number of session in the simulation is NP
2Ns

2, because NP is the number of protocol
principals and each protocol principal owns Ns number of sessions. Hence,

|AdvGame 1(A)−AdvGame 2(A)| ≤ NP
2Ns

2

q
. (57)

Game 3. Before A begins, two distinct random principals U∗, V ∗
$←− {U1, ..., UNP

} are chosen as the

owner and the peer, and two random numbers s∗, t∗
$←− {1, ...Ns} are chosen, where NP is the number of

protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗ is chosen as the

target session and the session Πt∗

V ∗,U∗ is chosen as the almost partner session to the target session. If

the test session is not the session Πs∗

U∗,V ∗ , the Game 3 challenger aborts the game. Unless the incorrect
choice happens, Game 3 is identical to Game 2. Hence,

AdvGame 3(A) =
1

NP
2N2

s

AdvGame 2(A). (58)

The almost partner session is the session, which communicates with the target session but due to
adversaries interaction it does not preserve the partnering conditions.

Game 4. Game 4 challenger randomly chooses a pseudo-ephemeral value r̃U∗
$←− Z∗q , and computes the

ephemeral key rU∗
$←− Enc(pU∗ , r̃U∗) in the target session.

We introduce an algorithm F which is constructed using the adversary A, against the ε-pair-generation
indistinguishability challenger (ε-PG). F receives a pair (rU∗ , r̃U∗) such that r̃U∗ = Dec(sU∗ , rU∗). F
uses rU∗ as the ephemeral key of U∗ and r̃U∗ as the pseudo-ephemeral key of U∗ in the target session.

If a random ephemeral key rU∗
$←− Z∗q is chosen first and the pseudo-ephemeral value r̃U∗ ←

Dec(sU∗ , rU∗) is computed, then the simulation constructed by F is identical to Game 3. Otherwise if a

random pseudo-ephemeral value r̃U∗
$←− Z∗q is chosen first and the ephemeral key rU∗

$←− Enc(pU∗ , r̃U∗)
is computed, then the simulation constructed by F is identical to Game 4. If A can distinguish the
difference between Game 3 and Game 4, then F can distinguish whether a message/ciphertext pair (m, c)
belongs to the distribution D1 or D2 (ε-pair-generation indistinguishability challenge). F can answer all
the adversarial queries allowed in this case, because it has all the long-term and ephemeral secret keys of
the allowed queries. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ ε. (59)

Game 5. Game 5 challenger randomly chooses a pseudo-ephemeral value r̃′U∗
$←− Z∗q , and uses it as the

pseudo ephemeral value of U∗ in the target session.
We introduce an algorithm D which is constructed using the adversary A, against the CPLA2

challenger. The algorithm D uses the public-key of the CPLA2 challenger as the public key of the
protocol principal U∗ and generates public/secret key pairs for all other protocol principals. D generates

signing/verification key pairs for every protocol principal. D picks two random strings, r0, r1
$←− {0, 1}k

and passes them to the CPLA2 challenger. From the CPLA2 challenger, D receives a challenge ciphertext

C1 such that C1
$←− Enc(pU∗ , rθ) where rθ = r0 or rθ = r1. The following describes the procedure of

answering queries:

• Send(U, V, s,m, f) query: When U = U∗, V = V ∗ and s = s∗, D takes r1 as r̃′U∗ , computes gr̃
′
U∗

and computes its signature using the signing key skU∗ . Then D creates the protocol message and
sends it to A with the leakage f(sU∗), where the leakage f(sU∗) is obtained by accessing the leakage
oracle of the CPLA2 challenger.

For all other Send queries, D can execute the protocol normally, because D has all the public keys
and can compute protocol messages accordingly. Except U∗ D can compute the leakage by its own,
and for U∗ D accesses the leakage oracle to obtain the leakage.

55

• SessionKeyReveal(U, V, s) query: D will abort if SessionKeyReveal(U∗, V ∗, s∗) or SessionKeyReveal(V ∗, U∗, t∗)
query is asked. D can easily compute the answers using the corresponding psuedo-ephemeral keys
for other SessionKeyReveal queries.

• EphemeralKeyReveal(U, V, s) query: For the EphemeralKeyReveal(U∗, V ∗, s∗) query, D uses C1

as the answer. For all other EphemeralKeyReveal queries D will answer with the corresponding
ephemeral-key which is computed by encrypting a pseudo-ephemeral value with the secret key of
the corresponding principal.

• Corrupt(U) query: Algorithm D can answer all the Corrupt queries allowed in the freshness
condition.

• Test(U, s) query: The algorithm D will abort the game if the adversary issues a Test query other
than Test(U∗, s∗). To compute the answer to the Test(U∗, s∗) query, the algorithm D computes:

– If U∗ is the initiator, computes ms← KDF(X
r̃′
U∗
V ∗ ,⊥, k,⊥), K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗

||XV ∗ ||σV ∗) where r̃′U∗ = r1, when U∗ is the initiator.

– If U∗ is the responder, computes ms ← KDF(X
r̃′
U∗
V ∗ ,⊥, k,⊥), K ← PRF(ms, V ∗||XV ∗ ||σV ∗

||U∗||XU∗ ||σU∗).

Then using K answers the Test query.

If θ = 1, then r1 is the decryption of C1 and the simulation constructed by D is identical to Game
4 whereas if θ = 0, then r0 is the decryption of C1 and the simulation constructed by D is identical to
Game 5. If A can distinguish the difference between Game 4 and Game 5, then D can be used against a
CPLA2 challenger. Hence,

|AdvGame 4(A)−AdvGame 5(A)| ≤ AdvCPLA2
PKE (D). (60)

Game 6. Game 6 challenger randomly chooses a pseudo-ephemeral value r̃V ∗
$←− Z∗q , and computes the

ephemeral key rV ∗
$←− Enc(pV ∗ , r̃V ∗) in the almost partner session.

We introduce an algorithm F which is constructed using the adversary A, against the ε-pair-generation
indistinguishability challenger (ε-PG). F receives a pair (rV ∗ , r̃V ∗) such that r̃V ∗ = Dec(sV ∗ , rV ∗). F
uses rV ∗ as the ephemeral key of V ∗ and r̃V ∗ as the pseudo-ephemeral key of V ∗ in the almost partner
session.

If a random ephemeral key rV ∗
$←− Z∗q is chosen first and the pseudo-ephemeral value r̃V ∗ ←

Dec(sV ∗ , rV ∗) is computed, then the simulation constructed by F is identical to Game 5. Otherwise if a

random pseudo-ephemeral value r̃V ∗
$←− Z∗q is chosen first and the ephemeral key rV ∗

$←− Enc(pV ∗ , r̃V ∗)
is computed, then the simulation constructed by F is identical to Game 6. If A can distinguish the
difference between Game 5 and Game 6, then F can distinguish whether a message/ciphertext pair (m, c)
belongs to the distribution D1 or D2 (ε-pair-generation indistinguishability challenge). F can answer all
the adversarial queries allowed in this case, because it has all the long-term and ephemeral secret keys of
the allowed queries. Hence,

|AdvGame 5(A)−AdvGame 6(A)| ≤ ε. (61)

Game 7. Game 7 challenger randomly chooses a pseudo-ephemeral value r̃′V ∗
$←− Z∗q , and uses it as the

pseudo ephemeral value of V ∗ in the almost partner session.
We introduce an algorithm D which is constructed using the adversary A, against the CPLA2

challenger. The algorithm D uses the public-key of the CPLA2 challenger as the public key of the
protocol principal V ∗ and generates public/secret key pairs for all other protocol principals. D generates

signing/verification key pairs for every protocol principal. D picks two random strings, r′0, r
′
1

$←− {0, 1}k
and passes them to the CPLA2 challenger. From the CPLA2 challenger, D receives a challenge ciphertext

C2 such that C2
$←− Enc(pV ∗ , r

′
θ) where r′θ = r′0 or r′θ = r′1. The following describes the procedure of

answering queries:

56

• Send(U, V, s,m, f) query: When U = V ∗, V = U∗ and s = t∗, D takes r′1 as r̃′V ∗ , computes gr̃
′
V ∗

and computes its signature using the signing key skV ∗ . Then D creates the protocol message and
sends it to A with the leakage f(sV ∗), where the leakage f(sV ∗) is obtained by accessing the leakage
oracle of the CPLA2 challenger.

For all other Send queries, D can execute the protocol normally, because D has all the public keys
and can compute protocol messages accordingly. Except V ∗ D can compute the leakage by its own,
and for V ∗ D accesses the leakage oracle to obtain the leakage.

• SessionKeyReveal(U, V, s) query: D will abort if SessionKeyReveal(U∗, V ∗, s∗) or SessionKeyReveal(V ∗,
U∗, t∗) query is asked. D can easily compute the answers using the corresponding psuedo-ephemeral
keys for other SessionKeyReveal queries.

• EphemeralKeyReveal(U, V, s) query: For the EphemeralKeyReveal(V ∗, U∗, t∗) query, D uses C2

as the answer. For all other EphemeralKeyReveal queries D will answer with the corresponding
ephemeral-key which is computed by encrypting a pseudo-ephemeral value with the secret key of
the corresponding principal.

• Corrupt(U) query: Algorithm D can answer all the Corrupt queries allowed in the freshness
condition.

• Test(U, s) query: The algorithm D will abort the game if the adversary issues a Test query other
than Test(U∗, s∗). To compute the answer to the Test(U∗, s∗) query, the algorithm D computes:

– If U∗ is the initiator, computes ms← KDF(X
r̃′
V ∗
U∗ ,⊥, k,⊥), K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗

||XV ∗ ||σV ∗) where r̃′U∗ = r1.

– If U∗ is the responder, computes ms ← KDF(X
r̃′
V ∗
U∗ ,⊥, k,⊥), K ← PRF(ms, V ∗||XV ∗ ||σV ∗

||U∗||XU∗ ||σU∗).

Then using K answers the Test query.

If θ = 1, then r′1 is the decryption of C2 and the simulation constructed by D is identical to Game
6 whereas if θ = 0, then r′0 is the decryption of C2 and the simulation constructed by D is identical to
Game 7. If A can distinguish the difference between Game 6 and Game 7, then D can be used against a
CPLA2 challenger. Hence,

|AdvGame 6(A)−AdvGame 7(A)| ≤ AdvCPLA2
PKE (D). (62)

Game 8. Game 8 challenger randomly chooses z
$←− Z∗q and computes the session key of the target

session, using the KDF and the PRF as ms ← KDF(gz,⊥, k,⊥) and K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗
||XV ∗ ||σV ∗), when U∗ is the initiator, or K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗||XU∗ ||σU∗), when U∗ is the
responder.

We construct an algorithm C against the DDH challenge, using the adversary A. The DDH challenger

sends values (X = gx, Y = gy, Z = gz) such that either z = xy or z
$←− Z∗q , as the inputs to the algorithm

C. C uses the value X as the ephemeral public key of U∗ and Y as the ephemeral public key of V ∗ in the
test session, and computes the session key using Z as the input to the KDF in the session key derivation
process. In this game, for the almost partner session, the value Z is used as the Diffie-Hellman shared
secret.

If C’s input is a Diffie-Hellman triple, the simulation constructed by C is identical to Game 7, otherwise
it is identical to Game 8. If A can distinguish whether gz = gxy or not, then C can answer the DDH
challenge. C can answer all the adversarial queries allowed in this case, because it has all the long-term
and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 7(A)−AdvGame 8(A)| ≤ AdvDDH
q,g (C). (63)

57

Game 9. The Game 9 challenger randomly chooses ms
$←− {0, 1}k and computes the session key of the

target session, using the PRF as K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗||XV ∗ ||σV ∗), when U∗ is the initiator
or K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗||XU∗ ||σU∗), when U∗ is the responder.

We construct an algorithm B against a KDF challenger, using the adversary A. The KDF challenger
sends a ms value which is either generated using the KDF or randomly chosen. B uses the received ms
value to compute the session key of the target session using the PRF. In this game, for the almost partner
session, the value ms is used as the shared value derived using the KDF.

If ms is computed using the KDF, simulation constructed by B is identical to Game 8, otherwise it is
identical to Game 9. If A can distinguish the difference between Game 8 and Game 9, then A can be
used as a subroutine of an algorithm B, which is used to distinguish whether the ms value is computed
using KDF or randomly chosen. B can answer all the adversarial queries allowed in this case, because it
has all the long-term and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 8(A)−AdvGame 9(A)| ≤ AdvKDF(B). (64)

Game 10. The Game 10 challenger randomly chooses K
$←− {0, 1}k as session key of the target session.

We construct an algorithm J against an OraclePRF, using the adversary A. The OraclePRF sends a
K value which is either generated using the PRF with a hidden key, or a random function. J uses the
received K as the session key of the target session.

If K is generated using the PRF with a hidden key, simulation constructed by J is identical to Game
9, otherwise it is identical to Game 10. If A can distinguish the difference between Game 9 and Game
10, then A can be used as a subroutine of an algorithm J , which is used to distinguish whether the
OraclePRF is real or a random function. J can answer all the adversarial queries allowed in this case,
because it has all the long-term and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 9(A)−AdvGame 10(A)| ≤ AdvPRF(J). (65)

Semantic security of the session key in Game 10. Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 10. Hence,

AdvGame 10(A) = 0. (66)

We find,

Adv
λ−w(·)AFL-eCK
π,Case 2.1.b (A) ≤ N2

PN
2
s

[(
AdvDDH

q,g (C) + AdvKDF(B) + AdvPRF(J)

+2AdvCPLA2
PKE (D) + 2ε

)
+

1

q

]
.

Case 2.1.c: There exists a session at V ∗ with XV ∗ and X ′U∗ 6= XU∗

Game 1. This game is the original game. When the Test query is asked, the Game 1 challenger chooses

a random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen

from the same session key space is given. This is the original game. Hence,

AdvGame 1(A) = Advλ−w(·)AFL-eCK
π (A). (67)

Game 2. Abort the simulation if there exists two sessions outputting the same ephemeral public keys
(Same X = gx values). Since the ephemeral keys are coming from Z∗q , the total number of ephemeral

keys are q. Total number of session in the simulation is NP
2Ns

2, because NP is the number of protocol
principals and each protocol principal owns Ns number of sessions. Hence,

|AdvGame 1(A)−AdvGame 2(A)| ≤ NP
2Ns

2

q
. (68)

58

Game 3. Before A begins, two distinct random principals U∗, V ∗
$←− {U1, ..., UNP

} are chosen as the

owner and the peer, and two random numbers s∗, t∗
$←− {1, ...Ns} are chosen, where NP is the number of

protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗ is chosen as the

target session and the session Πt∗

V ∗,U∗ is chosen as the almost partner session to the target session. If

the test session is not the session Πs∗

U∗,V ∗ , the Game 3 challenger aborts the game. Unless the incorrect
choice happens, Game 3 is identical to Game 2. Hence,

AdvGame 3(A) =
1

NP
2N2

s

AdvGame 2(A). (69)

Game 4. Game 4 challenger randomly chooses a pseudo-ephemeral value r̃U∗
$←− Z∗q , and computes the

ephemeral key rU∗
$←− Enc(pU∗ , r̃U∗) in the target session.

We introduce an algorithm F which is constructed using the adversary A, against the ε-pair-generation
indistinguishability challenger (ε-PG). F receives a pair (rU∗ , r̃U∗) such that r̃U∗ = Dec(sU∗ , rU∗). F
uses rU∗ as the ephemeral key of U∗ and r̃U∗ as the pseudo-ephemeral key of U∗ in the target session.

If a random ephemeral key rU∗
$←− Z∗q is chosen first and the pseudo-ephemeral value r̃U∗ ←

Dec(sU∗ , rU∗) is computed, then the simulation constructed by F is identical to Game 3. Otherwise if a

random pseudo-ephemeral value r̃U∗
$←− Z∗q is chosen first and the ephemeral key rU∗

$←− Enc(pU∗ , r̃U∗)
is computed, then the simulation constructed by F is identical to Game 4. If A can distinguish the
difference between Game 3 and Game 4, then F can distinguish whether a message/ciphertext pair (m, c)
belongs to the distribution D1 or D2 (ε-pair-generation indistinguishability challenge). F can answer all
the adversarial queries allowed in this case, because it has all the long-term and ephemeral secret keys of
the allowed queries. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ ε. (70)

Game 5. Game 5 challenger randomly chooses a pseudo-ephemeral value r̃′U∗
$←− Z∗q , and uses it as the

pseudo ephemeral value of U∗ in the target session.
We introduce an algorithm D which is constructed using the adversary A, against the CPLA2

challenger. The algorithm D uses the public-key of the CPLA2 challenger as the public key of the
protocol principal U∗ and generates public/secret key pairs for all other protocol principals. D generates

signing/verification key pairs for every protocol principal. D picks two random strings, r0, r1
$←− {0, 1}k

and passes them to the CPLA2 challenger. From the CPLA2 challenger, D receives a challenge ciphertext

C1 such that C1
$←− Enc(pU∗ , rθ) where rθ = r0 or rθ = r1. The following describes the procedure of

answering queries:

• Send(U, V, s,m, f) query: When U = U∗, V = V ∗ and s = s∗, D takes r1 as r̃′U∗ , computes gr̃
′
U∗

and computes its signature using the signing key skU∗ . Then D creates the protocol message and
sends it to A with the leakage f(sU∗), where the leakage f(sU∗) is obtained by accessing the leakage
oracle of the CPLA2 challenger.

For all other Send queries, D can execute the protocol normally, because D has all the public keys
and can compute protocol messages accordingly. Except U∗ D can compute the leakage by its own,
and for U∗ D accesses the leakage oracle to obtain the leakage.

• SessionKeyReveal(U, V, s) query: D will abort if SessionKeyReveal(U∗, V ∗, s∗) or SessionKeyReveal(V ∗, U∗, t∗)
query is asked. D can easily compute the answers using the corresponding psuedo-ephemeral keys
for other SessionKeyReveal queries.

• EphemeralKeyReveal(U, V, s) query: For the EphemeralKeyReveal(U∗, V ∗, s∗) query, D uses C1

as the answer. For all other EphemeralKeyReveal queries D will answer with the corresponding
ephemeral-key which is computed by encrypting a pseudo-ephemeral value with the secret key of
the corresponding principal.

• Corrupt(U) query: Algorithm D can answer all the Corrupt queries allowed in the freshness
condition.

59

• Test(U, s) query: The algorithm D will abort the game if the adversary issues a Test query other
than Test(U∗, s∗). To compute the answer to the Test(U∗, s∗) query, the algorithm D computes:

– If U∗ is the initiator, ms← KDF(X
r̃′
U∗
V ∗ ,⊥, k,⊥), K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗||XV ∗ ||σV ∗)

where r̃′U∗ = r1.

– If U∗ is the responder computes ms← KDF(X
r̃′
U∗
V ∗ ,⊥, k,⊥), K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗

||XU∗ ||σU∗).

Then using K answers the Test query.

If θ = 1, then r1 is the decryption of C1 and the simulation constructed by D is identical to Game
4 whereas if θ = 0, then r0 is the decryption of C1 and the simulation constructed by D is identical to
Game 5. If A can distinguish the difference between Game 4 and Game 5, then D can be used against a
CPLA2 challenger. Hence,

|AdvGame 4(A)−AdvGame 5(A)| ≤ AdvCPLA2
PKE (D). (71)

Game 6. Game 6 challenger randomly chooses a pseudo-ephemeral value r̃V ∗
$←− Z∗q , and computes the

ephemeral key rV ∗
$←− Enc(pV ∗ , r̃V ∗) in the almost partner session.

We introduce an algorithm F which is constructed using the adversary A, against the ε-pair-generation
indistinguishability challenger (ε-PG). F receives a pair (rV ∗ , r̃V ∗) such that r̃V ∗ = Dec(sV ∗ , rV ∗). F
uses rV ∗ as the ephemeral key of V ∗ and r̃V ∗ as the pseudo-ephemeral key of V ∗ in the almost partner
session.

If a random ephemeral key rV ∗
$←− Z∗q is chosen first and the pseudo-ephemeral value r̃V ∗ ←

Dec(sV ∗ , rV ∗) is computed, then the simulation constructed by F is identical to Game 5. Otherwise if a

random pseudo-ephemeral value r̃V ∗
$←− Z∗q is chosen first and the ephemeral key rV ∗

$←− Enc(pV ∗ , r̃V ∗)
is computed, then the simulation constructed by F is identical to Game 6. If A can distinguish the
difference between Game 5 and Game 6, then F can distinguish whether a message/ciphertext pair (m, c)
belongs to the distribution D1 or D2 (ε-pair-generation indistinguishability challenge). F can answer all
the adversarial queries allowed in this case, because it has all the long-term and ephemeral secret keys of
the allowed queries. Hence,

|AdvGame 5(A)−AdvGame 6(A)| ≤ ε. (72)

Game 7. Game 7 challenger randomly chooses a pseudo-ephemeral value r̃′V ∗
$←− Z∗q , and uses it as the

pseudo ephemeral value of V ∗ in the almost partner session.
We introduce an algorithm D which is constructed using the adversary A, against the CPLA2

challenger. The algorithm D uses the public-key of the CPLA2 challenger as the public key of the
protocol principal V ∗ and generates public/secret key pairs for all other protocol principals. D generates

signing/verification key pairs for every protocol principal. D picks two random strings, r′0, r
′
1

$←− {0, 1}k
and passes them to the CPLA2 challenger. From the CPLA2 challenger, D receives a challenge ciphertext

C2 such that C2
$←− Enc(pV ∗ , r

′
θ) where r′θ = r′0 or r′θ = r′1. The following describes the procedure of

answering queries:

• Send(U, V, s,m, f) query: When U = V ∗, V = U∗ and s = t∗, D takes r′1 as r̃′V ∗ , computes gr̃
′
V ∗

and computes its signature using the signing key skV ∗ . Then D creates the protocol message and
sends it to A with the leakage f(sV ∗), where the leakage f(sV ∗) is obtained by accessing the leakage
oracle of the CPLA2 challenger.

For all other Send queries, D can execute the protocol normally, because D has all the public keys
and can compute protocol messages accordingly. Except V ∗ D can compute the leakage by its own,
and for V ∗ D accesses the leakage oracle to obtain the leakage.

• SessionKeyReveal(U, V, s) query: D will abort if SessionKeyReveal(U∗, V ∗, s∗) or SessionKeyReveal(V ∗,
U∗, t∗) query is asked. D can easily compute the answers using the corresponding psuedo-ephemeral
keys for other SessionKeyReveal queries.

60

• EphemeralKeyReveal(U, V, s) query: For the EphemeralKeyReveal(V ∗, U∗, t∗) query, D uses C2

as the answer. For all other EphemeralKeyReveal queries D will answer with the corresponding
ephemeral-key which is computed by encrypting a pseudo-ephemeral value with the secret key of
the corresponding principal.

• Corrupt(U) query: Algorithm D can answer all the Corrupt queries allowed in the freshness
condition.

• Test(U, s) query: The algorithm D will abort the game if the adversary issues a Test query other
than Test(U∗, s∗). To compute the answer to the Test(U∗, s∗) query, the algorithm D computes:

– If U∗ is the initiator, ms ← KDF(X
r̃′
V ∗
U∗ ,⊥, k,⊥), K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗||XV ∗

||σV ∗) where r̃′U∗ = r1.

– If U∗ is the responder computes ms← KDF(X
r̃′
V ∗
U∗ ,⊥, k,⊥), K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗

||XU∗ ||σU∗).

Then using K answers the Test query.

If θ = 1, then r′1 is the decryption of C2 and the simulation constructed by D is identical to Game
6 whereas if θ = 0, then r′0 is the decryption of C2 and the simulation constructed by D is identical to
Game 7. If A can distinguish the difference between Game 6 and Game 7, then D can be used against a
CPLA2 challenger. Hence,

|AdvGame 6(A)−AdvGame 7(A)| ≤ AdvCPLA2
PKE (D). (73)

Game 8. Game 8 challenger randomly chooses ms
$←− {0, 1}k and computes the session key of the

target session, using the PRF as K ← PRF(ms,U∗||XU∗ ||σU∗ ||V ∗||XV ∗ ||σV ∗), when U∗ is the initiator
or K ← PRF(ms, V ∗||XV ∗ ||σV ∗ ||U∗||XU∗ ||σU∗), when U∗ is the responder.

We construct an algorithm R against the ODH challenge, using the adversary A. The ODH challenge
being for group G with prime order q, generator g and function KDF(·,⊥, k, ·). The ODH challenger

sends values (X = gx, Y = gy, Z) such that either Z ← KDF(gxy,⊥, k,⊥) or Z
$←− {0, 1}k, as the inputs

to the algorithm R. R uses the value X as the ephemeral public key of U∗ and Y as the ephemeral public
key of V ∗ in the test session, and computes the session key using Z as the ms value, which is the input
to the PRF, in the session key derivation process. In this game, for the almost partner session (a session
at V ∗ with XV ∗ and X ′U∗ 6= XU∗), the ODH oracle OODH is used to compute the ms value. For all the
other honest sessions, simulator knows the ephemeral keys and can compute the shared Diffie-Hellman
value and compute the session key normally.

If R’s input Z = KDF(gxy,⊥, k,⊥), the simulation constructed by R is identical to Game 7, otherwise
it is identical to Game 8. Hence,

|AdvGame 7(A)−AdvGame 8(A)| ≤ AdvODH
KDF(·,⊥,k,⊥),q,g(R). (74)

Game 9. The Game 9 challenger randomly chooses K
$←− {0, 1}k as session key of the target session.

We construct an algorithm J against an OraclePRF, using the adversary A. The OraclePRF sends a
K value which is either generated using the PRF with a hidden key, or a random function. J uses the
received K as the session key of the target session.

If K is generated using the PRF with a hidden key, simulation constructed by J is identical to Game
8, otherwise it is identical to Game 9. If A can distinguish the difference between Game 8 and Game
9, then A can be used as a subroutine of an algorithm J , which is used to distinguish whether the
OraclePRF is real or a random function. J can answer all the adversarial queries allowed in this case,
because it has all the long-term and ephemeral secret keys of the allowed queries. Hence,

|AdvGame 8(A)−AdvGame 9(A)| ≤ AdvPRF(J). (75)

61

Semantic security of the session key in Game 9. Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 9. Hence,

AdvGame 9(A) = 0. (76)

We find,

Adv
λ−w(·)AFL-eCK
π,Case 2.1.c (A) ≤ N2

PN
2
s

[(
AdvODH

q,g (R) + AdvPRF(J)

+2AdvCPLA2
PKE (D) + 2ε

)
+

1

q

]
.

Therefore, in Case 2.1,

Adv
λ−w(·)AFL-eCK
π,Case 2.1 (A) ≤ max

[
N2
PN

2
s

[(
AdvDDH

q,g (C) + AdvKDF(B) + AdvPRF(J)

+2AdvCPLA2
PKE (D) + 2ε

)
+

1

q

]
, N2

PN
2
s

[(
AdvODH

q,g (R) + AdvPRF(J)

+2AdvCPLA2
PKE (D) + 2ε

)
+

1

q

]
, NPAdvUFCMLA

SIG (E)
]
.

Case 2.2: Test session is at the initiator Let U∗ be the initiator and V ∗ be the responder. Let
XU∗ be the ephemeral public key of U∗, and XV ∗ be the ephemeral public key of V ∗, in the target
session. In this case there are three sub cases, which address the three different situations occur when the
challenger interacts with the adversary, which are same as to the Case 2.1.

• (a) There is no session at V ∗ with XV ∗ .

• (b) There exists a session at V ∗ with XU∗ and XV ∗ (but σU∗ computed by U∗ is different from the
σU∗ received to V ∗ with the protocol message, in the target session).

• (c) There exists a session at V ∗ with XV ∗ and X ′U∗ 6= XU∗ .

This is almost same as the Case 2.1. The difference is that in this case the initiator is the owner of
the test session. Same as to the Case 2.1, here we obtain,

Adv
λ−w(·)AFL-eCK
π,Case 2.2 (A) ≤ max

[
N2
PN

2
s

[(
AdvDDH

q,g (C) + AdvKDF(B) + AdvPRF(J)

+2AdvCPLA2
PKE (D) + 2ε

)
+

1

q

]
, N2

PN
2
s

[(
AdvODH

q,g (R) + AdvPRF(J)

+2AdvCPLA2
PKE (D) + 2ε

)
+

1

q

]
, NPAdvUFCMLA

SIG (E)
]
.

Combining Case 1 and Case 2

According to the analysis we can obtain,

Advλ−w(·)AFL-eCK
π (A) ≤ max

[
N2
PN

2
s

[(
AdvDDH

q,g (C) + AdvKDF(B) + AdvPRF(J)
)
+

1

q

]
,

N2
PN

2
s

[(
AdvDDH

q,g (C) + AdvKDF(B) + AdvPRF(J) + 2AdvCPLA2
PKE (D) + 2ε

)
+

1

q

]
,

N2
PN

2
s

[(
AdvODH

q,g (R) + AdvPRF(J) + 2AdvCPLA2
PKE (D) + 2ε

)
+

1

q

]
, NPAdvUFCMLA

SIG (E)
]
.

62

	Introduction
	Side-Channel Attacks and Countermeasures
	Local versus Remote Side-Channel Attacks.
	Countermeasures for Side-Channel Attacks.

	Leakage-Resilient Cryptography

	Prelimineries
	Computational Assumptions
	Computational Diffie-Hellman (CDH) Assumption
	Decisional Diffie-Hellman (DDH) Assumption
	Gap Diffie-Hellman (GDH) Assumption
	Oracle Diffie-Hellman (ODH) Assumption DBLP:conf/ctrsa/AbdallaBR01

	Cryptographic Tools
	Key Derivation Functions
	Pseudo Random Functions

	Leakage-Resilient Primitives
	Leakage-Resilient Storage
	Adaptively Chosen Ciphertext After-the-fact Leakage Secure (CCLA2) Public-Key Cryptosystems
	After-the-fact Leakage-resilient Semantically Secure (CPLA2) Public-Key Cryptosystems
	Unforgeability Against Chosen Message Leakage Secure UFCMLA Signature Schemes

	Key Exchange Security Models
	Extended Canetti-Krawczyk Model (eCK) eck
	eCK-Secure Key Exchange Protocols
	eCK-type Leakage Security Models for Key Exchange: Moriyama-Okamoto Model
	Moriyama-Okamoto Freshness

	Continuous After-the-fact Leakage in Restricted-eCK Model
	Continuous After-the-fact Leakage (CAFL) Model DBLP:conf/acisp/AlawatugodaBS14
	Modelling Leakage
	Adversarial Powers
	Defining Security
	Practical Interpretation of Security of CAFL Model

	Constructing CAFL-secure Key Exchange Protocols
	Protocol Construction
	Security of the Protocol 1 in the CAFL Model
	Leakage Tolerance of the CAFL-secure Protocol 1

	Bounded/Continuous After-the-fact Leakage eCK Model
	After-the-fact Leakage-eCK (()AFL-eCK) Model DBLP:conf/ccs/AlawatugodaSB14
	Modelling Leakage
	Adversarial Powers
	Bounded After-the-fact Leakage-eCK (BAFL-eCK) Model
	Continuous After-the-fact Leakage-eCK (CAFL-eCK) Model
	Defining Security
	Practical Interpretation of Security of AFL-eCK Model

	Generic Construction of ()AFL-eCK-secure Key Exchange Protocol
	Weakening the ()AFL-eCK Model
	Protocol Construction
	Security of the Protocol in the w()AFL-eCK Model
	Leakage Tolerance of the w()AFL-eCK-secure Protocol : wBAFL-eCK-Secure Instantiation

	Concrete CAFL-eCK-secure Key Exchange Protocol DBLP:conf/ima/AlawatugodaSB15
	Leakage-Resilient Construction of Protocol P2
	Protocol Construction
	Security of the Protocol P2 in the CAFL-eCK Model
	Leakage Tolerance of the Protocol P2

	Comparison of Key Exchange Security Models and Protocols
	Comparison of Security Models
	Comparison of Key Exchange Protocols

	Proof of the Theorem 4.1
	Proof of the Theorem 5.1

