
Sandy2x: New Curve25519 Speed Records

Tung Chou

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, the Netherlands

blueprint@crypto.tw

Abstract. This paper sets speed records on well-known Intel chips for the Curve25519 elliptic-
curve Diffie-Hellman scheme and the Ed25519 digital signature scheme. In particular, it takes
only 159 128 Sandy Bridge cycles or 156 995 Ivy Bridge cycles to compute a Diffie-Hellman shared
secret, while the previous records are 194 036 Sandy Bridge cycles or 182 708 Ivy Bridge cycles.

There have been many papers analyzing elliptic-curve speeds on Intel chips, and they all use
Intel’s serial 64 × 64 → 128-bit multiplier for field arithmetic. These papers have ignored the
2-way vectorized 32× 32→ 64-bit multiplier on Sandy Bridge and Ivy Bridge: it seems obvious
that the serial multiplier is faster. However, this paper uses the vectorized multiplier. This is
the first speed record set for elliptic-curve cryptography using a vectorized multiplier on Sandy
Bridge and Ivy Bridge. Our work suggests that the vectorized multiplier might be a better
choice for elliptic-curve computation, or even other types of computation that involve prime-
field arithmetic, even in the case where the computation does not exhibit very nice internal
parallelism.

Key words: Elliptic curves · Diffie-Hellman · signatures · speed · constant time · Curve25519 ·
Ed25519 · vectorization

1 Introduction

In 2006, Bernstein proposed Curve25519, which uses a fast Montgomery curve for Diffie-
Hellman (DH) key exchange. In 2011, Bernstein, Duif, Schwabe, Lange and Yang proposed
the Ed25519 digital signature scheme, which uses a fast twisted Edwards curve that is bira-
tionally equivalent to the same Montgomery curve. Both schemes feature a conservative 128-
bit security level, very small key sizes, and consistent fast speeds on various CPUs (cf. [1], [8]),
as well as microprocessors such as ARM ([3], [16]), Cell ([2]), etc.

Curve25519 and Ed25519 have gained public acceptance and are used in many applica-
tions. The IANIX site [17] has lists for Curve25519 and Ed25519 deployment, which include
the Tor anonymity network, the QUIC transport layer network protocol developed by Google,
openSSH, and many more.

This paper presents Sandy2x, a new software which sets speed records for Curve25519 and
Ed25519 on the Intel Sandy Bridge and Ivy Bridge microarchitectures. Previous softwares set
speed records for these CPUs using the serial multiplier. Sandy2x, instead, uses of a vectorized
multiplier. Our results show that previous elliptic-curve cryptography (ECC) papers using the
serial multiplier might have made a suboptimal choice.

A part of our software (the code for Curve25519 shared-secret computation) has been
submitted to the SUPERCOP benchmarking toolkit, but the speeds have not been included
in the eBACS [8] site yet. We plan to submit the whole software soon for public use.

This work was supported the Netherlands Organisation for Scientific Research (NWO) under grant
639.073.005. Permanent ID of this document: 33050f87509019320b8192d4887bc053. Date: 2015.09.30.

1.1 Serial Multipliers versus Vectorized Multipliers

Prime field elements are usually represented as big integers in softwares. The integers are
usually divided into several small chunks called limbs, so that field operations can be carried
out as sequences of operations on limbs. Algorithms involving field arithmetic are usually
bottlenecked by multiplications, which are composed of limb multiplications. On Intel CPUs,
each core has a powerful 64 × 64 → 128-bit serial multiplier, which is convenient for limb
multiplications. There have been many ECC papers that use the serial multiplier for field
arithmetic. For example, [1] uses the serial multipliers on Nehalem/Westmere; [6] uses the
serial multipliers on Sandy Bridge; [5] uses the serial multipliers on Ivy Bridge.

On some other chips, it is better to use a vectorized multiplier. The Cell Broadband Engine
has 7 Synergistic Processor Units (SPUs) which are specialized for vectorized instructions;
the primary processor has no chance to compete with them. ARM has a 2-way vectorized
32× 32→ 64-bit multiplier, which is clearly stronger than the 32× 32→ 64 serial multiplier.
A few ECC papers exploit the vectorized multipliers, including [3] for ARM and [2] for Cell.
In 2014, there is finally one effort for using a vectorized multiplier on Intel chips, namely [4].
The paper uses vectorized multipliers to carry out hyperelliptic-curve cryptography (HECC)
formulas that provide a natural 4-way parallelism. ECC formulas do not exhibit such nice
internal parallelism, so vectorization is expected to induce much more overhead than HECC.

Our speed records rely on using a 2-way vectorized multipliers on Sandy Bridge and Ivy
Bridge. The vectorized multiplier carries out only a pair of 32× 32→ 64-bit multiplication in
one instruction, which does not seem to have any chance to compete with the 64× 64→ 128-
bit serial multiplier, which is used to set speed records in previous Curve25519/Ed25519
implementations. In this paper we investigate how serial multipliers and vectorized multipliers
work (Section 2), and give arguments on why the vectorized multiplier can compete.

Our work is similar to [4] in the sense that we both use vectorized multipliers on recent
Intel microarchitectures. The difference is that our algorithm does not have very nice internal
parallelism, especially for verification. Our work is also similar to [3] in the sense that the
vectorized multipliers have the same input and output size. We stress that the low-level
optimization required on ARM is different to Sandy/Ivy Bridge, and it is certainly harder to
beat the serial multiplier on Sandy/Ivy Bridge.

1.2 Performance Results

The performance results for our software are summarized in Table 1, along with the results
for [1] and [7]. [1] is chosen because it holds the speed records on the eBACS site for publicly
verifiable benchmarks [8]; [7] is chosen because it is the fastest constant-time public imple-
mentation for Ed25519 (and Curve25519 public-key generation) to our knowledge. The speeds
of our software (as [1] and [7]) are fully protected against simple timing attacks, cache-timing
attacks, branch-prediction attacks, etc.: all load addresses, all store addresses, and all branch
conditions are public.

For comparison, Longa reported ≈ 298 000 Sandy Bridge cycles for the “ECDHE” op-
eration, which is essentially 1 public-key generation plus 1 secret-key computation, using
Microsoft’s 256-bit NUMS curve [19]. OpenSSL 1.0.2, after heavy optimization work from
Intel, compute a NIST P-256 scalar multiplication in 311 434 Sandy Bridge cycles or 277 994
Ivy Bridge cycles.

For Curve25519 public-key generation, [7] and our implementation gain much better re-
sults than [1] by performing the fixed-base scalar multiplications on the twisted Edwards

SB cycles IB cycles table size reference implementation

Curve25519 public-key generation 54 346 52 169 30720 + 0 (new) this paper
61 828 57 612 24576 + 0 [7]

194 165 182 876 0 + 0 [1] CHES 2011 amd64-51

Curve25519 shared secret computation 159 128 156 995 0 + 0 (new) this paper
194 036 182 708 0 + 0 [1] CHES 2011 amd64-51

Ed25519 public-key generation 57 164 54 901 30720 + 0 (new) this paper
63 712 59 332 24576 + 0 [7]
64 015 61 099 30720 + 0 [1] CHES 2011 amd64-51-30k

Ed25519 sign 63 526 59 949 30720 + 0 (new) this paper
67 692 62 624 24576 + 0 [7]
72 444 67 284 30720 + 0 [1] CHES 2011 amd64-51-30k

Ed25519 verification 205 741 198 406 10240 + 1920 (new) this paper
227 628 204 376 5120 + 960 [7]
222 564 209 060 5120 + 960 [1] CHES 2011 amd64-51-30k

Table 1. Performance results for Curve25519 and Ed25519 of this paper, the CHES 2011 paper [1], and
the implementation by Andrew Moon “floodyberry” [7]. All implementations are benchmarked on the Sandy
Bridge machine “h6sandy” and the Ivy Bridge machine“h9ivy” (abbreviated as SB and IB in the table), of
which the details can be found on the eBACS website [8]. Each cycle count listed is the measurement result
of running the software on one CPU core, with Turbo Boost disabled. The table sizes (in bytes) are given in
two parts: read-only memory size + writable memory size.

curve used in Ed25519 instead of the Montgomery curve; see Section 3.2. Our implemen-
tation strategy for Ed25519 public-key generation and signing is the same as Curve25519
public-key generation. Also see Section 3.1 for Curve25519 shared-secret computation, and
Section 4 for Ed25519 verification.

We also include the tables sizes of [1], [7] and Sandy2x in Table 1. Note that our current
code uses the same window sizes as [1] and [7] but larger tables for Ed25519 verification. This
is because we use a data format that is not compact but more convenient for vectorization.
Also note that [1] has two implementations for Ed25519: amd64-51-30k and amd64-64-24k.
The tables sizes for amd64-64-24k are 20% smaller than those of amd64-51-30k, but the
speed records on eBACS are set by amd64-51-30k.

1.3 Other Fast Diffie-Hellman and Signature Schemes

On the eBACS website [8] there are a few DH schemes that achieve fewer Sandy/Ivy Bridge
cycles for shared-secret computation than our software: gls254prot from [12] uses a GLS
curve over a binary field; gls254 is a non-constant-time version of gls254prot; kummer

from [4] is a HECC scheme; kumfp127g from [13] implements the same scheme as [4] but uses
an obsolete approach to perform scalar multiplication on hyperelliptic curves as explained
in [4].

GLS curves are patented, making them much less attractive for deployment, and papers
such as [14] and [15] make binary-field ECC less confidence-inspiring. There are algorithms
that are better than the Rho method for high-genus curves; see, for example, [20]. Compared
to these schemes, Curve25519, using an elliptic curve over a prime field, seems to be a more
conservative (and patent-free) choice for deployment.

The eBACS website also lists some signature schemes which achieve better signing and/or
verification speeds than our work. Compared to these schemes, Ed25519 has the smallest
public-key size (32 bytes), fast signing speed (superseded only by multivariate schemes with

much larger key sizes), reasonably fast verification speed (can be much better if batched
verification is considered, as shown in [1]), and a high security level (128-bit).

2 Arithmetic in F2255−19

A radix-2r representation represents an element f in a b-bit prime field as (f0, f1, . . . , fdb/re−1),
such that

f =

db/re−1∑
i=0

fi2
dire.

This is called a radix-2r representation. Field arithmetic can then be carried out using opera-
tions on limbs; as a trivial example, a field addition can be carried out by adding corresponding
limbs of the operands.

Since the choice of radix is often platform-dependent, several radices have been used in
existing software implementations of Curve25519 and Ed25519. This section describes and
compares the radix-251 representation (used by [1]) with the radix-225.5 representation (used
by [3] and this paper), and explains how a small-radix implementation can beat a large-radix
one on Sandy Bridge and Ivy Bridge, even though the vectorized multiplier seems to be slower.
The radix-264 representation by [1] appears to be slower than the radix-251 representation for
Curve25519 shared-secret computation, so only the latter is discussed in this section.

2.1 The Radix-251 Representation

[1] represents an integer f modulo 2255 − 19 as

f0 + 251f1 + 2102f2 + 2153f3 + 2204f4

As the result, the product of f0 + 251f1 + 2102f2 + 2153f3 + 2204f4 and g0 + 251g1 + 2102g2 +
2153g3 + 2204g4 is h0 + 251h1 + 2102h2 + 2153h3 + 2204h4 modulo 2255 − 19 where

h0 = f0g0+ 19f1g4+ 19f2g3+ 19f3g2+ 19f4g1,

h1 = f0g1+ f1g0+ 19f2g4+ 19f3g3+ 19f4g2,

h2 = f0g2+ f1g1+ f2g0+ 19f3g4+ 19f4g3,

h3 = f0g3+ f1g2+ f2g1+ f3g0+ 19f4g4,

h4 = f0g4+ f1g3+ f2g2+ f3g1+ f4g0.

One can replace g by f to derive similar equations for squaring.
The radix-251 representation is designed to fit the 64 × 64 → 128-bit serial multiplier,

which can be accessed using the mul instruction. The usage of the mul is as follows: given
a 64-bit integer (either in memory or a register) as operand, the instruction computes the
128-bit product of the integer and rax, and stores the higher 64 bits of in rdx and lower 64
bits in rax.

The field multiplication function begins with computing f0g0, f0g1, . . . , f0g4. For each gj ,
f0 is first loaded into rax, and then a mul instruction is used to compute the product; some
mov instructions are required to move the rdx and rax to the registers where hj is stored. Each
monomial involving fi where i > 0 also takes a mul instruction, and an addition (add) and an
addition with carry (adc) are required to accumulate the result into hk. Multiplications by
19 can be handled by the imul instruction. In total, it takes 25 mul, 4 imul, 20 add, and 20

adc instructions to compute h0, h1, . . . , h4
1. Note that some carries are required to bring the

hk back to around 51 bits. We denote such a radix-51 field multiplication including carries as
m; m− represents m without carries.

2.2 The Radix-225.5 Representation

[3] represents an integer f modulo 2255 − 19 as

f0 + 226f1 + 251f2 + 277f3 + 2102f4 + 2128f5 + 2153f6 + 2179f7 + 2204f8 + 2230f9.

As the result, the product of f0 + 226f1 + 251f2 + · · · and g0 + 226g1 + 251g2 + · · · is h0 +
226h1 + 251h2 + · · · modulo 2255 − 19 where

h0 = f0g0+ 38f1g9+ 19f2g8+ 38f3g7+ 19f4g6+ 38f5g5+ 19f6g4+ 38f7g3+ 19f8g2+ 38f9g1,

h1 = f0g1+ f1g0+ 19f2g9+ 19f3g8+ 19f4g7+ 19f5g6+ 19f6g5+ 19f7g4+ 19f8g3+ 19f9g2,

h2 = f0g2+ 2f1g1+ f2g0+ 38f3g9+ 19f4g8+ 38f5g7+ 19f6g6+ 38f7g5+ 19f8g4+ 38f9g3,

h3 = f0g3+ f1g2+ f2g1+ f3g0+ 19f4g9+ 19f5g8+ 19f6g7+ 19f7g6+ 19f8g5+ 19f9g4,

h4 = f0g4+ 2f1g3+ f2g2+ 2f3g1+ f4g0+ 38f5g9+ 19f6g8+ 38f7g7+ 19f8g6+ 38f9g5,

h5 = f0g5+ f1g4+ f2g3+ f3g2+ f4g1+ f5g0+ 19f6g9+ 19f7g8+ 19f8g7+ 19f9g6,

h6 = f0g6+ 2f1g5+ f2g4+ 2f3g3+ f4g2+ 2f5g1+ f6g0+ 38f7g9+ 19f8g8+ 38f9g7,

h7 = f0g7+ f1g6+ f2g5+ f3g4+ f4g3+ f5g2+ f6g1+ f7g0+ 19f8g9+ 19f9g8,

h8 = f0g8+ 2f1g7+ f2g6+ 2f3g5+ f4g4+ 2f5g3+ f6g2+ 2f7g1+ f8g0+ 38f9g9,

h9 = f0g9+ f1g8+ f2g7+ f3g6+ f4g5+ f5g4+ f6g3+ f7g2+ f8g1+ f9g0.

One can replace g by the f to derive similar equations for squaring.
The representation is designed to fit the vector multiplier on Cortex-A8, which performs a

pair of 32× 32→ 64-bit multiplications in one instruction. On Sandy Bridge and Ivy Bridge
a similar vectorized multiplier can be accessed using the vpmuludq 2 instruction. The AT&T
syntax of the vpmuludq instruction is as follows:

vpmuludq src2, src1, dest

where src1 and dest are 128-bit registers, and src2 can be either a 128-bit register or (the
address of) an aligned 32-byte memory block. The instruction multiplies the lower 32 bits
of the lower 64-bit words of src1 and src2, multiplies the lower 32 bits of the higher 64-bit
words ofsrc1 and src2, and stores the 64 bits products in 64-bit words of dest.

To compute h = fg and h′ = f ′g′ at the same time, we follow the strategy of [3] but
replace the vectorized addition and multiplication instructions by corresponding ones on
Sandy/Ivy Bridge. Given (f0, f

′
0), . . . (f9, f

′
9) and (g0, g

′
0), . . . (g9, g

′
9), first prepare 9 vectors

(19g1, 19g′1), . . . , (19g9, 19g′9) with 10 vpmuludq instructions and (2f1, 2f
′
1), (2f3, 2f

′
3), . . . ,

(2f9, 2f
′
9) with 5 vectorized addition instructions vpaddq. Note that the reason to use vpaddq

instead of vpmuludq is to balance the loads of different execution units on the CPU core;
see analysis in Section 2.3. Each (f0gj , f

′
0g
′
j) then takes 1 vpmuludq, while each (figj , f

′
ig
′
j)

where i > 0 takes 1 vpmuludq and 1 vpaddq. In total, it takes 109 vpmuludq and 95 vpaddq

1 [1] uses one more imul; perhaps this is for reducing memory access.
2 The starting ’v’ indicate that the instruction is the VEX extension of the pmuludq instruction. The benefit

of using vpmuludq is that it is a 3-operand instruction. In this paper we show vector instructions in their
VEX extension form, even though vector instructions are sometimes used without the VEX extension.

instruction port throughput latency
vpmuludq 0 1 5
vpaddq either 1 or 5 2 1
vpsubq either 1 or 5 2 1
mul 0 and 1 1 3
imul 1 1 3
add either 0, 1, or 5 3 1
adc either two of 0,1,5 1 2

Table 2. Instructions field arithmetic used in [1] and this paper. The data is mainly based on the well-known
survey by Fog [10]. The survey does not specify the port utilization for mul, so we figure this out using the
performance counter (accessed using perf-stat). Throughputs are per-cycle. Latencies are given in cycles.

to compute (h0, h
′
0), (h1, h

′
1), . . . , (h9, h

′
9). We denote such a vector of two field multiplications

as M2, including the carries that bring hk (and also h′k) back to 26 − (k mod 2) bits; M2−

represents M2 without carries. Similarly, we use S2 and S2− for squarings.
We perform a carry from hk to hk+1 (the indices work modulo 10), which is denoted by

hk → hk+1, in 3 steps:

• Perform a logical right shift for the 64-bit words in hk using a vpsrlq instruction. The
shift amount is 26− (k mod 2).
• Add the result of the first step into hk+1 using a vpaddq instruction.
• Mask out the most significant 38 + (k mod 2) bits of hk using a vpand instruction.

For h9 → h0 the result of the shift has to be multiplied by 19 before being added to h0. Note
that the usage of vpsrlq suggests that we are using unsigned limbs; there is no vectorized
arithmetic shift instruction on Sandy Bridge and Ivy Bridge.

To reduce number of bits in all of h0, h1, . . . , h9, the simplest way is to perform the carry
chain

h0 → h1 → h2 → h3 → h4 → h5 → h6 → h7 → h8 → h9 → h0 → h1.

The problem of the simple carry chain is that it suffers severely from the instruction latencies.
To mitigate the problem, we instead interleave the 2 carry chains

h0 → h1 → h2 → h3 → h4 → h5 → h6,

h5 → h6 → h7 → h8 → h9 → h0 → h1.

It is not always the case that there are two multiplications that can be paired with each
other in an elliptic-curve operation; sometimes there is a need to vectorize a field multiplica-
tion internally. We use a similar approach to [3] to compute h0, h1, . . . , h9 in this case; the
difference is that we compute vectors (h0, h1), . . . , (h8, h9) as result. The strategy for perform-
ing the expensive carries on h0, h1, . . . , h9 is the same as [3]. Such an internally-vectorized
field multiplication is denoted as M.

2.3 Why Is Smaller Radix Better?

m takes 29 multiplication instructions (mul and imul), while M2 takes 109/2 = 54.5 multipli-
cation instructions (vpmuludq) per field multiplication. How can our software, (which is based

on M2) be faster than [1] (which is based on m) using almost twice as many multiplication
instructions?

On Intel microarchitechtures, an instruction is decoded and decomposed into some micro-
operations (µops). Each µop is then stored in a pool, waiting to be executed by one of the
ports (when the operands are ready). On each Sandy Bridge and Ivy Bridge core there are
6 ports. In particular, Port 0, 1, 5 are responsible for arithmetic. The remaining ports are
responsible for memory access, which is beyond the scope of this paper.

The arithmetic ports are not identical. For example, vpmuludq is decomposed into 1 µop,
which is handled by Port 0 each cycle with latency 5. vpaddq is decomposed into 1 µop, which
is handled by Port 1 or 5 each cycle with latency 1. Therefore, an M2− would take at least
109 cycles. Our experiment shows that M2− takes around 112 Sandy Bridge cycles, which
translates to 56 cycles per multiplication.

The situation for m is more complicated: mul is decomposed into 2 µops, which are handled
by Port 0 and 1 each cycle with latency 3. imul is decomposed into 1 µop, which is handled
by Port 1 each cycle with latency 3. add is decomposed into 1 µop, which is handled by one
of Port 0,1,5 each cycle with latency 1. adc is decomposed into 2 µops, which are handled by
two of Port 0,1,5 each cycle with latency 2. In total it takes 25 mul, 4 imul, 20 add, and 20
adc, accounting for at least (25 · 2 + 4 + 20 + 20 · 2)/3 = 38 cycles. Our experiment shows
that m− takes 52 Sandy Bridge cycles. The mov instructions explain a few cycles out of the
52 − 38 = 14 cycles. Also, the performance counter shows that the core fails to distribute
µops equally over the ports.

Of course, by just looking at these cycle counts it seems that M2 is still a bit slower, but
at least we have shown that the serial multiplier is not as powerful as it seems to be. Here
are some more arguments in favor of M2:

• m spends more cycles on carries than M2 does: m takes 68 Sandy Bridge cycles, while
M2 takes 69.5 Sandy Bridge cycles per multiplication.

• The algorithm built upon M2 might have additions/subtractions. Some speedup can be
gained by interleaving the code; see Section 2.5.

• The computation might have some non-field-arithmetic part which can be improved using
vector unit; see Section 3.2.

2.4 Importance of Using a Small Constant

For the ease of reduction, the prime fields used in ECC and HECC are often a big power of
2 subtracted by a small constant c. It might seem that as long as c is not too big, the speed
of field arithmetic would remain the same. However, in the following example, we show that
using the slightly larger c = 31 (2255 − 31 is the large prime before 2255 − 19) might already
cause some overhead.

Consider two field elements f, g which are the results of two field multiplications. Because
the limbs are reduced, the upper bound of f0 would be close to 226, and the upper bound of
f1 would be close to 225, and so on; the same bounds apply for g. Now suppose we need to
compute (f − g)2, which is batched with another squaring to form an S2. To avoid possible
underflow, we compute the limbs of h = f − g as hi = (fi + 2 · qi)− gi instead of hi = fi − gi,
where qi is the corresponding limb of 2255−19. As the result, the upper bound of h6 is around
3 · 226. To perform the squaring c · h26 is required. When c = 19 we can simply multiply
h6 by 19 using 1 vpmuludq, and then multiply the product by h6 using another vpmuludq.

Unfortunately the same instructions do not work for c = 31, since 31 · h6 can take more than
32 bits.

To overcome such problem, an easy solution is to use a smaller radix so that each (reduced)
limb takes fewer bits. This method would increase number of limbs and thus increase number of
vpmuludq required. A better solution is to delay the multiplication by c: instead of computing
31fi1gj1 + 31fi2gj2 + · · · by first computing 31gj1 , 31gj2 , . . . , compute fi1gj1 + fi2gj2 + · · ·
and then multiply the sum by 31. The sum can take more than 32 bits (and vpmuludq

takes only 32-bit inputs), so the multiplication by 31 cannot be handled by vpmuludq. Let
s = fi1gj1 + fi2gj2 + · · · , one way to handle the multiplication by 19 is to compute 32s with
one shift instruction vpsllq and then compute 32s−s = 31s with one subtraction instruction
vpsubq. This solution does not make Port 0 busier as vpsllq also takes only one cycle in
Port 0 as vpmuludq, but it does make Port 1 and 5 busier (because of vpsubq), which can
potentially increase the cost for S2− by a few cycles.

It is easy to imagine for some c’s the multiplication can not be handled in such a cheap
way as 31. In addition, delaying multiplication cannot handle as many c’s as using a smaller
radix; as a trivial example, it does not work if cfi1gj1 + cfi2gj2 + · · · takes more than 64
bits. We note that the computation pattern in the example is actually a part of elliptic-curve
operation (see lines 6–9 in Algorithm 1), meaning a bigger constant c actually can slow down
elliptic-curve operations.

We comment that usage of a larger c has bigger impact on constrained devices. If c is too
big for efficient vectorization, at least one can go for the 64× 64→ 128-bit serial multiplier,
which can handle a wide range of c without increasing number of limbs. However, on ARM
processors where the serial multiplier can only perform 32×32→ 64-bit multiplications, even
the serial multiplier would be sensitive to the size of c. For even smaller devices the situation
is expected to be worse.

2.5 Instruction Scheduling for Vectorized Field Arithmetic

The fact that µops are stored in a pool before being handled by a port allows the CPU to
achieve so called out-of-order execution: a µop can be executed before another µop which is
from an earlier instruction. This feature is sometimes viewed as the CPU core being able to
“look ahead” and execute a later instruction whose operands are ready. However, the ability
of out-of-order execution is limited: the core is not able to look too far away. It is thus better
to arrange the code so that each code block contains instructions for each port.

While Port 0 is quite busy in M2, Port 1 and 5 are often idle. In an elliptic-curve operation
(see the following sections) an M2 is often preceded by a few field additions/subtractions.
Since vpaddq and the vectorized subtraction instruction vpsubq can only be handled by either
Port 1 and Port 5, we try to interleave the multiplication code with the addition/subtraction
code to reduce the chance of having an idle port. Experiment results show that the optimiza-
tion brings a small yet visible speedup. It seems more difficult for an algorithm built upon m
to use the same optimization.

3 The Curve25519 elliptic-curve-Diffie-Hellman scheme

[11] defines Curve25519 as a function that maps two 32-byte input strings to a 32-byte output
string. The function can be viewed as an x-coordinate-only scalar multiplication on the curve

EM : y2 = x3 + 486662x2 + x

over F2255−19. The curve points are denoted as EM (F2255−19). The first input string is inter-
preted as an integer scalar s, while the second input string is interpreted as a 32-byte encoding
of xP , the x-coordinate of a point P ∈ EM (F2255−19); the output is the 32-byte encoding of
xsP .

Given a 32-byte secret key and the 32-byte encoding of a standard base point defined
in [11], the function outputs the corresponding public key. Similarly, given a 32-byte secret
key and a 32-byte public key, the function outputs the corresponding shared secret. Although
the same routine can be used for generating both public keys and shared secrets, the public-key
generation can be done much faster by performing the scalar multiplication on an equivalent
curve. The rest of this section describes how we implement the Curve25519 function for
shared-secret computation and public-key generation.

3.1 Shared-Secret Computation

Algorithm 1 The Montgomery ladder step for Curve25519
1: function LadderStep(x2, z2, x3, z3, xP)
2: t0 ← x3 − z3
3: t1 ← x2 − z2
4: x2 ← x2 + z2
5: z2 ← x3 + z3
6: z3 ← t0 · x2; z2 ← z2 · t1 . batched multiplications
7: x3 ← z3 + z2
8: z2 ← z3 − z2
9: x3 ← x2

3; z2 ← z22 . batched squarings
10: z3 ← xP · z2;
11: t0 ← t21; t1 ← x2

2 . batched squarings
12: x2 ← t1 − t0
13: z3 ← x2 · 121666
14: z2 ← t0 + z3
15: z2 ← x2 · z2; x2 ← t1 · t0 . batched multiplications
16: return (x2, z2, x3, z3)
17: end function

The best known algorithm for x-coordinate-only variable-base-point scalar multiplication
on Montgomery curves is the Montgomery ladder. [1], [3] and our software all use the Mont-
gomery ladder for Curve25519 shared secret computation. Similar to the double-and-add
algorithm, the algorithm also iterates through each bit of the scalar, from the most signifi-
cant to the least significant one. For each bit of the scalar the ladder performs a differential
addition and a doubling. The differential addition and the doubling together are called a
ladder step. Since the ladder step can be carried out by a fixed sequence of field operations,
the Montgomery ladder is almost intrinsically constant-time. We summarize the ladder step
for Curve25519 in Algorithm 1. Note that Montgomery uses projective coordinates.

In order to make the best use of the vector unit (see Section 2), multiplications and
squarings are handled in pairs whenever convenient. The way we pair multiplications is shown
in the comments of Algorithm 1. It is not specified in [3] whether they pair multiplications
and squarings in the same way, but this seems to be the most natural way. Note that the
multiplication by 121666 (line 13) and the multiplication by x1 (line 10) are not paired with
other multiplications. We deal with the two multiplications as follows:

• Compute multiplications by 121666 without carries using 5 vpmuludq.
• Compute multiplications by x1 without carries. This can be completed in 50 vpmuludq

since we precompute the products of small constants (namely, 2, 19, and 38) and limbs in
x1 before the ladder begins.
• Perform batched carries for the two multiplications.

This uses far fewer cycles than handling the carries for the two multiplications separately.
Note that we often have to “transpose” data in the ladder step. More specifically, after an

M2 which computes (h0, h
′
0), . . . , (h9, h

′
9), we might need to compute h+h′ and h−h′; see lines

6–8 of Algorithm 1. In this case, we compute (hi, hi+1), (h′i, h
′
i+1) from (hi, h

′
i), (hi+1, h

′
i+1)

for i ∈ {0, 2, 4, 6, 8}, and then perform additions and subtractions on the vectors. The trans-
positions can be carried out using the “unpack” instructions vpunpcklqdq and vpunpckhqdq.
Similarly, to obtain the operands for M2 some transpositions are also required. Unpack in-
structions are the same as vpaddq and vpsubq in terms of port utilization, so we also try to
interleave them with M2 or S2 as described in Section 2.5.

3.2 Public-Key Generation

Instead of performing a fixed-base scalar multiplication directly on the Montgomery curve,
we follow [7] to perform a fixed-base scalar multiplication on the twisted Edwards curve

ET : −x2 + y2 = 1− 121665/121666x2y2

over F2255−19 and convert the result back to the Mongomery curve with one inversion. The
curve points are denoted as ET (F2255−19). There is an efficiently computable birational equiv-
alence between ET and EM , which means the curves share the same group structure and
ECDLP difficulty. Unlike Mongomery curves, there are complete formulas for point addition
and doubling on twisted Edwards curves; we follow [1] to use the formulas for the extended
coordinates proposed in [9]. The complete formulas allow utilization of a table of many pre-
computed points to accelerate the scalar multiplication, which is the reason fixed-base mul-
tiplications (on both EM and ET) can be carried out much faster than variable-base scalar
multiplications.

In [1] a fixed-base scalar multiplication sB where s ∈ Z and B ∈ ET (F2255−19) (B corre-
sponds to the standard base point in EM (F2255−19)) is performed as follows: write s (modulo
the order of B) as

∑15
i=0 16isi where si ∈ {−8,−7, . . . , 7} and obtain sB by computing the

summation of s0B, s116B, . . . , s151615B. To obtain si16iB, the strategy is to precompute sev-
eral multiples of 16iB and store them in a table, and then perform a constant-time table
lookup using si as index on demand. [1] also shows how to reduce the size of the table by
dividing the sum into two parts:

P0 = s0B + s2162B + · · ·+ s141614B

and
P1 = s1B + s3162B + · · ·+ s151614B.

sB = P0 + 16P1 is then obtained with 4 point doublings and 1 point addition. In this way,
the table contains only multiples of B, 162B, . . . , 1614B.

We do better by vectorizing between computations of P0 and P1: all the data related to
P0 and P1 are loaded into the lower half and upper half of the 128-bit registers, respectively.

This type of computation pattern is very friendly for vectorization since there no need to
“transpose” the data as in the case of Section 3.1.

While parallel point additions can be carried out easily, an important issue is how to
perform parallel constant-time table lookups in an efficient way. In [1], suppose there is a
need to lookup siP , the strategy is to precompute a table containing P, 2P, . . . , 8P , and then
the lookup is carried out in two steps:

• Load |si|P in constant time, which is the main bottleneck of the table lookup.

• Negate |si|P if si is negative.

For the first step it is convenient to use the conditional move instruction (cmov): To obtain
each limb (of each coordinate) of |si|P , first initialize a 64-bit register to the corresponding
limb of ∞, then for each of P, 2P, . . . , 8P , conditionally move the corresponding limb into
the register. Computation of the conditions and conditional negation are relatively cheap
compared to the cmov instructions. [1] uses a 3-coordinate system for precomputed points,
so the table-lookup function takes 3 · 8 · 5 = 120 cmov instructions. The function takes 159
Sandy Bridge cycles or 158 Ivy Bridge cycles.

We could use the same routine twice for parallel table lookups, but we do better by using
vector instructions. Here is a part of the inner loop of our qhasm ([18]) code.

v0 = mem64[input_1 + 0] x2

v1 = mem64[input_1 + 40] x2

v2 = mem64[input_1 + 80] x2

v0 &= mask1

v1 &= mask1

v2 &= mask1

t0 |= v0

t1 |= v1

t2 |= v2

The first line v0 = mem64[input 1 + 0] x2 loads the first and second limb (each taking 32
bits) of the first coordinate of P and broadcasts the value to the lower half and upper half
of the 128-bit register v0 using the movddup instruction. The line v0 &= mask1 performs a
bitwise AND of v0 and a mask; the value in the mask depends on whether si = 1. Finally, v0
is ORed into t0, which is initialized in a similar way as in the cmov-based approach. Similarly,
the rest of the lines are for the second and third coordinates. Similar code blocks are repeated
7 more times for 2P, 3P, . . . , 8P , and all the code blocks are surrounded by a loop which
iterates through all the limbs. In total it takes 3 · 8 · 5 · 2 = 240 logic instructions. The parallel
table-lookup function (inlined in our implementation) takes less than 160 Sandy/Ivy Bridge
cycles, which is almost twice as fast as the cmov-based table lookup function.

4 Vectorizing the Ed25519 signature scheme

This section describes how the Ed25519 verification is implemented with focus on the chal-
lenge of vectorization. Since the public-key generation and signing process, as the Curve25519
public-key generation, is bottlenecked by a fixed-base scalar multiplication on ET , the reader
can check Section 3.2 for the implementation strategy.

Algorithm 2 The doubling function for twisted Edwards curves
1: function ge dbl p2(X,Y, Z)
2: A← X2;B ← Y 2 . batched squarings
3: G← A−B
4: H ← A + B
5: C ← 2Z2;D = (X + Y)2 . batched squarings
6: E ← H −D
7: I ← G + C
8: X ′ ← E · I;Y ′ ← G ·H . batched multiplications
9: Z′ ← G · I

10: return (X ′, Y ′, Z′)
11: end function

4.1 Ed25519 Verification

[1] verifies a message by computing the double-scalar multiplication of the form s1P1 + s2P2.
The double-scalar multiplication is implemented using a generalization of the sliding-window
method such that s1P1 and s2P2 share the doublings. With the same window sizes, we do
better by vectorizing the point doubling and point addition functions.

On average each verification takes about 252 point doublings, accounting for more than
110000 cycles. There are two doubling functions in our implementation; ge dbl p2, which
is adapted from the “E ← 2E” doubling described in [9], is the most frequently used one;
see [9] for the reason to use different doubling and addition functions. On average ge dbl p2

is called 182 times per verification, accounting for more than 74000 cycles. The function is
summarized in Algorithm 2. Given (X : Y : Z) representing (X/Z, Y/Z) ∈ ET , the function
returns (X ′ : Y ′ : Z ′) = (X : Y : Z) + (X : Y : Z). As in Section 3.1, squarings and
multiplications are paired whenever convenient. However it is not always possible to do so, as
the multiplication in line 9 can not be paired with other operations. The single multiplication
slows down the function, and the same problem also appears in addition functions.

Another problem is harder to see. E = X2 + Y 2 − (X + Y)2 has limbs with upper bound
around 4 · 226, and I = X2 − Y 2 + 2Z2 has limbs with upper bound around 5 · 226. For the
multiplication E ·I, limbs of either E or I have to be multiplied by 19 (see Section 2.2), which
can be more than 32 bits. This problem is solved by performing extra carries on limbs in E
before the multiplication. The same problem appears in the other doubling function.

In general the computation pattern for verification is not so friendly for vectorization.
However, even in this case our software still gains non-negligible speedup over [1] and [7].
We conclude that the power of vector unit on recent Intel microarchitectures might have
been seriously underestimated, and implementors for ECC software should consider trying
vectorized multipliers instead of serial multipliers.

References

[1] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang, High-speed high-security
signatures, in CHES 2011 (2011), 124-142. Citations in this document: §1, §1.1, §1.2, §1.2, §1.2, §1.2,
§1.2, §1, §1, §1.2, §1.2, §1.2, §1.2, §1.2, §1.2, §1.2, §1.3, §2, §2, §2.1, §1, §2, §2, §2.3, §3.1, §3.2, §3.2, §3.2,
§3.2, §3.2, §4.1, §4.1.

[2] Neil Costigan, Peter Schwabe, Fast elliptic-curve cryptography on the Cell Broadband Engine, in
AFRICACRYPT 2009 (2009), 368–385. Citations in this document: §1, §1.1.

[3] Daniel J. Bernstein, Peter Schwabe, NEON crypto, in CHES 2012 (2012), 320–339. Citations in this
document: §1, §1.1, §1.1, §2, §2.2, §2.2, §2.2, §2.2, §3.1, §3.1.

[4] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Peter Schwabe, Kummer strikes back:
new DH speed records, in EUROCRYPT 2015 (2014), 317–337. Citations in this document: §1.1, §1.1,
§1.3, §1.3, §1.3.

[5] Craig Costello, Huseyin Hisil, Benjamin Smith, Faster compact Diffie–Hellman: endomorphisms on the
x-line, in EUROCRYPT 2014 (2014), 183–200. Citations in this document: §1.1.

[6] Patrick Longa, Francesco Sica, Benjamin Smith, Four-dimensional Gallant–Lambert–Vanstone scalar
multiplication, in Asiacrypt 2012 (2012), 718–739. Citations in this document: §1.1.

[7] Andrew M. “Floodyberry”, Implementations of a fast Elliptic-curve Digital Signature Algorithm (2013).
URL: https://github.com/floodyberry/ed25519-donna. Citations in this document: §1.2, §1.2, §1.2,
§1.2, §1, §1, §1.2, §1.2, §1.2, §1.2, §1.2, §1.2, §3.2, §4.1.

[8] Daniel J. Bernstein, Tanja Lange (editors), eBACS: ECRYPT Benchmarking of Cryptographic Systems
(2014). URL: http://bench.cr.yp.to. Citations in this document: §1, §1, §1, §1, §1.2, §1.3.

[9] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, Ed Dawson, Twisted Edwards curves revisited, in
Asiacrypt 2008 (2008), 326–343. Citations in this document: §3.2, §4.1, §4.1.

[10] Agner Fog, Instruction tables (2014). URL: http://www.agner.org/optimize/instruction_tables.pdf.
Citations in this document: §2, §2.

[11] Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records, in PKC 2006 (2006), 207–228. Cita-
tions in this document: §3, §3.

[12] Thomaz Oliveira, Julio López, Diego F Aranha, Francisco Rodŕıguez-Henŕıquez,, Lambda coordinates for
binary elliptic curves, in CHES 2013 (2013), 211–330. Citations in this document: §1.3.

[13] Joppe W Bos, Craig Costello, Huseyin Hisil, Kristin Lauter, Fast cryptography in genus 2, Journal of
Cryptology (2013), 1–33. Citations in this document: §1.3.

[14] Christophe Petit, Jean-Jacques Quisquater, On polynomial systems arising from a Weil descent, in ASI-
ACRYPT 2012 (2012), 451–466. Citations in this document: §1.3.

[15] Igor Semaev, New algorithm for the discrete logarithm problem on elliptic curves (2015). URL: https://
eprint.iacr.org/2015/310.pdf. Citations in this document: §1.3.

[16] Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter, Christof Paar, Ana Helena Sánchez,
Peter Schwabe, High-speed Curve25519 on 8-bit, 16-bit and 32-bit microcontrollers, Design, Codes and
Cryptography (to appear). URL: http://cryptojedi.org/papers/#mu25519. Citations in this document:
§1.

[17] — (no editor), IANIX. URL: ianix.com. Citations in this document: §1.
[18] Daniel J. Bernstein, qhasm sofware package (2007). URL: http://cr.yp.to/qhasm.html. Citations in

this document: §3.2.
[19] Patrick Longa, NUMS Elliptic Curves and their Implementation. URL: http://patricklonga.webs.com/

NUMS_Elliptic_Curves_and_their_Implementation-UoWashington.pdf. Citations in this document:
§1.2.

[20] Nicolas Thériault, Index calculus attack for hyperelliptic curves of small genus, in Asiacrypt 2003 (2003),
75–92. Citations in this document: §1.3.

https://github.com/floodyberry/ed25519-donna
http://bench.cr.yp.to
http://www.agner.org/optimize/instruction_tables.pdf
https://eprint.iacr.org/2015/310.pdf
https://eprint.iacr.org/2015/310.pdf
http://cryptojedi.org/papers/#mu25519
ianix.com
http://cr.yp.to/qhasm.html
http://patricklonga.webs.com/NUMS_Elliptic_Curves_and_their_Implementation-UoWashington.pdf
http://patricklonga.webs.com/NUMS_Elliptic_Curves_and_their_Implementation-UoWashington.pdf

	Sandy2x: New Curve25519 Speed Records

