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Abstract. Combining the efficient cross-polytope locality-sensitive hash
family of Terasawa and Tanaka with the heuristic lattice sieve algorithm
of Micciancio and Voulgaris, we show how to obtain heuristic and prac-
tical speedups for solving the shortest vector problem (SVP) on both
arbitrary and ideal lattices. In both cases, the asymptotic time complex-
ity for solving SVP in dimension n is 20.298n+o(n).
For any lattice, hashes can be computed in polynomial time, which makes
our CPSieve algorithm much more practical than the SphereSieve of
Laarhoven and De Weger, while the better asymptotic complexities imply
that this algorithm will outperform the GaussSieve of Micciancio and
Voulgaris and the HashSieve of Laarhoven in moderate dimensions as
well. We performed tests to show this improvement in practice.
For ideal lattices, by observing that the hash of a shifted vector is a shift
of the hash value of the original vector and constructing rerandomiza-
tion matrices which preserve this property, we obtain not only a linear
decrease in the space complexity, but also a linear speedup of the overall
algorithm. We demonstrate the practicability of our cross-polytope ideal
lattice sieve IdealCPSieve by applying the algorithm to cyclotomic ideal
lattices from the ideal SVP challenge and to lattices which appear in the
cryptanalysis of NTRU.

Keywords: (ideal) lattices, shortest vector problem, sieving algorithms,
locality-sensitive hashing

1 Introduction

Lattice-based cryptography. Lattices are discrete additive subgroups of Rn. More
concretely, given a basis B = {b1, . . . , bn} ⊂ Rn, the lattice generated by B,
denoted by L = L(B), is defined as the set of all integer linear combinations
of the basis vectors: L = {

∑n
i=1 µibi : µi ∈ Z}. The security of lattice-based

cryptography relies on the hardness of certain hard lattice problems, such as the
shortest vector problem (SVP): given a basis B of a lattice, find a shortest non-
zero vector v ∈ L, where shortest is defined in terms of the Euclidean norm. The
length of a shortest non-zero vector is denoted by λ1(L). A common relaxation
of SVP is the approximate shortest vector problem (SVPδ): given a basis B of
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L and an approximation factor δ > 1, find a non-zero vector v ∈ L whose norm
does not exceed δ · λ1(L).

Although SVP and SVPδ with constant approximation factor δ are well-
known to be NP-hard under randomized reductions [4,29], choosing parameters
in lattice cryptography remains a challenge [18, 36, 50] as e.g. (i) the actual
computational complexity of SVP and SVPδ is still not very well understood;
and (ii) for efficiency, lattice-based cryptographic primitives such as NTRU [24]
commonly use special, structured lattices, for which solving SVP and SVPδ may
potentially be much easier than for arbitrary lattices.

SVP algorithms. To improve our understanding of these hard lattice prob-
lems, which may ultimately help us strengthen (or lose) our faith in lattice
cryptography, the only solution seems to be to analyze algorithms that solve
these problems. Studies of algorithms for solving SVP already started in the
1980s [16, 28, 49] when it was shown that a technique called enumeration can
solve SVP in superexponential time (2Ω(n logn)) and polynomial space. In 2001
Ajtai et al. showed that SVP can actually be solved in single exponential time
(2Θ(n)) with a technique called sieving [5], which requires a single exponential
space complexity as well. Even more recently, two new methods were invented
for solving SVP based on using Voronoi cells [42] and on using discrete Gaussian
sampling [2]. These methods also require a single exponential time and space
complexity.

Sieving algorithms. Out of the latter three methods with a single exponential
time complexity, sieving still seems to be the most practical to date; the provable
time exponent for sieving may be as high as 22.465n+o(n) [23, 46, 51] (compared
to 22n+o(n) for the Voronoi cell algorithm, and 2n+o(n) for the discrete Gaussian
combiner), but various heuristic improvements to sieving since 2001 [10, 43, 46,
61,62] have shown that in practice sieving may be able to solve SVP in time and
space as little as 20.378n+o(n). Other works on sieving have further shown how to
parallelize and speed up sieving in practice with various polynomial speedups [12,
17, 27, 39–41, 45, 53, 54], and how sieving can be made even faster on certain
structured, ideal lattices used in lattice cryptography [12, 27, 54]. Ultimately
both Ishiguro et al. [27] and Bos et al. [12] managed to solve an 128-dimensional
ideal SVP challenge [48] using a modified version of the GaussSieve [43], which
is currently still the highest dimension in which a challenge from the ideal lattice
challenge was successfully solved.

Sieving and locality-sensitive hashing. Even more recently, a new line of research
was initiated which combines the ideas of sieving with a technique from the liter-
ature of nearest neighbor searching, called locality-sensitive hashing (LSH) [26].
This led to a practical algorithm with heuristic time and space complexities of
only 20.337n+o(n) (the HashSieve [32, 41]), and an algorithm with even better
asymptotic complexities of only 20.298n+o(n) (the SphereSieve [33]). However, for
both methods the polynomial speedups that apply to the GaussSieve for ideal
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lattices [12,27,54] do not seem to apply, and the latter algorithm may be of lim-
ited practical interest due to large hidden order terms in the LSH technique and
the fact that this technique seems incompatible with the GaussSieve [43] and
only works with the less practical NV-sieve [46]. Understanding the possibilities
and limitations of sieving with LSH, as well as finding new ways to efficiently
apply similar techniques to ideal lattices remains an open problem.

Our contributions. In this work we show how to obtain practical, exponential
speedups for sieving (in particular for the GaussSieve algorithm [12,27,43]) using
the cross-polytope LSH technique first introduced by Terasawa and Tanaka in
2007 [60] and very recently further analyzed by Andoni et al. [9]. Our results are
two-fold:

Arbitrary lattices. For arbitrary lattices, using polytope LSH leads to a prac-
tical sieve with heuristic time and space complexities of 20.298n+o(n). The
exact trade-off between the time and memory is shown in Figure 1. The
low polynomial cost of computing hashes and the fact that this algorithm is
based on the GaussSieve (rather than the NV-sieve [46]) indicate that this
algorithm is more practical than the SphereSieve [33], while in moderate
dimensions this method will be faster than both the GaussSieve and the
HashSieve due to its better asymptotic time complexity.

Ideal lattices. For ideal lattices commonly used in cryptography, we show how
to obtain similar polynomial speedups and decreases in the space complexity
as in the GaussSieve [12, 27, 54]. In particular, both the time and space for
solving SVP decrease by a factor Θ(n), and the cost of computing hashes
decreases by a quasi-linear factor Θ(n/ log n) using Fast Fourier Transforms.

These results emphasize the potential of sieving for solving high-dimensional
instances of SVP, which in turn can be used inside lattice basis reduction algo-
rithms like BKZ [56,57] to find short (rather than shortest) vectors in even higher
dimensions. As a consequence, these results will be an important guide for es-
timating the long-term security of lattice-based cryptography, and in particular
for selecting parameters in lattice-based cryptographic primitives.

Outline. The paper is organized as follows. In Section 2 we recall some back-
ground on lattices, sieving, locality-sensitive hashing, and the polytope LSH
family of Terasawa and Tanaka [60]. Section 3 describes how to combine these
techniques to solve SVP on arbitrary lattices, and how this leads to an asymp-
totic time (and space) complexity of 20.298n+o(n). Section 4 describes how to
make the resulting algorithm even faster for lattices with a specific ideal struc-
ture, such as some of the lattices of the ideal lattice challenge [48] and lattices
appearing in the cryptanalysis of NTRU [24]. Finally, Section 5 concludes with
a brief discussion of the results.



4 Anja Becker and Thijs Laarhoven

Tim
e=

Sp
ac

e

●

●
● ●

●●

●●

NV
'08

M
V

'10

W
LT

B
'11

ZP
H

'13

BGJ '14

BGJ '14

Laa'15

LdW
'15

CrossPolytopeSieve

20.20 n 20.25 n 20.30 n 20.35 n 20.40 n

20.25 n

20.30 n

20.35 n

20.40 n

20.45 n

Space complexity

Ti
m

e
co

m
pl

ex
it

y

Fig. 1. The heuristic space-time trade-off of various previous heuristic sieving algo-
rithms from the literature (the red points and curves), and the heuristic trade-off
between the space and time complexities obtained with our algorithm (the blue curve).
The referenced papers are: NV’08 [46] (the NV-sieve), MV’10 [43] (the GaussSieve),
WLTB’11 [61] (two-level sieving), ZPH’13 [62] (three-level sieving), BGJ’14 [10] (the
decomposition approach), Laa’15 [32] (the HashSieve), LdW’15 [33] (the SphereSieve).
Note that the trade-off curve for the CPSieve (the blue curve) overlaps with the asymp-
totic trade-off of the SphereSieve of [33].

2 Preliminaries

2.1 Lattices

Let us first recall some basics on lattices. As mentioned in the introduction, we
let L = L(B) denote the lattice generated by the basis B = {b1, . . . , bn} ⊂ Rn,
and the shortest vector problem asks to find a vector of length λ1(L), i.e. a
shortest non-zero vector in the lattice. Lattices are additive groups, and so if
v,w ∈ L, then also λvv + λww ∈ L for λv, λw ∈ Z.

Within the set of all lattices there is a subset of ideal lattices, which are
defined in terms of ideals of polynomial rings. Given a ring R = Z[X]/(g) where
g ∈ Z[X] is a degree-n monic polynomial, we can represent a polynomial v(X) =∑n
i=1 viX

i−1 in this ring by a vector v = (v1, . . . , vn). Then, given a set of
generators b1, . . . , bk ∈ R, we define the ideal I = 〈b1, . . . , bk〉 by the properties
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(i) if a, b ∈ I then also λa+µb ∈ I for scalars λ, µ ∈ Z; and (ii) if a ∈ R and b ∈ I
then a · b ∈ I. Note that when these polynomials are translated to vectors, the
first property corresponds exactly to the property of a lattice, while the second
property makes this an ideal lattice. In terms of lattices, the second property
can equivalently be written as:

(v1, . . . , vn) ∈ L ⇔ (w1, . . . , wn) ∈ L, where w ≡ X · v mod g in R. (1)

In this paper we will restrict our attention to a few specific choices of g as
follows:

Cyclic lattices: If g(X) = Xn−1 and v = (v1, . . . , vn), then w ≡ X ·v implies
that w = (vn, v1, . . . , vn−1), i.e. multiplying a polynomial in the ring by X
corresponds to a right-shift (with carry) of the corresponding vector, and so
any cyclic shift of a lattice vector is also in the lattice.

Negacyclic lattices: For the case g(X) = Xn+1 we similarly have that multi-
plying a polynomial by X in the ring corresponds to a right-shift with carry,
but in this case an extra minus sign appears with the carry: w ≡ X ·v implies
that w = (−vn, v1, . . . , vn−1).

Whereas the above descriptions of cyclic and negacyclic lattices are quite general,
below we list two instances of these lattices that appear in practice which have
certain additional properties.

NTRU lattices: Cyclic lattices most notably appear in the cryptanalysis of
NTRU [24], where the polynomial ring is R = Zq[x]/(Xp− 1) where p, q are
prime. Due to the modular ring, the corresponding lattice is not quite cyclic
but rather “block-cyclic”. The NTRU lattice is formed by the n = 2p basis
vectors bi = (q · ei‖0) for i = 1, . . . , p and bp+i = (hi‖ei) for i = 1, . . . , p,
where ei corresponds to the ith unit vector, and hi corresponds to the ith
cyclic shift of the public key h generated from the private key f , g (see [24]
for details). In this case, if v = (v1‖v2) ∈ L is a lattice vector, then also
shifting both v1 and v2 to the right or left leads to a lattice vector. Finding
a shortest non-zero vector in this lattice corresponds to finding the secret
key (f‖g) and breaking the underlying cryptosystem.

Power-of-two cyclotomic lattices: Negacyclic lattices commonly appear in
lattice cryptography, where n = 2k is a power of 2 so that, among others, g is
irreducible. The 128-dimensional ideal lattice attacked by Ishiguro et al. [27]
and Bos et al. [12] from the ideal lattice challenge [48] also belongs to this
class of lattices. Lattices of this form previously appeared in the context of
lattice cryptography in e.g. [20, 38,59].

2.2 Sieving algorithms

For solving the shortest vector problem in single exponential time (rather than
superexponential time, as with enumeration), in 2001 Ajtai et al. [5] proposed a
new method called sieving. This method was later refined and modified leading
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to various different algorithms, the most practical of which seems to be the
GaussSieve of Micciancio and Voulgaris [43]. Over the years this algorithm has
received considerable attention in the literature [17, 27, 31, 39, 40, 45, 53, 54] and
the highest SVP records achieved using sieving all used (a modification of) the
GaussSieve, both for arbitrary lattices [31] and for ideal lattices [12,27].

The GaussSieve. The GaussSieve algorithm, described in Algorithm 1, itera-
tively builds a longer and longer list of lattice vectors, and makes sure that the
list remains pairwise Gauss-reduced throughout the execution of the algorithm.
Here, two vectors v,w are said to be Gauss-reduced with respect to each other
iff ‖v ± w‖ ≥ ‖v‖, ‖w‖ where all norms are Euclidean norms. In other words,
two vectors are (Gauss-)reduced if adding/subtracting one vector to/from the
other does not lead to a shorter vector than the two vectors we started with.
Note that a reduced pair of vectors always has an angle of at least 60◦ between
them, as otherwise one vector could reduce the other, and the implication holds
both ways if ‖v‖ = ‖w‖; if one is longer than the other, then they might still be
reducible (e.g. not yet reduced) even if their angle is more than 60◦.

If two vectors v,w are not reduced, then we can either reduce v with w by
replacing v with the shorter vector v±w, or reduce w with v by replacing it with
w±v. For each pair of vectors such replacements are done if possible, and using
sufficiently many vectors, we hope that collisions (vectors being reduced to the
0-vector after pairwise reductions) do not occur that often, so that the remaining
number of vectors after building this list is so big that we eventually saturate
all “corners” of the n-dimensional space with vectors in our list. In short, the
algorithm keeps generating new vectors that it adds to the list, and it updates
the list to keep it reduced, and adds list vectors that are no longer reduced with
the list to a stack of vectors to be processed later. The vectors in this list will
become shorter and shorter, and in the end we hope to find a shortest lattice
vector in our list. This leads to the algorithm described in Algorithm 1.

Time and space complexities. For the complexity of this algorithm, the space
complexity is heuristically bounded from below by (4/3)n/2+o(n) ≈ 20.2075n+o(n)

due to bounds on the kissing constant in high dimensions [14]; if we were to
systematically encounter lattices for which the list size of the GaussSieve is
larger than 20.2075n+o(n), then we would be able to systematically generate sets of
points in high dimensions exceeding the long-standing lower bound on the kissing
constant of 20.2075n+o(n), which is deemed unlikely. For the time complexity,
the “collisions” that may occur by reducing vectors and ending up with the
0-vector have so far prevented anyone from proving heuristic bounds on the
time complexity; theoretically, the algorithm may run forever without finding a
shortest vector by repeatedly generating collisions. In practice this does not seem
to be an issue at all, and commonly collisions only occur after a shortest vector
is already in the list L. In practice the time complexity may well be estimated
to be quadratic in the list size, i.e. 20.4150n+o(n), as each pair of points needs to
be compared at least once. This matches high-dimensional experimental results
of the GaussSieve [31] and the GaussSieve-based HashSieve [41].
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Algorithm 1 The GaussSieve algorithm

1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack S (or sample a new one if S = ∅)
4: for each w ∈ L do
5: Reduce v with w
6: Reduce w with v
7: if w has changed then
8: Remove w from the list L
9: Add w to the stack S (unless w = 0)

10: end if
11: end for
12: if v has changed then
13: Add v to the stack S (unless v = 0)
14: else
15: Add v to the list L
16: end if
17: until v is a shortest vector of the lattice

Note that to actually prove (heuristically) that our proposed algorithm achieves
a certain heuristic time and space complexity, one should apply the same tech-
niques to the sieve algorithm of Nguyen and Vidick [46] as previously outlined
in [32]. Nguyen and Vidick’s algorithm comes with heuristic bounds on the time
complexity (not based on conjectures on the kissing constant or on the conjec-
tured absence of collisions), and the speedup we obtain applies to that algorithm
in the same way. However, similar to [32] we are interested in designing the fastest
and most practical sieving algorithm possible for solving SVP rather than the
best provable heuristic algorithm, and so in the remainder of this paper we will
focus on the GaussSieve. But one should keep in mind that for theoretical argu-
ments these ideas may also be applied to the NV-sieve [46] which actually leads
to provable bounds under suitable heuristic assumptions.

2.3 Locality-sensitive hashing

To distinguish between pairs of vectors which are nearby in space and pairs of
vectors which are far apart, it is possible to use locality-sensitive hash functions
first introduced in [26]. These are functions h which map an n-dimensional vector
v to a low-dimensional sketch of v, such that two vectors which are nearby in
Rn have a higher probability of having the same sketch than two vectors which
are far apart. A simple example of such a function is the function h mapping
v = (v1, . . . , vn) to h(v) = v1; two vectors which are nearby in n-dimensional
space have a slightly higher probability of having similar first coordinates than
vectors which are far apart. Formalizing this property leads to the following
definition of a locality-sensitive hash family H. Here, we assume D is a certain
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similarity measure3, and the set U below may be thought of as (a subset of) the
natural numbers N.

Definition 1. [26] A family H = {h : Rn → U} is called (r1, r2, p1, p2)-
sensitive for a similarity measure D if for any v,w ∈ Rn we have

– If D(v,w) ≤ r1 then Ph∈H[h(v) = h(w)] ≥ p1.

– If D(v,w) ≥ r2 then Ph∈H[h(v) = h(w)] ≤ p2.

Note that if we are given a hash family H which is (r1, r2, p1, p2)-sensitive
with p1 � p2, then we can use H to distinguish between vectors which are
at most r1 away from v, and vectors which are at least r2 away from v with
non-negligible probability, by only looking at their hash values (and that of v).

2.4 Amplification

In general it is unknown whether efficiently computable (r1, r2, p1, p2)-sensitive
hash families even exist for the ideal setting of r1 ≈ r2 (small gap) and p1 ≈ 1 and
p2 ≈ 0 (strong distinguishing power). Instead, one commonly first constructs an
(r1, r2, p1, p2)-sensitive hash family H with p1 ≈ p2, and then uses several AND-
and OR-compositions to turn it into an (r1, r2, p

′
1, p
′
2)-sensitive hash family H′

with p′1 > p1 and p′2 < p2, thereby amplifying the gap between p1 and p2.

AND-composition Given an (r1, r2, p1, p2)-sensitive hash family H, we can
construct an (r1, r2, p

k
1 , p

k
2)-sensitive hash family H′ by taking k different,

pairwise independent functions h1, . . . , hk ∈ H and a one-to-one mapping
f : Uk → U , and defining h ∈ H′ as h(v) = f(h1(v), . . . , hk(v)). Clearly
h(v) = h(w) iff hi(v) = hi(w) for all i ∈ [k], so if P[hi(v) = hi(w)] = p for
all i, then P[h(v) = h(w)] = pk.

OR-composition Given an (r1, r2, p1, p2)-sensitive hash family H, we can con-
struct an (r1, r2, 1−(1−p1)t, 1−(1−p2)t)-sensitive hash familyH′ by taking t
different, pairwise independent functions h1, . . . , ht ∈ H, and defining h ∈ H′
by the relation h(v) = h(w) iff hi(v) = hi(w) for at least one i ∈ [t]. Clearly
h(v) 6= h(w) iff hi(v) 6= hi(w) for all i ∈ [t], so if P[hi(v) 6= hi(w)] = 1− p
for all i, then P[h(v) 6= h(w)] = (1− p)t for j = 1, 2.

Combining a k-wise AND-composition with a t-wise OR-composition, we can
turn an (r1, r2, p1, p2)-sensitive hash family H into an (r1, r2, 1 − (1 − pk1)t, 1 −
(1−pk2)t)-sensitive hash family H′. As long as p1 > p2, we can always find values

k and t such that p∗1
def
= 1− (1− pk1)t ≈ 1 and p∗2

def
= 1− (1− pk2)t ≈ 0.

3 A similarity measure D may informally be thought of as a “slightly relaxed” distance
metric, which may not satisfy all properties associated to metrics.
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2.5 Finding nearest neighbors with LSH

The near(est) neighbor problem is the following [26]: Given a long list L of n-
dimensional vectors, i.e., L = {w1,w2, . . . ,wN} ⊂ Rn, preprocess L in such a
way that, when later given a target vector v /∈ L, one can efficiently find an
element w ∈ L which is close(st) to v. While in low (fixed) dimensions n there
are ways to trivially answer these queries in time sub-linear or even logarithmic
in the list size N , in high dimensions it seems hard to do better than with a
naive brute-force list search of time O(N). This inability to efficiently store and
query lists of high-dimensional objects is sometimes referred to as the “curse
of dimensionality” [26]. Fortunately, if we know that e.g. there is a significant
gap between what is meant by “nearby” and “far away,” then there are ways to
preprocess L such that queries can be answered in time sub-linear in N , using
locality-sensitive hash families.

To use these LSH families to find nearest neighbors, we can use the following
method first described in [26]. First, we choose t · k random hash functions
hi,j ∈ H, and we use the AND-composition to combine k of them at a time
to build t different hash functions h1, . . . , ht. Then, given the list L, we build t
different hash tables T1, . . . , Tt, where for each hash table Ti we insert w into
the bucket labeled hi(w). Finally, given the vector v, we compute its t images
hi(v), gather all the candidate vectors that collide with v in at least one of these
hash tables (an OR-composition) in a list of candidates, and search this set of
candidates for a nearest neighbor.

Clearly, the quality of this algorithm for finding nearest neighbors depends
on the quality of the underlying hash family and on the parameters k and t.
Larger values of k and t amplify the gap between the probabilities of finding
‘good’ (nearby) and ‘bad’ (faraway) vectors, which makes the list of candidates
shorter, but larger parameters come at the cost of having to compute many
hashes (during the preprocessing and querying phases) and having to store many
hash tables in memory. The following lemma shows how to balance k and t such
that the overall time complexity is minimized.

Lemma 1. [26] Let H be an (r1, r2, p1, p2)-sensitive hash family. Then, for a
list L of size N , taking

ρ =
log(1/p1)

log(1/p2)
, k =

log(N)

log(1/p2)
, t = O(Nρ), (2)

with high probability we can either (a) find an element w∗ ∈ L with D(v,w∗) ≤
r2, or (b) conclude that with high probability, no elements w ∈ L with D(v,w) >
r1 exist, with the following costs:

1. Time for preprocessing the list: O(N1+ρ log1/p2 N).

2. Space complexity of the preprocessed data: O(N1+ρ).
3. Time for answering a query v: O(Nρ).

– Hash evaluations of the query vector v: O(Nρ).
– List vectors to compare to the query vector v: O(Nρ).
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Although Lemma 1 only shows how to choose k and t to minimize the time
complexity, we can also tune k and t so that we use more time and less space.
In a way this algorithm can be seen as a generalization of the naive brute-force
search method, as k = 0 and t = 1 corresponds to checking the whole list for
nearby vectors in linear time and linear space.

2.6 Cross-polytope locality-sensitive hashing

Whereas the previous subsections covered techniques previously used in [32]
and [33], we deviate from these papers by the choice of hash function. The hash
function we will use is the one originally described by Terasawa and Tanaka [60]
using simplices and orthoplices (cross polytopes), later analyzed by Andoni et
al. [9]. The n-dimensional cross-polytope is defined by the vertices {±ei}, and
the corresponding hash function based on using the n-dimensional cross-polytope
is defined by finding the vector h ∈ {±ei} which is closest to the target vector
v. Alternatively, the hash function is defined as:

h(x) = ± arg max
i

|xi| ∈ {±1,±2, . . . ,±n}, (3)

where the sign is equal to the sign of the absolute largest coordinate; if v =
(3,−5) then h(v) = −2 and h(−v) = 2. Two vectors then have the same hash
value if (i) the position of the absolute largest coordinate is the same, and (ii)
the sign of this coordinate is the same for both vectors.

As this only defines one hash function rather than an entire hash family, we
need to somehow rerandomize the hash function, which is done as follows. We
denote by A the distribution on the space of n × n real matrices where each
entry is drawn from a standard normal distribution N (0, 1). In other words, the
distribution A outputs matrices A = (ai,j) ∈ Rn×n where ai,j ∼ N (0, 1) for all
i, j. Then, by first multiplying a vector v with a random matrix A ∼ A and then
applying the base hash function h, we obtain a hash family H as

H =
{
hA : hA(x) , h(Ax), A ∼ A

}
. (4)

Using this hash family, we define probabilities by varying the matrix A, e.g.,

P [h(v) = h(w)] , PhA∼H [hA(v) = hA(w)] = PA∼A [hA(v) = hA(w)] . (5)

As suggested by experiments in [60], the above hash function family per-
forms very well in practice for distinguishing between vectors with small and
large angles (note that H is scale-invariant; h(λv) = h(v) for arbitrary λ > 0).
Terasawa and Tanaka already indicated that it seems to perform better than
Charikar’s angular or hyperplane hash family [13]. A recent study of Andoni et
al. [9] shows that indeed it provably performs very well, leading to the following
result on collision probabilities.
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Lemma 2 (Cross-polytope locality-sensitive hashing). [9, Theorem 1] Let
θ = θ(v,w) denote the angle between two vectors v and w. Then, for large n,

Ph∼H [h(v) = h(w)] = exp

[
(− lnn) tan2

(
θ

2

)
+O(log log n)

]
. (6)

For comparison later, we finally recall that for the spherical LSH family S
described in [7] and used in the SphereSieve [33], we have the following result
regarding collision probabilities.

Lemma 3 (Spherical locality-sensitive hashing). [7, Lemma 3.3] Let θ =
θ(v,w) denote the angle between two vectors v and w. Then, for large n,

Ph∼S [h(v) = h(w)] = exp

[
−
√
n

2
tan2

(
θ

2

)
(1 + o(1))

]
. (7)

Note that the leading-term dependence on θ in both spherical LSH and cross-
polytope LSH is the same while the term in n is decreased from a former

√
n/2

to lnn.

3 CPSieve: Sieving in arbitrary lattices

To combine sieving (the GaussSieve of Micciancio and Voulgaris) with locality-
sensitive hashing (the cross-polytope LSH family of Terasawa and Tanaka) we
will make the following changes to the GaussSieve, similar to [32,33]:

– Instead of building a list of pairwise-reduced lattice vectors, we store each
vector in t hash tables T1, . . . , Tt.

– For each hash table Ti, we combine k hash functions hi,1, . . . , hi,k into one
function hi with an AND-composition.

– To reduce a new vector with the vectors which are already in the hash tables,
we only compare it to those vectors that have the same hash value in one or
more of these t hash tables (OR-composition).

– When a vector is removed from the list and added to the stack, it is removed
from all t hash tables before it is modified and added to S.

– When a vector is added to the list, it is inserted in the t hash tables in the
buckets corresponding to its t hash values.

The main difference with previous work [32, 33] lies in the choice of the hash
function family, which in this paper is the efficient and asymptotically superior
cross-polytope LSH, rather than the asymptotically worse angular or hyperplane
LSH [13,32] or the less practical spherical LSH [8,33]. This leads to the CPSieve
algorithm described in Algorithm 2.
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Algorithm 2 The CPSieve algorithm

1: Initialize an empty list L and an empty stack S
2: Sample t · k random Gaussian matrices Ai,j

3: Define hi,j(x) = h(Ai,jx) and hi(x) = (hi,1(x), . . . , hi,k(x))
4: Initialize t empty hash tables Ti

5: repeat
6: Get a vector v from the stack (or sample a new one)

7: Obtain the set of candidates C =

(
t⋃

i=1

Ti[hi(v)] ∪
t⋃

i=1

Ti[hi(−v)]

)
8: for each w ∈ C do
9: Reduce v with w

10: Reduce w with v
11: if w has changed then
12: Remove w from the list L
13: Remove w from all t hash tables Ti

14: Add w to the stack S (unless w = 0)
15: end if
16: end for
17: if v has changed then
18: Add v to the stack S (unless v = 0)
19: else
20: Add v to the list L
21: Add v to all t hash tables Ti

22: end if
23: until v is a shortest vector

3.1 Solving SVP in time and space 20.298n+o(n)

To analyze the resulting algorithm and to choose suitable parameters k and t,
what matters most is the performance of the underlying locality-sensitive hash
functions; the better these functions are at separating reducible from unreducible
pairs of vectors, the fewer hash functions and hash tables we will need and the
faster the algorithm will be. In particular, as described in various literature on
locality-sensitive hashing, to estimate the performance of the LSH family one

should consider the parameter ρ = log 1/p1
log 1/p2

.

Note that the LSH family H described in Section 2.6 has ‘performance pa-
rameter’ ρ as follows, where the collision probabilities p1,2 correspond to certain
angles θ1,2 between pairs of vectors:

ρH =
log 1/p1
log 1/p2

=
tan2

(
θ1
2

)
tan2

(
θ2
2

) (1 + o(1)). (8)

Comparing this result to Andoni et al.’s spherical hash functions h ∈ S [7, 8]
used in the SphereSieve [33], which have a collision probability of

Ph∼S [h(v) = h(w)] = exp

[
−
√
n

2
tan2

(
θ

2

)
(1 + o(1))

]
, (9)
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it is clear that also this spherical LSH family S achieves a ρ of

ρS =
log 1/p1
log 1/p2

=
tan2

(
θ1
2

)
tan2

(
θ2
2

) (1 + o(1)). (10)

In terms of analyzing the effects of the use of either of these hash families on
sieving, this implies that both families achieve asymptotically equivalent expo-
nents; the analysis from [33] to derive the optimal time and space complexities
of 20.298n+o(n) also applies here, thus leading to the following result.

Theorem 1. The here presented CPSieve heuristically solves SVP in time and
space 20.2972n+o(n) using the following parameters:

k = Θ(n/ log n), t = 20.0896n+o(n). (11)

By varying k and t, we further obtain the trade-off between the time and space
complexities indicated by the solid blue curve in Figure 1.

Proof. As the dependence on θ in the collision probabilities for H and S is the
same, the analysis from [33, Appendix A] also applies to H. The only impact
of the different factor in the exponent of the collision probability (in terms of
n) is the value of k, which after a similar analysis (where it should hold that
the number of buckets roughly equals the eventual list size, i.e., Θ(nk) ∼ 2Θ(n))
turns out to lead to the given expression for k.

Note that a major difference between the two hash families H and S is that
computing a single hash value (for one hash function, before amplification) costs
2Θ(
√
n) time for S and only at most O(n2) time for H (due to the matrix-vector

multiplication by a random Gaussian matrix A). So by replacing S by H, the
cost of computing hashes goes down from subexponential (but superpolynomial)
to only at most quadratic in n. Especially for large n, this means cross-polytope
hashing will be orders of magnitude faster than spherical hashing, and may be
competitive with the angular hashing of Charikar [13] used in the HashSieve [32,
41].

3.2 Practical aspects of the CPSieve

Although this theoretical result already offers a substantial (albeit subexponen-
tial) improvement over the SphereSieve, and an exponential improvement over
other sieve algorithms, to make the resulting algorithm truly practical we would
like to further reduce the worst-case quadratic cost of computing hashes.

Theoretically, to compute hashes we first multiply a target vector v by a
fully random Gaussian matrix A where each entry ai,j is drawn from the same
Gaussian distribution, and then look for the largest coordinate of v′ = Av; the
index of the largest coordinate of v′ will be the hash value. Note that finding this
largest coordinate, given v′, can be done in worst-case linear time, and so the
main bottleneck in computing hashes lies in computing the product Av. As also
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described in [1, 32, 35], in practice it may be possible to reduce the amount of
entropy in the hash functions (the “randomness”) without significantly affecting
the performance of the scheme. As long as the amount of entropy is high enough
that we can build sufficiently many random, independent hash functions, the al-
gorithm will generally still work fine. Some possibilities to reduce the complexity
of computing hashes in practice are:

– Use low-precision floating-point matrices A.

– Use sparse random projection matrices.

– Use structured matrices that allow for fast matrix-vector multiplication.

Using structured matrices that allow for e.g. the use of Fast Fourier Transforms
for computing matrix-vector multiplications may significantly reduce the cost of
computing a hash value from O(n2) to O(n log n).

Probing The idea of probing, where various hash buckets in each hash table
are traversed and checked for reductions with v (rather than only the bucket
labeled h(v)), can also be applied to the CPSieve. For a given vector v, the
highest-quality bucket (the bucket most likely to contain vectors for reductions)
is the one labeled h(v), containing other vectors which also have the same in-
dex of the largest coordinate. It is not hard to see that the second-best bucket
for reductions with v is exactly the bucket corresponding to the second-largest
absolute coordinate of v. For instance, if v = (3,−1, 8,−5, 11) then the vec-
tors whose largest coordinate is the fifth coordinate are most likely to be useful
for reductions, and the next best option to check is those vectors whose largest
coordinate is the third coordinate. By checking multiple buckets in each hash
table (rather than just one bucket), we may be able to reduce the number of
hash tables and the overall space complexity by a polynomial factor at almost
no cost.

For further details on clever (multi-)probing techniques for the cross-polytope
LSH family H, as well as ways to use structured matrices to reduce the quadratic
cost of hashing, see [9].

3.3 Relation with angular hashing and a practical trade-off

To put the hash family H into context, recall that the angular hash family of
Charikar [13] used in the HashSieve [32] is defined as follows: one samples a
random vector r ∈ Rn (its length is irrelevant), and assigns a hash value to a
vector v based on whether the inner product v · r is positive (h(v) = 1) or not
(h(v) = 0). Equivalently, we apply a suitable random projection to v, and check
whether v1 is positive (h(v) = 1) or not (h(v) = 0).

In this way it is easy to see some similarities with cross-polytope hashing,
where all (instead of only one) entries of v are compared and the index of the
maximum of these entries (and the sign of the maximum entry) is used as the
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hash value. This suggests a natural generalization of both angular and cross-
polytope hashing as follows:

h̃m(x) = ± arg max
i∈{1,...,m}

|xi|. (1 ≤ m ≤ n) (12)

Using random Gaussian projection matrices A and setting m = 1 then exactly
corresponds to the angular hashing technique of Charikar, while with rerandom-
izations and m = n we obtain the cross-polytope LSH family. This generalization
with arbitrary m is also equivalent to first applying a random projection onto
a low-dimensional subspace and then using the standard full-dimensional cross-
polytope hash function in this low-dimensional space.

Note that although the CPSieve is asymptotically faster than the HashSieve,
for the HashSieve the practical cost of computing hash values is much lower.
To formalize this potential trade-off, note that for arbitrary m the hash func-
tion h̃m has 2m possible outcomes, and we eventually choose the parameter k to
(asymptotically) satisfy that the total number of hash buckets in each hash table
is roughly the same as the number of vectors in the system, i.e., (2m)k ≈ 20.21n.
For given m, this translates to a condition on k as k ≈ 0.21n

log2m+1 . For actually

computing hash values (for the moment ignoring the cost of the rerandomiza-
tions) we need to go through m of the vector coordinates to find the largest one
in absolute value, incurring a cost of about m comparisons. In total, this means
that for one hash table (which uses k hash functions) the cost of computing a
vector’s hash bucket is

(Cost of computing the right bucket) ≈ k ·m ≈ 0.21n ·
[

m

log2m+ 1

]
. (13)

This suggests that to bring down the polynomial factors of computing hashes,
we should choose m as small as possible, i.e. m = 1; this also explains why
in low dimensions the HashSieve may outperform the CPSieve due to smaller
polynomial terms. On the other hand, as m increases the asymptotic exponent
of the algorithm’s time complexity decreases from 0.337n+o(n) (the HashSieve)
to 0.298n + o(n) (the CPSieve), so for high dimensions it is clear that setting
m = n is best. For moderate dimensions one might find the best option to be
somewhere in between these two extremes. Experimentally we verified this to
be the case for n = 50, where we heuristically found the best choice of m to lie
significantly closer to m = n than to m = 1; for fixed t, it seems we can slightly
reduce the time complexity by less than 20% by choosing m slightly less than n,
e.g. m ≈ 2n/3.

3.4 Experimental results

We first show that already in mid-size dimensions (n > 50), we observe that the
costs are similar to the asymptotic estimate for small choices of k. For a given
dimension, we can vary the parameters t and k and observe varying numbers of
vector comparisons, changes of the list size and number of hash computations.
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For example, let us fix the number t of hash tables, t ∈ [80; 120]. We can now
choose different values for k in practice that influence the probability that a
candidate is a valid vector for reduction. A smaller k leads to a less restrictive
hash value such that more vectors need to be checked for reduction. Increasing k
produces a more restrictive hash value and we might need to increase the number
t of hash tables to find good collisions; otherwise the list size may increase
drastically, leading to a higher time complexity as well. Varying the parameters
means trading time against memory as illustrated in Figures 2 and 3.4
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Fig. 2. A comparison of the number of operations (vector comparisons + hash com-
putations) performed by the original GaussSieve algorithm, the angular HashSieve
algorithm, and our proposed CPSieve algorithm using either k = 2 or k = 3 hash
functions in each hash table (top).

Setting first k = 2, we performed experiments on random lattices in dimen-
sions n = 40 to 80 with varying t ∈ [80; 120] and observed an interpolated time
complexity of around 0.36n+o(n) in logarithmic scale as illustrated by the lower
(green) line in Figure 2. The advantage of this choice is a reduced list size which
lies close to 0.21n+ o(n) as depicted in Figure 3. If we wish to reduce the num-
ber of computations and to approach the minimal asymptotic time, we need to
increase k (and t) with n which leads to larger list sizes of around 0.24n+ o(n)

4 The figures represent the collected data at the time of submission. More fine grained
tests w.r.t. the dimension and the various parameter choices are in progress an will
be included in the final version.
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in our experiments (cf. Figure 3). For k = 3 we observe a better approximation
of the heuristic running time of 0.298n+o(n) as shown in Figure 2 by the upper
(orange) line. The observed cost lies slightly below the asymptotic estimate.

□

□
□

□
□

□
□

□
□

□

✶
✶

✶
✶

✶

□ CPSieve (k=2)
✶ CPSieve (k=3)

40 50 60 70 80
10

100

1000

104

105

106

107

Dimension n

Li
st
si
ze

(v
ec
to
rs
)

list si
ze ≈ 2

0.21 n
+2.1

list s
ize ≈

20
.24 n

+2.9

Fig. 3. Number of vectors in the list of the CPSieve in dimension 40 to 80 for optimal
t ∈ [80; 120] and k = 2, 3.

Figure 2 also shows how various algorithms from the literature compare, in-
cluding (i) the GaussSieve, which performs an exhaustive search over the list L;
(ii) the HashSieve, which uses hash tables based on angular LSH; and (iii) our
new CPSieve algorithm, with parameters k = 2, 3. As indicated by the theoret-
ical cost, the new CPSieve performs clearly better in terms of the asymptotic
exponent, and this also appears from the experiments: the linear interpolation
for the data based on the CPSieve in Figure 2 has a significantly smaller slope
than both the GaussSieve and the HashSieve. In dimensions below 60 the polyno-
mial factors for sieving still play an important role in practice, and therefore the
absolute number of operations for CPSieve lies partially above the GaussSieve
and/or the angular HashSieve.

Overall we see that the new algorithm has a distinguished lower increase
in the complexity in practice compared to the traditional GaussSieve and the
angular HashSieve, and the crossover points are already in low dimensions. As the
gap between the CPSieve and other algorithms will only increase as n increases,
this clearly highlights the potential of the CPSieve on arbitrary lattices.

4 IdealCPSieve: Sieving in ideal lattices

While the CPSieve is very capable of solving the shortest vector problem on
arbitrary lattices, it was already shown in various papers [12, 27, 54] that for
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certain ideal lattices it is possible to obtain substantial polynomial speed-ups
to sieving in practice, which may make sieving even more competitive with e.g.
enumeration-based SVP solvers. As ideal lattices are commonly used in lattice
cryptography, and our main goal is to estimate the complexity of SVP on lattices
that are actually used in lattice cryptography, it is important to know if our
proposed CPSieve can be sped up on ideal lattices as well. We will show that
this is indeed the case, using similar techniques as in [12, 27, 54] but where we
need to do some extra work to make sure these speed-ups apply here as well.

4.1 Ideal GaussSieve

For the ideal lattices mentioned in the preliminaries, cyclic shifts of a vec-
tor are also in the lattice (modulo minus signs) and have the same Euclidean
norm. As first described by Schneider [54], this property can be used in the
GaussSieve as follows. First, note that any vector v can be viewed as repre-
senting n vectors, namely its n shifted versions v,v(1),v(2), . . . ,v(n−1), where
we write x(s) = (xn−s+1, . . . , xn, x1, . . . , xn−s) for the sth cyclic right-shift of
x = (x1, . . . , xn). Similarly, another vector w represents n different lattice vec-
tors w,w(1),w(2), . . . ,w(n−1).

Non-ideal GaussSieve: In the standard GaussSieve, we would treat these
2n shifts of v and w as different vectors, and we would store all of them in the
system, leading to a storage cost of 2n vectors. Furthermore, to make sure that
the list remains pairwise reduced, all

(
2n
2

)
≈ 2n2 pairs of vectors are compared

for reductions, leading to a time cost of approximately 2n2 vector comparisons.

Ideal GaussSieve: To make use of the cyclic structure of certain ideal
lattices, the main idea of the ideal GaussSieve is that comparing v(s) to w(s′) is
the same as comparing v(s−s′) to w for any s, s′: there exist shifts of v and w
that can (cannot) reduce each other if and only if there exists a shift of v that
can reduce (be reduced by) w. So instead of storing all 2n shifts, we only store
the two representative vectors v and w in the system (storage cost of 2 vectors),
and more importantly, to see if any of the shifts of v and w can reduce each
other we only compare all n shifts of v to the single vector w stored in memory
(n comparisons). To make sure that also v (w) and its own cyclic shifts are
pairwise reduced, we further need n/2 (n/2) comparisons to compare v to v(s)

(w to w(s)) for s = 1, . . . , n/2. In total, we therefore need n + n/2 + n/2 = 2n
comparisons to reduce v,w and all their cyclic shifts.

Overall, this shows that in cyclic and negacyclic lattices, the memory cost of
the GaussSieve goes down by a factor n, and the number of inner products that
we compute to make sure the list is pairwise reduced also goes down by a factor
approximately n. Although only polynomial, a factor 100 speedup and using 100
times less memory in dimension 100 can be very useful.
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4.2 Hashing shifted vectors is shifting hashes of vectors

To see how we can obtain similar improvements for the CPSieve, let us first
look at the basic hash function h(x) = ± arg maxi xi. Suppose we have a cyclic
lattice, and for some lattice vector v we have h(v) = i for some i ∈ {1, . . . , n}.
Due to the choice of the hash function, we know that if we shift the entries of v
to the right by s positions to get v(s), then the hash of this vector will increase
by s as well, modulo n:

h(v(s)) = [h(v) + s] mod n, (14)

where the result of the modular addition is assumed to lie in {1, . . . , n}. As a
result, we know that h(v) = h(w) if and only if h(v(s)) = h(w(s)) for any s.
For the basic hash function h, this property allows us to use a similar trick as in
the ideal GaussSieve: we only store one representative of w in the hash tables,
and for reducing v we compare all n shifts v(s) to the lattice vectors in their
corresponding buckets h(v(s)). We are then guaranteed that if any pair of vectors
v(s) and w(s′) can be reduced and have the same hash value, we will encounter
this reduction when we compare v(s−s′) and w as they will also have the same
hash values and can reduce each other.

4.3 Ideal rerandomizations through circulant matrices

While this shows that the basic hash function h has this nice property that allows
us to obtain the linear decreases in the time and space complexity similar to the
ideal GaussSieve, to make this algorithm work we will need many different hash
functions from H for each of the hash tables for the AND- and OR-compositions;
in particular, the number of hash tables t (and therefore also the number of hash
functions) increases exponentially with n. And once we apply a random rotation
to a vector, we may lose the property described in (14):

hA(v(s)) = h(Av(s))
?
= [h(Av) + s] mod n = [hA(v) + s] mod n, (15)

The second equality is crucial here, as without preserving the property that the
hash of a shift of a vector equals the shift of the hash of a vector, it might be
that there exists a pair of vectors v(s) and w(s′) that can be reduced and has
the same hash value, while we will not reduce v(s−s′) and w because they have
different hash values. If that happens, then not all 2n shifts of both vectors are
pairwise reduced, which implies that the ‘quality’ of the list goes down, so the
list size goes up, and we lose the factor n speedup again.

To guarantee that the second equality in (15) is always an equality, we would
like to make sure that Av(s) = (Av)(s), i.e., multiplying a shifted vector by A is
the same as shifting the vector which has already been multiplied by A. After
all, in that case we would have

hA(v(s)) = h(Av(s)) = h((Av)(s)) = [h(Av) + s] mod n = [hA(v) + s] mod n,
(16)
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where the second equality follows from the condition Av(s) = (Av)(s) and the
third equality follows from the property (14) of the base hash function h. So if we
can guarantee that Av(s) = (Av)(s) for all v and s, then also these rerandomized
hash functions satisfy the property we need to obtain a linear speedup. Now, it
is not hard to see that Av(s) = (Av)(s) for all v and s is equivalent to the fact
that A is circulant; substituting v = e1 and varying s = 1, . . . , n tells us that
ai,j = a1,[j−i+1] mod n for all i and j. In other words, we are free to choose the
first row of A, and the ith row of the matrix is then defined as the (i − 1)th
cyclic shift of A.

So finally, the question becomes: can we simply impose the condition that
A is circulant? While proving that the answer is yes or no seems hard, experi-
mentally the answer seems to be yes: by only generating the first rows of each
rerandomization matrix A at random from a standard Gaussian distribution,
and then deriving the remaining entries of A from the first row, we obtain cir-
culant matrices which appear to be as suitable for random rotations as fully
random Gaussian matrices. The resulting circulant matrices on average appear
to be as orthogonal as non-circulant ones, thus preserving relative norms and
distances between vectors, and do not seem to perform worse in our experiments
than non-circulant matrices.

Remark 1. The angular/hyperplane hash function of the HashSieve [13, 32], as
well as the spherical hash functions in the SphereSieve [7, 33] do not have the
properties mentioned above, and so while it may be possible to obtain the trivial
decrease in the space complexity of a factor n, it seems impossible to obtain the
factor n time speedup described above that applies to the GaussSieve and to the
CPSieve.

Remark 2. By using circulant matrices, computing hashes of shifted vectors (to
compare all shifts of a target vector v against the vectors in the hash tables)
can be done by shifting the hash of the original vector. Also, one can compute
the product of a circulant matrix with an arbitrary vector in O(n log n) time
using Fast Fourier Transforms [22] instead of O(n2) time, which for large n may
further reduce the overall time complexity of the algorithm. However, the even
faster random rotations described in [9] which may be useful for the non-ideal
case do not apply here, as we need A to be circulant to obtain the factor n
speedup.

4.4 Power-of-2 cyclotomic ideal lattices (Xn + 1)

For our experiments we will consider two specific classes of ideal lattices, the
first of which is the class of ideal lattices over the ring Z[X]/(Xn + 1) where n
is a power of 2. These are negacyclic lattices, and so for any lattice vector v all
its 2n shifts are in the lattice as well, and v(n) = −v. As for comparisons in the
GaussSieve/CPSieve we usually compare both ±v to candidate vectors w, in this
case this corresponds to going through all 2n shifts of a target vector v (which
all have different hash values) and searching the hash buckets for vectors that
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Algorithm 3 Reducing a vector v in the IdealCPSieve

1: for each hash table Ti do
2: Compute the k base hash values (H1, . . . , Hk) = (hi,1(v), . . . , hi,k(v(s)))
3: for each cyclic shift s = 0, . . . , 2n− 1 do
4: Compute v(s)’s partial hash values H

(s)
i = [Hi + s] mod 2n

5: Compute v(s)’s hash value hi(v(s)) = f(H
(s)
1 , . . . , H

(s)
k )

6: for each w ∈ Ti[hi(v(s))] do
7: Reduce v(s) with w
8: Reduce w with v(s)

9: . . .
10: end for
11: end for
12: end for
13: . . .
14: if v and its shifts have not changed then
15: Add v (and only v!) to all hash tables
16: end if

may reduce these vectors. In short, for each new target vector taken from the
stack, the algorithm will proceed as described in Algorithm 3. For convenience,
we will assume that negative partial hash values hi,j(v) < 0 are replaced by
h′i,j(v) = n − hi,j(v), so that the partial hash values always lie in the range
1, . . . , 2n and are consecutive hash values of consecutive shifted vectors.

4.5 NTRU lattices (Xn − 1)

The lattice basis of an NTRU encryption scheme [24, 25] can be described by a
prime power p, the ring R = Zq[X]/(Xp − 1), a small power q of two and two
polynomials f, g ∈ R with small coefficient, for example in {−1, 0, 1}. We require
that f is invertible in R and set h = g/f mod q. The public basis is then given
by p, q and h as the n× n matrix M (where n = 2p) as follows:

M =



q
q 0

. . .

q

h0 h1 · · · hn−1 1
hn−1 h0 · · · hn−2 1
...

...
. . .

...
. . .

h1 h2 · · · h0 1


.

Note that not only (f, g) but also all block-wise rotations (fXk, gXk) are short
vectors in the lattice. More generally, we observe that each block of p = n/2
entries of a lattice vector can be shifted (without minus sign) to obtain another
valid lattice vector.
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Fig. 4. A comparison between the performance of our algorithm on arbitrary and ideal
lattices for k = 2 (bottom).

For these lattices we can apply similar techniques as in the previous subsec-
tion, but in this case we only have n/2 shifts of a vector in n dimensions; the
speedups and memory gains are not equal to the dimension, but only to half
the dimension of the lattice we are trying to tackle. The improvement we expect
with respect to the non-ideal case will therefore be less than for the power-of-2
lattices described above.

4.6 Experiments for ideal lattices

For testing the performance of SVP algorithms on ideal lattices, we focused on
NTRU lattices where n = 2p and p is prime, and on negacyclic lattices where
n = 2s is a power of 2, which can be generated with the ideal lattice challenge
generator [48]. For the NTRU lattices we considered values n = 38, 46, 58, 62, 74,
while for the cyclotomic lattices we restricted our experiments to only n =
64; for n = 32 the data will be unreliable as the algorithm terminates very
quickly and the basis reduction sometimes already finds a shortest vector, while
n = 128 is out of reach for our single-core proof-of-concept implementation;
investigating the costs of solving the 128-dimensional ideal lattice challenge with
the IdealCPSieve, as done in [12,27], is left for future work.

The limited set of experiments performed as expected, and the results are
shown in Figure 4 in comparison to the random, non-ideal complexities of the
CPSieve. The costs in the ideal case are decreased by a factor linear in n as
we make use of the (block) cyclic structure of the respective ideal lattices as
outlined in the previous subsections. We expect an analogue observation for
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different choices of the parameters. Note that for cyclotomic lattices we get a
better exponent as the speedup and memory improvement are equal to n, rather
than n/2 for NTRU lattices.

5 Conclusion

We presented new algorithms for the shortest vector problem, making use of
a special locality-sensitive hash family that performs well both in theory and
in practice. Using the previous heuristic analysis of Laarhoven and De Weger
we derived that this algorithm has an asymptotic time and space complexity of
20.298n+o(n), thus leading to an exponential improvement over e.g. the GaussSieve
and the HashSieve, and a substantial subexponential speedup over the Sphere-
Sieve. Experiments validate our heuristic analyses, and show that already in
moderate dimensions the CPSieve may outperform other algorithms. As the
advantage over other methods will only grow in higher dimensions, we expect
CPSieve to form an important guide for assessing the hardness of SVP in high
dimensions on arbitrary lattices.

As the base hash function lends itself well for speedups on (nega)cyclic lat-
tices, we then investigated whether these speedups can also be applied to the
entire hash family. By choosing the rerandomization matrices A appropriately we
argued that indeed this can be achieved, and we experimentally verified that our
IdealCPSieve can solve SVP on ideal lattices significantly faster than on non-
ideal lattices; something that does not often occur for lattice algorithms. We
further expect that a fully optimized, parallel implementation of IdealCPSieve
is able to solve the 128-dimensional lattice challenge faster than the GaussSieve.
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51. Pujol, X., Stehlé, D.: Solving the shortest lattice vector problem in time 22.465n.
Cryptology ePrint Archive, Report 2009/605 (2009)

52. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp.84–93 (2005)



26 Anja Becker and Thijs Laarhoven

53. Schneider, M.: Analysis of Gauss-Sieve for solving the shortest vector problem in
lattices. In: WALCOM, pp. 89–97 (2011)

54. Schneider, M.: Sieving for short vectors in ideal lattices. In: AFRICACRYPT,
pp. 375–391 (2013)

55. Schneider, M., Gama, N., Baumann, P., Nobach, L.: SVP challenge. Online at
http://latticechallenge.org/svp-challenge (2014)

56. Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical Computer Science 53(2), pp. 201–224 (1987)

57. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algo-
rithms and solving subset sum problems. Mathematical Programming 66(2),
pp. 181–199 (1994)

58. Shoup, V.: Number Theory Library (NTL), v6.2. Online at
http://www.shoup.net/ntl/ (2014)
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