Technical Report:
Detecting Mobile Application Spoofing Attacks by
Leveraging User Visual Similarity Perception

Luka Malisa Kari Kostiainen Srdjan Capkun
Institute of Information Institute of Information Institute of Information
Security Security Security
ETH Zurich ETH Zurich ETH Zurich
malisal@inf.ethz.ch kari.kostiainen@inf.ethz.ch capkuns@inf.ethz.ch

ABSTRACT

Mobile application spoofing is an attack where a malicious
mobile app mimics the visual appearance of another one. A
common example of mobile application spoofing is a phish-
ing attack where the adversary tricks the user into revealing
her password to a malicious app that resembles the legiti-
mate one. In this paper, we propose a novel spoofing de-
tection approach, tailored to the protection of mobile app
login screens, using screenshot extraction and visual similar-
ity comparison. We use deception rate as a novel similarity
metric for measuring how likely the user is to consider a po-
tential spoofing app as one of the protected applications. We
conducted a large-scale online study where participants eval-
uated spoofing samples of popular mobile app login screens,
and used the study results to implement a detection sys-
tem that accurately estimates deception rate. We show that
efficient detection is possible with low overhead.

1. INTRODUCTION

Mobile application spoofing is an attack where a malicious
mobile application mimics the visual appearance of another
one. The goal of the adversary is to trick the user into
believing that she is interacting with a genuine application
while she interacts with one controlled by the adversary. If
such an attack is successful, the integrity of what the user
sees as well as the confidentiality of what she inputs into the
system can be violated by the adversary. This includes login
credentials, personal details that users typically provide to
applications, as well as the decisions that they make based
on the information provided by the applications.

A common example of mobile application spoofing is a
phishing attack where the adversary tricks the user into re-
vealing her password, or similar login credentials, to a ma-
licious application that resembles the legitimate app. Sev-
eral mobile application phishing attacks have been seen in

ACM ISBN 978-1-4503-2138-9.
DOL: 10.1145/1235

the wild [19,31,36]. For example, a recent mobile banking
spoofing application infected 350,000 Android devices and
caused significant financial losses [13]. More sophisticated
attack vectors are described in recent research [4,7,12,35].

The problem of spoofing has been studied extensively in
the context of phishing websites [1,2,10,15,16]. Web ap-
plications run in browsers that provide visual cues, such as
URL bars, SSL lock icons and security skins [9], that can
help the user to authenticate the currently displayed web-
site. Similar application identification cues are not available
on modern mobile platforms, where a running application
commonly controls the whole visible screen. The user can
see a familiar user interface, but the interface could be drawn
by a malicious spoofing application — the user is unable to
authenticate the contents of the screen.

Security indicators for smartphone platforms have been
proposed [11,29], but their effectiveness relies on user alert-
ness and they typically require either hardware modifica-
tions to the phone or a part of the screen to be made un-
available to the apps. Application-specific personalized in-
dicators [20, 35] require no platform changes, but increase
the application setup effort. Static code analysis can detect
API call sequences that enable certain spoofing attacks [4].
However, code analysis is limited to known attack vectors
and many spoofing attacks do not require any specific API
calls, as they only draw on the screen.

We propose a novel spoofing detection approach that is
tailored to the protection of mobile app login screens using
visual similarity. Our system periodically grabs screenshots
on the user’s device and extracts visual features from them,
with respect to reference values — the login screens of legit-
imate apps (on the same device) that our system protects.
If a screenshot demonstrates high similarity to one of the
reference values, we label the currently running app poten-
tially malicious, and report it to the platform provider or
warn the user. As our system examines screenshots, it is
agnostic to the spoofing screen implementation, in contrast
to approaches that examine screen similarity through code
analysis. While straight-forward approaches based on visual
similarity can detect simple cases of spoofing, where the at-
tacker creates a perfect copy of the target app, or introduces
other minor changes (e.g., changes the background color),
our system can detect also more sophisticated spoofing.

In order to label spoofing apps accurately, our system
needs to understand what kind of attacks are successful in
reality, i.e., how much and what kind of visual similarity

the two compared applications should have, so that the user
would mistake the spoofing app as the legitimate one and fall
for the attack. We capture this notion as a novel similarity
metric called deception rate. For example, when deception
rate is 20%, one fifth of the users are estimated to consider
the spoofing app genuine and enter their login credentials
into it. Deception rate is a conceptually different similar-
ity metric from the ones previously proposed for similarity
analysis of phishing websites. These works extract struc-
tural [3,17,25,37,38] as well as visual [8,14,21] similarity
features and combine them into a similarity score that alone
is not expressive, but enables comparison to known attack
samples [17,22]. While the previously proposed metrics es-
sentially tell how similar the spoofing app is to one of the
known attacks, our metric determines how likely the attack
is to succeed. Deception rate can be seen as a risk measure
and we consider it a powerful new way to address spoofing
attacks, especially in cases where a large dataset of known
attacks is not available.

Our system requires a good understanding of how users
perceive and react to changes within mobile app user in-
terfaces. Change perception has been studied extensively in
general [23,24,30], but not in the context of mobile apps. We
conducted a large-scale online study on mobile app similarity
perception. We used a crowd sourcing platform to carry out
a series of online surveys where approximately 5,400 study
participants evaluated more than 34,000 spoofing screenshot
samples. These samples included modified versions of Face-
book, Skype and Twitter login screens where we changed
visual features such as the color or the logo. For most of the
experimented visual modifications we noticed a systematic
user behavior: the more a visual property is changed, the
less likely the users are to consider the app genuine.

We used the results of our user study to train our sys-
tem using common supervised learning techniques. We also
developed novel visual feature extraction and matching tech-
niques. Our system shows robust screenshot processing and
good deception rate accuracy (6-13% error margin), i.e., our
system can precisely determine when an application is so
similar to one of the protected login screens that the user is
in risk of falling for spoofing. No previous visual similarity
comparison scheme gives the same security property.

Additionally, we describe a novel collaborative detection
model where multiple devices take part in screenshot ex-
traction. We show that runtime detection is effective with
very little system overhead (e.g., 1%). Our results can also
be useful to other spoofing detection systems, as they give
insight into how users perceive visual change.

To summarize, we make the following contributions:

e We propose a novel approach for detecting mobile ap-
plication spoofing attacks using visual similarity and
introduce deception rate as a novel similarity metric.

e We conducted a large-scale user study on perception of
visual modifications in mobile application login screens.

e Leveraging our study results, we implemented a run-
time spoofing detection system for Android.

o We developed novel visual feature extraction techniques.

The rest of this paper is organized as follows. In Section 2
we explain the problem of mobile application spoofing. Sec-
tion 3 introduces our approach, Section 4 describes the user

study, and in Section 5 we describe the spoofing detection
system. We evaluate its performance and accuracy in Sec-
tion 6 and discuss collaborative detection in Section 7. Sec-
tion 8 reviews related work, and we conclude in Section 9.

2. PROBLEM STATEMENT

In mobile application spoofing, the goal of the adversary
is to either violate the integrity of the information displayed
to the user or the confidentiality of the user input. Applica-
tion phishing is an example of a spoofing attack where the
goal of the adversary is to steal confidential user data. The
adversary tricks the user into disclosing her login credentials
to a malicious app with a login screen resembling the legit-
imate one. A malicious stock market app that resembles a
legitimate one, but shows fake market values, is an exam-
ple of an attack where the adversary violates the integrity
of the visual information displayed to the user and affects
the user’s future stock market decisions. Below we review
different ways of implementing application spoofing attacks.

The simplest way to implement a spoofing attack is a
repackaged or otherwise cloned application. To the user, the
application appears identical to the target application, ex-
cept for subtle visual cues such as a different developer name.
Application repackaging has become a prevalent problem in
the Android ecosystem, and the majority of Android mal-
ware is distributed using repackaging [6,39].

In a more sophisticated variant of mobile application spoof-
ing, the malicious app masquerades as a legitimate applica-
tion, such as a game. The user starts the game and the ma-
licious app continues running in the background from where
it monitors the system state, such as the list of currently
running applications. When the user starts the target ap-
plication, the malicious application activates itself on the
foreground and shows a spoofing screen that is similar, or
exactly the same, to the one of the target app. On Android,
background activation is possible with commonly used per-
missions and system APIs [4,12]. Background attacks are
difficult to notice for the user. While API call sequences
that enable background attacks can be detected using code
analysis [4], automated detection is complicated by the fact
that the same APIs are frequently used by benign apps.

A malicious application can also present a button to share
information via another app. Instead of forwarding the user
to the suggested target app, the button triggers a spoofing
screen within the same, malicious application [12]. Fake for-
warding requires no specific permissions or API calls which
makes such attack vectors difficult to discover using code
analysis. Further spoofing attack vectors are discussed in [4].

Mobile application spoofing attacks are a recent mobile
malware type and a large corpus of known spoofing apps
is not yet available. However, serious attacks have already
taken place. The Svpeng malware infected 350,000 Android
devices and caused financial loss worth of nearly one million
USD [13]. The malware presents a spoofed credit card entry
dialog when the user starts the Google Play application and
monitors startup of targeted mobile banking applications to
mount spoofing attacks on their login screens. As spoofing
detection using traditional code analysis techniques has in-
herent limitations and many spoofing attacks are virtually
impossible for the users to notice, the exact extent of the
problem remains largely unknown. Due to the already seen
serious attacks, we believe it is useful to seek novel ways to
address the problem of mobile application spoofing.

NETELIX

NETFLIX

NETFLIX

Legitimate Application Spoofing Application

Figure 1: Spoofing application example. The legitimate
Netflix app and the Android.Fakeneflic malware [32]. The
spoofed user interface includes subtle visual modifications.

The problem of mobile application spoofing has many sim-
ilarities to the one of web phishing. The majority of the ex-
isting web phishing detection schemes [3,17,25,37,38] train
a detection system using a large dataset of known phishing
websites. As a similar dataset is not available for mobile
apps, these approaches are not directly applicable to mo-
bile app spoofing detection. We also argue that the specific
nature of mobile applications benefits from a customized
approach, and in the next section, we introduce a novel de-
tection approach that is tailored to mobile app login screens.
The focus of this work is on mobile app spoofing and web
phishing is explicitly out of scope.

3. OUR APPROACH

In this section, we first describe the rationale behind our
approach and introduce deception rate as a similarity metric.
We then describe how this approach is instantiated into a
case study on login screen spoofing detection. Finally, we
describe our attacker model.

3.1 Visual Similarity and Deception Rate

The problem of application spoofing can be approached in
multiple ways. Code analysis has been proposed to detect
API call sequences that enable spoofing attacks [4]. How-
ever, code analysis is limited to known attack vectors and
cannot address spoofing attacks that do not require specific
API calls (e.g., fake forwarding). Another approach is to an-
alyze the application code or website DOM trees to identify
apps with structural user interface similarity [3,17,25,37,38].
A limitation of this approach is that the adversary can com-
plicate code analysis, e.g., by constructing the user interface
pixel by pixel. Third, the mobile platform can be enhanced
with security indicators [11,29]. However, indicator verifi-
cation imposes a cognitive load on the user and their de-
ployment typically requires either part of the screen to be
made unavailable to the applications or hardware modifica-
tions to the device. Application-specific personalized indica-
tors [20,35] can be deployed without platform changes, but
their configuration increases user effort during app setup.

In this paper, we focus on a different approach and study
the detection of spoofing attacks based on their visual sim-
ilarity. Previously, visual similarity analysis has been pro-
posed for detection of phishing websites [14,34,37]. Design-
ing an effective spoofing detection system based on visual
similarity analysis is not an easy task, and we illustrate the
challenges by providing two straw-man solutions.

The first straw-man solution is to look for mobile apps
that have exactly the same visual appearance. To avoid
such detection, the adversary can simply create a slightly
modified version of the spoofing screen. For example, small

facebook | =r—

facebl‘mok

Simple Spoofing

Complex Spoofing

Figure 2: Examples of simple (changing background color)
and more complex spoofing (repositioning elements).

changes in the login screen element positions are hard to
notice and are unlikely to retain the user from entering her
login credentials. Consequently, this approach would fail
to catch many spoofing attacks. Such visually modified
attacks are observed in the wild. For example, the An-
droid.Fakeneflic malware [32], discovered on Google’s An-
droid market, impersonated the legitimate Netflix applica-
tion with minor visual modifications (Figure 1). Such at-
tacks would not be detected by a simple comparison scheme
that looks for an exact visual match. To summarize, we do
not focus on detection of perfect copies, as such detection is
easy to avoid, and spoofing apps seen in the wild often show
minor visual differences. The adversary has an incentive to
introduce enough visual change to evade simple detection,
but not enough for users to become alarmed. The primary
contribution of this paper is to explore this space; to deter-
mine how much change do users tolerate.

The second straw-man solution is to flag all applications
that have high similarity to a reference application, with re-
gards to a common image similarity metric, e.g., converting
a screenshot to gray-scale, and scaling it down to a fixed size
(64 x 64 pixels). Comparing such thumbnails by pixel dif-
ference is tolerant to many minor visual modifications. For
example, screenshots with change of colors, or other minor
pixel differences, would be deemed highly similar, and the
metric would detect such spoofing attacks. However, the
metric would fail on more complex examples (Figure 2), as
it does not capture the visual properties that users consider
relevant. As our user study shows (Section 4), many screens
are perceived as similar by users, even though the screens are
very dissimilar in terms of their pixel values. For example,
many users mistook a pink Facebook screen with perturbed
element positions as genuine. Such advanced spoofing would
not be caught by the above simple metric — for robust de-
tection more sophisticated techniques are needed.

In this paper we explore visual similarity as perceived by
the users. We take a different approach and design a spoof-
ing detection system that estimates how many users would
fall for a spoofing attack. We use deception rate as a novel
similarity metric that represents the estimated attack suc-
cess rate. Given two screenshots, one of the examined app
and one of the protected reference app, our system (Fig-
ure 3) estimates the percentage of users that would mistak-
enly identify the examined app as the reference app (de-
ception rate). This estimation is done by leveraging results
from a study on how users perceive visual similarity on mo-
bile app user interfaces. The deception rate can be seen
as a risk measure that allows our system to determine if the
examined application should be flagged as a potential spoof-
ing application. An example policy is to flag any application
where the deception rate exceeds a threshold.

Knowledge of
User Perception

Reference Application
Screenshot

N

Spoofing

Detection

System \

” How many users
would be deceived?”

Examined Application
Screenshot

(Deception rate)

Figure 3: Approach overview. The spoofing detection sys-
tem takes as inputs screenshots of a reference app and an
examined app. Based on these screenshots and knowledge
on mobile application user perception, the system estimates
deception rate for the examined app.

Deception rate is a conceptually different similarity metric
from the ones previously proposed for similarity analysis of
phishing websites. These works extract structural [3,17,25,
37,38] as well as visual [8,14,21] similarity features and com-
bine them into a similarity score that alone is not expressive,
but enables comparison to known attack samples [17,22].
The extracted features can also be fed into a system that is
trained using known malicious sites [14,34,37]. Such simi-
larity metrics are interpreted with respect to known attacks,
and may not be effective in detecting spoofing attacks with
an appearance different from the ones previously seen.

Deception rate has different semantics, as it captures the
perceived similarity of spoofing screens. For example, a mo-
bile app login screen where elements have been reordered
may have different visual features but, as our user study
shows, is perceived similarly by many users. Deception rate
estimates how many people would mistakenly identify the
spoofing app as the genuine one (risk measure) and, contrary
to previous similarity metrics, is applicable also in scenar-
ios where a large dataset of known spoofing samples are not
available. We emphasize that our system is complementary
to existing approaches, and that realization of such a sys-
tem requires good understanding of what type of mobile app
interfaces users perceive as similar and what type of visual
modifications users are likely to notice. This motivates our
user study, the results of which we describe in Section 4.

3.2 Case Study: Login Screen Spoofing

We focus on spoofing attacks against mobile application
login screens, as they are the most security-sensitive ones
in many applications. We examined the login screens of
230 different apps and found that they all follow a similar
structure. The login screen is a composition of three main
elements: (1) the logo, (2) the username and password in-
put fields, and (3) the login button. Furthermore, the login
screen can have additional, visually less salient elements,
such as a link to request a forgotten password or register a
new account. Some mobile apps distribute these elements
across two screens: the first (initial) screen contains the logo,
or a similar visual identifier, as well as a button that leads to
the login screen, where the rest of the main elements reside.

The common structure of mobile app login screens enables
us to model them, and their simple designs provide a good
opportunity to experiment on user perception. Mobile app

Initial /Login ©) ®

Screen Initial Screen Login Screen
N)
______ PR e
i_ Logo_) ! ! i Username |
________ ! ! - Acti | Password)
i Username | i Logo ! User Action S
| Password | | i « Login
________ ! !
-5 -5 | I
« Login | L !
J \ J

User Action

(b)

Figure 4: Model for mobile application login screens. The
login screen has three main elements: logo, username and
password input fields, and login button. The login function-
ality is either (a) standalone or (b) distributed.

login screens have fewer modification dimensions to explore,
as compared to more complex user interfaces, such as web-
sites. Throughout this work we use the login screen model
illustrated in Figure 4 that captures both standalone and
distributed logins screens. Out of the 230 apps we examined,
136 had a standalone login screen, while 94 had a distributed
one. All apps conformed to our model. We experiment on
user perception with respect to this model, as the adversary
has an incentive to create spoofing screens that resemble the
legitimate login screen. Our study confirms this assumption.

3.3 Attacker Model

We assume a strong attacker capable of creating arbitrary
spoofed login screens, including login screens that deviate
from our model. We distinguish between two spoofing at-
tack scenarios regarding user expectations and goals. In all
the spoofing attacks listed in Section 2, the user’s intent is to
access the targeted application. This implies that the user
expects to see a familiar user interface and has an incen-
tive to log in. The adversary could also present a spoofing
screen unexpectedly, when the user is not accessing the tar-
get application. In such cases, the user has no intent, nor
similar incentive, to log in. We focus on the first case, as we
consider such attacks more likely to succeed.

We assume an attacker that controls a malicious spoofing
app running on the user smartphone. Besides the spoofing
screen, the attacker-controlled app appears to the user as en-
tirely benign (e.g., a game). The attacker can construct the
spoofing screen statically (e.g., using Android manifest files)
or dynamically (e.g., creating widgets at runtime). In both
cases, the operating system is aware of the created element
tree, a structure similar to DOM trees in websites. The at-
tacker can draw the screen pixel by pixel, in which case the
operating system sees only one element, a displayed picture.
The attacker can also exploit the properties of human im-
age perception. For example, the attacker can display half
of the spoofed screen in one frame, and the other half in the
subsequent frame. The human eye would average the input

General Modifications

Logo Modifications

7 \Y4
1 1 1
1 1 1
facebook facebook : wogin : :
| . \ |
——l 1= : :
| facebook | I
]] 1
1]]
1] 1
] 1 1
1] 1
1] 1
i i i
Original Color ! Element Scaling Element ! Crop Noise Rotation Projective |
'\ Reorder Removal A Transform !

Figure 5: Examples of Facebook login screen spoofing samples. The original login screen is shown on the left. We show an
example of each type of visual modification we performed: color, general modifications, and logo modifications.

signal and perceive the complete spoofing screen.

4. CHANGE PERCEPTION USER STUDY

Visual perception has been studied extensively in general,
and prior studies have shown that users are surprisingly poor
at noticing changes in images that are shown in succession
(change blindness) [24,30]. While such studies give us an in-
tuition on how users might notice, or fail to notice, different
login screen modifications, the results are too generic to be
directly applied to the spoofing detection system outlined
above. User perception of visual change in mobile app user
interfaces has not been studied thoroughly before.

We conducted a large-scale online study on the similar-
ity perception of mobile app login screens. The purpose of
this study was three-fold: we wanted to (1) understand the
effect of different types of visual login screen modifications,
(2) gather training data for the spoofing detection system,
and (3) gain insights that could aid us in the design of our
system. The study was performed as online surveys on the
crowd-sourcing platform CrowdFlower. The platform allows
creation of online jobs that human participants perform in
return of a small payment. In each survey, the participants
evaluated a single screenshot of a mobile app login screen
by answering questions (see Appendix A).

We first performed an initial study, where we experimented
with visual modifications on the Android Facebook applica-
tion. We chose Facebook, as it is a widely used application.
After that, we carried out follow-up studies where we tested
similar visual modifications on Skype and Twitter apps, as
well as combinations of visual changes. Below, we describe
the Facebook study and summarize the results of the follow-
up studies. We did not collect any private information about
our study participants. The ethical board of our institution
reviewed and approved our study.

4.1 Sample Generation

A sample is a screenshot image presented to a study par-
ticipant for evaluation. We created eight datasets of Face-
book login screens, and in each dataset we modified a single
visual property. The purpose of these datasets was to eval-
uate how users perceive different types of visual changes as
well as to provide training data for the spoofing detection
system. Figure 5 illustrates each performed modification:

e Color modification. We modified the hue of the appli-
cation login screen. The hue change affects the color
of all elements on the login screen and the dataset con-
tained samples representing uniform hue changes over
the entire hue range.

e (eneral modifications. We performed three general
modifications on the login screen elements. (1) We re-
ordered and (2) scaled down the size of the elements.
We did not increase the size of the elements, as the
username and the password fields are typically full
width of the screen. Furthermore, (3) we removed any
extra elements from the login screen.

e Logo modifications. We performed four modifications
on the logo: we (1) cropped the logo to different sizes,
taking the rightmost part of the logo out, (2) added
noise of different intensity, (3) rotated the logo both
clockwise and counterclockwise, and (4) performed pro-
jective transformations on the logo.

We created synthetic spoofing samples as no extensive
mobile spoofing app dataset is available. While the chosen
modifications cover some known spoofing attacks (e.g., Fig-
ure 1), they are certainly not exhaustive, as the attacker can
change the interface in many different ways, e.g., adding dif-
ferent background images, replace logo with text. The goal
of our work is not to optimize the system for the detection of
known attacks, but rather to create a system that is able to
detect also previously unseen spoofing screens. The sample
set could be extended in many ways, but a single user study
cannot cover all possible modifications.

4.2 Recruitment and Tasks

We recruited test participants via a crowd sourcing plat-
form. An example survey had a description “How familiar
are you with the Facebook Android application?”. Each sur-
vey contained 12 to 16 question and, in total 2,910 unique
participants evaluated 5,900 Facebook samples. We showed
the study participant a sample login screen screenshot and
asked the participant the following questions: “Is this screen
the Facebook login screen as you remember it?” and “If you
would see this screen, would you login with your real Face-
book password?”. We provided Yes and No reply alternatives
on both questions. Using the percentage of Yes answers, we
compute as-remembered rate and login rate for each sample.
Appendix A provides details on study procedure, statistics
and participants demographics.

Through the chosen design of our user study, we purpose-
fully primed the participants to expect to see a login screen
of the studied apps. We simulate the setting in which the
user wants to login, but is presented with a login screen that
is different than the user remembers.

4.3 Results

We discarded survey responses where the participants did

LU0 [m e

-10

e
$2%)

%
L

R

i

RAT%!
-

s
2

!
5

&

%

R

2

T
o2

!

o

%

o2o%e!

—

=
~ % 559
.. o -
2 08 %
a RR
g fass%
R .. B
=S T B . .
7 YRR
= RIS K&
& i Y RKA
< B 45 B 31 50055 T %%
ER - R ¢ KM - kK - RN - - e -
0.4 N3 2 B3 2, %)% RS
) 4300 [9%0% KK K4 XK KX
ot RE o o oo T o+ I 2%
> P P X3 P P P
2 R R By KR B R
£ 0.2 R - 5K B 050 I oo [5 oo (RN <o O
ot . 944 94 KREX REX % %] % %] %' %]
@ ot o 5% oo TR 0+ I O O %
S K b o T T s T
o o KX 55 55 55
a %% %% o oo N o o I < > M % <

o
%t

RZZR Would login
B As remembered |’

vl
%!

NN
2%

%%

%!

R

<z

eaval

RS

£
&

-
K

%!

%]

%

.A
%

%8
R

%

e
I

o
R
o
A0’

s
o2

%

%
S

o2t

oo

aval

%

%%

%

R
R
K

RS

aval

NN
>

2%

e

oot
-
3!
-

o
o2
o
o2
o
o

A

XXX
o2o%e!

SRR
R,

3262

o228

2%

RS

-

RS
%
R
-

RS
-
%

2
S

R

X0
3

.

X

RRRRX
o

%
s

R
K

e
RS

Z

X
55

s
RIS,

RS
RS
=3
R

kS

e
o2

RS

9%
R
ot

%

o
i

%

o
i

%
0%
RS
P&
P&
RS
P&

o
i

5%
&
K>

©

Figure 6: Color modification results. We illustrate the percentages of users that perceived a Facebook login screen sample
with modified color as genuine (as-remembered rate) and would login to the application if such a screen is shown (login rate).

Color has a significant effect on both rates.

not indicate active usage of the Facebook app or gave an
incorrect reply to the control question. After filtering, we
had 5,376 completed surveys and, on the average, 91 user
evaluations per screenshot sample.

Color modification. The color modification results are
illustrated in Figure 6. We plot the observed login rate in
green and the as-remembered rate in blue for each evalu-
ated sample. The red bars indicate bootstrapped 95% con-
fidence intervals. We performed a chi-square test of inde-
pendence with a significance level of p = 0.05 to examine
the relation between the login responses and the sample
color. The relation between these variables was significant
(x*(16, N = 1551) = 194.44), p < 0.001) and the study par-
ticipants were less likely to log in to screens with high hue
change. When the hue change is maximal, approximately
40% of the participants indicated that they would still log
in. For several samples we noticed slightly higher login rate
compared to as-remembered rate. This may imply that some
users were willing to log in to an application, although it
looked different from their recollection. We investigated rea-
sons for this behavior from the survey questions and several
participants replied that they noticed the color change, but
considered the application genuine nonetheless. One par-
ticipant commented: “Probably Facebook decided to change
their color.” However, our study was not designed to prove
or reject such hypothesis.

General modifications. The general element modifi-
cation results are shown in Figure 7. Both element re-
ordering (x*(5,N = 546) = 15.84,p = 0.007) and scal-
ing (x*(9,N = 916) = 245.56,p < 0.001) had an effect
on the observed login rates. Samples with scaling 50% or
less showed login rates close to the original, but partici-
pants were less likely to login to screens with high scaling.
This could be due to users’ habituation of seeing scaled user
interfaces across different mobile device form factors (e.g.,
smartphone user interfaces scaled for tablets). One partic-
ipant commented his reason to login: “looks the same, just
a little small.” When the elements were scaled more than
50%, the login rates decreased fast. At this point the ele-
ments became unreadably small. Removal of extra elements
(forgotten password or new account link) had no effect on
the login rate (x*(1, N = 180) = 0.0, p = 1.0).

Logo modifications. The logo modification results are
shown in Figure 8. The relation between the login rate
and the amount of crop was significant (x?(5, N = 540) =
83.75,p < 0.001). Interestingly, we noticed that the lowest
login rate was observed at 40% crop. This implies that the
users may find the login screen more trustworthy when the
logo is fully missing compared to seeing a partial logo, but
our study was not designed to prove such hypothesis.

The amount of noise in the logo had an effect on login
rates (x*(4, N = 460) = 75.30,p < 0.001), as users were less
likely to log in to screens with noise. Approximately half of
the study participants answered that they would login even if
the logo was unreadable due to noise. This result may imply
habituation to software errors and one of the participants
commented the noisy logo: “I would think it is a problem
from my phone resolution, not Facebook.” Participants were
less likely to log in to screens with a rotated logo (x*(4, N =
462) = 57.25,p < 0.001) or a projected logo (x*(5, N =
542) = 102.45,p < 0.001).

Conclusions. The experimented eight visual modifica-
tions were perceived differently. While some modifications
caused a predominantly systematic pattern (e.g., color), in
others we did not notice a clear relation between the amount
of the modification and the observed login rate (e.g., crop).
One modification (extra element removal) caused no effect.
We conclude that the system should be trained with samples
that capture various types of visual modifications.

4.4 Follow-up Studies and Study Method

We performed similar studies for the Skype and Twitter
apps. Skype results were comparable to those of Facebook.
Twitter app has a distributed login screen and we noticed
different patterns than in the previous two studies. Addi-
tionally, we evaluated combinations of two and three visual
modifications. In total we collected 34,240 user evaluations
from 5,438 unique study participants, and we used the col-
lected data to train our detection system.

We measured login rates by asking study participants ques-
tions in contrast to observing participants under login op-
eration. We chose this approach to allow large-scale data
collection for thousands of sample evaluations. Participants
in our study were allowed to evaluate multiple samples from

graa

o
XK
o

SRR

o
oo
XXX
V0

v
7%

X
XX

XX

%
X%
%!
R

>
X

(XX
XK

z5

—
%
R
R

09e2e%

2%

RXRRL
KX

o

B2

Positive Answers (%)
-
X
ot

B
K

—_
(=}
(=}

logo login logo wuname login uname
uname uname login pwd logo pwd

pwd pwd uname @ uname login

login logo pwd login pwd logo

Element Reordering

o

4

AR
S

var)

%
Y

~

o
%

Z
%%
30

5%

3

XX

X%

S
%
—
&

TR
%
2

o
%

2

o
%

2

5

%
R

RS
X

5
X

S
&

0’0

KX
SR

RS

0%

%

o
95

2
—
%!

[RIRR
o

s

S

X
X5

%
‘0

%%

=

K%
0%

.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Original Removed

Scaling Factor (%) Extra Elements

BZZ Would login
B As remembered

Figure 7: General modifications results. Percentages of users that perceived a Facebook login screen sample with general
modifications as genuine and would login. Element reordering modification had a small but statistically significant effect,
scaling caused a significant effect, and extra element removal showed no effect.

1.0

R
%

0.8

Ag’

&

2

o2t
9,

~
S
&
2
o
g 06 il n: IR ERRRARE | RESEE
2 3 9505
2 a8

A= B K

0.4 -BRIRS - (s

0 RIS oS %
> BB ek 5
e RS K| R
= 0.2 R - o
g KR R [3%:3%
o oS Y %058

KB B BE
& £ KK %1%

0 2 4 6 8
Crop (%) Noise (o)

EEZ Would login
BZR As remembered |’

ey

X

%

2

X

*

7%

%%

2%

XKL

RS
Pt
RO

Rotation (Degrees) Projective Transf. (%)

Figure 8: Logo modifications results. Percentages of users that perceived a Facebook login screen sample with logo modifica-
tions as genuine and would login to the application. All logo modifications caused a significant effect.

Offline Execution On-Device Execution
" Applications i ' Detection Active Reference !
' v System App App :
' ' ' 1
' ' ' 1
H [Reference E_’ E Reference facebook facebook '
! Values v Values !
' o v T
' Trained Y Trained T
H Estimator e Estimator Login |
H - HE = '
E . \ '\ Deception E
! User Perception : 1 Rate !
' o |

Get Screenshot

" Data

Figure 9: Detection system overview. The system pre-
processes legitimate apps offline (e.g., at the marketplace)
to obtain reference values, and trains an estimator. On the
user’s device, the system periodically extracts screenshots
and estimates their deception rate.

different datasets which may have influenced the results.

S. SPOOFING DETECTION SYSTEM

Through our user study we gained insight into what kind
of visual modifications users notice, and more importantly,
fail to notice. In this section we design a spoofing detection
system that leverages this knowledge. We instantiate the
system for Android, while many parts of the system are
applicable to other mobile platforms as well.

5.1 System Overview

Our system is designed to protect reference applications,
i.e., legitimate apps with login functionality. The goal of
our system is to, given a screenshot, estimate how many
users would mistake it for one of the known reference apps.
The system (Figure 9) consists of two parts: a training and
pre-processing component that runs on the market and a

runtime detection system on users’ phones. On the market,
each reference app’s login screen is detected, pre-processed,
and a deception rate estimator is trained using the user per-
ception data from our user study. The analyzed login screens
serve as the reference values for the on-device detection.

On the device, the system periodically extracts a screen-
shot of the currently active app. We analyze screenshot
extraction rates needed for effective detection in Section 7.
Each extracted screenshot is analyzed using the estimator
with respect to the reference values of the protected apps.
Both the trained estimator and the reference values are down-
loaded from the market (e.g., upon installing an app). The
system outputs a deception rate for each analyzed screen-
shot, with respect to each protected app. The deception
rates can be used to inform the market or warn the user.

The apps that should be protected (i.e., labeled as refer-
ence apps), can be determined in multiple ways: the user
can choose the apps that require protection, the system can
automatically select the most common spoofing targets (e.g.,
Facebook, Skype, Twitter), or all installed apps with login
functionality can be protected. We focus on the approach
where the protected apps are chosen by the user. A com-
plete view of the system is illustrated in Figure 10, and we
proceed by describing each system component.

5.2 Reference Application Analysis

Our system protects reference apps from spoofing. To
analyze an extracted screenshot with respect to a reference
value, we first obtain the reference app login screen and
identify its main elements (reference elements) according to
our login screen model (Figure 4). We assume reference app
developers that have no incentive to obfuscate their login
screen implementations. On the contrary, developers can be
encouraged to mark the part of the user interface (activity)

Offline Execution

@ Reference Application Analysis

Reference Elements
Database

/ \
h -

' Reference Login Screen . . '
1 | Application Extraction lleggin S H
| |
H |
0 3 R h
' eference Element '
' Elements | (Detection] '
1 H
h H
| .
| |
h)

- Screenshot . Labeled
Analysis Features]

Evaluated
Samples

On-Device Execution
@ Screenshot Analysis

| Screenshot | — (Decomposition] —>W Elements |
Feature WE L . Element &E
|: Extraction Matching
=

Matched
Elements

Screenshot . . Screenshot '
Extraction Analysis [
H

Trained .

Deception
B : - TS
| Rate | (Estimator j Features

Examined
Screenshot

Figure 10: Detection system details. The system consist of four main components: reference app analysis, screenshot analysis,

estimator training and deception rate estimation.

that contains the login screen that should be protected. The
reference app analysis is a one-time operation performed,
e.g., at the marketplace on every app update, and its results
distributed to the mobile devices. To find the activity that
represents the login screen, we developed a tool that au-
tomatically explores a specified application and stores any
found login screens. From the login screens, the tool detects
and stores reference elements into a tree structure.

5.3 Screenshot Analysis

The goal of the screenshot analysis is to, given the screen-
shot of the examined application, as well as the reference
elements, produce suitable features for deception rate esti-
mation and estimator training. The screenshot analysis in-
cludes three operations: decomposition, element matching,
and feature extraction, as shown in Figure 10.

Decomposition. Mobile application user interfaces com-
monly exhibit a clean and simple design, when compared to
more complex ones, e.g., web sites. Such design simplicity
enables us to efficiently split the screenshot into constituent
elements. To identify element borders we perform a set of
image processing steps, including edge-detection, dilation,
closure and gradient.

Element matching. The next step is to match the de-
tected elements to the reference elements. To find the el-
ement that is the closest match to the reference logo, we
use the ORB feature extractor [26]. While SIFT extrac-
tors [18] have been successful in detecting logos in natural
images [27], we found SIFT to be ill-suited for mobile app
logos, especially in cases where only partial (cropped) logos
were present. We compute ORB keypoints over the refer-
ence logo as well as the whole examined screenshot and we
match the two sets. The element that matches with the most
keypoints, and exceeds a minimum point density threshold,
is declared as the logo. For the remaining elements, we per-
form template matching to every reference element (user-
name field, password field, login button), on different scaling
levels. Keypoint extraction is generally not effective, as the
login screen elements are typically simple, and have few key-
points. After these steps, we have a mapping between the
examined application elements and the reference elements.

Feature extraction. Once the elements are matched,

we extract two common visual features (color and element
scaling) and more detailed logo features, as users showed
sensitivity to logo changes. The extracted features are rela-
tive, rather than absolute, as their values are computed with
respect to the reference elements or entire reference screen.
We explain our features below:

1. Hue. The difference between the average hue value of
the examined screenshot and the reference screen.

2. Element Scaling. The ratio of minimum-area bounding
boxes between all reference and examined elements,
except the logo.

3. Logo Rotation. The difference between the angles of
minimum-area bounding boxes of the examined and
reference logos.

4. Logo Scaling. We perform template matching between
the examined and reference logos at different scales
and express the feature as the scale that produces the
best match.

5. Logo Crop. We calculate the amount of logo crop as
the ratio of logo bounding box areas.

6. Logo Degradation. As precise extraction of logo noise
and projection is difficult, we approximate similar vi-
sual changes with a more generic feature that we call
logo degradation. Template matching algorithms re-
turn the position and the minimum value of the em-
ployed similarity metric and we use the minimum value
as the logo degradation feature.

In cases where no logo was identified in the matching
phase, all logo features are set to null (except logo crop which
is set to 100%). Our analysis is designed to extract features
from screenshots that follow our login screen model. Many
of these features (color change, scaling) are seen known in
spoofing apps (Android.Fakeneflic).

5.4 Training and Deception Rate Estimation

The detection system is trained once, using the available
user perception data from our user study, and subsequently
used for all apps. We extract features from every sample of
the study and augment the resulting feature vectors with the
observed login rate. In feature extraction, as the reference
value we use the unmodified login screen of the app that the

sample represents. As deception rate (i.e., the percentage of
users that would confuse the examined screenshot with the
reference app) is a continuous variable, we estimate it using
a regression model. Training can be performed offline for
each reference app separately.

Deception rate estimation is performed on the device at
detection system runtime. As shown in Figure 10, the ex-
tracted screenshot is first analyzed. The decomposition phase
of the analysis is performed once, and the rest of the analy-
sis steps are repeated for each reference app. The extracted
features are used to run the trained estimator. The result
of the estimation operation is a set of deception rates, one
for each protected app. If any of the deception rates exceeds
a threshold value, one or more possible spoofing apps have
been found and their identities can be communicated to the
application marketplace or the user can be warned.

5.5 Implementation

We implemented the reference application analysis tool as
a modified Android emulator environment. Similar analysis
can be implemented by instrumenting the reference applica-
tion, but we modified the runtime environment to support
the analysis of native applications as well. We implemented
the remaining offline tools as various Python scripts using
the OpenCV [5] library for image processing and scikit-learn
for estimator training. The on-device detection system can
be implemented in multiple ways, including a modification
to the Android runtime or as a standalone application. For
ease of deployment, we implemented the on-device compo-
nents as a regular Android (Java) app using OpenCV.

6. EVALUATION

In this section, we evaluate the estimation accuracy and
the runtime performance of the detection system. We pro-
vide more a detailed evaluation of the system’s various com-
ponents in Appendix C.

6.1 Estimation Accuracy

To evaluate the deception rate estimation accuracy, and to
demonstrate the feasibility of this approach, we trained our
detection system using the results of our user study (a de-
ployed system would, of course, be trained with more data).
Our total training data consists of 316 user-evaluated sam-
ples of visual modifications and each sample was evaluated
either by 100 (single modification) or 50 (two and three mod-
ifications) unique users. From the training data, we omitted
samples that express visual modifications that our current
implementation is unable to extract (e.g., noise).

We experimented with several regression models of differ-
ent complexities and trained two linear models (Lasso and
linear regression), a decision tree, as well as two ensem-
ble learning methods (gradient boosting, random forests).
To compare our detection accuracy to straightforward ap-
proaches, we use four baseline models out of which the latter
two utilize prior knowledge obtained from our user study:

e B1 Linear. The deception rate drops linearly with the
amount of visual modification from 1 to 0.

e B2 Constant. The deception rate is always 0.75.

e B3 Linear. The deception rate drops linearly with the
amount of visual modification from 1 to 0.2. Login
rates stayed predominantly above 20% in our study.

e B4 Random. The deception rate is a random number
in the the most observed range in our study (0.3-0.5).

0.30
0.25 - -&& - B 10-fold CV

0.20 | - -B% B B Leave-one-out CV
0.15
0.10
0.05

IR

%
X

5
P 0’0

Root Mean Square Error
X
prat

000 e e 1% X1
5 X s > &
S L
o & \é& /\;\06 3 \)@% RN O@.&‘ &
N e o P D ANt N
A D o> QT oS
g T
. RSN
A% &

Figure 11: Deception rate accuracy. Evaluation of five re-
gression and four baseline models (B1-B4) trained on the
combined datasets of Facebook and Skype. The random
forest regressor performs the best.

To estimate the deception rate, we extract features from
the analyzed screenshot with respect to a reference app and
we feed the feature vector to the trained regressor. The
estimator outputs a deception rate that can be straightfor-
wardly converted into a spoofing detection decision. We
performed two types of model validation: leave-one-out and
10-fold cross-validation. We report the results in Figure 11
and we observe that the more complex models perform sig-
nificantly better than our baseline models. The best model
was random forest, with a root mean square (RMS) error
of 6% and 9% for the leave-one-out and 10-fold cross vali-
dations respectively (95% of the estimated deception rates
are expected to be within two RMS errors from their true
values). The low RMS values show that a system trained
on user perception data can accurately estimate deception
rates for mobile application spoofing attacks.

The detection system should estimate deception rate ac-
curately even for apps it did not encounter before. To evalu-
ate the estimation accuracy of attacks that target apps that
were not present in the training data, we trained a random
forest regressor using Facebook samples, and evaluated it on
Skype samples, and vice-versa. We observed an RMS error
of 13% in both cases. When samples from the spoofing tar-
get app are not part of the training dataset, the estimation
accuracy decreases slightly. We conclude that our system
is able to accurately estimate deception rate in the tested
scenarios, even if the target app is not part of the train-
ing data. Our training set has limited size and with more
extensive training data we expect even better accuracy.

To evaluate false negatives of our system, we estimated
the deception rates of various screenshots that we extracted
by crawling the user interfaces of randomly chosen mobile
apps, with regards to the Facebook reference login screen.
Due to the large difference between the login screens, as
expected, all screenshots reported very low deception rates.
We do not provide a ROC analysis, as it would require a
significant dataset of spoofing apps. At the moment such
dataset does not exist.

6.2 Performance Evaluation

We evaluated the performance of the on-device screen-
shot analysis and deception rate estimation. For the offline
(marketplace) components we only evaluated accuracy, as
those are fast and not time-critical operations. We measured
the performance of our implementation on three devices: an
older smartphone model (Samsung Galaxy S2) and two more
recent devices (Nexus 5 and Nexus 6). Averaged over 100

runs, a single reference app comparison takes 183 + 28 ms
(Nexus 5), 261 + 26 ms (Nexus 6) and 407 £+ 69 ms (Galaxy
S2). The process scales linearly with the number of pro-
tected apps: the decomposition of the extracted screenshots
is performed once, and the remaining analysis steps are re-
peated for each reference value. Assuming five protected
apps, the complete analysis takes 667 ms (Nexus 5).

We argue that the number of apps requiring protection
would be low, as the majority of apps running on the phone
are commonly not security-sensitive.

The detection system extracts and analyzes screenshots
only when an untrusted (i.e., not whitelisted) app is active.
For example, the platform provider can whitelist popular
apps from trusted developers (Facebook, Twitter, What-
sapp). The detection system can also perform a less expen-
sive pre-filtering operation to determine, and only proceed
with the full analysis, if the examined screenshot vaguely
resembles a login screen. We leave development of such pre-
filtering mechanisms as future work.

The on-device performance primarily depends on the size
of the analyzed screenshot. Modern smartphones have high
screen resolutions (e.g., 1080 x 1920) and analyzing such
large images is expensive and does not increase system ac-
curacy. It is important to note that screenshot extraction
time depends only on the output screenshot resolution and
not on the physical screen resolution itself. For all our mea-
surements we extracted screenshots of size 320 x 455 pixels
as the resolution provides a good ratio of element detection
accuracy and runtime performance. Our initial experiments
show that the image resolution (and with it, execution time)
can be decreased even further, and determining the optimal
resolution we leave as future work.

7. ANALYSIS

Collaborative detection. Extracting screenshots fre-
quently and analyzing each of them can be expensive. How-
ever, if multiple devices take part in detection, we can reduce
the overhead on every device without sacrificing detection
probability. This can be achieved with fewer devices sam-
pling more often or more devices sampling less often. For
example, the screenshot rate can be controlled based on the
popularity of the currently running, unknown app. If an app
is present on many devices (e.g., 50 or more), the detection
system can safely reduce the screenshot rate to save system
resources without sacrificing detection probability. If an ap-
plication is installed in only a small number of devices (e.g.,
less than 10), the system can increase the screenshot rate for
better detection probability. Such adjustments can be done
so that, in total, no more than the pre-allocated amount of
system resources are spent for spoofing detection.

We show that collaborative detection provides an efficient
way to detect spoofing attacks in the majority of practical
spoofing scenarios. For example, only 10 devices, each ded-
icating 1% of computation overhead, are needed to detect
phishing attacks with a probability upwards of 95%.

Detection avoidance. The adversary can try to avoid
runtime detection by leveraging the human perception prop-
erty of averaging images that change frequently (e.g., quickly
and repeatedly alternate between showing the first and sec-
ond halves of the spoofing screen). The user would per-
ceive the complete login screen, but any acquired screenshot
would cover only half of the spoofing screen. Such attacks
can be addressed by extracting screenshots frequently and

10

averaging them out, prior to analysis.

While the adversary has an incentive to create spoofing
screens that resemble the original login screen, the adver-
sary is not limited to these modifications. To test how well
our system is able to estimate deception rate for previously
unseen visual modifications and spoofing samples that differ
from the login screen model, further tests are needed. This
limitation is analogous to the previously proposed similarity
detection schemes that compare website to known phishing
samples — the training data cannot cover all phishing sites.

Our current implementation has difficulties in decompos-
ing screenshots with background noise, and consequently the
adversary could try to avoid detection by constructing noisy
spoofing screens. Developers could be encouraged to create
clean login screen layouts for improved spoofing protection.
While we did not experiment with noisy backgrounds, our
study shows that the more the adversary deviates from the
legitimate screen, the less likely the attack is to succeeded.

The goal of this work was to demonstrate a new spoofing
detection approach, and we recommend that a deployed sys-
tem be trained with more samples including (a) more visual
modifications and (b) more apps.

False positives. Many mobile apps use single sign-on
functionality from popular services, such as Facebook. An
unknown application with a legitimate single sign-on screen
matching to one of the reference values would be flagged
by our detection system. Flagged applications should be
manually verified and in such cases found benign.

8. RELATED WORK

Spoofing detection systems. Static code analysis can
be effective in detecting spoofing apps that leverage known
attack vectors, such as ones that query running tasks and
after that create a new activity [4]. Our approach is more
agnostic to the attack implementation technique, but has a
narrower focus: protection of login screens. We consider our
work complementary to code analysis.

Many web phishing detection systems analyze a website
DOM tree and compare its elements and structure to the
reference site [3,17,25,37,38]. We assume an adversary that
constructs spoofing apps in arbitrary ways (e.g., per pixel),
and thus complicates structural code analysis.

Another approach is to consider the visual presentation
of a spoofing application (or a website), and compare its
similarity to a reference value [8,14,21]. Previous schemes
typically derive a similarity score for a website and compare
it to known malicious sites, while our metric determines how
many users would confuse the application for another one.

Spoofing detection by users. Similar to web browsers,
the mobile OS can be enhanced with security indicators.
The OS can show the name of the running app in a ded-
icated part of the screen [4,12,29]. Such schemes require
that parts of the mobile device screen are made unavailable
to applications or need hardware changes to the device. A
mobile app can also allow the user to configure a personal-
ized security indicator (e.g., a personal image) that is shown
by the app during each login [20].

Several studies, in the context of web sites, show that users
tend to ignore the absence of security indicators [10,28,33].
A recent study shows that personalized security indicators
can be more effective on mobile apps [20]. We are the first
to study how likely the users are to notice spoofing attacks,
where the malicious application resembles, but is not a per-

fect copy of, the legitimate application.

9. CONCLUSION

We have proposed a novel mobile app spoofing detection
system that in collaborative fashion extracts screenshots pe-
riodically and analyzes their visual similarity with respect to
protected login screens. We express the similarity in terms of
a new metric called deception rate that represents the frac-
tion of users that would confuse the examined screen for one
of the protected login screens. We conducted an extensive
online user study and trained our detection system using its
results. Our system estimates deception rate with good ac-
curacy (6-13% error) and low overhead (only 1%), and our
system tells how likely the user is to fall for a potential at-
tack. We consider this a powerful and interesting security
property that no previous schemes provide. In addition to
supporting a spoofing detection system, the results of our
user study, on their own, provide insight into the perception
and attentiveness of users during the login process.

10. REFERENCES

[1] Google safe browsing.
http://googleonlinesecurity.blogspot.com/2012/06/
safe-browsing-protecting-web-users-for.html.

[2] Spoofguard. http://crypto.stanford.edu/SpoofGuard/.

[3] S. Afroz and R. Greenstadt. Phishzoo: Detecting
phishing websites by looking at them. In Fifth IEEE
International Conference on Semantic Computing
(ICSC), 2011.

[4] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio,
C. Kruegel, and G. Vigna. What the app is that?
deception and countermeasures in the android user
interface. In Symposium on Security and Privacy
(SP), 2015.

[5] G. Bradski. Dr. Dobb’s Journal of Software Tools.

[6] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang,

H. Huang, W. Zou, and P. Liu. Finding unknown
malice in 10 seconds: Mass vetting for new threats at
the google-play scale. In USENIX Security, volume 15,
2015.

[7] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into
your app without actually seeing it: Ui state inference
and novel android attacks. In USENIX Security
Symposium, 2014.

[8] T.-C. Chen, S. Dick, and J. Miller. Detecting visually
similar web pages: Application to phishing detection.
ACM Trans. Internet Technol., 10(2):1-38, 2010.

[9] R. Dhamija and J. D. Tygar. The battle against

phishing: Dynamic security skins. In Symposium on

Usable Privacy and Security (SOUPS), 2005.

R. Dhamija, J. D. Tygar, and M. Hearst. Why

phishing works. In Conference on Human Factors in

Computing Systems (CHI), 2006.

A. P. Felt, M. Finifter, E. Chin, S. Hanna, and

D. Wagner. A survey of mobile malware in the wild.

In Workshop on Security and Privacy in Smartphones

and Mobile Devices (SPSM), 2011.

A. P. Felt and D. Wagner. Phishing on mobile devices.

In Web 2.0 Security and Privacy Workshop (W2SP),

2011.

[13] Forbes. Alleged 'Nazi’ Android FBI Ransomware

[12]

11

Mastermind Arrested In Russia, April 2015.
http://goo.gl/c91izV.

A. Fu, L. Wenyin, and X. Deng. Detecting phishing
web pages with visual similarity assessment based on
earth mover’s distance (EMD). IEEE Transactions on
Dependable and Secure Computing, 3(4):301-311,
2006.

J. Hong. The state of phishing attacks.
Communications of the ACM, 55(1), 2012.
International Secure Systems Lab. Antiphish, last
access 2015.
http://www.iseclab.org/projects/antiphish/.

W. Liu, X. Deng, G. Huang, and A. Fu. An
antiphishing strategy based on visual similarity
assessment. IEEE Internet Computing, 10(2), March
2006.

D. G. Lowe. Distinctive image features from
scale-invariant keypoints. International journal of
computer vision, 60(2), 2004.

MacRumors. Masque attack vulnerability allows
malicious third-party iOS apps to masquerade as
legitimate apps. http://www.macrumors.com/2014/
11/10/masque-attack-ios-vulnerability /.

C. Marforio, R. Jayaram Masti, C. Soriente,

K. Kostiainen, and S. Capkun. Personalized Security
Indicators to Detect Application Phishing Attacks in
Mobile Platforms. ArXiv e-prints, Feb. 2015.

M.-E. Maurer and D. Herzner. Using visual website
similarity for phishing detection and reporting. In
Extended Abstracts on Human Factors in Computing
Systems (CHI), 2012.

E. Medvet, E. Kirda, and C. Kruegel.
Visual-similarity-based phishing detection. In
International Conference on Security and Privacy in
Communication Networks (SecureComm,), 2008.

W. Metzger. Laws of Seeing. The MIT Press, 2009.
R. A. Rensink. Change detection. Annual review of
psychology, 53(1), 2002.

A. P. Rosiello, E. Kirda, C. Kruegel, and F. Ferrandi.
A layout-similarity-based approach for detecting
phishing pages. In Conference on Security and Privacy
in Communications Networks (SecureComm,), 2007.
E. Rublee, V. Rabaud, K. Konolige, and G. Bradski.
Orb: An efficient alternative to sift or surf. In
International Conference on Computer Vision
(ICCV), 2011.

H. Sahbi, L. Ballan, G. Serra, and A. Del Bimbo.
Context-dependent logo matching and recognition.
Image Processing, IEEE Transactions on, 22(3),
March 2013.

S. E. Schechter, R. Dhamija, A. Ozment, and

I. Fischer. The emperor’s new security indicators. In
IEEFE Symposium on Security and Privacy (SP), 2007.
M. Selhorst, C. Stuble, F. Feldmann, and U. Gnaida.
Towards a trusted mobile desktop. In International
Conference on Trust and Trustworthy Computing
(TRUST), 2010.

D. J. Simons and R. A. Rensink. Change blindness:
past, present, and future. TRENDS in Cognitive
Sciences, 9(1), 2005.

[31] Spider Labs. Focus stealing vulnerability in android.

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]
(24]

25]

[26]

27]

(28]

29]

(30]

http://blog.spiderlabs.com/2011/08/
twsl2011-008-focus-stealing-vulnerability-in-android.
html.

Symantec. Will Your Next TV Manual Ask You to
Run a Scan Instead of Adjusting the Antenna?, April
2015. http://goo.gl/xh58UN.

M. Wu, R. C. Miller, and S. L. Garfinkel. Do security
toolbars actually prevent phishing attacks? In
Conference on Human Factors in Computing Systems
(CHI), 2006.

G. Xiang, J. Hong, C. P. Rose, and L. Cranor.
Cantina+: A feature-rich machine learning framework
for detecting phishing web sites. ACM Transactions
on Information and System Security (TISSEC),
14(2):21, 2011.

Z. Xu and S. Zhu. Abusing notification services on
smartphones for phishing and spamming. In USENIX
Workshop on Offensive Technologies (WOOT), 2012.
J. Zhai and J. Su. The service you can’t refuse: A
secluded hijackrat. https:
//www.fireeye.com/blog/threat-research/2014/07/
the-service-you-cant-refuse-a-secluded-hijackrat.html.
H. Zhang, G. Liu, T. Chow, and W. Liu. Textual and
visual content-based anti-phishing: A bayesian
approach. IEEE Transactions on Neural Networks,
22(10), Oct 2011.

Y. Zhang, J. I. Hong, and L. F. Cranor. Cantina: A
content-based approach to detecting phishing web
sites. In International Conference on World Wide Web
(WWW), 2007.

W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party
android marketplaces. In Conference on Data and
Application Security and Privacy (CODASPY), 2012.

[32]

[33]

[37]

[38]

[39]

APPENDIX
A. USER STUDY DETAILS

Participant recruitment. We recruited test partici-
pants by publishing survey jobs on the crowd sourcing plat-
form. An example survey had a title “Android Application
Familiarity” and the description of the survey was “How
familiar are you with the Facebook Android application?”.
We specified in the survey description that the participant
should be an active user of the tested application, and we
recruited 100 study participants for each sample, accepted
participants globally, and required the participants to be at
least 18 years old. The study participants were allowed to
evaluate multiple samples from different datasets, but only
one sample from each dataset. For example, a study par-
ticipant could complete two surveys: one where we evalu-
ated color modification samples and another regarding logo
crop, but the same participant could not complete multiple
surveys on color modification. In total 2,910 unique par-
ticipants evaluated 5,900 Facebook samples. Statistics and
participant demographics are listed in Table 1 and Table 2.

Study tasks. Each survey included 12 to 16 questions.
We asked preliminary questions on participant demograph-
ics, tested application usage frequency, and a control ques-
tion with a known correct answer. We showed the study
participant a sample login screen screenshot and asked the
participant the following questions: “Is this screen (smart

12

Unique study participants 2,910
Participants that completed multiple surveys 1,691
Screenshot samples 59
Total evaluations 5,900
Accepted evaluations after filtering 5,376

Average number of accepted evaluations per sample 91

Table 1: Statistics of the Facebook user study.

Y Gender
549
18-29 55.12% Male 72.54%
Female 27.45%

30-39 29% Educatl
40-49 11.82% Jucation o
s P Primary school 2.06%
50-59 3.33% T ot
60 or above o 725 High school 34.57%
Bachelor 63.36%

Table 2: Demographics of the Facebook user study.

phone screenshot) the Facebook login screen as you remem-
ber it?” and “If you would see this screen, would you login
with your real Facebook password?”. We provided Yes and
No reply alternatives on both questions. Using the percent-
age of Yes answers, we compute as-remembered rate and
login rate for each sample. We also asked the participants
to comment on their reason to log in, or retain from it.
Study questions. Below we list all the questions we used

in our user study.
Q1: “What is your gender?”
e “Male”, “Female”

Q2: “How old are you?”

e 18-29, 30-39, 40-49, 50-59, Above 60

Q3: “What is your current education level?”

e “Primary school”, “High School”, “Bachelor”

Q4: “Do you actively use an Android device?”
o “Yes”, “No”

Q5: “Do you use the Android Facebook application?”
o “Yes”, “No, I don’t use Facebook on Android”

6: “When was the last time you had to enter your password into
the Android Facebook login screen?”
“Less than one week ago”
“Less than one month ago”
“More than one month ago”
“I don’t use Facebook on Android”

7: “What is the Facebook application good for?”
“Driving a car”
“Brushing your teeth”
“Petting a cat”
“Keeping in touch with friends and family”

o0 0 o o0 0 o

Q8: “Is this screen (smart phone screenshot) the Facebook login
screen as you remember it?”
° “Yes”. “No”
)

Q9: “How similar is this screen to the Facebook login screen you
remember?”
e with reply alternatives from 1: “Completely different” to 5: “Ex-
actly the same”

Q10: “If you would see this screen, how comfortable would you
feel logging in?”
e with reply alternatives from 1: “Very uncomfortable” to 5: “Very
comfortable”

Q11: “If you would see this screen, would you login with your real
Facebook password?”
° “Yes”. “No”

Q12: “In one short sentence, describe your reason for the previous
answer”
e with text input.

Additional questions for the Twitter application that has a dis-
tributed login screen.

A1l: “Is this screen (smart phone screenshot) the Twitter initial
screen as you remember it?”

o “Yes”, “No”

A2: “How similar is this screen to the Twitter initial screen you
remember?”

System Parameters

[Screenshot

Detection
] »[Prohability (])SJ - [

Number of }

Rate (r) Devices (n)

Assumptions

User Chosen

Figure 12: Analysis intuition. System parameters, user be-
havior assumptions, and a user-chosen number of protected
apps define the screenshot rate, the detection probability for
a single spoofing attack, and the number of devices required
for effective collaborative detection.

e with reply alternatives from 1: “Completely different” to 5: “Ex-
actly the same”

A3: “If you would see this screen, how comfortable would you feel
clicking 'Log in’?”

e with reply alternatives from 1: “Very uncomfortable” to 5: “Very
comfortable.”

A4: “If you would see this screen, would you click ’Log in’?”
* “Yos”. “No”
,

B. DETECTION PROBABILITY ANALYSIS

In this appendix we explain how often screenshots can be
extracted on the device, given a pre-defined amount of al-
located system resources. If a spoofing attack takes place,
we analyze the probability that at least one screenshot of
the spoofing application is captured. We also present a col-
laborative detection model that enables significantly fewer
screenshot analysis operations per device.

B.1 Detection Probability on a Single Device

In Figure 12, we illustrate the intuition of our analysis.
The system has two controllable parameters: the share of
the system resources s that are allocated for spoofing detec-
tion and the number of reference apps n, the system pro-
tects. Together with device performance and the observed
user habits (the share of time spent on unknown apps u),
these two parameters define the screenshot rate r which in
turn determines the detection probability for a single spoof-
ing attempt ps, as well as the number of devices n needed
for efficient collaborative detection. In what follows, we in-
troduce the rest of the terms gradually and, for ease of ref-
erence, summarize our terminology in Table 3.

In a typical deployment, the share of system resources
allocated for the detection system would be chosen by the
platform provider. For our analysis, we use s = 1%, as we
assume that one percent overhead does not hinder user expe-
rience nor overly drain the battery. The number of protected
applications is chosen by the user. We assume that in most
cases the user would choose to protect a small number of
important services (e.g., banking, e-mail, Facebook, Skype,
Twitter) and use the value n, = 5 for our analysis.

For analysis simplicity, we assume that the user spends
a constant time ¢; on the spoofed login screen. In a recent
study [20], users spent 4-28 seconds on the login screen, so
t; = 5 seconds is a safe assumption. We also assume that
the user spends a constant share u of her time on unknown
(non-whitelisted) apps. According to [?], smartphone users
spend 88% of their time on five of their favorite apps, so
setting u = 0.25 is a safe assumption. The detection system

13

s Share of allocated system resources
System Presets | tg4 Decomposition time (device perf.)

t, Analysis time (device perf.)
Observed t Time spent on login screen

User Habits u Share of time spent on unknown apps
User Chosen Number of protected applications

T Screenshot rate

Detection Ps Detection probability, single spoofing
Properties P Detection prob., collaborative system
n Number of devices with spoofing app

Table 3: Summary of analysis terminology.

can monitor the runtime usage of unknown apps and adjust
a user-specific u accordingly.

For device performance, we use the values from our imple-
mentation evaluation on Nexus 5, where the analysis time
of a single screenshot is approximately 180 ms. The screen-
shot extraction and decomposition time ¢4 is approximately
60 ms, while the remaining screenshot analysis time ¢, that
needs to be repeated for each reference app is approximately
120 ms. Using such device performance, system parameters
and analysis assumptions, we compute the screenshot rate r
as follows:

r= %(td + nate) ~ 16.5 8

That is, given 1% of allocated system resources, a screenshot
can be analyzed on the average once per 16.5 seconds when
an unknown app is active.

The detection probability for a single spoofed login screen
ps is the probability that, when a spoofed login screen is
shown to the user for ¢; = 5 seconds, the detection system
captures, and analyzes, at least one screenshot during that
time. To avoid simple detection evasion where the malware
never shows spoofed screens at pre-determined screenshot
extraction times, we assume that screenshots are taken at
random points in time, according to the chosen screenshot
rate. Given the randomized screenshot extraction model, we
model ps as a random number from the Poisson distribution
P(z; 1), where z is the number of successes in a given time
period (zero successes means that no screenshots are taken
in the time period) an p is the mean of successes in the
same time period. The number of screenshots taken on the
average can be calculated as ¢;/r (e.g., 5/16.5 in our example
scenario). The detection probability ps becomes:

t
ps =1— P(0, ;) ~ 0.26
We observe that the probability of detecting a single spoofed
login operation is low. Moreover, the adversary does not
have an incentive to repeat a successful attack on the same
device. Once the user’s login credentials have been stolen,
the malicious app can, e.g., remove itself. For these reasons
we focus on a more effective collaborative deployment model
that leverages the many eyes principle.

B.2 Collaborative Detection

An instance of the detection system can be running on
a large number of devices (e.g., all devices from the same
platform provider), where each device takes screenshots at
random points in time, according to the chosen screenshot
rate. When one of the devices finds a potential spoofing lo-
gin screen, the identity of the application is reported to the
platform provider (or the app marketplace) which can ex-
amine the application and remove it from all of the devices,

— 0.5% Resources

1% Resources

— 2% Resources

Detection Probability
=)
ot
=)

1 1 1 1 1
0 2 4 6 8 10 12 14

Number of Infected Devices

Figure 13: The detection probability p as a function of in-
fected devices n. We consider allocated system resources
s = {0.5,1,2}% and assume n, = 5. Detection is practical
even with very low number of infected devices.

if confirmed malicious. For analysis simplicity, we assume
that all participating devices have similar performance and
use the same, previously chosen system parameters, but de-
ployments where devices are configured differently are, of
course, possible. The detection probability p of the collab-
orative system, i.e., the probability that at least one device
will detect the spoofing attack, is defined as:

p=1-(1-ps)"

where n is the number of devices infected with the spoofing
app. Assuming our example parameters, to reach detection
probability p = 0.99, we need the malicious application to
be installed and active on only 16 devices:

n = [logi—p,(1 —p)| =16

Spoofing apps that infected thousands of devices have been
reported [13], so we consider this a very low number for
common wide-spread attacks that target globally used apps,
such as Facebook, Skype or Google. Figure 13 illustrates the
detection probability p as a function of infected devices n,
and we observe that detection is practical even with very
few infected devices.

The goal of the collaborative detection system is to keep
a constant, high detection probability at all times. This
can be achieved with fewer devices sampling more often or
more devices sampling less often. For example, the screen-
shot rate can be controlled based on the popularity (global
install count) of the currently running, unknown app. The
marketplace can send periodic updates on the popularity of
each application installed on the device. If an app is present
on many devices (e.g., 50 or more), the detection system can
safely reduce the screenshot rate to save system resources
without sacrificing detection probability. If an application
is installed in only a small number of devices (e.g., less than
10), the system can increase the screenshot rate for better
detection probability. Such adjustments can be done so that,
in total, no more than the pre-allocated amount of system
resources are spent for spoofing detection.

Our analysis has shown that collaborative detection pro-
vides an efficient way to detect spoofing attacks in the ma-
jority of practical spoofing scenarios.

C. DETECTION SYSTEM DETAILS

In this appendix we provide additional evaluation on how
accurately the different components of the system perform.

C.1 Accuracy Evaluation

14

Reference Application Analysis Accuracy. We eval-
uated the accuracy of our reference app analysis tool (Sec-
tion 5.2) on 1,270 apps, downloaded from Google Play and
other marketplaces. The tool reported 572 potential login
screens. Through manual verification, we found 230 login,
153 user registration, and 77 password change screens. The
remaining 120 screens contained no login related function-
ality, and those we classify as false positives.

We manually verified 50 random apps from the set of 698
apps our tool reported as not having a potential login screen.
We found 3 false negatives due to an implementation bug
that was since fixed. We conclude that the tool can effec-
tively find all login screens that require protection. The tool
provides an over approximation, but a small number or false
positives does not hamper security, as they only introduce
additional reference values for similarity comparison. More-
over, developers have an incentive to help the reference login
screen detection and they can explicitly mark which activity
constitutes the login screen for even more accurate detection.

Decomposition Accuracy. To evaluate the accuracy
of our screenshot decomposition algorithm, we decomposed
230 login screen screenshots. We manually verified the re-
sults and found that we detected all login screen elements
correctly on 175 screens. We found 29 screens that correctly
decomposed all but one element, and 9 screens with cor-
rect decompositions for all but two elements. Our algorithm
failed to decompose 18 screens.

Certain types of login screens are challenging for our ap-
proach. For example, the login screen of the Tumblr appli-
cation contained a blurred natural image in the background,
and our algorithm detected many erroneous elements. Our
current implementation is optimized for clean login screens,
as those are the pre-dominant login screen types. The ma-
jority (92%) of analyzed screenshots were visually simple
and decomposed. We discuss noisy spoofing screens as a
possible detection avoidance technique in Section 7.

C.2 Feature Extraction Details

On the following page of the Appendix, we present figures
that intuitively illustrate the decomposition (Figure 14) and
feature extraction steps (Figure 15) of our system, as well
as image decomposition results (Figure 16).

Original Processing Steps Result

2 N

! 1

I - 1

1 = e = S ¢ o= 1

G b o

| Sk, Gy |

1

: Skype Name Skype Name [o i

1

: Password Password Pemsy] = i

| = || C Y| =D || =D |

Problems signing in?] Prabloms sigaing fa? Prraliomg pigaiey ket L " : Problems “igning in?

: :

! 1

: :

[1

! 1

i Edge Detection Dilation Closure Morphological ! Connected
t Gradient | Components

Figure 14: Decomposition process. The processing steps in the middle includes common image analysis techniques. The final
step is a connected components algorithm and filtering of smaller regions. For visual clarity, we inverted the colors in the

processing steps.

Screenshot
Acquisition

@

<9

©)

Screenshot
Decomposition

Root
L]

@ Element Matching

@ Logo

- Artifact

] (@) Username

)

Bh Pas

sword

] @ Password

\
N

AT ’@Logm

—

D Y ey I gy N puvapupnpiny WY gupupey

5. o blems signing in?|

|®

(@ Feature Extraction

Hue: +80

Element Scaling: 100%

Logo Rotation: 9°

Logo Scaling: 100%
Logo Crop: 39%
Logo Degradation: 0.23

Figure 15: Summary of the screenshot analysis. (1) The starting point is a mobile application login screenshot. (2) We
decompose the screenshot to a tree hierarchy. (3) We match the detected elements to reference elements. (4) We extract
features from the detected elements with respect to the reference elements.

Problems “igning in?

K|

ogln «

Tmail or Kik Usemame]

M

Figure 16: Decomposition examples. The login screen decomposition algorithm works well in practice. We outline in red the
borders of detected elements, while the red diamond represent element centroids. Some login screens (tumblr, last screenshot)
are visually complex and are inherently hard for our approach to analyze.

15

