Very-efficient simulatable flipping of many coins into a well

(and a new very-efficient extractable-and-equivocable commitment scheme)

Luis T. A. N. Brandao*

(Technical report — June 28, 2015)

Abstract. Secure two-party parallel coin-flipping is a cryptographic functionality
that allows two mutually distrustful parties to agree on a common random bit-
string of a certain target length. In coin-flipping info-a-well, one party learns the
bit-string and then decides whether to abort or to allow the other party to learn it. It
is well known that this functionality can be securely achieved in the ideal/real sim-
ulation paradigm, using commitment schemes that are simultaneously extractable
(X) and equivocable (Q). This paper presents two new constant-round simulatable
coin-flipping protocols, based explicitly on one or a few X-commitments of short
seeds and a Q-commitment of a short hash, independently of the large target
length. A pseudo-random generator and a collision-resistant hash function are
used to combine the separate X and Q properties (associated with short bit-strings)
into a unified X&Q property amplified to the target length, thus amortizing the
cost of the base commitments. In this way, the new protocols are significantly
more efficient than an obvious batching or extension of coin-flippings designed
(in the same security setting) for short bit-strings and based on inefficient X&Q
commitments. The first protocol, simulatable with rewinding, deviates from the
traditional coin-flipping template in order to improve simulatability in case of
unknown adversarial probabilities of abort, without having to use a X&Q com-
mitment scheme. The second protocol, one-pass simulatable, derives from a new
construction of a universally composable X&Q commitment scheme for large
bit-strings, achieving communication-rate asymptotically close to 1. Besides the
base X and Q commitments, the new commitment scheme only requires corre-
sponding collision-resistant hashing, pseudo-random generation and application
of a threshold erasure code. Alternative constructions found in recent work with
comparable communication complexity require explicit use of oblivious transfer
and use different encodings of the committed value.

Keywords: coin-flipping, commitments, simulatability, extractability, equivoca-
bility, rewinding, universal composability, efficient protocols.

* Ph.D. student at University of Lisbon|and|Carnegie Mellon University| Contact email:|luis.papers @ gmail.com

Page 1/97

https://www.ulisboa.pt
https://www.cmu.edu
mailto: luis.papers@gmail.com

Very-efficient simulatable flipping of many coins into a well

Index

Abstract
1 Introduction.................
1.1 Coin-flipping and

primitives
1.2 Contributions
1.3 Roadmap

2 Relatedwork
2.1 Basic primitives.........
2.2 Constant-round parallel

coin-flipping (with
rewinding)
2.3 UC commitment schemes.

3 Preliminaries

3.1 Ideal/real simulation
paradigm

3.2 Commitment schemes. . . .

3.3 Coin-flipping

4 A new coin-flipping protocol
simulatable-with-rewinding
4.1 Intuition
4.2 Detailed description

(protocol #1)
4.3 Security analysis

5 A new UC commitment scheme
5.1 Intuition
5.2 Detailed description

(protocol #2)

5.3 Security analysis
Acknowledgments...............
References

Appendix
A Ideal functionalities
A.l1 Ideal/real paradigm
A2 X-and-Q bit-string
commitments
A.3 Parallel coin-flipping
intoawell..............

(U] gy~

N [N [W [

(2015-June-28)

A.4 A base protocol template .
Ideal commitments with
suppressed properties
B.1 Motivation for
simulation based security .
B.2 Aninitial attempt........
B.3 A nested hybrid model ...
B.4 Different models of
simulation..............
Coin-flipping with rewinding. . .
C.1 Coin-flipping into a well. .
C.2 (Non-)simulatability of
the traditional template . . .
C.3 Proof of security of
coin-flipping protocol #1 .
C.4 Bound on number of
rewindings
PlainModel
D.1 Based on DDH assumption
D.2 Interfering com-schemes .
D.3 X-com-scheme from
regular BitComs
D.4 Q-com-scheme from
regular BitComs
Analysis of UC commitment
scheme.
E.1 Simulation of protocol #2 .
E.2 Security of authenticators .
E.3 Concrete authenticator
instantiation
Concrete comparisons
F.1 Remarks on protocol
variations.
F2 Protocol variants
F3 Concrete parameters
Lists of Figures and Tables
Listof Figures
Listof Tables................

34
36
37
42
43
45
45
47
49
54
58
59
61
64
75
81
82
84

89
91

Page 2/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

1 Introduction

Secure two-party parallel coin-flipping is a probabilistic functionality that allows two
mutually distrustful parties to agree on a common random bit-string of a certain target
length. Leaving implicit the target length and other elements needed for possible setup
conditions, e.g., a short common reference string, both parties start with a nil input and
then interact to obtain the same bit-string as output, uniformly random across different
executions. It is intuitive that the output bit-string must be obtained as a combination of
independent contributions from both parties, in a way that any party is able to induce the
necessary randomness, even if the other party is malicious. In particular, each party must
prevent the other from distinguishing the final bit-string from one that would have been
obtained from a uniform random selection.

In a further sophistication, a coin-flipping protocol is denoted simulatable if it can
be proven secure within the ideal/real simulation paradigm, showing that it emulates
a protocol in an ideal world where an ideal functionality would provide the random
bit-string directly to the two parties. Achieving simulatability is useful for the design
of larger protocols, as it guarantees security under some type of composition operation,
e.g., non-concurrent modular self-composition [Can00] (a.k.a. the stand-alone setting)
or universal composability [Can0Ol1[], depending on the type of achievable simulation,
namely with-rewinding or one-pass, respectively.

Motivation for this functionality can be found directly in the real-world usefulness
of deciding a random bit, or bit-string, enabling parties to make fair decisions (e.g.,
“who gets the car” [Blu83]). A more-technical motivation is the security enhancement
of larger cryptographic protocols. A fundamental application, requiring simulatability,
may be the joint decision of a large common reference string needed as setup condition
of one or several follow-up protocols [CRO3]. Another general application, within
larger constant-round secure two-party computation (S2PC) protocols, may be to decide
random bit-strings that have an explicit representation or influence in the final (honest)
output of an outer protocol. A practical example is S2PC with bit-commitments (e.g.,
[Bral3]), where both parties need to jointly decide as many random bits as the number
of bit-commitments multiplied by the size of bit-commitments.

1.1 Coin-flipping and primitives

Commitment schemes and the traditional coin-flipping template. A protocol for two-
party coin-flipping (“by telephone”) was early proposed by Blum [Blu83]. It uses the
fundamental notion of commitment scheme, allowing one party (say, Pa) to commit her
own contribution before knowing anything about the contribution of the other party (say,
Pg), but hiding it until the contribution of Py is revealed, and binding Pa to only being
able to open the committed value. The solution, designed to emulate a coin-flipping into
a well)! sets the basis for what is hereafter denoted as the fraditional template:

! The expression “into a well” (hereafter implicit) appears in the title of an unpublished manuscript
[BMS81] cited by Blum [Blu83]. It alludes to a party flipping a coin into a well, such that another
party close to the well is able to see the outcome of the coin-flip, but not change it, whereas the
sender who is far away from the well cannot see the result (explanation based on [Sal96]).

Page 3/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Step 1. In a commit phase, P4 commits to her contribution, while hiding it from Pg.
Step 2. Py selects and sends his random contribution to Pa.

Step 3. In an open phase, P, reveals her contribution to Py in a convincing way.
Step 4. Each party computes the final output as a combination of both contributions.

The simulatability of a protocol within this template depends on the number of coins
flipped in parallel, i.e., the length of the contributions, and the type of commitment
scheme. When flipping a single coin, any hiding and binding commitment scheme is
enough if rewinding is allowed in the simulation [Gol04, §7.4.3.1]. Conversely, when
doing parallel flipping of coins in number at least linear in the security parameter, or
when considering a setting without rewinding, simulatability is facilitated by using com-
mitment schemes with special simulatability properties, such as extractability (X) and
equivocability (Q). In a X scheme [SCPO0], a simulator is able to extract a contribution
that has been committed by another party, in apparent conflict with the hiding property.
In a Q scheme [Bea96|, a simulator is able to equivocate the opening to any contribution,
namely to a value different from what had been committed, in apparent conflict with the
binding property. The conflict is only apparent, as in comparison with a real party the
simulator is endowed with extra power, such as capability to rewind the other party in
the simulated execution, or knowledge of some secret information (a trapdoor) obtained
from some specially selected setup.

Traditionally, achieving simultaneous X and Q (i.e., X&Q) is costly as a function
of the target length. For example: in the plain model and when allowing rewinding, by
requiring zero-knowledge (ZK) proofs (or ZK proofs of knowledge) about elements of
size or in number linear with the target length [Lin03], or cut-and-choose techniques with
high communication cost [PWQ9]; or, in a model with setup assumptions but not allowing
rewinding, by requiring commitment schemes based on computationally expensive
operations (e.g., exponentiations) associated with the target length [CFO1, BCPV13]. The
high cost noticed in traditional approaches serves as motivation in this paper to explore
improvements, following two approaches: (i) deviate from the traditional template to
find a new structure that requires less sophisticated commitments (i.e., not necessarily
X&Q); (ii) devise a more efficient X&Q commitment scheme that can be directly used
within the traditional template!

Very-efficient primitives (PRG and CR-Hash). This paper is interested in flipping
of many coins (e.g., a bit-string with target length larger than a million), in contrast
with a number small enough (e.g., up to 256) to fit into a (relatively inefficient) X&Q
commitment of a group-element of practical size. Thus, it is pertinent to ask how very-
efficient primitives can be used to increase the computational throughput and reduce
the communication cost of parallel flipping of many coins, improving the efficiency
per flipped coin. The suggestive expression many coins denotes a target length large
enough to make relevant the communication and computational amortization of the
expensive operations. Intuitively, a solution may involve applying the very-efficient
primitives to strings with the large target length and leave other expensive operations
(e.g, commitments with special simulatability properties) to only a few short strings.
This paper devises solutions with the aid of a pseudo-random generator (PRG)
(naturally associated with the generation of bit-strings indistinguishable from random)

Page 4/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

and a collision-resistant hash function (CR-Hash) (naturally associated with compressing
commitments). The underlying practical assumption is that there are constructions,
directly assumed to be cryptographically secure, such that, for sufficiently large target
length, the respective generation and hashing are much more efficient than an available
base of X&Q commitment scheme for bit-strings with similar length. Indeed, there are
standardized highly-efficient PRGs [Nat14b] (e.g., based on block or stream ciphers) and
CR-Hash functions [Natl4a], allowing a throughput in the order of gigabits per second
using current commodity hardware and software.

The advantage of using these two primitives is hinted by the following initial intuition,
here denoted expand-mask-hash: the extractability of a large string can be reduced to
the extractability (X) of one short seed, whose PRG-expansion is used to mask (with
a one-time-pad) the large string; the equivocability of a large string can be reduced
to the equivocability (Q) of a short hash of whatever large string (e.g., the mask) the
simulator wants to equivocate. However, a simple concatenation of these elements (a
X commitment of the seed of a mask, a masked message and a Q commitment of a
hash of the mask) would not produce a X&Q commitment (as it would not preserve
equivocability). This paper devises two ways in which to very-efficiently combine the
two properties within a coin-flipping protocol.

1.2 Contributions

This paper introduces a new expand-mask-hash approach for parallel coin-flipping,
harnessing the “power” of a PRG and a CR-Hash, to improve the throughput of flipping
many coins (i.e., bit-strings with a large target length). The approach relies on base
commitment schemes with separate extractable (X) and equivocable (Q) properties,
applied only to a few short strings independently of the polynomial target length. This
shows that X and Q properties in separate and in a few short strings can be extended to
enable a unified X&Q property (i.e., combining X and Q) in a very long string, while at
the same time significantly amortizing the computational cost of the base commitments
and asymptotically achieving optimal communication complexity. More specifically,
two new constant-round simulatable protocols are devised for two-party parallel coin-
fipping, in two different simulation settings: with rewinding and one-pass, respectively.
The protocols are proven secure in a static, active and computational model; i.e., at
most one party is corrupted at the onset of the protocol execution, the corrupted party
may deviate from the protocol specification, and both parties are limited to probabilistic
polynomial time computations (in the first protocol, the simulator in the ideal world is
allowed expected-polynomial time).

Protocol #1. The first protocol (§4) devised in this paper is designed to be simulatable-
with-rewinding. It deviates from the traditional template, in order to avoid a simulatability
difficulty (related with unknown adversarial probabilities of abort) found in Blum’s
protocol [Blu83], due to the use of a Q-but-not-X commitment scheme, and at the
same time avoid large complexity: it does not require explicit ZK proof/argument
sub-protocols? about a committed long-contribution, as required in Lindell’s protocol

2 ZK sub-protocols may still be implicitly used in the new protocol to instantiate the underlying
commitment schemes (used for a short seed and a short hash). However, they would not be used

Page 5/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

[LinO3]; it does not incur a high communication cost, as incurred in Pass and Wee
protocol [PW09]. A key aspect of the new protocol is that it does not require augmenting
the base commitment schemes to become full-fledged X&Q, and instead it achieves
these properties (for the coin-flipping) based on a notion of non-local extraction and
equivocation. Specifically, extraction of the contribution of Py and equivocation of the
contribution of P, are possible via black-box rewinding of Py outside of the respective
commit and open phases. Asymptotically, the protocol requires communication of only
two bits per flipped coin. Computationally, each party has to commit and open a short
value, and compute a PRG and a CR-Hash associated with the target length.

The protocol and its proof are defined in a hybrid model with access to separate
ideal functionalities of a X commitment scheme and a Q commitment scheme. The
Appendix|shows a very-efficient concrete instantiation in the plain model, assuming
intractability of the decision Diffie-Hellman problem (§D.1), requiring only five expo-
nentiations per party in a setup phase, and four exponentiations in the online phase (or
six exponentiations, considering practical parameters where an exponent only fits half
of a hash length). This is an improvement in comparison with protocols that require a
linear number of exponentiations (or exponentiations in a group with elements of size at
least as large as the target length). The exponentiations can be avoided altogether, using
solely PRG-based commitments and achieving X and Q based on rewinding. This is
exemplified with concrete instantiations of X and Q commitments based only on regular
bit-commitments (§D.3 and §D.4), at the cost of extra communication rounds and larger
concrete communication complexity — though still amortized as the target length grows.

Protocol #2. The second protocol (§5) devised in this paper is designed for one-pass
simulatability. It follows the traditional template of coin-flipping, with a commitment
used only for the contribution of P4 . Here, the innovative technical contribution is a new
X&Q UC commitment scheme for large strings. The new construction is based on a
cut-and-choose method, where the size of each instance in the cut-and-choose is reduced
proportionally to the number of instances. This achieves communication rate as close
as desired to 1, i.e., the number of bits transmitted in each phase (commit and open)
being roughly the same as (i.e., just slightly larger than) the number of committed bits —
asymptotically, this means three bits per flipped coin in the traditional templatel

The scheme is defined in a hybrid model using separate ideal functionalities for a
X commitment scheme and a Q commitment scheme. Even though UC commitments
schemes are simultaneously X and Q, security can be proven with a simulator that,
for each type of base commitment scheme (X or Q), does not use the complementary
property (Q or X, respectively). This means that a X&Q UC commitment scheme for
long bit-strings can be implemented based on commitment schemes for short strings and
with suppressed properties, e.g., X&Q (X-but-not-Q) and X&Q (not-X-but-Q). Naturally,
the protocol remains secure if the underlying schemes are indeed full-fledged X&Q — in
such case the protocol represents a UC commitment extension, where a few (commit
and open) calls to X&Q commitments for short bit-strings achieve a X&Q commitment

to directly extract and equivocate the long contribution of a party, but rather to enable extraction
or equivocation of each short string.

Page 6/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

(commit and open) for a string of independently larger polynomial size (and assuming
the existence of a PRG and a CR-Hash).

In comparison, very recent and independently developed works [GIKW 14, DDGN14,
CDD™15], using a different approach, also focus on committing many bits in parallel,
amortizing the cost to the throughput of a PRG and capable of achieving rate-1 asymptotic
communication complexity. One noteworthy difference with the protocol devised in this
paper is that they explicitly use oblivious transfer, instead of other base commitments
and a CR-Hash?| Also, [GIKW14, DDGN14] rely on secret sharing schemes with
error-correction or verifiability requirements ((CDD™15] works with any linar code),
whereas this paper uses a simpler erasure code (i.e., an information dispersal scheme
where reconstruction only uses correct fragments). In addition, [GIKW 14| considers
selective openings and [DDGN14,(CDD* 15] considers homomorphic properties and
verification of linear relations between committed values. [CDD™ 15] also achieves linear
computational complexity, which may be comparable with this work.

Remark. While the main focus of the paper is achieving very-efficient protocols, the
analysis is also relevant by the discovery of new approaches and relations between
properties, such as: using a new coin-flipping template structure, different from the tradi-
tional template; understanding the distinctive role of rewinding for some simulatability
properties, clarified by the contrast made between definitions of local vs. non-locall X
and Q (in a rewinding setting); achieving a rate-1 UC commitment scheme, resolving
the duality between X and Q via a cut-and-choose approach without explicit use of
OT; exploring the concept of ideal commitment schemes with suppressed properties
(X-but-not-Q and Q-but-not-X). While the direct applicability of commitment schemes
might be broader than coin-flipping, this paper justifiably focuses on coin-flipping as
an application that better contextualizes the sequence of contributions. In particular,
the reflection is made in a sequence of simulation settings (first with-rewinding, then
one-pass), with the goal of reducing the need of rewinding in simulation of coin-flipping.

1.3 Roadmap

The paper proceeds as follows: Section |2 reviews related work; Section 3|introduces
preliminary definitions useful in the remainder of the paper; Section|4|describes the new
protocol for coin-flipping simulatable-with-rewinding; Section |5|specifies the new UC
commitment scheme (X&Q), directly usable for one-pass simulatable coin-flipping; the
Appendix|includes formal definitions of the ideal functionalities of commitment schemes
and coin-flipping (§A, §B), concrete instantiations for the coin-flipping protocol #1 (§C|
§D), and further details about the new UC commitment scheme (§E, §F).

2 Related work

2.1 Basic primitives

One-way permutations or functions are enough in theory to achieve many useful
cryptographic primitives, such as PRGs [HILL99, [VZ12], one-way hash functions

3 “Explicit use” is here meant in the sense of being used as a primitive in the protocol description.
This paper does not explore further which primitives imply which in a theoretical sense.

Page 7/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

[NY89, Rom90], some types of commitment schemes [Nao91, DCO99] and ZK proofs
of knowledge (ZKPoK) [FS90]. Collision-resistant hash functions can also be built from
other primitives [Sim98], such as claw-free sets of permutations [Dam88] or pseudo-
permutations [Rus95]. Based on such primitives, coin-flipping can be achieved in differ-
ent ways, e.g., based solely one-way functions [Lin03, PWQ9] (with rewinding). In differ-
ent simulatability settings, coin-flipping can be more directly based on higher level prim-
itives, such as bit or multi-bit X&Q commitment schemes (e.g., [CFO1, DN02,|Cre03])
and even from coin-flipping protocols with weaker properties [HMQUO06, LN11].

In practice, parallel flipping of a few coins (i.e., a short bit-string) can be achieved
somewhat efficiently from commitment schemes based on specific algebraic instantia-
tions of standard cryptographic assumptions, such as the intractability of the decision
Diffie-Hellman problem (e.g., [Lin11, BCPV13]). Naturally, flipping many coins can be
devised by batching several executions of a protocol for flipping a short bit-string (a
block), thus achieving a throughput linear in the total number of coins, but still inheriting
the inefficiencies of the underlying repeated protocol. This is not satisfactory when the
inefficiency of the base commitment scheme multiplied by the number of blocks leads to
a cost larger than what can be supported, namely computation proportional to a factor
super-linear in the block size (e.g., from exponentiations with respective modulus size)
and communication complexity with a constant multiplicative factor larger than one
(e.g., from communicating several group elements for each flipped block). In contrast,
this paper devises a construction where the cost of base commitments is amortized.

In the computational model (the one considered in this paper), there are known
theoretical feasibility results about coin-flipping, covering the stand-alone and the UC
security settings. For example, in the UC setting, it is possible to achieve coin-flipping
extension (assuming enhanced trapdoor permutations with dense public descriptions),
i.e., coin-flip a large bit-string when having as basis a single invocation of an ideal
functionality realizing coin-flipping of a shorter length [HMQUO6]. This paper shares
the concern of achieving properties in large strings based on functionalities associated
with short strings, but focuses on a base of a few short commitments (not needing to
be simultaneously X and Q) and has the motivation of improving efficiency. The paper
does not delve into analyzing further implications between different primitives (e.g., see
[DNO10Q] for relations between OT and commitments, under several setup assumptions).

2.2 Constant-round parallel coin-flipping (with rewinding)

When flipping many coins, the traditional template enables simulatability if the base
commitment scheme is X&Q. Lindell achieved this (in two variant protocols [Lin03}
§5.3 & §6]1)* by augmenting the commit and open phases with ZK sub-protocols that
endow the phases with respective X and Q properties. In particular, a X-commit phase
(step 1) can be achieved by a regular commitment followed by a ZK argument of
knowledge of the committed value, from which the simulator in the role of receiver

* Actually, the two protocols devised by Lindell solve a more general functionality: P receives
a bit-string as outcome of the coin-flipping but Py receives the result of applying a known
function to such bit-string. In the case of the identity function, the functionality collapses to the
regular coin-flipping considered in this paper.

Page 8/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

can extract the value. Then, a Q-open phase (step 3) can be achieved by sending the
intended (equivocated) contribution of P (which on its own cannot be verified against the
respective commitment) and giving a fake ZK argument that it is a valid decommitment.
This solution provides a feasibility result for constant-round simulatable parallel coin-
flipping. However, for a general commitment scheme applied to a long bit-string, either a
ZK proof/argument of knowledge for extraction or a ZK proof/argument for equivocation
is typically expensive, if not both.

A different approach, followed by Pass and Wee [PWQ9], is to use a cut-and-choose
approach (in a rewinding setting) to achieve X and Q properties directly from a regular
commitment scheme (or from one with only X or only Q properties). The goal of their
construction is not efficiency, but rather showing that one-way functions are sufficient
to achieve X&Q commitment schemes and consequently also coin-flipping (based on
the traditional template protocol). In particular, their technique requires communication
proportional to the target length multiplied by the statistical security parameter of the
cut-and-choose approach.

In contrast with the two referred constructions in a simulation-with-rewinding setting,
a main goal in this paper is to improve efficiency when flipping many coins. This is
achieved by focusing on X and Q properties of short strings, and then using a PRG and
hash functions to combine and expand them into a larger bit-string, thus amortizing the
cost of the underlying commitment schemes.

2.3 UC commitment schemes

Within the scope of the traditional template, simultaneous X and Q properties of the
underlying commitment scheme are essential if the simulation setting does not allow
rewinding [CRO3], e.g., in the UC framework, even for a single-coin flip. Canetti and
Fischlin [CF01] developed non-interactive UC commitments, requiring a unitary num-
ber of asymmetric operations per committed bit. The construction assumes a CRS
setup and is based on the equivocable bit-commitment from Crescenzo, Ishai and Os-
trovsky [DCIO98]. Canetti, Lindell, Ostrovsky, and Sahai [CLOS02] proposed other
non-interactive schemes from general primitives, with adaptive security without erasures.
Damgard and Nielsen [DNO2] then improved with a construction denoted mixed com-
mitment scheme, also X&Q, that is able to commit a linear number of bits using only a
unitary number of asymmetric operations, and using a linear number of communicated
bits. For some keys they are unconditionally-hiding and equivocable, whereas for other
keys they are unconditionally-binding and extractable. Crescenzo [Cre03] devised two
non-interactive X&Q commitment schemes for individual bits, in the public random
string model (suitable to UC). One construction is based on Q commitment schemes
and NIZKs, the other is based on one X and one Q commitment schemes. Damgérd and
Lunemann [DL09] consider UC in a quantum setting and solve the problem of flipping
a single bit, based on UC-commitments from [CFO1]. Lunemann and Nielsen [LN11]]
consider also the quantum setting and achieve secure flipping of a bit-string based on
mixed commitments from [DNO2]. They distinguish several flavors of coin-flipping
security (uncontrollable, random and enforceable) and then amplify security from a
weaker notion up to the stronger notion — simulatability (on both sides). In a recent line
of work, several “highly” efficient commitment schemes have been proposed, based

Page 9/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

on specific assumptions, such as the Decision Diffie-Helman (DDH) intractability, e.g.,
[Linl1, FLMI11, BCPV13] achieving a low (constant) number of group elements of
communication and exponentiations to commit to a group element. Still, the trivial
extension of these protocols for a large number of commitments would imply a linear
increase in said number of asymmetric operations (modular exponentiations), without
amortization. Some of the above-mentioned proposals achieve adaptive security (with
erasures), whereas this paper is focused only on static security.

This paper is focused on achieving high efficiency when flipping (and committing)
many coins, making use of base X or Q commitments and erasure codes — as already
mentioned, three recent independent works [GIKW 14, [DDGN14, (CDD* 15] devise UC
commitment schemes with comparable asymptotic rate-1 communication, but following
different approaches (namely explicitly using oblivious transfer and encoding the com-
mitted value in different ways). Future work may be useful to identify concrete tradeoffs
between different techniques.

3 Preliminaries

3.1 Ideal/real simulation paradigm

This paper considers the ideal/real simulation paradigm, as developed in the work of
Canetti on composability of protocols [Can00, /Can0O1]. A basis to understand the ideal
functionalities of commitment schemes, namely in the UC framework, can also be found
in the work of Canetti et al. [CF01,/CLOSO02]. A protocol in the real world is considered
secure if it emulates an intended ideal functionality defined in an ideal world. In the
case of parallel coin-flipping (into a well), the ideal functionality® Fycp decides the
random coin-flipping outcome (the target bit-string), then sends it to P, and only then
(if P4 allows it) to Py, as suggested by the traditional template. Formally, the concept
of emulation is equivalent to the inability of an external observer (denoted environment
Z) to distinguish executions in the ideal world from those in the real world, when the
adversary in the ideal world is replaced by a suitable simulator S that has black-box
access to the adversary A of the real world.

This paper considers a static and active corruption model, where an adversary can
corrupt at most one party (i.e., make it malicious) only before the beginning of the
protocol execution.®| The protocol is said to be simulatable if the proof of emulation
can be carried out for each of the two possible corruptions. The protocols are proven
secure in the computational model, with all parties being restricted to probabilistic
polynomial time computations. In the protocol for simulatable-with-rewinding, S is
allowed expected probabilistic polynomial time.

Security is proven by constructively defining a suitable simulator S, who performs
indeed a simulation in order to learn how the adversary A in the real world would behave.

3 The notation "MCF" in Fucr denotes "multiple coin-flipping", meaning that the functionality
can be invoked multiple times, each time providing a random bit-string.

® This is in contrast to an adaptive model, where the adversary would be able to choose during
the execution of the protocol which party to corrupt. The term malicious party is used to denote
a party under the control of the adversary.

Page 10/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

In the case of coin-flipping, the essential intuition is that S needs to be able to induce
the final coin-flipping result of a simulated execution (as received by .A) to be the value
that Fycr has decided in the ideal world (the target bit-string). This is necessary so
that S can learn what A would output (or possibly abort) when facing the perspective
of obtaining such target bit-string as the result of a real protocol. This is the reason to
require from S the ability to either extract or equivocate the contribution of a party in a
simulation. Furthermore, since an abort is also a possible outcome of a protocol, S must
also be able to emulate said probability in the ideal world, namely the case of early-abort,
where P, aborts after learning the coin-flipping outcome but before Py learns it.

Definition 1 (needed complementary contribution). When S has obtained in the
ideal world the target bit-string from Fycr, and has already obtained in the simulated
execution (possibly by means of extraction) the contribution of the malicious party, the
needed complementary contribution denotes the contribution that S, in the role of the
other (honest) party in the simulated execution, must present (possibly by means of
equivocation) to the malicious party, so that the outcome of the simulated execution (in
case there is no abort) is the same as the target bit-string decided by Fyccr.

Definition 2 (emulate an abort). 7o emulate an abort means that S aborts the execution
in the ideal world (e.g., by sending an abort message to Fycr) and then outputs in the
ideal world whatever the black-box adversary outputs in the simulated execution.

3.2 Commitment schemes

A commitment scheme is a two-phase protocol played between two parties, a sender
and a receiver. In a commit phase, the parties interact in a way that the sender becomes
bound to a value, while hiding it from the receiver. In an open phase, the parties interact
in a way that the receiver learns the committed value and becomes convinced that it is
the correct value. A phase is called non-interactive if the communication consists on a
single message from the sender to the receiver.

Definition 3 (extractability). An extractable commitment scheme €x is one whose
commit phase allows S in the role of receiver to extract (i.e., learn) the committed
value, with probability equal to or larger than a value negligibly-close to the probability
with which the (possibly malicious) sender is able to successfully open the value in the
respective open phase.

Definition 4 (equivocability). An equivocable commitment scheme €y is one whose
open phase allows S in the role of sender to equivocate the opening to any desired
value (in the domain of committable values), regardless of the value that had been
commiitted, such that the view of the execution by the (possibly malicious) receiver
is indistinguishable from one where the commit and open phase had been honestly
associated with such equivocated value.

The proofs of security presented in this paper consider a (Fx,.Fq)-hybrid model,
where the two underlying commitments schemes of the protocol, i.e., the extractable

Page 11/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

scheme (%x) and the equivocable scheme (%g), are replaced by ideal commitment
functionalities from which the simulator does not take advantage of Q or X, respectively,’

3.3 Coin-flipping

For the purpose of a coin-flipping protocol simulatable-with-rewinding, extracting or
equivocating the contribution of a party might be achievable (e.g., with the help of
rewinding) even if commitment scheme(s) used as primitive(s) is(are) not on its own
X or Q, respectively. Thus, it is useful to introduce a characterization (locality vs. non-
locality), of the type of X and Q, in order to allow differentiating the context in which
the respective extraction and equivocation can be achieved. This characterization will
facilitate conveying the intuition for the new structure of protocol #1, in comparison
with the traditional template,

Definition 5 (locality of X and Q). Within a protocol making use of commitments,
namely including both commit and open phases, extraction is characterized as local if
the simulator can extract the committed value within the respective commit phase, i.e.,
without going beyond that phase in the protocol and without rewinding to a step before
that phase. Local equivocation is defined analogously in relation to the open phase. The
properties are characterized as non-local if they can be achieved but not locally (i.e.,
involving rewinding beyond the respective phase).

4 A new coin-flipping protocol simulatable-with-rewinding

This section devises a new parallel coin-flipping protocol, simulatable-with-rewinding.

4.1 Intuition

In the new (constant round) protocol, the malicious P} is still the first party to learn the
final bit-string. However, in fundamental contrast with Blum’s protocol (which uses a
Q-but-not-X commitment scheme in the traditional template), in the new protocol a simu-
lator in the role of Py in the simulated execution can extract the contribution of P} while
still semantically-hiding from P} (even in the execution before any |explicit rewinding)
the contribution of Pg. Intuitively, this prevents the probability of an unfair-abort of P
from depending on the contribution of Py and the final bit-string. Furthermore, in contrast
with the protocols of Lindell [Lin03] and Pass and Wee [PW09], where P5 commits
her contribution using a X&Q commitment, in the new protocol the extraction of the
contribution of Py is achieved even though PA uses a Q-but-not-X commitment scheme.
In particular, the new protocol achieves simulatability based on non-local|extraction of
the contribution of one party (Pg) and non-local equivocation of the other (P4).

The protocol uses a new template that requires only one X-commitment of a short
seed by P and one Q-commitment of a hash by Pg, plus a PRG (to expand the seed) and

7| Appendix B formalizes a nested hybrid model, technically preventing the simulator from making
use of said capabilities. This helps conceptualizing the notion of Q-but-not-X and X-but-not-Q
commitment schemes, i.e., ideal commitment schemes with suppressed properties.

Page 12/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

a collision-resistant hash function (to compress the contribution of Pg). Thus, as the target
length grows the throughput is amortized to that of one PRG and one hash function. The
devised solution corresponds to an augmentation of the traditional template, involving the
combination of three key aspects: (1) extraction of the contribution of P, is obtained by
extraction of a small seed, which once expanded serves as mask of the full contribution —
this reduces the input size of the base X-commitment; (2) extraction of the contribution
of Py is obtained non-locally (i.e., far away from the respective commit phase), but before
Pg learns anything about the contribution of P4 in any rewinding attempt — this bypasses
the simulatability difficult found in Blum’s protocol; (3) equivocation of the contribution
of Py is applied to the hash of the contribution, rather than to the full contribution — this
reduces the input size of the base Q-commitment. Despite the simplicity of the new
protocol, the proof of security is challenging for the case of corrupted P.

4.2 Detailed description (protocol #1)

The protocol is specified using succinct notation in Fig. 1. As implicit parameters, the
protocol depends on a computational security parameter (1) and a respectively secure
PRG and CR-Hash function (2). The protocol is here defined and proven secure in a
hybrid model where a X commitment scheme (¢%) and a Q commitment scheme (%g)
(3) are replaced by respective ideal functionalities Fx and Fq with respective X and Q
properties. In the plain model (§D), €x and 6 would be agreed between the two parties
in a setup phase, requiring that €x is|non-malleable with respect to opening of 6.

The execution starts when both parties are activated to initiate a coin-flipping of a
certain rarget length, with the parties assuming asymmetric roles in the protocol, e.g.,
w.l.o.g., with P, being the first to learn the final outcome ((4)-(5)). After a possible
implicit setup phase, Pg selects his contribution (6), with the target length, and commits
to its hash (7) using Fq (8). Then, P, selects a seed (9) and commits to it using Fx (10).
P4 also selects a random bit-string (denoted masked contribution) with the target length
(11) and sends it to Pg (12). Then, Pg asks Fq to open to P, the committed hash (13),
and then Py sends his contribution to P4 (14). P4 checks that the hash of the contribution
of Py is equal to the opened hash (15). Then, P, asks Fx to open to Pg the committed
seed (16). Finally, each party proceeds concurrently with local computations: expanding
the seed of P, into a bit-string of the target length (17) (i.e., the mask); computing the
bit-wise exclusive-OR (XOR) combination of the mask and the masked contribution,
thus determining the contribution of P (18); and locally computing the final outcome as
the XOR of the two contributions (19), and deciding that as the final output (20)-(21).

Appendix D) describes efficient concrete instantiations in the plain model. One
requires an unitary number of exponentiations in a short group; the other does not need
any exponentiation but it requires a slightly larger communication complexity (also
amortizable) and one commitment scheme becomes explicitly interactive.

4.3 Security analysis

Theorem 1 (security of protocol #1). Assuming a cryptographically secure PRG and
CR-Hash, the coin-flipping |protocol #1|securely-emulates (with computational indistin-
guishability) the ideal functionality of long bit-string coin-flipping between two-parties,

Page 13 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Implicit parameters. Pa:ta <> {0,1} (masked contribution) (11
Security parameters: 1™ (1) Pa — Pg : (masking-1, sid, cfid, Pa,Pg,ta) (12)
Primitives: (PRG, kprg), CR-Hash 2) 3. Reveal contribution of Pg.

Sub-protocols: (¢x, €q) 3) (6&3“0::24 (E) [PA P hB§PB(hB:h75)} (13)

0. Initial input. Ps — Py : (send-contrib-2, sid, cfid, Pa, Pa, x5) (14)
input , — Py : (start-1,sid, cfid, P, Pg, £) 4) P : If CR-Hash(x5) # hup then halr (15)
inputy, — Py : (start-2, sid, cfid, Pa, Py, {) ® 4. Open contribution of P,.

1. Commit cor;tnbutu:n of Pg. - ‘ (’7(3253,[/“: (57) [P/\ (54,54); Pa ¢ SA] (16)
Ps x5 ¢ {0,1}" (select contribution of Ps) ~ (6) Pa, Pg : 5’4 = PRG[s4](£) (seed expansion = mask) ~ (17)
Py : hp = CR-Hash(x) (hash of contribution) (7) Pa,Pp : xa = ta @ 5's (contribution of Py) (18)
(’ g‘im‘fsd [PA + hp;Pa(hs) (h’iBﬁ E)} ®) 5. Final output (locally combine contributions).

2. Commiit contribution of P4. Pa,Ps: X = xa® X8 (19)
Pa:sa < {0, 1}77RG (seed) (©) Pa — output , : (output-1,sid, cfid, P, Ps, X) (20)
(vfxx,ty(i‘j,‘:/;?;l [PA(SA) . (Ma H) P ﬁ] (10) Pg — outputy : (output-2,sid, cfid, Pa,Ps, x) (21)

Fig. 1. Protocol #1 — Parallel coin-flipping. Legend: « (cryptographic security parameter, e.g., 128 = 1'28);
£ (target length, i.e., number of bits to coin-flip in parallel, e.g., 10°, satisfying £ € O(poly(x))); xp (contribution
of Pp, for p € {A, B}); CR-Hash (compressive collision-resistant hash function); PRG[s](#) (expansion of seed s,
using a pseudo-random generator, into a bit-string of length £); kprg (input-seed length sufficient to guarantee security
consistent with parameter x); T (commitment of x); z (randomness needed to decommit = from T); X, Q, X&Q (ex-
tractable, equivocable, extractable-and-equivocable — properties of commitment schemes, which may be present in some
phases); 6P (phase p (Commit or X-Commit or Open or Q-Open) of a commitment scheme of type ¢ (X or Q or X&Q);
CiP(2) [Pa(za) < Ya; Pe(wy) < Y] (execution of phase €7, between P and Pg, starting with common input z and
with respective private inputs z, and ', and ending with respective private outputs y, and yp).

in a stand-alone setting and in the (Fx, Fg)-hybrid model, in the presence of static and
computationally active rewindable adversaries. Furthermore: for each (polynomially
arbitrarily-long) bit-string coin-flipping execution, each phase (commit and open) of Fx
and F is invoked only once for a short string; in the case of a malicious P}, simula-
tion is possible without explicit rewinding; in the case of a malicious Py, simulation is
possible with an expected number of explicit rewindings less than two.

Intuition for proof of security. Proving security (i.e., simulatability) amounts to show a
simulator that, with an expected number of rewindings at most polynomial in the security
parameter, is able to induce in the ideal world a global output whose distribution is
indistinguishable from the one in the real world. Specifically, in the role of each party
in a simulated execution, S must be able (with overwhelming probability) to learn the
contribution of the other possibly-malicious (black-box) party and still be in a position
to open the needed complementary contribution as if it was honestly random and at the
same time simulate the probability of early-abort| of the malicious party.

The simulator (S) starts a simulation, with rewindable black-box access to A (who
corrupts a party P at the onset of the simulated execution). S relays to A the input
received from Z in the ideal world, and relays to the simulated P}, the input that Z sends

to ﬁp in the ideal world.

One-pass simulation (i.e., without explicit® rewinding), for malicious P};. In the sim-
ulated execution, S in the role of Py commits to a random hash value (8). The execution

8 It is acceptable that the underlying commitment schemes are equivocable or extractable based on
local rewinding, but that is irrelevant for the proof in the hybrid model with ideal commitments.

Page 14 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

proceeds with S receiving the X-commitment of a seed from P} (10), and extracting the
respective seed. Then, once receiving from P} a masked contribution (12), S combines
it with the PRG-expansion of the seed in order to learn the contribution of P} ((17)-(18)).

Then, in the ideal world, S in the role of the ideal ﬁz receives from the ideal coin-flipping
functionality Fycr the random bit-string (i.e., the target outcome). S determines what is
the needed complementary contribution for Py in the simulated execution, namely the
XOR between the target outcome and the contribution of P} . S computes the hash of this
complementary contribution (7) and uses its power to equivocate such hash value from
the respective Q-commitment (13). Finally, S also sends the complementary contribution
to P} (14). Since €q is\non-malleable with respect to opening of €, it follows that P}
can only either open the contribution that has been extracted by S, or decide to abort
without sending her contribution to Py (played by S) (16). In case of abort, then S
emulates an abort, otherwise S lets Fyicr continue the execution in the ideal world (i.e.,
send the bit-string to the ideal Pg)and S outputs in the ideal world what P outputs in
the simulation.

Simulation with rewinding, for malicious Py,

— First iteration. In the simulated execution, S in the role of an honest P, proceeds
the simulation until receiving the contribution of Pj and verifying its hash against
the respective opened commitment (15). If Py aborts until this step (including if it
reveals a contribution inconsistent with the opened hash), then S |emulates an abort|
Otherwise, S learns the contribution of Pg.

— Get target outcome. S then gets from Fycr in the ideal world the target outcome
and uses it to compute the|needed complementary contribution|of Py in the simulated
execution, namely the XOR between the target outcome and the contribution of Pg.
Then, S defines for the remainder of the simulation an appropriate exponential upper-
bound (#rw-bound) of number of rewindings. There is a subtle issue related with
probability of early abort: if there is no bound, then this simulator does not guarantee
an expected polynomial number of rewindings; if the bound is polynomial, then there
is an adversary for which the probability of early abort is distinguishable between the
ideal and real worlds (namely if the probability is noticeable and noticeably-smaller
than the inverse of #rw-bound). An appropriate bound is discussed in Appendix C.3.4

— Induce target outcome. Then, S rewinds until the step of selecting the seed of
P (9) and resumes the execution by selecting a new random seed and committing
to it (10). In the next step of the protocol, instead of selecting a random masked
contribution (12)), S computes the contribution of P, as the XOR combination of
the needed complementary contribution and the PRG-expansion of the seed. If P
does not abort before the step where it reveals her contribution, then S continues the
simulation until the end and outputs in the ideal world whatever Py outputs in the
real world (even if Py aborts while P4 is opening her seed (16)). Otherwise, if Pj
aborts before correctly revealing his contribution, S rewinds again until the step of
selecting the seed of P, and replays the simulation procedure just described, again
and again until receiving the contribution of Py (equal to the one already known by
S) and thus leading the simulation to an end, or until reaching the #rw-bound bound
and in that case itlemulates an abort.

Page 15/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

5 A new UC commitment scheme

This section devises a new UC commitment scheme, i.e., one-pass-simulatable, thus
with the X and Q properties being local. To flip many coins, it is then enough to use
this scheme to commit and open the contribution of P, in the traditional template, The
section starts by conveying an intuition (§5.1), then gives a precise description using
concise notation (§5.2), and then presents a security analysis (§5.3).

5.1 Intuition in a sequence of optimizations

Besides the primitives already discussed (X and Q commitments, PRG, CR-Hash), the
new protocol embeds three main ingredients:

— acut-and-choose approach, where P, builds several instances of short commitments
and then Py checks the correctness of some (the check instances) to gain some
confidence that a majority of the remaining (the evaluation instances) are correct;

— authenticators, allowing the simulator to anticipate whether individual instances
are good or bad, thus having better assurance about correct extraction;

— an information dispersal scheme (IDS), used to partition (i.e., split) the target
message into smaller components (i.e., fragments), and allowing a portion of those
fragments to be combined into (i.e., to recover) the original message; the IDS enables
the size of each instance to be reduced proportionally to the number of instances.

The combination of these elements is described below, in a sequence of progressive
optimizations, and is complementary also sketched in Fig. 2!

5.1.1 Cut-and-choose warmup

A non-example. It is instructive to first look at a non-X or non-Q (and thus non-UC)
scheme. Consider a commit phase as follows: 1) P4 X-commits to a seed; ii) calculates
a mask as the PRG-expansion of the seed; iii) sends the respective message masking
to Pg; iv) and Q-commits to the hash of the mask. Then: if the open phase involves
opening the seed, then the scheme is X-but-not-Q, because each seed (which not even a
simulator can equivocate) leads each masking to a unique message if, instead, the open
phase involves revealing the message and opening the hash of the mask, but not opening
the seed, then the scheme is not-X, because a malicious P may have (undetectably
to Pp) used a mask different from the seed-expansion. Conversely, suppose that in the
latter case it would somehow be possible to ensure that the used mask was indeed the
PRG-expansion of the committed-but-not-opened seed. Then the simulator would be
able to extract the message — by extracting the seed and then use its PRG-expansion to
unmask the masking. The method hereafter uses a cut-and-choose approach, based on
several instances of commitments of seeds, to obtain the needed assurance in a statistical
manner, namely ensuring an overwhelming probability of correct extraction.

? Even if the seed had been committed with a X&Q scheme, it would not be possible to equivocate
most messages, because there are much less short seeds than large messages or masks.

Page 16/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

A simple but not-efficient cut-and-choose based scheme:

Commit phase. P, produces several seeds, builds a X-commitment of each, and
also builds a Q-commitment of a CR-Hash (hereafter denoted global hash) of the
sequence of PRG-expansions of all seeds. Then, Py cuts the set of instances of
seed-commitments in two random complementary subsets, and chooses one for a
check operation and the other for an evaluation operation. For each instance selected
for evaluation, P, uses the respective PRG-expansion to mask (using XOR) the
target message, and sends the respective message masking to Pg.

Open phase. P, reveals the message — this allows Pg to compute all masks (i.e.,
the PRG-expansions) used with evaluation instances. Also, P, opens all check
seeds, thus letting Py compute the respective PRG-expansions. Finally, Po opens
the commitment of the global hash, letting Py verify that it is equal to the one that
can be obtained from all PRG-expansions. Otherwise, if the global hash verification
fails, P4 rejects the opening of the target message.

This above solution has a high communication complexity: target length multiplied by

number of evaluation instances. Nonetheless, it has the needed simulatability properties:

Hiding. In the commit phase, the message is hidden from Pg, by a one-time-pad of
PRG-expansions (the masks).

Binding. In the open phase, P, is bound to open a single message: by collision
resistance of CR-Hash, P, can only know one mask per evaluation instance that
leads to the correct global hash; thus, P, can only successfully open the message
that for all evaluation instances is equal to the XOR of such mask and the respective
previously sent masking.

Equivocation. In the open phase, the equivocator-simulator (S?) in the role of P
can successfully open any desired fake message, by revealing the message, opening
the correct seeds of check instances and then equivocating the needed fake global
hash (without revealing the respective seeds of evaluation instances).
Extractability. In the commit phase, the extractor-simulator (S*) in the role of Pg
extracts the seed of each evaluation instance, then PRG-expands it and uses it as
a tentative mask to unmask the masked message. This leads S to obtain several
unmaskings, all of which are tentative messages. If a majority of tentative messages
is consistent (i.e., all of them are equal), then SX chooses such message as the
correct one. Otherwise SX guesses that P, will not be able to successfully open any
message in the later open phase.

Statistical security. Above, only extractability depends on a statistical argument. Ex-
traction can still fail if all check instances are good but a majority of the evaluation
instances are bad — bad in the sense that the PRG-expansion of the extractable seed is
not the value that was used as a mask. However, when using so many bad instances, P}
risks having any of them selected for the check subset, case in which the verification of

the

global hash would fail. Thus, a successful verification of the global hash induces a

(statistically based) probability that a majority of the committed-but-not-opened seeds
of the evaluation instances is also correct. Correspondingly, conditioned on a future
successful verification of the global hash, if follows a probability that the majority of the

Page 17/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

extracted seeds are correct. With adequate cut-and-choose parameters, this probability

is overwhelming in the total number n of instances, i.e., the commitment scheme is
extractable. For fixed n, statistical security (the additive symmetric of the logarithm base

2 of the probability of failed extraction) is maximized with the optimal proportions of
approximately three fifths for check and two fifths for evaluation [SS11, §A], leading
to about 1 bit of statistical security per every three instances. For example, using 123
instances, 74 of which for check and 49 of which for evaluation [Bral3, Table 2], leads

to approximately (slightly larger than) 40 bits of statistical security, i.e., the probability
of wrong extraction is less that two to the minus 40.

5.1.2 Authenticator aid

Improving statistical security. In comparison with the above-described method, statis-
tical security can be improved by including a verifiability mechanism that endows SX
with the ability to verify which evaluation instances are good and which ones are bad,
without comparison between instances. With such mechanism, S X extracts an incorrect
message only if all check instances are good and all evaluation instances are bad, i.e.,
only if a malicious P} anticipates the exact cut-and-choose partition. For appropriate
cut-and-choose parameters, the (un)likelihood of this guess corresponds to about one bit
of statistical security per instance, thus reducing the number of instances about three-fold.
For example, 40 bits of statistical security can be obtained with 41 or 76 instances, while
respectively limiting the number of evaluation instances to be at most 20 or 10. The ratio-
nale about probabilities is similar to that used in recent improvements obtained for more
general secure two-party computation protocols based on a cut-and-choose of garbled-
circuits approach, where the criterion for success changed from at least a majority to just
at least a single correct evaluation garbled-circuit [Bral3,/Lin13| HKE13]].

Authenticators. The intended verifiability can be achieved by augmenting each evalu-
ation instance with an authenticator element that allows S to verify whether or not
each extracted seed is consistent with each respective anticipated tentative message.
Specifically, when S¥ extracts a seed and uses its seed-expansion to unmask the re-
spective masked string received from P4, only two things should be possible: either
(i) SX gets a correctly authenticated message, which must be the only one that Py
can later successfully open, i.e., this is a good instance; or (i) SX gets an incorrectly
authenticated message, implying that a successful opening by a malicious P} will have
to use a mask different from the seed-expansion, i.e., this is a bad instance.

As a starting point, P} becomes bound to her choices, by committing her seeds
and the global hash (which commits the masks), before even learning how to compute
authenticators. Only then is the authenticator function « defined, dependent on a random
unpredictable value (a nonce) that Pg discloses to P5. The function o will relate the
message and the nonce in a non-trivial way, e.g., with a suitable collision-resistant type
of property, such that it is infeasible for P} to produce a masking (i.e., a masked version
of the message) for which two different unmaskings (the one using the seed-expansion as
mask; and another using the maliciously arbitrary pre-selected mask) yield authenticated
messages. In a strict authenticator mode, the seeds, the (global hash of the) masks and

Page 18/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

1.a. Commit instances 1.c. Message masking

C s s; s m; m}a; t;
| ggommit PRG L= AUTH o
5 & Commit PR h h
M e X B P
3 g Commit PRG CRH %750'“'“" IDSspiit 3 AUTH o
(é;Comml[PR
I e . o RS
5 gCommi PRG 54 AUTH of
Py PaoPy P P. Pa—Ps Py—Prl Py] P Py Pro Py
R2-a~ | E 2.b. Obtain evaluation masks
VAl - - DT
message: mj

DS/ 3

Zme O

' ' !
___Exccute the X-Commit phase ;' Obtain tentative ! Verify o
E Extract seeds | Other values | authenticated fragments authenticators CCOVer message
,,,,,,,,,,,,,,,,,, L e recccccccccccgeccccccc e e e — - i
s . t; 1: e s m)la aj aj | omj m
g Commit — ' ' ® !
X | g #mme e @ oG gy @ T | @
T 5 gCommit , E '
e L@ 2y | : ——
¢ Commit ' ' ' —~——
R 3. OX_, k@ ! 3ey @ﬂi ' @ PRG * @@E C)z] AUTH 7& @ IDSRecover] x
A ggommit ! ! E —~———
o = &@ ! dcdy : . ==
@ Commit ' ' ® N '
C e X @lie! scir @m i X L@iﬁom Wig=—m ;@
T Py PaoSY N sX sX sX s T s<

Fig. 2. Sketch of UC commitment scheme. Legend: @ (seed s;); [(extractable commitment 5; — like a
vault with a single opening); ¢ (seed expansion s; — like a tree growing from a seed); £ (global hash — like a smashed
paper);] (equivocable commitment h — like a vault with several openings); E (message m being committed — like a text
file); @ (message fragment m; — can be combined with other fragments to recover the initial message); [(authenticator a ;
— vouches for the correctness of the respective fragment); @ (masking ¢; — the chess pattern represents something that is
masked); AUTH (authenticator function); C&C (cut-and-choose); € (extractable commitment scheme); €x (extractable &);
%4 (equivocable €’); CRH (collision-resistant hash); IDS (information dispersal scheme); PRG (pseudo-random generator);
S (simulator with extraction goal). This sketch shows a toy example with a cut-and-choose with n = 5 instances, of which
v = 2 are selected for check and e = 3 are selected for evaluation. In the extraction example, a malicious P} constructed
one bad instance (j = 3), selected for the check subset. S detects the bad instance and thus ignores it when using the IDS
to reconstruct the message from only ¢t = 2 (the recovery threshold) fragments. Equivocation (not shown) is trivial, as it
involves only revealing the equivocated message (2.a), then calculating the intermediate values as a receiver (Pg) would (2.b,
2.c and 2.d), and then simply equivocate the global hash needed for a successful final verification (2.d).

(additionally) even the (hash of the) message are committed before the nonce is disclosed
to P5. In a loose authenticator mode, the (hash of the) message does not need to be
committed, thus allowing « to be defined still in a setup phase.

Page 19

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

The properties and concrete instantiations of o are further analyzed in/Appendix E,'°
One strict-authenticator function, proposed as an algebraic field-multiplication between
the nonce and a CR-hash of the message, is proven secure based solely on a collision
resistance of the hash. One loose-authenticator function, proposed as the hash of the
concatenation of the message and the nonce, is secure if it is assumed to be infeasible to
find four pre-images whose respective hashes cancel out when XORed. In spite of the
authenticator mechanism, equivocation is still possible by the simulator S in the role of
P because the authenticator is also masked and the respective mask is also equivocable.

5.1.3 Communication reduction

Using an IDS. In the above method, the commit phase still requires communicating bits
in number proportional to the number of evaluation instances multiplied by the target
length. This can be further reduced, by taking advantage of a threshold information dis-
persal scheme (IDS) [Rab89] to split (i.e., disperse) the message into as many fragments
as the number of evaluation instances, each fragment with a reduced length. Then, the
original message can be reconstructed from proper subsets (of the set of fragments) with
at least a certain threshold number of elements!!!'|In the improved method, the message
is initially split into as many fragments as the number of evaluation instances. Then, the
authenticator scheme is applied to every fragment, instead of only to the full message.
Finally, P5 sends to Pg, in the commit phase, the authenticated masked fragments (each
with a reduced length) instead of several masked versions of the same message (where
each would have the original target length). This makes the communication complexity
become proportional to the number of evaluation instances divided by the IDS threshold,
instead of just proportional to the number of evaluation instances.

The new method also reduces the sum of all PRG-expansion lengths, as well as
the length of the sequence of masks whose hash needs to be calculated, thus also
obtaining a computational improvement in compensation to the new IDS split operation.
Asymptotically, as the target length increases to infinite, the communication expansion-
rate can be made as close to 1 as desired. The statistical security is again changed,
with the new criterion for successful extraction requiring a number of good evaluation
instances at least as high as the recovery threshold. For example, with 119 instances, 46
of which for evaluation, and with an IDS threshold 23, the scheme achieves 40 bits of

19 Another authenticator mechanism is considered there, based on a X&Q commitment scheme,

providing a conceptually simple UC commitment extension; i.e., a protocol where a few UC
commitments applied to short strings enable a X&Q commitment of a large string.
The IDS does not need to hide the original message, as would a full-fledged secret-sharing
scheme [Sha79,|Kra94], because the necessary hiding is already achieved with the (XOR) mask-
ing. Also, the IDS does not need to support error-correction [RS60], because the authenticator
mechanism gives S X (in the role of Pg) the ability to detect errors. Yet, the IDS needs to be
an erasure code, in the sense that it can recover the original contribution from proper subsets
of fragments, namely when omitting the fragments that S anticipates as being bad. There
are sufficiently-efficient erasure codes [Lub02,Sho06], possible to implement based on XOR
operations. Interestingly, besides the communication efficiency gain, the splitting into fragments
of reduced length also reduces the computation required from the PRG and the hash function,
as they also need to be applied to an overall shorter length.

11

Page 20/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

statistical security and an asymptotic communication expansion-rate 2 in the commit
phase. The communication in the open phase has rate 1, as only the committed message
needs to be revealed (along with opening several short commitments). Other concrete
parametrizations are mentioned in Appendix F (Tables 3 and|5).

5.2 Detailed description (protocol #2)

The protocol is described using succinct notation in Fig. 3. In a setup phase, the parties
agree on the security parameters (computational and statistic) and consistently agree on
remaining elements: the cut-and-choose parameters (including a fixed number of check
and evaluation instances) (22), a PRG and a CR-Hash function (23), a X commitment
scheme (%) and a Q commitment scheme (%) (24), a mode of authentication (STRICT
or LOOSE) (25) and respective function and parameters (26), and the IDS scheme and
respective parameters (27). The proof of security will be made in a hybrid model where
the €x and éq are replaced by respective ideal functionalities Fx and Fq.

5.2.1 X-commit phase (P, committing a message to Pyg)

— l.a. Commit instances. P, selects n random seeds (29) (e.g., 119) and commits
individually to each of them using (the X-commit phase of) Fx (30). P4 uses the
PRG to expand each seed s; into a string s; with a reduced-length (equal to the target
length ¢ divided by the IDS recovery-threshold t) extended by an authenticator-
length ¢, (31). P calculates the global hash h as the CR-hash of the concatenation
of all seed-expansions (32). P4 then uses Fg to commit to i (33). If in the STRICT
mode, Py also uses Fq to commit to the hash of the target message m (34)-(35).

— L.b. Cut-and-choose. Py decides a random cut-and-choose partition (36) (e.g.,
identifying 73 instances for check and 46 for evaluation) and a random nonce z (37)
of ladequate length| (¢,) and sends them both to P (38).

— 1l.c. Message masking. P, uses the threshold IDS to split her message into as many
fragments as the number of evaluation instances (39), each with a reduced length.
Then, P4 computes the authenticator a; of each fragment m; as an appropriate
function « of the fragment and the nonce (40); P4 then uses the extended mask s;
to compute the masking ¢; of the fragment concatenated with the authenticator (41).
Finally, P4 sends to Py the maskings associated with all evaluation instances (42).

5.2.2 Q-open phase (P, opening a message to Pg)

— 2.a. Reveal message. P, sends the (previously committed) message m to Py (44).
If using the STRICT authenticator mode, then P4 also asks Fq to open to Pg the
hash of the message (45), and Py verifies that it is consistent with the hash of the
received message (46).

— 2.b. Obtain evaluation masks. The phase continues regardless of the authenticator
mode being STRICT or LOOSE. Py uses the IDS to obtain the same fragments that
an honest P, would (47)/'2| Pg computes the authenticator of the fragment in the

12 The IDS can be probabilistic, as long as P, also sends the random coins used in its previous
split operation, so that Pg can deterministically reproduce the fragmentation.

Page 21 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Implicit parameters. Sub-protocols: (%, %o) ()
AUTHMODE € {STRICT, LOOSE} (25)

Security parameters: 17, (17,7, v, €) @) Authenticator parameters: {a, o = |af, £} (26)
Primitives: (PRG, kprg), CR-Hash (23) IDS: (¢, IDS[#]split; IDS [¢]recover) 27

1. X-Commit phase. G5ty [Pa(n) <= (1,77) ;Pp < 7] (35)

input , — Pa : (commit, sid, cid, P, Pg, m) (28) 1.b. Cut-and-choose. (n = e + v)

1.a. Commit instances. For j € {1,...,n} Ps : (Jv, JE) o8 Partition[u, €] (n) 36)
Pa:s; < {0,1}"% (seed) (29) Py iz % {0,1}* (nonce) @7
RSty [Pas) (3,5)Pe 5] GO Py Py (chesidcid Po, P (v, S 0) O9)
Pa: ‘,; = PRG[s;]([|m|/t + £a]) 31) 1.c. Message masking.

Py : h = CR-Hash(|,. |, s}) (global hash) ~ (32) Pa: (mj 2 j € Jp) < IDS[t]gi (m, J5) (39)
@5 [pu(h) « (h,T) Py 7] 33) Pa:a; = a(m, z) : j € Jg (authenticators) (40)

Pa:t; = (mjlla;) @' : j € Jp (maskings) 41)

If AUTHMODE =’ STRICT, then:
Pa — Pg : (maskings, sid, cid,Pa, Ps, ||jerpt;) (42)

Pa : 7 = CR-Hash (m) (hash of message) (34)

2. Q-Open phase. Pg:a; =a (m;, z) : j € Jg (authenticator) (48)
input , — Pa : (open, sid, cid, Px, Pg) (43) Pg : S; =t;® (m;||a]) 1 J € JE (tentative masks) (49)
2.a. Reveal message. 2.b. Obtain check maskings.

Pa = Py : (open, sid, cid, Pa, Py, m) @O)) [Pa(sis) iPa s] s e dv 50)

If AUTHMODE =" STRICT, then: Py : s; = PRG[s;]([|m|/t + £a]) : 5 € Jv (51)
G wia. 1) (@) [Pa(n,m); P] (45) 2.d. Verify global hash.

Pg : If CR-Hash(1n) # 1 then ABORT (46 Coia (1) [Pa (B,) ; Py = h) (52)

2.b. Obtain evaluation maskings. Py : If CR-Hash(]| ;¢ s}) # h then halt (53)

Ps : <m; 1 j € Jl-:> < IDS[t]spiic (M, JE) (47)

Pg — output g : (accept, sid, cid, Pa,Ps, m) (54)

Fig. 3. Protocol #2 — X&Q bit-string commitment scheme. Legend: legend of [Fig. 1|also applies; o
(statistical security parameter, e.g., 40 = 149); n, v, e (number of total instances, number of check instances, number of
evaluation instances); Partition[v, e](n) (set of possible partitions of the set of the first n positive integers into a pair of
complementary subsets, the first with v elements, and the second with the remaining e). IDS[t] (information dispersion
scheme with recovery threshold of t fragments; it has sub-algorithms split and recover); If e and v are fixed in a setup phase
they must satisfy ((s — b)!e!) / ((e — b)w!s!) < 277, where b = e — t + 1 (the number of bad instances in an optimal
attack); o (authenticator function); £ (length of nonce); £,, (length of authenticator output, e.g., 256 bits).

same way that an honest P, would have, based on the fragment and the nonce (48).
Then, Pg concatenates the tentative fragment and the tentative authenticator, and
computes the XOR combination of the resulting string with the extended masking,
thus obtaining the tentative extended mask s;-, supposedly used by P (49).

— 2.c. Obtain check masks. P5 asks Fx to open to Py the seeds associated with check
instances (but not those of evaluation instances) (50). Pg computes by himself the
PRG-expansion (with the appropriate length) of each check seed (51).

— 2.d. Verify global hash. P, asks Fq to open to Py the previously committed hash
(52). The, Py verifies that the global hash of all concatenated masks is equal to the
one just opened by P4 (53). If some verification has failed, then Py aborts, otherwise
it accepts the message of P4 as a correct opening (54).

Page 22 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

5.3 Security analysis

Theorem 2 (security of protocol #2). Assuming a cryptographically secure PRG and
CR-Hash, the protocol defined in this section (using an ladequate authenticator| in
the STRICT mode) UC-realizes the ideal functionality of long bit-string commitment
in the (Fx,Fg)-hybrid model, in the presence of static and computationally active
adversaries. Furthermore: for the combined commitment and opening of a bit-string,
with polynomially arbitrarily-long target length, each phase of Fg is invoked for a
short-string only once, and each phase of Fx is invoked for short strings only a number
of times that is independent of the target length.

If 6x and % are directly instantiated by an ideal UC commitment scheme (Fig. 4),
respectively limited to messages of length xprg and Kpash, then this becomes a statement
about UC commitment length extension (i.e., that a few X&Q-commitments of short
strings can be extended to X&Q-commitments of long strings).

Intuition for proof of security. Proving security amounts to show that the new commit-
ment scheme is X&Q; more specifically, that the commit phase is extractable (X) and
the open phase is equivocable (Q). The analysis assumes that the PRG and CR-Hash
are cryptographically secure and that ¥ is extractable and %, is equivocable. More
precisely, an hybrid model is considered, with the underlying commitment schemes (%%,
%) being replaced by ideal functionalities (Fx, Fq) with respective X and Q properties,
while suppressing the respectively complementary properties (Q and X). The proof of
security is accomplished by defining respective simulators:

— For equivocation, in the open phase the equivocator-simulator (S%, in the role of P,
in the simulated execution) (i) reveals the intended equivocated message, then (ii)
computes the masks that would need to have been used to unmask the previously
sent masked fragments into the needed fragments, and finally (iii) equivocates the
opening of the needed global hash. This procedure is always successful.

— For extractability, in the commit phase the extractor-simulator (S X in the role of
P in the simulated execution) (i) extracts the seeds committed by P4, then (ii) uses
their PRG-expansions to unmask the masked-fragments sent by P,, then (iii) uses
the authenticator mechanism to find which ones are good, and then (iv) uses the
IDS-recovery procedure to recover the committed message from a set of enough
good (i.e., authenticated) fragments. This procedure is also depicted in|Fig. 2. For
suitable cut-and-choose and IDS parameters, a wrong extraction by S~ during the
commit phase can happen only with probability negligible in the statistical parameter
— exemplified configurations are detailed in|Appendix F| (Table 5).

Acknowledgments. This research was performed while the author was a Ph.D. student
at[University of Lisbon| (FCUL}DI) and [Carnegie Mellon University| (CMU}CIT{ECE)
supported by the[Fundagdo para a Ciéncia e a Tecnologia (Portuguese Foundation for|
[Science and Technology)| through the|Carnegie Mellon Portugal Program|under Grant
SFRH/BD/33770/2009. The author thanks the anonymous referees of CRYPTO 2014,
ASIACRYPT 2014 and TCC 2015 conferences for their useful reviewing comments
about earlier versions of this paper.

Page 23 /97

https://www.ulisboa.pt
https://www.ciencias.ulisboa.pt
https://ciencias.ulisboa.pt/di
https://www.cmu.edu
https://www.cmu.edu
https://www.cit.cmu.edu
https://www.ece.cmu.edu
https://www.fct.pt
https://www.fct.pt
http://www.cmuportugal.org

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

References

[BCPV13] O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. [Analysis and Improve{
[ment of Lindell’s UC-Secure Commitment Schemes} In M. Jacobson, M. Locasto,
P. Mohassel, and R. Safavi-Naini, editors, ACNS 2013, vol. 7954 of LNCS, pages
534-551. Springer, Berlin Heidelberg, 2013. See also Cryptology ePrint Archive,
[Report 2013/123] (Cited on pages and|[10])

[Bea96] D. Beaver. [Adaptive Zero Knowledge and Computational Equivocation (Extended|
In STOC 1996, pages 629-638. ACM, New York USA, 1996. (Cited on
pages[4|and[31])

[Blu83] M. Blum. [Coin flipping by telephone — a protocol for solving impossible problems|
SIGACT News, 15:23-27, 1983. Appeared also at CRYPTO 1981. (Cited on pages|3|
and|48})

[BM81] M. Blum and S. Micali. [Coin-Flipping into a Well] Unpublished, 1981. (Cited on
page[3))

[Bral3] L. T. A. N. Branddo. [Secure Two-Party Computation with Reusable Bit]
[Commitments, via a Cut-and-Choose with Forge-and-Lose Technique| In K. Sako
and P. Sarkar, editors, ASIACRYPT 2013, vol. 8270 of LNCS, pages 441-463.
Springer-Verlag, Berlin Heidelberg, 2013. See also Cryptology ePrint Archive,
(Cited on pages|[3|and[18])

[Can00] R. Canetti. [Security and Composition of Multiparty Cryptographic Protocols]
J. Cryptology, 13:143-202, 2000. See also Cryptology ePrint Archive, [Report|
(Cited on pages|3}[10] and[28])

[Can01] R. Canetti. [Universally composable security: a new paradigm for cryptographic]|
[protocols] In FOCS 2001, pages 136145, 2001. See also Cryptology ePrint Archive,
[Report 2000/067} (Cited on pages and|82))

[CDD™15] I Cascudo, I. Damgard, B. David, I. Giacomelli, J. Nielsen, and R. Trifiletti.
|ditively Homomorphic UC Commitments with Optimal Amortized Overhead] In
J. Katz, editor, Public-Key Cryptography — PKC 2015, vol. 9020 of LNCS, pages
495-515. Springer Berlin Heidelberg, 2015. (Cited on pages|7/and[10])
[CFO1] R. Canetti and M. Fischlin. [Universally Composable Commitments} In J. Kilian,
editor, CRYPTO 2001, vol. 2139 of LNCS, pages 19—40. Springer, Berlin Heidelberg,
2001. See also Cryptology ePrint Archive,[Report 2001/055] (Cited on pages 4}
9,10} and [32)

[Cle86] R. Cleve. [Limits on the Security of Coin Flips when Half the Processors Are Faulty]
In STOC 1986, pages 364-369. ACM, New York USA, 1986. (Cited on page[47))
[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. [Universally composable two{
[party and multi-party secure computation| In Proc. STOC 2002, pages 494-503.
ACM, New York USA, 2002. See also Cryptology ePrint Archive,
(Cited on pages[91[10| and[30))
[CRO3] R. Canetti and T. Rabin. [Universal Composition with Joint State| In D. Boneh, editor,
CRYPTO 2003, vol. 2729 of LNCS, pages 265-281. Springer, Berlin Heidelberg,
2003. See also Cryptology ePrint Archive, (Cited on pages
and[9))
[Cre03] G.D. Crescenzo. [Equivocable and Extractable Commitment Schemes| In S. Cimato,
G. Persiano, and C. Galdi, editors, SCN 2002, vol. 2576 of LNCS, pages 74-87.
Springer, Berlin Heidelberg, 2003. (Cited on pages|(8/and[9])
[Dam88] I. B. Damgiérd. [Collision Free Hash Functions and Public Key Signature Schemes}
In D. Chaum and W. L. Price, editors, EUROCRYPT 1987, vol. 304 of LNCS, pages
203-216. Springer, Berlin Heidelberg, 1988. (Cited on page|[8])

Page 24

http://dx.doi.org/10.1007/978-3-642-38980-1_34
http://dx.doi.org/10.1007/978-3-642-38980-1_34
https://eprint.iacr.org/2013/123
http://dx.doi.org/10.1145/237814.238014
http://dx.doi.org/10.1145/237814.238014
http://dx.doi.org/10.1145/1008908.1008911
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1007/978-3-642-42045-0_23
http://dx.doi.org/10.1007/978-3-642-42045-0_23
https://eprint.iacr.org/2013/577
http://dx.doi.org/10.1007/s001459910006
https://eprint.iacr.org/1998/018
https://eprint.iacr.org/1998/018
http://dx.doi.org/10.1109/SFCS.2001.959888
http://dx.doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/2000/067
http://dx.doi.org/10.1007/978-3-662-46447-2_22
http://dx.doi.org/10.1007/978-3-662-46447-2_22
http://dx.doi.org/10.1007/3-540-44647-8_2
https://eprint.iacr.org/2001/055
http://dx.doi.org/10.1145/12130.12168
http://dx.doi.org/10.1145/509907.509980
http://dx.doi.org/10.1145/509907.509980
https://eprint.iacr.org/2002/140
http://dx.doi.org/10.1007/978-3-540-45146-4_16
https://eprint.iacr.org/2002/047
http://dx.doi.org/10.1007/3-540-36413-7_6
http://dx.doi.org/10.1007/3-540-39118-5_19

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

[DCIO98] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. [Non-interactive and Non-malleable]
In STOC 1998, pages 141-150. ACM, New York USA, 1998. (Cited
on pages|[9/and 611)
[DCKOSO1] G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith. [Efficient and Non-interactive|
[Non-malleable Commitment] In B. Pfitzmann, editor, EUROCRYPT 2001, vol. 2045
of LNCS, pages 40-59. Springer, Berlin Heidelberg, 2001. See also Cryptology
ePrint Archive,[Report 2001/032] (Cited on page[61))
[DCOY9] G. Di Crescenzo and R. Ostrovsky. [On Concurrent Zero-Knowledge with Pre]
In M. Wiener, editor, CRYPTO 1999, vol. 1666 of LNCS, pages 485-502.

Springer, Berlin Heidelberg, 1999. (Cited on page|(8])
[DDGN14] I. Damgard, B. David, I. Giacomelli, and J. B. Nielsen. |Compact VSS and Efﬁcient|
[Homomorphic UC Commitments} In ASTACRYPT 2014 — to appear, LNCS. Springer,

Berlin Heidelberg, 2014. See also Cryptology ePrint Archive, Report 2014/370

(Cited on pages|7|and[10))
[DDNOO] D. Dolev, C. Dwork, and M. Naor. [Nonmalleable Cryptography} SIAM Journal on

Computing, 30(2):391-437, 2000. See also[Non-Malleable Cryptography|at STOC
1991. (Cited on page|[61})

[DL09] L. Damgérd and C. Lunemann. |Quantum-Secure Coin-Flipping and Applications]
In M. Matsui, editor, ASTACRYPT 2009, vol. 5912 of LNCS, pages 52—69. Springer,
Berlin Heidelberg, 2009. See also[arXiv:0903.3118] (Cited on pages[9}[33| and[53])

[DNO2] I. Damgérd and J. B. Nielsen. [Perfect Hiding and Perfect Binding Universally Com
[posable Commitment Schemes with Constant Expansion Factor] In M. Yung, editor,
CRYPTO 2002, vol. 2442 of LNCS, pages 581-596. Springer, Berlin Heidelberg,

2002. See also Cryptology ePrint Archive,[Report 2001/091] (Cited on pages|[8} (9]
and[32])

[DNO10] I Damgérd, J. B. Nielsen, and C. Orlandi. [On the Necessary and Sufficient Assump]
[tions for UC Computation} In D. Micciancio, editor, TCC 2010, vol. 5978 of LNCS,
pages 109-127. Springer, Berlin Heidelberg, 2010. (Cited on page|[8])

[EIG85] T. ElGamal. [A Public Key Cryptosystem and a Signature Scheme Based on Discrete]

In G. Blakley and D. Chaum, editors, Advances in Cryptology, vol.

196 of LNCS, pages 10-18. Springer-Verlag, Berlin Heidelberg, 1985. (Cited on
page|60})

[FF09] M. Fischlin and R. Fischlin. [Efficient Non-malleable Commitment Schemes| J.

Cryptology, 22(4):530-571, 2009. See also[Crypto 2000} (Cited on pages|61/and[62!)

[FLM11] M. Fischlin, B. Libert, and M. Manulis. [Non-interactive and Re-usable Universally|
|Composable String Commitments with Adaptive Security] In D. Lee and X. Wang,
editors, ASIACRYPT 2011, vol. 7073 of LNCS, pages 468—485. Springer, Berlin
Heidelberg, 2011. (Cited on page[10])

[FS90] U. Feige and A. Shamir. [Zero Knowledge Proofs of Knowledge in Two Rounds|
In G. Brassard, editor, CRYPTO 1989, vol. 435 of LNCS, pages 526-544. Springer
New York, 1990. (Cited on page8])

[FY92] M. Franklin and M. Yung. [Communication Complexity of Secure Computation]
|(Extended Abstract)] In STOC 1992, pages 699-710. ACM, New York USA, 1992.
(Cited on page[94))

[GIKW14] J. A. Garay, Y. Ishai, R. Kumaresan, and H. Wee. [On the Complexity of UC|

In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, vol.
8441 of LNCS, pages 677-694. Springer, Berlin Heidelberg, 2014. (Cited on pages|7}
110, 91} 94, 95, and 96.)

[GMSO08] V. Goyal, P. Mohassel, and A. Smith. [Efficient Two Party and Multi Party Com{
[putation Against Covert Adversaries| In N. Smart, editor, EUROCRYPT 2008, vol.

Page 25

http://dx.doi.org/10.1145/276698.276722
http://dx.doi.org/10.1145/276698.276722
http://dx.doi.org/10.1007/3-540-44987-6_4
http://dx.doi.org/10.1007/3-540-44987-6_4
https://eprint.iacr.org/2001/032
http://dx.doi.org/10.1007/3-540-48405-1_31
http://dx.doi.org/10.1007/3-540-48405-1_31
https://eprint.iacr.org/2014/370
https://eprint.iacr.org/2014/370
https://eprint.iacr.org/2014/370
http://dx.doi.org/10.1137/S0097539795291562
http://doi.acm.org/10.1145/103418.103474
http://dx.doi.org/10.1007/978-3-642-10366-7_4
https://arxiv.org/abs/0903.3118
http://dx.doi.org/10.1007/3-540-45708-9_37
http://dx.doi.org/10.1007/3-540-45708-9_37
https://eprint.iacr.org/2001/091
http://dx.doi.org/10.1007/978-3-642-11799-2_8
http://dx.doi.org/10.1007/978-3-642-11799-2_8
http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/s00145-009-9045-2
http://dx.doi.org/10.1007/3-540-44598-6_26
http://dx.doi.org/10.1007/978-3-642-25385-0_25
http://dx.doi.org/10.1007/978-3-642-25385-0_25
http://dx.doi.org/10.1007/0-387-34805-0_46
http://dx.doi.org/10.1145/129712.129780
http://dx.doi.org/10.1145/129712.129780
http://dx.doi.org/10.1007/978-3-642-55220-5_37
http://dx.doi.org/10.1007/978-3-642-55220-5_37
http://dx.doi.org/10.1007/978-3-540-78967-3_17
http://dx.doi.org/10.1007/978-3-540-78967-3_17

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

4965 of LNCS, pages 289-306. Springer-Verlag, Berlin Heidelberg, 2008. (Cited on
page 64.)

[Gol04] O. Goldreich. [Foundations of Cryptography: Volume 2, Basic Applications} Cam-
bridge University Press, New York, NY, USA, 2004. ISBN: 0521830842. (Cited on
pages[4|and[47))

[Hal95] S. Halevi. [Efficient Commitment Schemes with Bounded Sender and Unbounded]
In D. Coppersmith, editor, CRYPTO 1995, vol. 963 of LNCS, pages 84-96.
Springer, Berlin Heidelberg, 1995. (Cited on page[48])

[HILL99] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. |[A Pseudorandom Generator|
[from any One-way Function| SIAM Journal on Computing, 28(4):1364-1396, 1999.
(Cited on page[7.)

[HKE13] Y. Huang, J. Katz, and D. Evans. [Efficient Secure Two-Party Computation Using|
[Symmetric Cut-and-Choose] In R. Canetti and J. Garay, editors, CRYPTO 2013, vol.
8043 of LNCS, pages 18-35. Springer-Verlag, Berlin Heidelberg, 2013. See also
Cryptology ePrint Archive, (Cited on page[18])

[HMQUO06] D. Hotheinz, J. Miiller-Quade, and D. Unruh. [On the (Im-)Possibility of Extending|

In S. Vaudenay, editor, EUROCRYPT 2006, vol. 4004 of Incs, pages
504-521. Springer, Berlin Heidelberg, 2006. See also Cryptology ePrint Archive,
[Report 2006/177} (Cited on page|[8])

[Kil94] J. Kilian. [On the complexity of bounded-interaction and noninteractive zeroq
knowledge proofs| In FOCS 1994, pages 466-477, Nov 1994. (Cited on page[75))

[Kra94] H. Krawczyk. [Secret Sharing Made Short] In D. Stinson, editor, CRYPTO 1993,
vol. 773 of LNCS, pages 136—-146. Springer, Berlin Heidelberg, 1994. (Cited on
page 20.)

[Lin03] Y. Lindell. [Parallel Coin-Tossing and Constant-Round Secure Two-Party Compu
[tation} J. Cryptology, 16(3):143-184, 2003. See also Cryptology ePrint Archive,
Report 2001/107} (Cited on pages 46| and[49))

[Lin11] Y. Lindell. [Highly-Efficient Universally-Composable Commitments Based on the|
DDH Assumptioni In K. Paterson, editor, EUROCRYPT 2011, vol. 6632 of LNCS,
pages 446—466. Springer, Berlin Heidelberg, 2011. See also Cryptology ePrint
Archive,[Report 2011/180] (Cited on pages|8/and|10.)

[Lin13] Y. Lindell. [Fast Cut-and-Choose Based Protocols for Malicious and Covert Adj{
In R. Canetti and J. Garay, editors, CRYPTO 2013, vol. 8043 of LNCS,
pages 1-17. Springer-Verlag, Berlin Heidelberg, 2013. See also Cryptology ePrint
Archive,[Report 2013/079] (Cited on page|18])

[LN11] C.Lunemann and J. B. Nielsen. [Fully Simulatable Quantum-Secure Coin-Flipping|

and Applications| In A. Nitaj and D. Pointcheval, editors, AFRICACRYPT 2011, vol.
6737 of LNCS, pages 21-40. Springer, Berlin Heidelberg, 2011. See also Cryptology

ePrint Archive, (Cited on pages|(8/and[9])

[LPSO8] Y. Lindell, B. Pinkas, and N. Smart. Implementing Two-Party Computation Effi]
[ciently with Security Against Malicious Adversaries| In R. Ostrovsky, R. De Prisco,
and I. Visconti, editors, SCN ’08, vol. 5229 of LNCS, pages 2-20. Springer-Verlag,
Berlin Heidelberg, 2008. (Cited on pages59/and|60])

[Lub02] M. Luby. In Proc. 43rd annual IEEE symposium on FOCS 2002., pages
271-280, 2002. (Cited on page[20))

[MNS09] T. Moran, M. Naor, and G. Segev. [An Optimally Fair Coin Toss} In O. Reingold,
editor, TCC 2009, vol. 5444 of LNCS, pages 1-18. Springer, Berlin Heidelberg,

2009. (Cited on page[47))
[Nao91] M. Naor. [Bit commitment using pseudorandomness} J. Cryptology, 4(2):151-158,

1991. (Cited on pages and|[65])

Page 26

http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html
http://dx.doi.org/10.1007/3-540-44750-4_7
http://dx.doi.org/10.1007/3-540-44750-4_7
http://dx.doi.org/10.1137/S0097539793244708
http://dx.doi.org/10.1137/S0097539793244708
http://dx.doi.org/10.1007/978-3-642-40084-1_2
http://dx.doi.org/10.1007/978-3-642-40084-1_2
https://eprint.iacr.org/2013/081
http://dx.doi.org/10.1007/11761679_30
http://dx.doi.org/10.1007/11761679_30
https://eprint.iacr.org/2006/177
http://dx.doi.org/10.1109/SFCS.1994.365744
http://dx.doi.org/10.1109/SFCS.1994.365744
http://dx.doi.org/10.1007/3-540-48329-2_12
http://dx.doi.org/10.1007/s00145-002-0143-7
http://dx.doi.org/10.1007/s00145-002-0143-7
https://eprint.iacr.org/2001/107
http://dx.doi.org/10.1007/978-3-642-20465-4_25
http://dx.doi.org/10.1007/978-3-642-20465-4_25
https://eprint.iacr.org/2011/180
http://dx.doi.org/10.1007/978-3-642-40084-1_1
http://dx.doi.org/10.1007/978-3-642-40084-1_1
https://eprint.iacr.org/2013/079
http://dx.doi.org/10.1007/978-3-642-21969-6_2
http://dx.doi.org/10.1007/978-3-642-21969-6_2
https://eprint.iacr.org/2011/065
http://dx.doi.org/10.1007/978-3-540-85855-3_2
http://dx.doi.org/10.1007/978-3-540-85855-3_2
http://dx.doi.org/10.1109/SFCS.2002.1181950
http://dx.doi.org/10.1007/978-3-642-00457-5_1
http://dx.doi.org/10.1007/BF00196774

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

[Natl4a] National Institute of Standards and Technology. [FIPS 202 — DRAFT SHA-3 Stan{
|dard: Permutation-Based Hash and Extendable-Output Functions| U.S. Department
of Commerce, NIST-ITL-CSD, May 2014. (Cited on page|5])

[Nat14b] National Institute of Standards and Technology. [SP800-90 A Rev. I — DRAFT

Recommendation for Random Number Generation Using Deterministic Random

Bit Generators} U.S. Department of Commerce, NIST-ITL-CSD, April 2014. (Cited

on page/[5))

[NY89] M. Naor and M. Yung. [Universal One-way Hash Functions and Their Cryptographic|
In STOC 1989, pages 33-43. ACM, New York USA, 1989. (Cited on
page8))

[Ped92] T.P. Pedersen. [Non-Interactive and Information-Theoretic Secure Verifiable Secret]
In J. Feigenbaum, editor, CRYPTO 1991, vol. 576 of LNCS, pages 129-140.
Springer-Verlag, Berlin Heidelberg, 1992. (Cited on pages|59|and|60})

[PW09] R. Pass and H. Wee. [Black-Box Constructions of Two-Party Protocols from One{

In O. Reingold, editor, TCC 2009, vol. 5444 of LNCS, pages
403-418. Springer-Verlag, Berlin Heidelberg, 2009. See also the [[ACR Online

for TCC 2009. (Cited on pages|4}(6l[8] 9} and[75))

[Rab89] M. O. Rabin. [Efficient Dispersal of Information for Security, Load Balancing, and|
J. ACM, 36(2):335-348, 1989. (Cited on page[20.)

[Rom90] J. Rompel. [One-way Functions Are Necessary and Sufficient for Secure Signatures|
In Proc. STOC 1990, pages 387-394. ACM, New York USA, 1990. (Cited on
page8)

[RS60] I.S. Reed and G. Solomon. [Polynomial codes over certain finite fields| Journal of
the SIAM, 8(2):300-304, 1960. (Cited on page[20l)

[Rus95] A. Russell. Necessary and sufficient conditions for collision-free hashing| J. Cryp-
tology, 8(2):87-99, 1995. (Cited on page|(8})

[Sal96] A. Salomaa. [Cryptographic Protocols: Surprising Vistas for Communication} In
Public-Key Cryptography, pages 181-244. Springer, Berlin Heidelberg, 1996. (Cited
on page[3})

[Sch91] C. Schnorr. [Efficient signature generation by smart cards] J. Cryptology, 4(3):161—
174, 1991. See also[extended abstractjat EUROCRYPT 1989. (Cited on page[59))

[SCP00] A. Santis, G. Crescenzo, and G. Persiano. [Necessary and Sufficient Assumptions|
[for Non-interactive Zero-Knowledge Proofs of Knowledge for All NP Relations|
In U. Montanari, J. Rolim, and E. Welzl, editors, ICALP 2000, vol. 1853 of LNCS,
pages 451-462. Springer, Berlin Heidelberg, 2000. (Cited on pages[4/and[31])

[Sha79] A. Shamir. [How to Share a Secret] Commun. ACM, 22(11):612-613, November
1979. (Cited on page|[20.)

[Sho06] A. Shokrollahi. IEEE/ACM Trans. Netw., 14(SI):2551-2567, 2006.
(Cited on page[20))

[Sim98] D.R. Simon. [Finding collisions on a one-way street: Can secure hash functions be]
[based on general assumptions?| In K. Nyberg, editor, EUROCRYPT 1998, vol. 1403
of LNCS, pages 334-345. Springer, Berlin Heidelberg, 1998. (Cited on page|[3])

[SS11] A. Shelat and C.-h. Shen. [Two-Output Secure Computation with Malicious Ad{
In K. Paterson, editor, EUROCRYPT 2011, vol. 6632 of LNCS, pages
386—405. Springer-Verlag, Berlin Heidelberg, 2011. See also Cryptology ePrint
Archive, [Report 2011/533] (Cited on page|18])

[VZ12] S. Vadhan and C. J. Zheng. [Characterizing Pseudoentropy and Simplifying Pseudo]
[random Generator Constructions} In STOC 2012, pages 817-836, New York, NY,
USA, 2012. ACM. (Cited on page|7})

Page 27

http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html
http://dx.doi.org/10.1145/73007.73011
http://dx.doi.org/10.1145/73007.73011
http://dx.doi.org/10.1007/3-540-46766-1_9
http://dx.doi.org/10.1007/3-540-46766-1_9
http://dx.doi.org/10.1007/978-3-642-00457-5_24
http://dx.doi.org/10.1007/978-3-642-00457-5_24
https://www.iacr.org/archive/
https://www.iacr.org/archive/
http://dx.doi.org/10.1145/62044.62050
http://dx.doi.org/10.1145/62044.62050
http://dx.doi.org/10.1145/100216.100269
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1007/BF00190757
http://dx.doi.org/10.1007/978-3-662-03269-5_6
http://dx.doi.org/10.1007/BF00196725
http://dx.doi.org/10.1007/3-540-46885-4_68
http://dx.doi.org/10.1007/3-540-45022-X_38
http://dx.doi.org/10.1007/3-540-45022-X_38
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1109/TIT.2006.874390
http://dx.doi.org/10.1007/BFb0054137
http://dx.doi.org/10.1007/BFb0054137
http://dx.doi.org/10.1007/978-3-642-20465-4_22
http://dx.doi.org/10.1007/978-3-642-20465-4_22
https://eprint.iacr.org/2011/533
http://dx.doi.org/10.1145/2213977.2214051
http://dx.doi.org/10.1145/2213977.2214051

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Appendix

Appendix A|reviews background notions about the ideal/real simulation paradigm and
describes the ideal functionalities of X&Q commitment schemes and coin-flipping of
bit-strings. Appendix B|introduces alternative notions of commitment schemes, isolating
on purpose either the X or the Q properties. Appendix C|analyzes in further detail the
coin-flipping protocol simulatable-with-rewinding defined in Section |4. Appendix D
considers instantiations in the plain model. Appendix E/examines more thoroughly the
security of the UC commitment scheme, including the authenticator mechanisms that
allow the extractor simulator to anticipate whether a masking instance is good or bad.
Appendix F compares protocol adjustments and parametrizations. Appendix G|contains
an indexed list of Figures and Tables presented throughout the paper.

A Ideal functionalities

This section starts with a high-level review of the ideal/real simulation model (§A.1).
Then it defines the ideal functionality for multiple (X&Q) bit-string commitments (§A.2)
and for multiple bit-string coin-flippings (§A.3). Finally, it also describes the traditional
template for coin-flipping, based on a single X&Q commitment scheme (§A.4).

A.1 Background on ideal/real simulation paradigm

Ideal functionality. Within the ideal/real simulation paradigm [Can00, Can0O1]], a real
protocol II is considered secure if it emulates a respectively intended ideal functionality.
The ideal functionality (F) defines the behavior of a trusted third party that in an ideal
world mediates the communication and computation between the other regular parties
(P and Pg). For simplicity, the term "ideal functionality” is used to designate the trusted
third party and also its set of rules of interaction with the other parties, thus defining
the context of a corresponding protocol in the ideal world. For example, for the case
of coin-flipping in the ideal world, the regular ideal parties simply send a coin-flipping
request to an ideal functionality | Fycr, who then chooses the random bit-string and sends
it to the two parties (one at a time). Conversely, in the real world, the coin-flipping is
achieving by means of direct interaction between the regular parties. In any of the two
worlds (ideal or real), an external entity denoted environment (Z) interacts with the
regular parties, namely activating the execution of the protocol, by sending a chosen
initial private input (z) to the two regular parties and later receiving their final output.
Furthermore, in any of the two worlds there exists an adversary that is able to corrupt
and control a party in the respective world and also interact with Z. In a standalone
setting, Z interacts with the parties and the adversary only in the beginning and in the
end of the protocol, by means of delivering their input and receiving their output. In the
UC framework, Z is also able to interact with the adversary throughout the protocol
execution. However, Z does not have access to F in the ideal world. In fact, security is
based on the condition that Z is not able to know whether the regular parties are playing
a real protocol or if they are interacting with intermediation by an ideal functionality.

Page 28 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Emulation and simulation. Informally, a real protocol (I7) is said to securely-emulate
an ideal functionality (F) if Z cannot distinguish the ideal and the real worlds apart,
for some adversary in the ideal world (denoted simulator) with black-box access to
the adversary of the real world. This is proven by defining the said simulator (S), such
that, for every Z and for every adversary (A) in the real world, Z is not capable of
distinguishing executions in the ideal world from executions in the real world. S is given
black-box access to A and uses such capability to make a controlled internal simulation
of a real world protocol execution. In the simulation, S activates the black-box .4 by
relaying the respective input message coming from Z, and in the end of the simulation
also relaying the output of A to Z. In the simulation, S also plays the role of the non-
corrupted parties, such that A believes to be in the real world, i.e., such that it cannot
distinguish the simulated execution from a real (not simulated) one. Since A behaves as
it would in the real world, S gains knowledge about how to behave as an adversary in the
ideal world, in order to induce in the ideal world a global output (i.e., the joint output of
all the parties and the adversary) with a probabilistic distribution indistinguishable (by Z)
from the one that .4 would induce in the real world. In the specific case of coin-flipping,
S tries to learn how A reacts (e.g., aborting or not aborting, and which value it outputs)
when facing the perspective of the protocol terminating in a final bit-string equal to one
that S obtains from | Fycg in the ideal world.

Indistinguishability of distributions. The aim of a proof of security is to show that the
probability distributions are indistinguishable. In a rewinding setting, considering only
rewindable adversaries, Z only interacts with the parties and the adversary by means
of defining their inputs and reading their final outputs. In this case, the global output
distribution in the ideal world and the distribution in the real world can be parametrized
simply by the input value (z) with which Z activates the execution of the protocol.
These distributions are respectively denoted by REAL 7, 4(2) and IDEAL £ g4 (2).
Conversely, in the UC setting, where Z may interact with the adversary during the proto-
col, and so rewinding cannot be used in the simulation,'3|the distributions are directly
parametrized by Z. These distributions are respectively denoted by IDEAL r s z and
REAL 7, 4,z. In the plain model, a protocol I is said to securely emulate an ideal
functionality F if the IDEAL and the REAL distributions are indistinguishable by Z,
i.e., if the advantage that Z has in distinguishing the two worlds is at most negligible in
the security parameter. Alternatively, a proof of emulation may be done for a protocol
defined in a hybrid world, where in comparison with the real world some primitives
or sub-protocols are replaced by respective ideal (sub-)functionalities. In particular,
this paper considers a hybrid model where the real protocol is defined with the help of
separate ideal functionalities that implement an extractable (Q) commitment scheme and
an equivocable (Q) commitment scheme. In a simulation of the protocol in the hybrid
model, these ideal (sub-)functionalities are impersonated by S whenever 4 attempts to
interact with them. In such case, the goal of the proof becomes to show that the IDEAL
and the HY BRID distributions are indistinguishable by Z.

Adversarial model. Emulation is considered within the context of a certain class of
adversaries and external environments. This paper is interested in computational indis-

13 In the sense that it would allow Z to distinguish the two worlds, even if A is actually rewindable.

Page 29 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

tinguishability, i.e., when Z is computationally bounded to probabilistic polynomial
time. The adversaries are assumed to be active, i.e., may deviate from the protocol
specification, namely with the adversary A in the real world also being computationally
bounded to probabilistic polynomial time. This allows instantiating primitives with stan-
dard cryptographic assumptions, such as a PRG and a CR-Hash function'* In the case of
S in the ideal world, and when considering simulation-with-rewinding, the assumption
is more liberal by allowing computation in probabilistic expected-polynomial time. A
static corruption model is assumed, where the adversary is able to corrupt a single party
only at the onset of the execution, i.e., before the execution begins, e.g., based on a
request that the adversary receives from Z. It is assumed that, in the simulated execution,
S is able to detect which party is corrupted by A, for example by detecting a respective
special interaction with the party being corrupted.

Simulatability. The term simulatability (essentially denoting security in the ideal/real
paradigm) is used to denote simulatability on both sides (namely achieving extractability
and equivocability), i.e., for whatever party out of two may be corrupted in the two-party
computation. The term highlights the contrast with the needed primitives that intuitively
require simulatability on just one side (extractability or equivocability). Two settings of
simulatability are considering in this paper, namely with rewinding and one-pass.

Message syntax. Using standard notation (e.g., see [CLOS02]), messages sent between
each party and the ideal functionality are composed of a public header and an optional
private content. The public header is typically composed of: a message-type identifier,
e.g., a text-string suggestive of the role of the message in the protocol; a session identifier
sid, so that in concurrent executions each party can know to which session the message
refers to; a sub-session identifier, so that in a modular construction of a larger protocol
an ideal functionality can be initialized only once (in the first call) instead of having to
be initialized in every call, e.g., cid for commitment identifier, of cfid for coin-flipping
identifier; the parties associated with the message (e.g., sender and receiver), so that the
message can be properly forwarded and processed; additional contextual information
that does not need to be private, e.g., the length of the bit-string being decided in a coin-
flipping protocol. The messages exchanged are ideally authenticated, which means that
an adversary cannot change them without being noticed. In order to model an adversary
that in the ideal world can read the public content of every message exchanged between
the regular parties and the ideal functionality, the ideal functionality sends to S a receipt
of message exchanges, including their public content.

For simplicity, throughout the protocols defined in this paper it is assumed that the
activation messages from Z to the honest ideal parties are equal to the ones with which
the ideal parties are supposed to activate the ideal functionality, and the same thing can
be assumed in reverse order for the final outputs. For example for coin-flipping (Fig. 6)),
an honest ideal party Py is expected to send an initial message of the form (start-1, sid,
(cfid, Py, Pp), £) to| Fycr (here being assumed w.l.0.g. that Z is asking for an execution

14 More formally, but left implicit, it is assumed that there is a family of PRGs and CR-Hash

functions, parametrized by the security parameter x, such that for sufficiently large x the
respective intractabilities are satisfied: indistinguishability from random and collision resistance.

Page 30/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

between P, and Pg, with P, taking the role of the first party to learn the bit-string
outcome). Thus, it is simply assumed that an honest party will send such message to
JFwmcr|only upon receiving in her external input tape the exact same message from Z.

A note on rewinding. Rewinding refers to the ability of the simulator S to rewind the
state of the real adversary .A. For example, the notion is intuitive when considering
adversaries that can be virtualized as a computer algorithm execution, accessible in a
black-box manner, with recoverable past states (e.g., by taking snapshots of the state of
the party across state transitions), and interacting with the external environment Z only
at the beginning and end of a protocol execution. In contrast, in other settings (which
may include concurrent protocol executions) it may be necessary to consider one-pass
simulatability (i.e., without rewinding), namely if (within the the adversarial class being
considered) there exists an adversary .4 that cannot be rewound, or if its rewinding can
be directly detected by Z. The latter case may happen when Z is able to interact with A
at arbitrary moments of an execution, as foreseen in the UC framework, e.g., keeping
track of the state of .A. Z would then be able to distinguish the ideal from the real world
by simply determining whether or not a rewinding operation has taken place.

A.2 X&Q bit-string commitments

A commitment scheme is a protocol with two parties, denoted sender and receiver,' and

two phases, denoted commit and open (or reveal). In the commit phase, the sender binds
to a value that is hidden from the receiver. In the open phase, the sender reveals (in a
convincing way) the committed value to the receiver. The scheme is denoted interactive
if any of the two phases requires one or several rounds of communication, and non-
interactive if the communication in each phase consists only on sending a message
from the sender to the receiver. While the properties of hiding and binding directly
reflect inabilities of the parties, there are more subtle properties related to the simulation
paradigm of security, where the simulator is endowed with extra power in comparison
with a regular party. A commitment scheme is called equivocable (Q) if the simulator
in the role of sender is able to open any commitment into any value in the domain of
allowed committed values [Bea96]. A commitment scheme is called extractable (X) if
the simulator in the role of receiver is able to extract the value that has been committed
by an honest sender [SCPOO0].

Notation. The following notation is used throughout the paper to denote phases of a
commitment scheme %, between a committer party P (the sender) and a receiver P,.

Commit phase: & <om™it [PS (x) <% (2,7); P, < T (55)
Open phase: " () [P, (z, z); P + x] (56)

In a commit phase (55), Ps and Ps interact, with P, starting with private input
x, from which it obtains the commitment T of x, and also the randomness x needed

15 More generally, a set with more parties can be considered, of which two parties assume the role
of sender and receiver for a particular execution.

Page 31/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

later to decommiit (i.e., open) x from Z, and with P, ending with output Z. In an open
phase (56), Ps and P, interact, with common input 7, with Ps having (x, z) as private
input, and with P, ending with x as final output. A possible variant of the commitment
scheme is one where in the open phase the receiver also receives z. It is implicit that
there is a non-interactive operation % Ve that can be used to verify the correct relation
between z, z and T (i.e., for whoever is in possession of such three elements). The
notation may be augmented with more information about the commitment scheme
properties or the type of phase. For example, 4;” may be used to indicate a phase p
(Commit or Open) of a commitment scheme of type ¢ (X or Q or X&Q) where X and
Q respectively denote extractable and equivocable properties of simulatability. More
generally, 6,7 (2) [Ps(xa) < ya; Pr-(xp) < yp] indicates the execution of phase €;”,
between parties P, and P,, starting with common input z and with respective private
inputs z, and x;,, and ending with respective private outputs ¥y, and y,. Hereafter,
the superscript denoting the phase will also include a X or Q as prefix whenever the
respective action (X or Q) is supposed to be achieved by the simulator. In other words,
X-Commit and Q-Open will respectively denote commit and open phases where the
simulator is supposed to be able to perform extraction and equivocation.
The notation can be simplified in case of a non-interactive scheme, as follows:

Commit phase Open phase
P, : (z,7) «°® €a] (57) Py — P (z,2) (59)
P, P T (58) P, : Verify|€|(z, z,T) (60)

The commit phase starts with a local computation by the sender, who computes alone
the public commitment and the private randomness needed to open it (57). Then, P;
send the commitment to P,.. In the open phase, the communication consists simply on Pk
sending to P, the committed value x and the respective randomness x needed to verify
it. Then, P, locally verifies the commitment against the respective value and randomness
and outputs the value if the verification is successful.

Ideal X&Q functionality. 1deal functionalities for X&Q commitments have been defined
in prior work, e.g., see [CFO1, Fig. 3] for multiple bit-commitments and [DN02, §4.2]
for multiple message-commitments (there also considering homomorphic relations).
The ideal functionality | Fycom(x&q)|in Fig. 4|is the immediate generalization of [CFO1,
Fig. 3] from individual bits to bit-strings and allowing the bit-string length to be defined
at the moment of commitment (so that the same functionality can be used several
times to commit messages of different length). In this ideal world, the parties do not
need to execute any kind of computation, as in essence the commit and open phases
are intermediated by | Fycom(xaq) that is fully trusted to store a value transmitted by
the sender (Py), and later, when allowed by Pg, to reveal it to the receiver (P,). When
considering a simulation, S impersonates the ideal functionality, and so it takes advantage
of the trust that the other parties place in it. In particular: extractability (X) in the commit
phase derives from P sending the message in clear to| Fycom(x&q)s equivocability (Q)
in the open phase derives from the acceptance by P, of any (well formed) message
received from | Fycom(xaq)r Commitments that are simultaneously X and Q are specially

Page 32/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Functionality Fyicom(x&q)

Fmcom(xq) activated with session identifier sid proceeds as follows, running with parties P, ...,
P, an adversary S, and a computational security parameter 1. (Note: the suffix [¢] may be added
to the notation to denote the obvious restriction to commitments of bit-strings of length £.)

1. Commit phase. Upon receiving a message (commit, sid, cid, Ps, Py, (£, m)) from P; (the
sender), if £ € O(poly(x)), m € {0, 1}Z and s, 7 € [n], then record the tuple (cid, Ps, P-,
m), send the message (receipt, sid, cid, Ps, Pr,) to P, (the receiver) and S and ignore
subsequent messages with header (commit, sid, cid, Ps, P;,...); otherwise ignore the message.

2. Open phase. Upon receiving message (open, sid, cid, Ps, P,) from Ps: if for some m a tuple
(cid, Ps, P, m) has been recorded, then send the message (open, sid, cid, Ps, P,, m) to Py
and S and ignore any subsequent messages with identifiers (..., sid, cid, Ps, Py, ...); otherwise
ignore the message.

3. Abort. Upon receiving a message (abort, sid, cid, Ps, P,) from P, or P,, then ignore any
subsequent messages with identifiers (..., sid, cid, Ps, Py, ...).

Fig. 4. Ideal functionality — multiple bit-string commitments (X and Q)

important, as they enable simulatability (i.e., simulatability from both sides) of other
protocols, as is the case of coin-flipping. Section B|defines alternative ideal notions of
commitment schemes, where either X or Q properties are suppressed on purpose.

A.3 Parallel coin-flipping into a well

In an ideal two-party coin-flipping (info a well), the ideal functionality | Fyicr|uniformly
selects a bit-string of the target length and sends it to the parties, one at a time, and
with the first receiver being able to decide whether or not the other party can learn
the bit-string. A prior definition can be found for example in [DLO9, Fig. 2], though
in this paper this is generalized from a single-coin to bit-strings, and from a single
coin-flipping call to multiple coin-flips calls of specifiable length (Fig. 5, Fig. 6). In
this ideal functionality, the parties choose which one learns the random bit-string in
the first place. This is motivated by typical real protocols (e.g., within the traditional
template) where the parties have asymmetric roles, one of which guarantees being the
first receiver of the bit-string. This has a correspondence to the adversary (the simulator)
in the ideal world. If the adversary is controlling the ideal party that receives the string in
second place, then the adversary is also not able to discover the bit-string before the first
party. This is based on the assumption that the adversary is not able to see the messages
exchanged between ﬁA and the Fycpl'®

The ideal coin-flipping functionality | Fyicr is here initially and informally described
in the form of a protocol in the ideal world, considering honest interaction between
the parties Fig. 5| As initial input, the two regular parties are activated with an input
that instructs them to start the protocol for coin-flipping of a certain target length, and
distinguishing the role of the parties (namely the order in which they should learn the

16 An alternative assumption, if it is preferable to let the adversary eavesdrop, is to consider that
messages have a private component (e.g., using encryption) and include the bit-string therein.

Page 33 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Setup - private inputs. Pa —| Fucr | (cf-0K, sid, cfid, Pa, Pp) (70)
input 4 — Pa : (cf-start-1,sid, cfid, Pa,Pg, £4) (61) Fuicr |— Pp @ (cf-deliver-2, sid, cfid, Pa,Pg, x) (71)
inputp — Pa : (cf-start-2, sid, ¢fid, Pa, Py, £5) (62) Final outputs.

Send inputs to| Fyicr Pa — output 4 : (cf-output-1,sid, cfid, Pa, Py, x) (72)
Pa = Fucr | (cf-start-1, sid, cfid, Po,Pp, £a) (63) Pp — output : (cf-output-2, sid, cfid, Po, Py, x) (73)
Py —| Fucr | (cf-start-2, sid, cfid, Pa, P, £5) (64)

Local computation at| Fycr. Concurrent process. For p € {A, B} :

If (L4 # €p), then : (65) JFucr | If receiving (cf-abort-i, sid, cfid, Pa,Pg) (74)
Forp € {A, B} : from P, then relay it to f’p and (75)
Fuicr |— Pp ¢ (cf-fail, sid, cfid, P, Pg) (66) ignore further (..., sid, cfid, P, Pg....) (76)
Fwmcr ¢ ignore further (...,sid,cfid,Pa Pg....) (67) P, : If receiving (cf-abort-i, sid, cfid, Pa, Pg) or
FMCF | X P {0, 1}[(68) (cf-fail, sid, cfid, Pa, Pg) from|Fycr (77)

Send output to parties. then ﬁ,, — output,, :

Fuice |— Pa ¢ (cf-deliver-1, sid, cfid, Pa, Pg, x) (69) (cf-abort, sid, cfid, Pa, Pp) (78)

Fig. 5. Ideal parallel coin-flipping into a well (succinct notation)

output) (61)-(62). | Fmcr| awaits receiving a start type of request from both parties,
expecting that they have consistently agreed on who should be the first to receive the
bit-string (63), e.g., P4, and who should be the second (64). If the target length requested
by both parties is not the same (65), then Fyicr sends a fail message to both parties (66)
and ignores further messages related with this coin-flipping instance (67). Otherwise, if
the target lengths are the same'”, Fycr computes a random bit-string with such length
(68) and sends it first to ﬁA (69) (the party that activated | Fycp| with a message of
type start-1). Py then confirms acceptance of the bit-string by sending an 0K message
to | Fmcr (70). Finally, | Fvcr sends the bit-string to Pg (71). Each of the two parties
decides as final output the bit-string received from | Fycp|(72)-(73). If during the protocol
execution | Fyicp|receives an abort message from one (necessarily corrupted) party (74),
then it relays it to the other party (75) and it ignores further messages related with this
coin-flipping instance (76). If a party receives an abort or fail message from | Fumcr
(77), then it aborts the execution of this ideal coin-flipping protocol (78).

The ideal functionality is specified using more conventional notation in [Fig. 6,
considering also the messages received sent from the ideal functionality to the simulator
(i.e., the adversary that may be controlling one of the two parties).

A.4 A base protocol template

The traditional template (possibly the simplest) for a simulatable protocol of two-party
coin-flipping into-the-well requires a single party to use an extractable and equivocable
commitment scheme to commit to her contribution. This is concisely described in Fig. 7,
with the two parties being called P, and Pg. In a setup phase, P and Py are activated
to start a coin-flipping for a given target length and agreeing that Py is the one to learn
the bit-string in the first place (79)-(80). P selects her contribution randomly (81) and
then commits to it using a X-commit phase (82); i.e., such that a simulator in the role of

17 Other verifications (e.g,. sid, cid, parties’ identifiers) are left implicit in the description.

Page 34 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Functionality Fycr

JFwmcr activated with session identifier sid proceeds as follows, running with parties P4, ..., Py, an
adversary S, and a computational security parameter 1”. (Note: the suffix [¢] may be added to the
notation to denote the obvious restriction to commitments of bit-strings of length ¢.)

Start instructions.

— When receiving a message (cf-start-1, sid, cfid, Pa, P, £) from a running party Pa :
A € [n], with sub-session identifier (cfid, Pa, Pg), where Pg : B € [n], and specifying a
polynomial zarget-length £ € O(poly(k)), record the tuple (cf-start-1, cfid, Pa, Pg, £),
send (cf-start-1-receipt, sid, cfid, Pa, P, £) to the adversary S, and ignore subsequent
messages of type (cf-start-1, sid, cfid, Pa, Pg, ...).

— When receiving a message (cf-start-2, sid, cfid, Pa, Pg, £) from Pg, do the same as in
the previous item but replacing cf-start-1 by cf-start-2 and cf-start-1-receipt by
cf-start-2-receipt.

First delivery. After receiving a pair of correlated messages as specified in the previous two items,
i.e., with the same sub-session identifier (cfid, Pa, Pg) and covering the message-types cf-start-1
and cf-start-2, if the target-length specified in the two messages is the same:

— then uniformly sample a bit-string m € {0, 1} and then send (cf-deliver-1, sid, cfid, Pa,
Pg, m) to P4 (i.e., to the party whose initial message was of type cf-start-1) and send
(cf-deliver-1-receipt, sid, cfid, Pa, Pg) to the adversary S!“|and record (cf-deliver-1,
(cfid, Pa, Pp));

— else send (cf-fail, sid, cfid, Pa, Pg) to both parties Pa, Pg and to the adversary S, and record
the tuple (cf-end, (¢fid, Pa, PR)).

Second delivery. Upon receiving (cf-0K, sid, cfid, Pa, Pg) from Py, if (cf-deliver-1, cfid, Pa,
Pg) has been recorded and (cf-end, cfid, Pa, Pg) has not been recorded, then send (cf-deliver-2,
sid, cfid, Pa, Pg, m) to Pg and (cf-deliver-2-receipt, sid, cfid, Pa, Pg) to the adversary S, and
record (cf-end, cfid, Pa, Pp).

Early abort requests.

— Upon receiving (cf-abort-1, sid, (cfid, Pa, Pg)) from Py, if (cf-start-1, cfid, Pa, Pg) has
been recorded and (cf-end, cfid, Pa, Pg) has not been recorded, then send (abort-1, sid, (cfid,
P4, Pp)) to Pg and S and record (cf-end, cfid, Pa, Pg).

— Upon receiving (cf-abort-2, sid, cfid, Pa, Pg) from Pg, do the same as in the previous item
but replacing cf-abort-1 with cf-abort-2, and replacing the recipient Pg by Pa.

“ Notice that S does not obtain the message m from the receipt. However, if S is controlling Pa
then it will be able to read such value inside the cf-deliver-1 message.

Fig. 6. Ideal functionality for multiple bit-string coin-flippings.

Pg would be able to extract the contribution of Py in this step. Then, Py simply decides
(83) and sends his random contribution to P, (84). Then, using a Q-open phase, Pa
opens her contribution to Py (85); i.e., such that a simulator in the role of P4 would be
able to successfully open any contribution of his choice, namely one decided only after
knowing the contribution of Pg. Finally, each party locally computes the final output as
a combination of both contributions (86), and each party outputs the result (87)-(88).

Page 35/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

0. Setup — private inputs. Pg — Pa : (cf-contrib-2, sid, cfid, Pa,Pg, X B) (84)
input, — Pa : (cf-start-1,sid, cfid, Pa, Pg, £) (79) 3. Q-Open contribution of P4.
input; — Pa : (cf-start-2, sid, ¢fid, Pa, Pg, £) (80) g Q:Open

©XQ,sid,cfid,Px Py (Xa)(Palxa,x,) Ps < xa) (85

1. X- it contribution of P,.
Commit contribution of P 4. Locally combine contributions.

$ ¢
Pa:xa « {0,1} (81) Pa,Pp:x = x4 ® x5 (86)
(g;(icmi‘j‘:d‘m‘?g (Pa(xa) 8 (KA~YA)’PB —Xa) (82) Pa — output 4 : (cf-output-1,sid, cfid, Po,Pg, x) (87)

2. Send clear contribution of Pg. Py — output : (cf-output-2, sid, cfid, Pa, Py, x) (88)

Py :xp <" {0,1}° (83)

Fig.7. Traditional template for coin-flipping

Proposition 1. The multiple bit-string coin-flipping protocol Ilycr (Fig. 7) UC-realizes
the ideal multiple bit-string coin-flipping functionality| Fycr (Fig. 6) in the Fxgo-hybrid
model in the presence of static computationally active adversaries.

If the base commitment scheme is indeed X&Q, then the protocol is simulatable
because the simulator is able to use the X or Q properties (depending on which party
is being simulated) to induce the outcome of the simulated execution to be the target
bit-string decided by | Fucr/in the ideal world. Specifically, after learning the contribution
of the malicious party in the simulated real world, S is able to calculate the needed
complementary contribution, i.e., the one that once combined with the other contribution
leads to the target bit-string, and use it as the contribution of the honest party in the
simulated execution. Naturally, it is here assumed that the combination operation is
efficiently invertible in respect to any fixed contribution of a party, e.g., as in the case
of bit-wise XOR or modular integer multiplication. The possibility of a malicious party
aborting the simulated execution is also contemplated in simulatability. An abort is not
an issue in this template, because it can only happen in an execution that otherwise (i.e.,
if not aborted by the malicious party and not rewound by the simulator) would lead
to the target bit-string outcome. Thus, in case of abort in the simulated execution the
simulator simply lemulates an abort in the ideal world. Section C.2 highlights an issue
with abort if the commitment scheme is not X or not Q.

B Ideal commitments with suppressed properties

While this section is not essential for the remaining analysis of the new protocols (and its
reading can be safely skipped), it is helpful by providing a complementary perspective
of the dual nature of X and Q. First, a motivation is given for the formalization of X and
Q in isolation, namely by suppressing the respective complementary property ($B.1).
Then, as an initial attempt, the properties are suppressed based on a circular definition of
a new type of ideal commitment functionalities (§B.2). The circularity is then removed
by nesting the hybrid model inside another hybrid model (§B.3). Finally, in respect to
their use in proofs of security, a brief comparison is made between the plain model and
the other two mentioned models (§B.4).

Page 36/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

B.1 Motivation for simulation based security

The ideal/real simulation paradigm provides a conceptually simple framework to under-
stand certain security properties, namely when considering a hybrid model with access
to ideal functionalities. For example, properties like extractability (X) and equivocability
(Q) derive automatically from the power that a simulator gains by impersonating an ideal
commitment functionality | Fycom|during a simulated execution. In particular: X is a
consequence of the sender in the ideal world transmitting in clear to Fycom the value
that is being committed; Q is a consequence of the receiver in the ideal world accepting
whatever value the ideal Fyicom|reveals.

In contrast with the above observation, this paper aims at emphasizing that a X&Q
commitment scheme (for large strings) can be built from a X-but-possibly-not-Q com-
mitment scheme and a separate Q-but-possibly-not-X commitment scheme (both for
short strings and invoked only a few times). Thus, it is relevant to formally consider
the notions of non-extractability and non-equivocability and directly embed them into
the ideal world, namely into respective ideal commitment functionalities. These func-
tionalities must be different from the typical ideal commitment functionality | Fycom
that is simultaneously X and Q. The pertinent question is: how to formalize an ideal
commitment functionality Fx or Fo whose impersonation by a simulator does not pro-
vide the simulator with a Q or X capability, respectively, but still allows the use of the
functionality in a hybrid model.

B.2 Aninitial attempt (using a definition with circularity)

As a step to consolidate intuition, Fig. 8/informally sketches a way in which to suppress
Q or X properties from the ideal functionality. To suppress Q (in order to get X&Q), in
the commit phase the ideal functionality Fyq sends a (stand-alone secure) commitment
to the receiver, such that Fy,q becomes bound to a single message for the later open
phase, but temporarily hiding it from the receiver. To suppress X (in order to get X&Q),
in the commit phase the committer does not send the message in clear text to the ideal
functionality]-"y&Q, but instead sends a (stand-alone secure) commitment to the message.
These ideal functionalities with suppressed properties require an internal instantiation of
a commitment scheme, hereafter denoted as virfual. Thus, when questioning if a real
commitment scheme %x emulates one of these ideal functionalities, it is also necessary
to consider an additional virtual commitment scheme %Y.

When attempting a simulation, it becomes clear that ¥ and %y must be somehow
related to each other. For example, consider a simulator (S) acting as a sender P in a
simulated execution of a real world extractable commitment scheme %R (intended to
be extractable), trying to emulate the ideal functionality Fyq[%v] and for that purpose

acting concurrently as receiver P, ina respective ideal world execution. In the role P,
during the commit phase S receives from the ideal functionality a virfual commitment
(99). Then, in the simulated execution, while impersonating a real sender Py, S relays
this commitment to the black-box receiver P} (58) who is expecting to receive a real
commitment (i.e., something produced with %g). In particular, in the later open phase,
when & (in the role of ideal receiver P,.) receives the opening from the ideal functionality
(102), S (in the role of real sender Py) must be able to open the same value (59) for the

Page 37/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Templates for different ideal commitment functionalities
Note: in the X&Q and the X&Q cases, v is a commitment scheme (i.e., with at least computational hiding
and binding properties) that requires instantiation by a real commitment scheme; nonetheless, considering that
it is implemented in the ideal world, it is hereafter denoted as a virfual commitment scheme.
Ideal functionality Template for ideal functionality Template for ideal functionality
FxeQ = J:MC()M(X&:Q) = FMCOM(X&Q)]:x&ﬁ = fMCOM(x&G) [ev] fY&Q =]:M(‘OM(Y&Q) 3%
of X&Q commitment scheme of X&Q commitment scheme of X&Q commitment scheme
Commit phasi Commit phase Commit phase
iAnpuls = P ¢ (comnit, £,m) (89) input, — P, : (commit, £,m) (96) input, — P, : (commit, £,m) (105)
Ps — fxf‘? : (commit, £, m) (90) P. — Fyeg : (comnit, ,m) (97) P, : (m,m) «° K [m] (106)
Fxaq = Pri (0K,) oD Fxag ¢ (m, M) PN [m] (98) P, — Fxaq : (commit, £,7) (107)
Fxag = Pr ¢ (0K, £,7) (99) Freq — Pr i (0K, £) (108)
Open phase
input, — 135 : open 92) Open phase . Open phase N
B, o Fiso : open ©3) input, — P : open (100) iAnpuls — Ps : open (109)
Fxaq — P : (open, m) (94) P~ Fxeq © open oy P = Fxaq : (open,m,m) (110)
P,. — output,. : (open,) (95) Fxeg — Pr : (open,m,m) (102) FReq Vefifyw"Km‘m’ﬁ) (1
P, : Verify[€y](m, m,m) (103) Fxaq — Pr : (open, m) (112)
B, — output, : (open,m) (104) P, — output,, : (open,m) (113)

Fig. 8. Templates for ideal commitment schemes (using succinct notation). For simplicity, the
notation assumes that 4y is non-interactive — it would also be possible to use interactive schemes.
Given an implicit security parameter 17, it is assumed that the ideal functionality verifies that
|m| € O(poly(k)) Gf verification fails then it ignores the message). For simplicity, the session
identifier (sid) and the sub-session identifier (cid, for commitment identifier) are left implicit,
as well as the headers containing the source and destination of messages. In the X&Q case, P,
accepts the open phase only if the opening of the underlying virtual commitment is correct (i.e.,
the “Verify” operation is performed even though the ideal functionality is trusted by default) (103).
In the X&Q case, the ideal functionality proceeds with the open phase only if P, correctly opens
the underlying virtual commitment, i.e., if the respective verification is successful (111).

real commitment that was previously sent to the black-box P}. Thus, the simulation is
valid only if the real and virfual commitments are indistinguishable, e.g., if they are the
same. A corresponding relation (with obvious adjustments) could also be analyzed for
the case of Fxgq-

In spite of the circularity that arises from defining %y equal to 6g, the defined ideal
functionalities are useful to differentiate real commitment schemes in terms of the ideal
functionalities that they emulate. In particular, this enables a definition of X and Q
commitment schemes, as follows.

Definition 6 (extractable commitment scheme). A real commitment scheme € (by
definition already hiding and biding)'® is said to be extractable if it securely emulates
the ideal Fy45l¢ . This is succinctly expressed in the equation below (114).

(€ is extractable) = ((EIS)(VZ,A)IDEAL]:)(&G[%LSAZ ~ REAL%A,Z) (114)

18 This definition is still implicitly based on the hiding and binding notions of a commitment
scheme. In the next subsection this is replaced by an ideal (virtual) functionality.

Page 38/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Template for ideal functionality Fy (%] = fMCOM(X 5Q) (€]

Let € be a commitment scheme (i.e., at least computationally hiding and binding in respect to
the implicit security parameter 17), with respective commit and open phases. .FMCOM(X «Q) (€]

activated with session identifier sid proceeds as follows, running with parties P, ..., Py, an
adversary S. (Note: the suffix [¢] may be added to the notation to denote the obvious restriction to
commitments of bit-strings of length ¢.)

1. Commit phase. Upon receiving a message (commit, sid, cid, Ps, Py, (¢, m)) from Ps (the
sender), if £ € O(poly(k)), m € {0,1}* and s,7 € [n], then: compute a commitment
of m as (7, m) <° €[m], where 7 is the public commitment and 1 is the respective
private information needed for opening; then record the tuple (cid, Ps, P, (m,m)), send the
message (receipt, sid, cid, Ps, P,, {,m) to P, (the receiver) and S and ignore subsequent
messages with header (commit, sid, cid, Ps, Py, ...); otherwise ignore the message.

2. Open phase. Upon receiving message (open, sid, cid, Ps, P,) from Ps: if for some m a
tuple (cid, Ps, Py, (m,m)) has been recorded, then send the message (open, sid, cid, Ps, P,
(m,m)) to P, and S and ignore any subsequent messages with identifiers (...,sid, cid, Ps,
Py,...); otherwise ignore the message.

3. Abort. Upon receiving a message (abort, sid, cid, Ps, P;) from P, or P., then ignore any
subsequent messages with identifiers (..., sid, cid, Ps, Py, ...).

Fig. 9. Ideal functionality — multiple bit-string commitments X-but-not-Q

For example, consider a real X commitment scheme, where a setup phase endows
the simulator with a trapdoor that enables extraction directly from the commitments
received in the commit phase. The emulation is straightforward:

- Simulator for malicious P’ (simulator can extract).

e Commit phase. The extractor-simulator S (in the role of P, in the simulated
execution) receives from P? a (real) commitment (58). Then it uses its power (in
this example the trapdoor) to extract the committed value. Then, in the role of
ﬁ: in the ideal world it sends the extracted value to Fy &0 (97) — this is similar
to what would happen if using the usual | Fyicom|(90).

e Open phase. If P} in the simulated execution successfully opens the previously
extracted value (59), then S¥ asks Fx &q to open the commitment (101) — this
is similar to what would happen if using the usual Fycom (93). Otherwise, if
P* aborts without opening, then SX lemulates an abort.

- Simulator for malicious P (simulator cannot equivocate).
e Commit phase. In the ideal world, after P, interacts with Fxgg to commit

a value, the simulator (S) in the role of 13: receives from Fyeq a (virtual)
commitment (99) — compare this against the simple “OK” receipt that would
have been received if using the usual | Fycom|(91). Then, S in the role of Py in
the simulated execution sends the commitment to the malicious P} (58).

e Open phase. In the ideal world, S receives from Fy,q the opening of the value
(102) and verifies its correctness (103) — compare this against simply receiving
the value and trusting on its correctness, as would happen if using the usual
FumcoMm (94). Then, S in the simulated execution sends the same opening to

Page 39/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Template for ideal functionality Fx4o[%] =]:MCOM(X&Q)

[€]
Let ¢ be a commitment scheme (i.e., at least computationally hiding and binding in respect to
the implicit security parameter 1), with respective commit and open phases. ‘FMCOM(X&Q) [€]

activated with session identifier sid proceeds as follows, running with parties P4, ..., Pp, an
adversary S, and a computational security parameter 1~. (Note: the suffix [¢] may be added to
the notation to denote the obvious restriction to commitments of bit-strings of length £.)

1. Commit phase. Upon receiving a message (commit, sid, cid, Ps, P, (¢,7m)) from Ps (the
sender), if £ € O(poly(k)), m (from the image set of commitments of messages of size
¢) and s, r € [n], then record the tuple (cid, Ps, P-, (¢,7)), send the message (receipt,
sid, cid, Ps, P, {) to P, (the receiver) and S and ignore subsequent messages with header
(commit, sid, cid, Ps, Py, ...); otherwise ignore the message.

2. Open phase. Upon receiving message (open, sid, cid, Ps, Py, (m, m)) from Ps: if for some
¢ and 77 a tuple (cid, Ps, Py, £, m) has been recorded, then: verify €V [1%](m, m,)
(i.e., that the commitment and opening sent by Ps is consistent with the commitment
scheme, the security parameter and the allowed length); then send the message (open,
sid, cid, Ps, P, m) to P, and S and ignore any subsequent messages with identifiers
(...,sid,cid,Ps,Pr,...); otherwise ignore the message.

3. Abort. Upon receiving a message (abort, sid, cid, Ps, P,) from Ps or P,, then ignore any
subsequent messages with identifiers (..., sid, cid, Ps, Py, ...).

Fig. 10. Ideal functionality for multiple bit-string commitments not-X-but-Q

the malicious P} (59). S outputs in the end whatever the simulated P outputs,
including a possible early abort.

Below is the corresponding analysis (with obvious adjustments) for the X&Q case.

Definition 7 (equivocable commitment scheme). A real commitment scheme € (by
definition already hiding and biding) is said to be equivocable if it securely emulates the
ideal .FY&Q[€]| This is succinctly expressed in the equation below (115)).

(¢ is equivocable) = ((EIS)(VZ7 A)IDEAL 7 [4).54,2 & REAch,A,Z> (115)

For example, consider a real Q commitment scheme, where a setup phase endows
the simulator with a trapdoor that enables equivocation directly in the open phase. The
emulation is straightforward:

- Simulator for malicious P’ (simulator cannot extract).

e Commit phase. The simulator (S) in the role of receiver P, in the simulated
execution receives a commitment from P (58). Then, in the role of sender ﬁ:
in the ideal world, S relays the commitment to Fxeq (107) — compare against
simply revealing the value as would happen if using the usual | Fyicom (90).

e Open phase. If the sender P in the simulated execution successfully opens the
committed value (59), which requires a successful verification (60), then S in
the ideal world sends the same opening to Fxg,q (110) — compare against simply
asking the usual | Fycom to open the previously learned value (93). Otherwise,
if P} aborts without opening, then S \emulates an abort in the ideal world.

Page 40/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

— Simulator for malicious P} (simulator can equivocate).

e Commit phase. The equivocator-simulator (S?) in the role of sender ﬁ: in the
ideal world receives from FX&Q a receipt that a value has been committed (108)
— this is similar to what would happen if using the usual Fyicom| (91). Then, S Q@
in the role of P, in the simulated execution computes a commitment to a random
message (of adequate length) and sends it to P} (59).

e Open phase. S in the ideal world receives the value in clear from Fxaq (112)
— this is similar to what would happen if using the usual | Fyicom| (94). Then,
S% in the simulated execution uses its equivocation power (in this example the
trapdoor) to open such value to the malicious P} (59). S outputs in the ideal
world whatever P} outputs in the simulated execution.

Remark (length of committed values). A subtle alternative for a X&Q commitment
scheme is to have the length ¢ not be revealed to the receiver during the commit phase
(108), but only in the open phase. By revealing it directly in the commit phase, this
definition becomes closer (in this aspect) to the ideal X&Q commitment functionality, for
which (in the UC framework, where rewinding is not possible) the X property requires
that the commit phase reveals some information about the length of the committed value.

Remark (separable X and Q). The suppression of properties is defined in the ideal
world, not in the real world. Thus, a particular real commitment scheme % that emulates
Fxaglx] (i-e., which by definition is extractable) might also emulate Fieq[¢x] (i-€., it
might also be equivocable), and vice-versa. In particular, a commitment scheme %xq
that by definition is X&Q, i.e., one that emulates Fyvcom = Fx&q, 1S simultaneously
(as expected) both extractable and equivocable, as it respectively emulates Fy 5[6xq]
and Fxgq[%xql. Conversely (and also as intuitively expected), there are extractable
commitment schemes and equivocable commitment schemes that are not simultaneously
extractable-and-equivocable, i.e., that do not securely-emulate Fxg.q.

Remark (hiding and binding properties). Definitions 6|and 7 would make sense per
se if the expression “real commitment” in the preamble was omitted, i.e., would make
sense beyond the scope of commitment schemes. For example, a two phase scheme
where both “commit” and “open” phases correspond to P, sending the value in clear to
P, (and P, then simply verifying that the values are equal) is extractable and binding,
but is not a commitment scheme because it is not hiding (and for that reason also not
equivocable). Similarly, a two phase scheme where the “commit” phase corresponds to
P, simply informing that a value is committed (but without actually sending anything
else), and the “open” phase corresponds to P, simply sending the value (and P,. simply
accepting it), is hiding and equivocable, but is not a commitment scheme because it is
not binding (and for that reason also not extractable). For these reasons it is mandatory to
explicitly enforce that the X schemes and Q schemes are indeed commitment schemes.

It is interesting to notice that equivocability of the open phase implies that the commit
phase is hiding and the opening phase is revealing; correspondingly, extractability of the
commit phase implies binding. In other words, the combination of X-and-Q implies that
a scheme is indeed a commitment scheme (i.e., hiding and binding).

Page 41 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

B.3 A nested hybrid model

Even though the above conceptualization allows a differentiation of X and Q, there are
potential problems associated with having to instantiate the virtual commitment scheme
with a real (cryptographic) commitment scheme.

— Syntactic differences. Each of Fy.5[%6x] and Fxgqléq] explicitly introduce a
specific syntax of interaction, requiring the sender or receiver to interact differently
from the case of an ideal Fx&q. Thus, if a protocol is proven secure in a hybrid model
that uses one of the above defined functionalities, in practice it is not syntactically
possible to just replace them with Fxgq. This may apparently contrast with the logic
that a protocol secure without Q or X should also be secure when adding extra power
(Q or X) to the simulator. After all, a commitment scheme @xq that emulates Fxgq
also emulates Fy,5[%xq] and Fxgq[%xq]- The problem is minor if when changing
functionalities one is careful to consider the necessary syntactic transformations.

— Interfering commitment schemes. When using several ideal functionalities as
defined above, a more relevant problem may arise from interference between the
several underlying virtual commitment schemes, e.g., if a virtual scheme is malleable
with respect to another virtual scheme (or even itself). This type of problem would
not be present if using full-fledged X&Q ideal functionalities instead of real (non-
ideal) commitment schemes. However, the goal set forth in this section is about
suppressing an isolated property (e.g., Q or X) from the ideal functionality, but
without relinquishing other useful properties (e.g., non-malleability) present in the
typical X&Q ideal functionality Fxgq.

This subsection proposes a way to resolve the two above-mentioned problems.
Instead of instantiating the virtual commitment scheme 6y with a real commitment
scheme, it can be instantiated itself with the standard ideal Fycom| = Fxsq commitment
functionality. This corresponds to a nested application of an ideal functionality, in the
sense that the new %y (an element of the intended ideal functionality) is itself instantiated
with an ideal functionalitAy (itself also denoted hereafter as virtual, and also as a second-

level ideal functionality F). This is depicted in|Fig. 11| In this new nested-hybrid model,
it is mandated by definition that the simulator (S) is not able to impersonate the virtual
/ second-level ideal functionality. Thus, whether or not the simulator is able to extract
or equivocate a value in a simulationAdepends on whether or not such capability can

be achieved without interaction with 7. Moreover, from the perspective of a real party,
the interaction with any of these ideal functionalities is similar to that of an interaction
with the standard ideal commitment functionality Fxgq. Intuitively, this means that
if a protocol is proven secure in a type of (Fygqg./xaq)-nested-hybrid model, it is
guaranteed to also be secure if any of the respective functionalities is directly replaced
by a full—ﬂedged fx&Q.

For example, consider the case of a (Fx)-nested-hybrid model, i.e., corresponding to
anormal (Fx &6[%V])-hybrid model but where %Y is replaced by a non-impersonatable
Fx&q- Here, a simulator with black-box access to a malicious sender P} can extract a
value committed by P, because the value is sent in clear to the first-level functionality

Page 42 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Commitments in a nested-hybrid model

Note: F is the second-level ideal functionality (a.k.a. virtual functionality) that cannot be imper-
sonated by a simulator. Fx and Fq represent the ideal functionalities in the first-level, which can
be impersonated by a simulator.

Nested-hybrid X-but-bot-Q functionality Nested-hybrid not-X-but-Q functionality

]'—x = }—X&ﬁ[}—} = ‘FMCOM(X&Q) []'—]]'—Q =]:X&Q []‘—] =]:MCOM(X&Q) []'—]
Commit phase Commit phase
input, — P, : (commit, £, m) (116) input, — P, : (commit, ¢, m) (125)
P; —]:X&P : (commit, £, m) (117) P, F: (commit, £, m) (126)
fX&G — F : (commit, £, m) (118) 7 Freq : (0K, 0) (127)
F — P, : (0K, £, m0) (119) Fxeq = Pr i (0K, £) (128)
Open phase Open phase
input, — P, : open (120) input, — P : open (129)
Ps =]:X&AG - open (z1) P, — F: open (130)
Fxeq = 7+ open (122) F = Fxaq : (open, m) (131)
F — P, : (open,m) (123) Fxeq — Pr: (open,m) (132)
P, — output,. : (open, m) (124) P, — output,. : (open,m) (133)

Fig. 11. Commitments in a nested-hybrid model (using succinct notation). For simplicity, the
session identifier (sid), the sub-session identifier (cid, for commitment identifier) and other message
context are left implicit. Simulation notes:

- In X&Q case: in the commit phase, S can impersonate Fyq (o extract the value committed
by P; (117); in the open phase, S cannot equivocate the opening of m (123), as it cannot
impersonate F (e.g., as if the channel between Fand P;. were authenticated).

— In X&Q case: in the commit phase, S cannot extract the value committed by P} (126), as
it cannot impersonate F (e.g., as if the channel between F and P; were authenticated and
encrypted); in the open phase, S can impersonate Fxgq to equivocate the opening of m (132).

(117), which can be impersonated by the simulator. Conversely, a simulator with black-
box access to a malicious receiver P} cannot equivocate the opening of a value, because
the opening of the value is sent from the second-level functionality to P} (119).

B.4 Different models of simulation

The above discussion has considered alternative conceptualizations of X and Q (and non-
X and non-Q), when a simulator interacts with ideal commitment functionalities during

Page 43 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

a simulation. This conveys that proofs of security may consider different simulatability
models, in what concerns the hybrid use of ideal functionalities.

— Plain model. When rewinding is allowed, then it is possible to consider the plain
model, without any kind of ideal functionalities. Here, either no setup assumptions
are required, or the protocol is augmented with a setup phase that results from
interaction between the two parties, without reliance on ideal functionalities. In such
model, ¥x and % are assumed to be implemented by real sub-protocols between
the two parties, in a way that allows S to have the necessary X and Q capabilities,
respectively. In practice, these capabilities may derive either from implicit local
rewinding in the respective phases (e.g., within some ZK sub-protocol) or/and from
use of a secret trapdoor obtained upon rewinding in some implicit prior setup phase.

— Hybrid model. In a hybrid model, 6x and 6 are replaced by respective ideal
functionalities Fygq = ‘FMCOM(X&G) [©x] and Fxeq =]:MCOM(Y&Q) [#x]. These
two are impersonated by S when interacting with the black-box malicious party in
the simulated execution. As mentioned before, there are two concerns here: i) the
protocol must be specified with a syntax of interaction consistent with the used ideal
functionalities; ii) the commitments must not cause undesired interferences between
themselves, e.g., some kind of malleability (see further notes ahead).

- Nested hybrid model. In the nested hybrid model, €x and € are replaced by ideal
functionalities]-"XE]-"MCOM(X &Q) [Fx&o] and -FQE]:MCOM(X&Q) [Fxsq], with the
underlying virtual Fxgq Dot being impersonatable by the simulator. As mentioned,
in practice this model is syntactically equivalent to the Fxgq-hybrid model, but with
the constructive (intended) limitation that X and Q are actively isolated, i.e., the
simulator cannot take advantage of certain X or Q capabilities. Thus, as desired, this
model does not leave room to argue that the proof might require a full-fledged X&Q
commitment scheme, as could be argued if one would only know that a proof had
been made in the usual | Fyicom-hybrid model.

In spite of the distinction between hybrid and nested-hybrid model, for the sake
of simplicity the remainder of the paper uses a single notation when defining and
analyzing simulations in any sort of hybrid model. In particular, the security analysis
will simply refer to a hybrid model using ideal commitment functionalities Fx and Fq.
Also, the syntax of interaction will be as if Fx and Fq were actually both equivalent
to Fmcom = Fxaq- Thus, it will remain implicit that the simulation corresponds to
what was here defined as the nested-hybrid model. Specifically, in such interpretation
one may be assured that when using Fx or Fq the simulator will not even “try” to use
Q or X, respectively. This simplification allows this section to not be essential for the
understanding of the remaining analysis of the paper, but rather makes it a complementary
source of intuition for the interested reader.

Remark (interfering commitment schemes). The new protocols devised in this paper
make use of two underlying commitment schemes (%x and 6). When using the nested-
hybrid model, each of these schemes is replaced by an ideal commitment functionality
that ensures complete independence between commitments — as if one were actually

Page 44 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

using the Fxgq-hybrid model. However, when considering real cryptographic instantia-
tions, there may arise interferences that jeopardize the intended properties, e.g., hiding,
binding, extractability or equivocability of an individual commitment scheme, or even
independence of committed/opened values (broken by means of malleability). One no-
table exception, where such questioning is not needed, is if the instantiations are already
proven to be universally composable (UC). However, one goal of this paper is precisely
to allow use of underlying commitment schemes that are not necessarily full-fledged
UC, namely that are not simultaneously X and Q. Also, there may be advantage in
considering instantiations of éx and %, that are different but related (e.g., same trapdoor
—see|§D.1). The matter of interfering commitment schemes is further discussed in|§D.2|

C Coin-flipping simulatable-with-rewinding

This section analyzes coin-flipping in a stand-alone setting where simulation with
rewinding is allowed. Subsection §C.1|clarifies several aspects about coin-flipping into
a well — it reviews the early protocol proposed by Blum for coin-flipping by telephone
[Blu83], it discusses the matter of bias and the security in case of a single coin-flip. Then,
still as a "warm-up", Subsection §C.2|comments on the (non-)simulatability of protocols
in the traditional template| in case the underlying commitment scheme lacks extractability
(X) or equivocability (Q): the case of X&Q is shown to be non-simulatable; the case
of X&Q (as in Blum’s protocol) is left in doubt, but an issue of unknown probability
of abort is raised. Subsection|§C.3|provides a proof of security (i.e., simulatability) of
protocol #1: it specifies a simulator for the case of each corrupted party and analyzes
the respective simulation, to argue the indistinguishability of distributions between the
ideal and the real worlds. The somewhat intricate analysis of a super-polynomial upper
bound to the number of rewindings for the simulation in case of a corrupted Py is left to
Subsection §C.4, showing that it leads to an expected polynomial number of rewindings.

C.1 Coin-flipping into a well

Blum’s coin-flipping. The “coin-flipping by telephone” [BIu83] proposed by Blum uses
a non-interactive unconditionally-hiding bit-commitment scheme, with trapdoor known
by Pg.'?| The asymmetry of the protocol can be characterized by saying that “Pg flips
coins to P ", namely because P learns the result of the coin-flipping and then can decide
whether or not to let Py learn it as well. In a setup phase of the protocol, Pg chooses the
commitment scheme parameter (a Blum integer) and convinces P, that it is correct. This
is achieved with Py giving a (honest-verifier) ZKPoK of the respective trapdoor (the
integer factorization of the Blum integer), which Py keeps hidden from P4. The protocol
then proceeds with P, committing to her random contribution (a vector of bits) and then
Pp sending his random contribution (a vector of bits with the same length) to P4. At this

1 In the specific proposal, a commitment of bits is a vector of squares modulo a Blum integer;
the respective opening is a vector of square-roots with appropriate Jacobi Symbols. A Blum
integer is the product of two prime powers, where each prime is congruent with 3 modulo 4, and
each power has an odd exponent. For a fixed Blum integer, the Jacobi Symbol is a completely
multiplicative function that maps any group element into 1 or —1.

Page 45 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

point, P can privately obtain the coin-flipping result as the XOR of the contribution of
P and the contribution of Pg. Eventually, “whenever ... [P4] wants to prove to Pg what
sequence of ... random bits was flipped to her”, P, opens her commitments, thus also
letting Pg compute the final bit-string.

It might be left to interpretation whether or not the final step (P5 opening her
contribution to Pg) is necessary to consider the execution successful. Actually, in the
original proposed protocol, the parties sign and timestamp some exchanged messages,
thus allowing a complementary “Judge’s protocol”, where all signed messages can be
subpoenaed and then the judge can either assert that the “protocol is declared terminated”
or it can “enforce completion of the protocol”. This setting is not considered in this
paper, as it goes beyond the two-party case, but it interestingly solves the bias problem
discussed ahead.

Definition 8 (early-abort). In the context of a coin-flipping protocol (namely one
following the traditional template)), early-abort denotes the action of a (malicious) party
(P,) aborting the execution before revealing her own contribution, conditioned to not
aborting before the other party (Pp) becoming bound to her respective contribution.

Definition 9 (unfair-abort). In the context of a coin-flipping protocol, unfair-abort
denotes the action of a (malicious) party (P,) aborting the execution after learning
something about the bit-string outcome (i.e., in the sense of breaking semantic hiding),
but before letting the other party learn something about it.

Clearly, an \unfair-abort is an |early-abort, and in the case of the traditional template
only P} is able to perform it (by aborting after (84), but before (85)). Pg is also able
to do an early-abort in the traditional template| (by aborting after (82) but before (84)).
The consideration of unfair-abort and early-abort|(and respective probabilities) was a
main motivation to devise protocol #1|in this paper, in a setting where simulation with
rewinding is allowed. In particular, the new protocol is devised in a different template
where early-abort is still possible by P, but not in the form of an unfair-abort.

A note on bias. The |traditional template, which fits (and is actually suggested by)
Blum’s protocol, inherently allows an \unfair-abort by a malicious P}, i.e., aborting
before opening her contribution (step 3) but after seeing the contribution of the honest Pg
(step 2), consequently allowing the output of Py to be biased. In fact, this is allowed in
the ideal functionality of |coin-flipping into a well|(Fig. 5 [Fig. 6). In the case of flipping
a single coin, bias is defined as the absolute value of the distance between one-half and
the probability that the honest party outputs a particular bit value.?’ For example, if P}
aborts the coin-flipping execution whenever realizing that the final result is an undesired
output, then the output of Pg becomes biased. This happens even if the protocol defines
a default output mechanism for Pg when facing an early-abort by P}. For example,
the bias is one-forth if Py outputs a default random bit in case of early-abort by Pj,
which means P} can induce her desired output with probability three-fourths (ignoring

2 If flipping many coins, this can be generalized to the bias of some predicate of the bit-string.

Page 46 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

the aborted executions). This bias is not a security violation when considering an ideal
functionality that also allows unfair-abort, as considered in this paper.®!

Single coin-flip into a well (with rewinding). The traditional template is a prototype
for a coin-flipping into the well protocol [Gol04, §7.4.3.1], i.e., allowing two parties to
obtain as output the same uniformly random bit except if a malicious party performs
early-abort. In a simulation setting allowing rewinding, and when flipping a single coin,
a protocol following the traditional template can be proven secure (i.e., simulatable)
regardless of local X or Q properties of the commitment scheme, i.e., it holds for any
commitment scheme (hiding and binding). In particular, in the case of a malicious P},
the simulator S (in the role of Py in a simulated execution) can use rewinding to test P}
with both possible bits in|step 2| If Px does early-abort|in both cases, then S can safely
emulate an abort in the ideal world; if P} does not early-abort in at least one case, then
S can determine whether or not to abort in the ideal world. More generally, the same type
of proof can be used for bit-strings of length logarithmic in the computational security
parameter, i.e., whenever the space of possible contributions of Py is of polynomial size.
However, when flipping many coins (e.g., linear in the security parameter) in parallel,
some extra properties are necessary from the commitment scheme.

C.2 (Non-)simulatability of the traditional template

Definition 10 (explicit rewinding). If simulation with rewinding is allowed, explicit
rewinding denotes the action, performed by S, of rewinding the black-box adversary in
a simulated execution in a hybrid model where the underlying commitment schemes are
replaced by respective ideal functionalities. In other words, these rewindings do not take
in consideration possible implicit rewindings that might be necessary in a simulation
where the ideal commitment functionalities are replaced by real sub-protocols.

For a coin-flipping protocol following the traditional template, if the underlying
commitment scheme is X&Q then simulatability is trivially possible without |explicit
rewinding. The situation is different if either X or Q properties are missing from the
commitment scheme, namely in regard to the expected number of explicit rewindings
(E[#rw]). For a successful simulation, once S in the ideal world receives the random
bit-string from Fycp, S must be able to induce in the simulated execution the perspec-
tive of the other black-box party obtaining the same final bit-string (the XOR of two
contributions), regardless of then it being rejected (e.g., by means of abort) or accepted
(and possibly altered when outputted to Z) by the party.

When using an extractable-but-not-equivocable (X& Q) commitment scheme. In case
of a malicious P}, a one-pass simulator (in the role of Py in the simulated execution)
can always succeed, by locally extracting the contribution of P} (step 1) and then still
be in a position to calculate and send the [needed complementary contribution of Pg
(step 2). However, the case of a malicious Py is more problematic, even if Py never

2! By increasing the number of rounds in the protocol (i.e., necessarily deviating from the tradi-
tional template)), bias could be reduced at most approximately proportionally to the inverse of
the number of rounds [Cle86, MNS09].

Page 47 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

aborts. This is because the contribution of P§ (step 2) may depend on the commitment
of the contribution of P (step 1), e.g., based on some one-way function.??| Thus, with
overwhelming probability the simulator is not able to induce the intended final bit-string
in the simulated execution, except perhaps after an expected number of rewindings that
is super-polynomial in the target length.

When using a not-extractable-but-equivocable (X& Q) commitment scheme. The orig-
inal protocol of Blum for coin-flipping by telephone| [Blu83] fits the traditional template
instantiated with a X&Q commitment scheme, namely an unconditionally-hiding com-
mitment scheme with trapdoor.

— \local equivocation of the contribution of P4 is possible by endowing the equivocator-
simulator (S@, in the role of P, in the simulated execution) with knowledge of
the trapdoor of the bit-commitment scheme. The trapdoor can be extracted in the
setup phase, with S© rewinding the state of Pg in order to get responses to different
challenges of the ZKPoK. (This setup phase and respective rewinding are implicit in
the traditional template.) Then, in the phase of opening the contribution of P4 (step
3), S uses the trapdoor to locally equivocate each bit-commitment of P4 to any
needed bit value (namely such that the combination of contributions of both parties
is equal to the one decided by Fycr in the ideal world).?

— \local| extraction of the contribution of P, is not possible, since the uncondition-
ally-hiding commitment does not contain any extractable information. Nonetheless,
rewinding allows non-local extraction if P, does not do |early-abort, First, the
extractor-simulator (S, in the role of Py in the simulated execution) proceeds
the simulation until the step where P5 opens her contribution (step 3). Then, S X
rewinds to immediately before the step where Py has to decide a contribution (step
2). This means that, after extracting the contribution of Py, S is still able to go
back in time and choose a new contribution for Pg. At first glance this could seem
equivalent to|local| extraction, as if S X had extracted the value when P, committed
to it (step 1), but there is an essential difference related with unfair-abort,

Even though the rewinding used for |non-local extraction does not affect the con-
tribution that P, can open (step 3), because by definition a commitment is binding, it
may affect the willingness of a malicious P} to abort without opening her contribution.
Specifically, between two executions (the first and the one after rewinding) with different
contributions by Pg (and thus also with different perspectives of a final bit-string), the
probability of unfair-abort|by P} may vary. In particular, an (arbitrary and probabilistic)
decision-criterion of P} to do unfair-abort may be unknown to S* and dependent on

22 Or uniformly sampled using fresh (i.e., non-rewindable) randomness (if so allowed by the
computational model) after each rewinding — this is not a standard model in the literature.

2 It is worth noticing that equivocation could be simply based on an equivocable commitment
applied to a collision-resistant hash of the contribution of Pa. A related idea appears in [Hal95]
based on claw-free permutation pairs. Then, the opening would simply consist on sending the
full contribution of Ps and equivocating the opening of the respective (short) hash. This idea
is used in protocol #1|directly for the contribution of Pg, and in protocol #2|for other large
elements that require equivocation.

Page 48 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

the value of the contributions of P, and Pg. Intuitively, this poses a difficulty to defining
a suitable S¥, namely (as also pointed out by Lindell [Lin03]) if different execution
paths mix negligible and noticeable probabilities of non-abort, i.e., if the probability of
non-abort (when taken across different execution paths) is neither negligible nor notice-
able. Furthermore, even for certain restricted classes of malicious behavior for which the
author of this paper can find a suitable S, the simulation found requires E[#7w] to be
at least of the order of the inverse of the initial-probability-of-no-early-abort, whereas
the new protocol #1|(Fig. 1) has a simulator with E[#rw]| being less than two.

It is worth pointing out that Blum’s coin-flipping protocol is adequate for many
practical purposes. In particular, it is simulatable with a single explicit rewinding|if it
is assumed that early-abort/never occurs. Still, the observed difficulty, combining the
process of |early-abort|with the non-locality of extraction of the contribution of P}, was
the motivation to devise in this paper a new protocol, bypassing the mentioned difficulty
by using a different template.

It is left as open problem proving the non-simulatability of Blum’s protocol (i.e.,
when using a X&Q commitment scheme within the traditional template). Alternatively,
if the protocol is simulatable, then it remains to find a suitable simulator for the case of
corrupted P} and calculate the respective (polynomial) E[#rw].

C.3 Proof of security of coin-flipping protocol #1

Protocol #1 was described in|§4.2 (Fig. 1). Py is the first party to learn the bit-string
outcome; i.e.: when Py is not corrupted it receives start-1 from Z (4); when Py is not
corrupted it receives start-2 from Z (5).

The proof of security assumes that the PRG and the CR-Hash are cryptographically
secure and that the adversary that corrupts Py is rewindable. For the case of a corrupted
P there is no need for lexplicit rewinding, because the simulator is able to [locally
extract the contribution of P} (10) and locally equivocate the contribution of Pg (13).
Nonetheless, when instantiating in practice the commitment schemes it may be necessary
or desirable, in a setup phase or/and during the protocol, to use rewinding of P} in order
to bring about the X and Q properties.

The proof shows simulatability on the side of each possible corrupted party. The
plain model considers underlying commitment schemes %x and % that are directly
assumed to have the needed X or Q properties. The hybrid model uses ideal commitment
functionalities Fx and Fq, from which the simulator does not take advantage of Q and
X, respectively. See|§B.4|for a possible different interpretation of the suppression of X
and Q properties from ideal functionalities (the nested-hybrid model, applicable but not
made explicit hereafter). The plain and hybrid models are described side by side.

Simulation prologue. The following prologue applies to the case of corruption on
any side (i.e., for corruption of P} or Py): S prepares a simulation of the real world,
controlling all communication links to and from the adversary A, and having black-
box access to and rewinding capability over .A; once the simulator S receives an input
from Z, it relays it to .4 embedded in the simulated context; in the perspective of A,
S does not exist and the communication takes place directly with Z. if A corrupts
P; in the simulated execution, for some p € {A, B}, making it a malicious, then S

Page 49 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

correspondingly corrupts ?; in the ideal world; the input sent from Z to the respective

corrupted ideal party IA’p (61) is also intercepted by A and relayed to the simulated P},
(4), thus being intercepted by A.

C.3.1 Simulator for corrupted P}

— Begin simulation. In the ideal world, once S receives a message (cf-start-2-
receipt, sid, (cfid, Pa, Pg), {) from FycF, it knows that the honest ﬁB has been
correspondingly activated by Z (62). Thus, S is capable of impersonating an honest
Pg in the simulated execution.

— Commit contribution of Pg. S selects a random hash value (7). Then: in the plain
model, S in the role of Py acts as sender in the commit phase of 6, to commit the
hash to the receiver P} (8); in the hybrid model, S impersonates F, notifying the
receiver P that a value has been committed ((91), (128)) (it is OK to leak the length
of the committed hash).

- Get contribution of P}. In the plain model, S (impersonating Py as receiver in a
X-commit phase of €x) waits to receive from P} the commitment of a seed (10).
In this plain model, S uses its X power to extract the seed. In the hybrid model, S
impersonates Fx directly receiving the seed of P ((90), (117)). Then, S in the role
of Pg receives from P} a masked version of her contribution (12). S calculates the
PRG expansion of the seed (as specified in (17)) and uses the result to unmask the
masked contribution of P}, thus obtaining the contribution of P}.

— Get bit-string from Fyicr|(the ideal coin-flipping functionality). If the simulated
execution has aborted at any point, due to some malicious behavior by P} that would
have been detected by Pg, then S|emulates an abort in the ideal world, namely by
sending (cf-abort-1, sid, (cfid, Pa, Pp)) to|Fmcr/(76) (which will lead the ideal IA’B
to also abort (78)) and then outputting in the ideal world whatever A outputs in the
simulated execution. Otherwise, if the previous simulation steps were successful,
then S in the role of /ﬁ: in the ideal world sends an honest message (cf-start-1, sid,
(cfid, P, Pg), £) to Fucr (63). S then receives back from|Fycg a random bit-string
(i.e., the flipped coins) (69), namely in a message of the form (cf-deliver-1, sid,
(cfid, Pa,Pg), m), because the honest ﬁB has also requested a respective start of such
coin-flipping. In possession of the bit-string decided by Fmcr, henceforth denoted
as target outcome, S computes the XOR of the target outcome with the contribution
extracted from P}, thus determining what it the needed complementary contribution
of Py in the simulated execution.

— Equivocate contribution of Pg. S in the role of Py in the simulated execution
sends this |needed complementary contribution to P} (14) and computes its hash
(the needed hash), as if it had been done in (7). Then, in the plain model, S uses its
Q power to equivocate the open of the needed hash (13). In the hybrid model, S
simply impersonates JF, sending the hash to P ((95), (132)).

— Determine abort vs. non-abort. In the plain model, S waits to receive from P
the opening of the seed of P (16). In the hybrid model, P} simply asks Fx (im-
personated by S) to open the seed ((93),(117)) that had been previously stored by
S, which means that S just accepts the value that it had previously extracted. If the

Page 50/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

seed is not properly opened (in the plain model) or not opened at all (in the hybrid
model), then S in the role of ﬁ: in the ideal world sends (cf-abort-1, sid, (cfid, Pa,
Pg)) to| Fmcr (75). Otherwise, if the seed is correctly opened (to the value already
previously extracted by S), then S sends the message (cf-0K, sid, (cfid, Pa, Pg)) to
Fucr|(70). Finally, S outputs (to Z) in the ideal world whatever A outputs in the
simulated execution.

C.3.2 Simulation analysis when corrupted P}

The above simulation requires a single pass, i.e., it is made without explicit rewind-
ing, thus making trivial the analysis of the simulation in the (Fx,Fq)-hybrid model.
Essentially, S in the role of Py in the simulated execution is able to directly extract the
contribution of P} and decide the needed complementary contribution of Py in time to
directly equivocate it. Thus, the probabilistic distribution of the global output is equal to
the one in the ideal world, because S always induces the needed final output, except if
P} aborts, case in which the emulation of abort happens with the same probability.

In the plain model, when €% and % are real individual commitment schemes (i.e.,
hiding and binding) with respective X and Q properties, the indistinguishability of the
global output requires that the commitment schemes retain their properties in spite of
there being two commitment schemes in use in the same protocol. Hypothetically, an
unfortunate combination of ¥x and % might give extra power to P} (i.e., to A or Z),
allowing her (with noticeable probability) to prevent S from inducing the needed target
outcome, and/or allowing her to distinguish the equivocated opening from an honest
opening. The most obvious necessary condition of non-interference is that €, is non-
malleable with respect to opening of G, or otherwise P} could potentially equivocate**
her seed during the open phase of %%, thus preventing S from inducing the intended
final bit-string. A concrete secure instantiation based on the DDH assumption is given in
§D.1| The (im)possibility of interferences is discussed in|§D.2l

C.3.3 Simulator for corrupted Py

- Begin simulation. In the ideal world, once S receives a message (cf-start-1-
receipt, sid, (cfid, Pa, Pg), £) from Fycr, it knows that the honest P4 has been
correspondingly activated by Z (61). Thus, S is capable of impersonating an honest
P4 in the simulated execution.

- Get commitment to hash of contribution of Py. S waits for a commitment of a
hash by P in the simulated execution. More specifically: in the plain model, S im-
personates P4 as a receiver in the commit phase of €, (8), receiving a commitment
to the hash; in the hybrid model, S impersonates P4 receiving a notification that a
value has been committed ((91)),(128)).

— First iteration of committing the contribution of P,. S selects a random seed for
Pa (9) and impersonating P» commits to it, as follows: in the plain model, S acts as
sender in the commit phase of %% (10); in the hybrid model, S simply sends to Fx
a request to commit the seed (117), thus leading Fx to notify Py that a value has

24 Here it would be enough to gain the ability to equivocate to a single different value.

Page 51/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

been committed (119). After the seed is committed, S selects a random bit-string of
the target length (11), denoted masked contribution, and sends it to Py (12).

— First iteration of opening of hash of contribution of Pj. S then waits to receive
a correct opening of the committed hash of P (13), as follows: in the plain model,
S in the role of P4 acts as receiver in the open phase of %q (13); in the hybrid
model, S receives from Fg the hash of the contribution of Pg ((94), (132)). After
the opening of the hash, S in the role of P, waits to receive the contribution of
Pj in clear (14). If Py aborts the execution before revealing his contribution (or if
the revealed contribution is not consistent with the respective hash (15)) but after
receiving the commitment of Py, then S |emulates an abort|in the ideal world. More
specifically, in this case S sends (cf-abort-2, sid, (cid, Pa, Pg)) to|Fmcr|(74), thus
leading ﬁ; in the ideal world to receive notice of this abort (75) without receiving
the target bit-string from Fyicr, and S outputs in the ideal world whatever P, outputs
in the simulated execution. Otherwise, if Pg in the simulated execution reveals his
contribution, then § in the ideal world sends (cf-start-2, sid, (cid, Pa, Pg), £) to
Jmcr (64).

— Get bit-string from | Fycr. Once | Fycr receives the cf-start-2 message from S
in the role of the ideal ﬁ;, and since an honest ideal ﬁA has also sent a respective
cf-start-1 message, Fncr calculates a random bit-string (the target bit-string) (68)
and sends it to the ideal i5A (69), namely in a message of the form (cf-deliver-1,
sid, (cfid, Pa, Pg), m). Fumcr also sends a receipt of such message (but without
the random bit-string) to S, namely (cf-deliver-1-receipt, sid, (cfid, P, Pg))
(not shown in Fig. 5| but described in [Fig. 6). Since /ISA is assumed to be honest,
it will accept the bit-string decided by | Fycp, confirming it by sending message
(cf-0K, sid, (cfid, Pa, Pg)) to Fmcr (70). This means that| Fycp| will then send the
target bit-string also to 13; (71) and respective receipt to S. Furthermore, since S is
controlling the ideal Py, it can read the message sent to Py, namely (cf-deliver-2,
sid, (cid, Pa, Pg), m), which includes the decided bit-string m.

— Induce the target outcome. S, now knowing the target bit-string and the contri-
bution of P, computes what is the needed complementary contribution of Ps. S
rewinds the state of Py to the step prior to Py having committed to a seed (10).
Then, S selects a new random seed (9), commits to it (using the adequate model:
plain (10) or hybrid ((90),(117))), computes its PRG-expansion (as in (17)) and then
XOR’s it with the complementary contribution of P4, thus obtaining a new masked
contribution (instead of a random one as in (11)).

Then, S in the role of P4 sends the new masked contribution to Py (12) and waits
for P; to open again his committed hash (using the adequate model: plain (13) or
hybrid ((94), (123)) and to reveal his contribution (14). If the contribution of Py is
successfully open without abort, then S proceeds with the simulation by opening
the seed of P, (using the adequate model: plain (16) or hybrid ((93),(121)), and then
it outputs in the ideal world (in the role of the ideal ﬁ;) whatever Py outputs in the
simulated execution. Otherwise, if Py aborts without opening again his contribution,
then S rewinds again and again, until: (i) either Py successfully opens the expected
contribution, case in which S outputs in the ideal world whatever .4 outputs in
the simulated execution); or (ii) the number of rewindings reaches an appropriate

Page 52/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

super-polynomial upper-bound #rw-bound (see description below, still allowing the
expected number of rewindings to be polynomial), case in which S emulates an
abort in the ideal world.

C.3.4 Simulation analysis when corrupted Py

In the hybrid model, it is clear that, whenever the output does not involve an emulation
of abort in the ideal world, § in the simulated execution is able to induce the target-
outcome that| Fyicp decides in the ideal world. Since S only emulates an abort|if either
Py aborts in the first iteration or if the upper-bound #rw-bound is reached, it follows that
in the ideal world the probabilities of non-early-abort are equal or higher, but not smaller.
In order to prove indistinguishability between the two worlds, it needs to be proven that
this increase is at most negligible. Furthermore, for the defined S, the only non-null
contribution for the E[#rw| comes from simulation paths whose first iteration does
not lead A to early-abort. Thus, an adequate upper-bound #rw-bound| for the number
of rewindings needs to be defined: (i) being sufficiently large such that the increase of
probability of learly-abort in the ideal world is at most by a negligible amount; and (ii)
being sufficiently small such that E[#rw] is polynomial.

In the next subsection it is shown that it is possible to define an appropriate super-
polynomial bound #rw-bound, if the contribution of P, is hidden in a strong sense before
the step when Pj reveals his contribution. It is shown as well that such bound leads
E[#rw] to be upper-bounded by a small constant, namely less than 2. It is left as an
open problem whether there might be a different suitable simulation requiring only a
strict polynomial number of rewinding.

In the plain model, the simulation might hypothetically fail only in a contrived case
where the combined instantiation of €x and 6 somehow weakens some of the necessary
properties, e.g., breaking binding of 64 or/and hiding of 6x.* This is further discussed
in §D.2| In this Subsection the proof follows assuming the hybrid model, where the
commitments are replaced by ideal commitment functionalities Fx and Fg.

C.3.5 Other simulation settings

Is is left for future exploration the consideration of different security settings.

It would be interesting, as a natural extension of this work, to explore protocol
adjustments that may achieve security under adaptive corruption, i.e., with an adversary
deciding which party to corrupt only after a protocol execution has started, while
at the same time retaining the high efficiency: low communication complexity and
computational complexity amortized to a PRG and CR-Hash.

As another extension, though in a different computational model, it would be inter-
esting to explore which protocol/simulation adjustments might lead to simulatability in a
quantum setting, e.g., using quantum rewinding techniques [DL0O9], when parties have
quantum-computational power and may exchange either classical or quantum messages.

%5 For the given protocol structure, the case of malleability of €, under a malicious behavior by
Pg would be simply equivalent to losing binding of %g, because Pg is the first party to commit.

Page 53 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

C.4 Bound on number of rewindings

This subsection considers defining a bound for the number of rewinding for the simulation
in case of corrupted Pj.

A problem if there is no upper-bound #rw-bound on the number of rewindings. For
the specific simulator defined in §C.3.3), if an upper-bound (#rw-bound) on the number
of rewindings does not exist, i.e., if it is infinite, then E[#rw] is also infinite whenever
there is at least one simulation path that involves an infinite number of rewindings.
Such a path exists when, for example, the malicious behaviors by Pj determines that
it only does not to do |early-abort if it receives a specific masked-contribution bit-
string ¢ 4 (12). If Py receives this exact bit-string (even though this happens only with
probability negligible in the length of the contribution), then it opens his hash hp (13) and
reveals his contribution x g (14), thus allowing S to compute the needed complementary
contribution x 4 = xB @ x (where Y is the value received from | Fycrin the ideal world
(69)). Then, there is only a negligible probability (in the target length subtracted by
the seed length) that there is any seed s’ for which the first masked contribution ¢ 4
(the only one to which this adversary would not abort) would unmask to the needed
contribution x 4 of P. In other words, there is an overwhelming probability that P
would do early-abort in all subsequent iterations (with S always committing 4). This
phenomenon is inherent to the cardinality of the masks (i.e., cardinality of the seeds)
being exponentially smaller than the cardinality of the possible contributions, which
implies that the contribution of P, is not unconditionally hidden, even if the seed itself
is unconditionally hidden and even if the PRG is ideal (e.g., in a hybrid model).

A problem if #rw-bound is polynomial. For the specific simulator defined in|§C.3.3, if
#rw-bound is polynomial, then it is easy to construct a malicious Pj whose respective
simulation induces a noticeably higher probability of learly-abort|in the ideal world, in
comparison with the real world. In particular, this happens if the probability of non-early-
abort of Py is noticeable and at the same time noticeably smaller than the inverse of
#rw-bound. In such case, an|emulation of abort would occur not only when Py aborts in
the first case, but also with a small but noticeable probability in the remaining cases; i.e.,
there is a noticeable probability that P; would abort consecutive #rw-bound times after a
first non-early-abort, thus providing a distinguishability criterion between the ideal and
real worlds (after a sufficiently large, yet polynomially bounded, number of executions).

The possibility of #rw-bound being superpolynomial with negligible inverse is an-
alyzed hereafter, motivated by the two previous paragraphs that showed that it can
neither be infinite nor polynomial. The challenge is ensuring that the F[#rw] remains
polynomial. Since a malicious P; might perform early-abort/based on something learned
from the contribution of P4, the hiding property associated with the contribution of Pa
is now analyzed in more detail.

Proposition 2. Let €x be an extractable commitment scheme for (short) seeds and let
PRG be at least cryptographically secure. Let €y be defined as follows: (i) the commit
phase consists on executing a commit phase of €x to commit a random seed selected
by the sender, followed by sending the (long) contribution masked by the XOR with

Page 54 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

the (same-length) PRG-expansion of the seed; (ii) the open phase consists on using
the open phase of € to open the seed. Then, it follows that €y, is also an extractable
commitment scheme. Assuming that the cardinality of possible (short) seeds is smaller
than the cardinality of possible (long) commitable contributions, then the hiding of €’
is at most statistical; i.e., €x’ is not perfectly hiding even if the PRG and €x are ideal.

%% in the above proposition is essentially the commitment scheme used to commit
the contribution of Py in protocol #1, The relevant aspect is that even in a hybrid model
the hideability of the contribution of P, depends also on the relation between the length
of seeds and the length of contributions. Thus, it is relevant to determine what advantage
a malicious P}, gains from this, even if just negligibly, to skew the probability of abort in
the simulation. The main potential problem is that even a negligible effect on probabilities
might have a noticeable effect on E[#rw].

Semantic hiding property of a commitment scheme. The hiding property of a commit-
ment scheme can be defined based on an indistinguishability game essentially similar to
a definition of semantic security of an encryption scheme (a.k.a., IND-CPA). A commit-
ment oracle (O«) is initialized in either a left or a right mode, with 1/2 probability
for each. Then, an adversary (A«) chooses two messages (left and right) and sends them
to the commitment oracle, without knowing the mode of the oracle. The oracle then
produces a commitment of the message of its respective mode, either of the left or the
right message, and sends the result to A< . The adversary can make at most a polynomial
number of such queries. Finally, the adversary outputs an attempted guess of the oracle
mode: left or right. The advantage of the adversary in breaking the hiding property
is defined as the absolute value of the difference between the probability of correctly
guessing the left world and the probability of incorrectly guessing the left world.

Adv(Ag) = |Pr(Ag = left|Og = left) — Pr(Ag = left|O¢ = right)| (134)

Definition 11 (hiding). A commitment scheme € is semantically hiding (a.k.a., hiding)
if the maximum advantage of any polynomially bounded adversary in winning the
above-defined game is negligible (in the security parameter).

Strong hiding. For the purpose of defining an appropriate #rw-bound, it is useful to
quantify the maximum distinguishability that an adversary (A, a malicious Pj) can make
about different committed contributions of P, when only seeing their commitments,
i.e., the maskings ¢4 (12). This is specifically relevant in terms of how it may affect
the decision of learly-abort (e.g., 0 for abort and 1 for non-abort). For each possible
value in the domain of committable values (x 4), the respective probability of deciding 1
(non-early-abort) or O (early-abort) accounts for all possible probabilistic paths based
on the internal state of A during the execution and all possible probabilistic paths by S
(in the role of P») while computing the commitment. In particular, the probability on
non-early-abort/by A, conditioned to a particular contribution () decided by Pa (or by
S in the role of P») can be calculated as a sum of terms across all possible commitments
of such contribution (135). Intuitively, the hiding property becomes stronger when
reducing the difference between the maximum probability (across all contributions) of

Page 55/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

outputting 1 (136) and the minimum probability (across all contributions) of outputting
1 (137). Again, it is worth noticing that there are adversarial behaviors (Py) for which
this value is not 0 even if using an ideal PRG and even if the commitment of the seed is
unconditionally hiding. Nonetheless, this value is expectably negligible.

(DOPri(0) = Pr(€h] = %) - Pra(AR) = 1) (135)
Prf = max, ¢ o 13¢ (Pri(x)) (136)
Pry =min, ¢4 43¢ (Pri(x)) (137)

Definition 12 (strong hiding). (With respect to some implicit domain of committable
values, e.g., all bit-strings of a certain fixed length,) A commitment scheme € is e-
strongly hiding if for any feasible adversary it follows that Pr;r — Pri < ¢ for any
sufficiently large security parameter k.”° A commitment scheme € is strongly hiding if
there is a negligible € such that € is e-strongly hiding,

Proposition 3. If € is e-strong hiding for some negligible € (138), and if #rw-bound
is super-polynomial but lower than the inverse of e such that the product of o« and € is
negligible (139) (e.g., with o being the square-root of the inverse of ¢, e.g., € = 27" and
a = 25/2) then:

1. the probability of|early-abort is indistinguishable between the ideal and real worlds;
2. E[#rw] is less than two.

(Fe: € >0) (Vxa, Xa) (Proi(xa) — Proi(Xy)) <€ (138)
#rw-bound = o : (0 < a < 1/€e) A (v x € € Negligible) (139)

The proof of Proposition 3/can be done by analyzing separately different characteri-
zations of the |early-abort strategy (or equivalently the non-early-abort strategy) of the
adversary A4, in relation to the factors that determine the hiding-strength of 65, (which
depends on %x and the PRG), and the upper-bound #rw-bound of number of rewindings.

Consider an adversary (A) who has corrupted Py, in a simulated execution and has
not aborted the execution until the step where it waits to receive from P, (impersonated
by the simulator S) the commitment of the contribution of P, (10)-(12). Upon receiving
such commitment, A either decides to have Py do early-abort (i.e., not opening her
contribution) or to continue by successfully opening her hash and revealing her contri-
bution (13)-(14). In other words, A may base its abort vs. non-abort decision on the
commitment received from P, (and possibly also on other aspects of the inner state
of A). If 6% is e-strongly hiding with respect to the space of possible contributions
of P4, then the probability of non-early-abort (conditioned to Py not aborting before
reaching the step where it waits to receive the commitment of P,) differs by less than
e for any possible pair of contributions. In particular, this negligible distance-bound
is valid between the non-early-abort probabilities in the cases of the random needed
complementary contribution determined by S (in case P, does not abort in the first
iteration of the simulation) and the random contribution of P4 in the first iteration.

%6 Tt is left implicit that € is a function of &.

Page 56 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Proof of part 1|(indistinguishability of probability of nonlearly-abort),?’

— If the probabilities of non-early-abort are negligible, then the distribution is al-
ready negligibly close to a distribution where the adversary would always abort.
Thus, reaching the upper-bound #rw-bound induces at most a negligibly increase in
probability of early-abort in the ideal world, which is not noticeably distinguishable.

— If the probabilities of non-early-abort are noticeable, then with overwhelming
probability .A will open the contribution of Py before the super-polynomial bound
#rw-bound is reached. In such case, if P§ opens his contribution in the first iteration
it will also (with overwhelming probability) open again after a polynomial number
of rewindings, thus inducing a probabilistic distribution with indistinguishable
probability of non-early-abort,

— Even if the probabilities of non-early-abort are non-negligible and non-noticeable,
the e-strong hiding assumption remains, with a negligible e. Thus, the ability to
noticeably distinguish the ideal world from the real world would imply being able to
break said assumption, because there would be different values whose commitments
could be distinguished with noticeable probability.

O

Proof of part 2 (E[#rw] being upper-bounded by a constant). In the role of Py in the
simulated execution, the defined simulator (S) only needs a non-abort from Py after
experiencing a non-abort in the first attempt. This means that, as the non-early-abort
probability decreases between different malicious strategies by Py, so does decrease the
number of execution paths where S needs to obtain a second opening by Pj. However, in
each execution path that does not abort in the first attempt, the corresponding conditioned
E[#rw] is proportional to the inverse of the probability of non-abort. In particular, if the
probability of non-abort becomes 0 after S in the role of P starts committing the needed
complementary contribution of P, then S will rewind a number of times equal to the
explicit upper bound #rw-bound «. Thus, #rw-bound needs to be set in a way that the
E[#rw] is polynomial and at the same time does not jeopardize the indistinguishability
between ideal and real worlds.

Consider a malicious Py with an average negligible non-early-abort probability
(across the space of possible contributions of P,). Then, by the e+strongly hiding as-
sumption about ¥y (and assuming a negligible ¢), there is a positive § such that, for any
contribution committed by P,, the probability of non-early-abort|is bounded between
B_ =B —€/2and 81 = S + €/2 (i.e., within an interval of width €).

In terms of large E[#rw], the worst case scenario is bounded by the following
hypothetical (though impossible) case with two probability characterizations:

2" An alternative (weaker) proposition would be to simply say that the|early-abort probability by
Pg is almost independent (i.e., it is not noticeably dependent) of the contribution committed by
P4, and correspondingly also almost independent of the final bit-string value (the XOR of the
two contributions). This could be proven directly from the|semantic hiding of 6%, namely by
showing the counter-positive, i.e., that if the probability of early-abort/by Py conditioned on the
contribution committed by P4 varies noticeably with the contribution of P4, then the adversary
in the simulated execution can be used (as a rewindable black-box) to break the|semantic hiding
property of the commitment scheme % used by P4 to commit her contribution.

Page 57/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

— since rewindings only occur if Py does not abort in the first iteration, then the worst
case scenario is that in the first iteration, where S commits to a random contribution
of Py, the probability of non-early-abort would be the largest possible, i.e., 8 ;

— since the simulation ends either at the subsequent non-early-abort or when reaching
the upper bound, the worst case scenario is that the remaining (at most «) iterations
that involve rewinding, with & always committing to the needed complementary
contribution, the probability of non-early-abort in each iteration is the lowest
possible, i.e., 5_.

In the mentioned hypothetical case, E[#rw] is upper-bounded by the product be-
tween [, (a majorant of the probability of non-early-abort in the first iteration) and
min(a, 1/8_) (a majorant of the conditioned expected number of rewindings until a new
non-early-abort.

In regard to how e compares with 3_ and (., there are three cases to analyze:

1. 1/8+ < 1/B- < a < 1/e. In this case, E[#rw] is upper-bounded by 3 /65—,
which is negligibly close to 1. This is equal to the quotient between (S8 + ¢/2) (a
majorant of the probability of non-early-abort|in the first iteration) and 5 — ¢/2
(a majorant of the expected number of attempts until obtaining a non-early-abort),
which in turn equals (1+¢€/(253))/(1 —€/(28)). Since €/20 is a negligible function
(because by assumption « x € is negligible), the result is of the form (1 —z)/(1+)
for some value z approaching 0, which means E[#rw] is negligibly close to 1.

2. 1/8+ < a < 1/B_.1In this case, E[#rw] is upper-bounded by 5 x «, which is
upper bounded by the previous calculation, i.e., 5 /8, i.e., negligibly close to 1.

3. @ < 1/B4 < 1/B—. In this case, whenever there is a non-early-abort in the first
iteration, the remaining simulation will likely reach the upper-bound. Thus, E[#rw]
is bounded by S+ X «, which is lower than 1 because « is less than 1/4,..

In summary, E[#rw] is less than two for sufficiently large security parameter x and
assuming a e-strongly hiding property of €x, for some known ¢, and an explicit bound
#rw-bound defined accordingly, e.g., « = 1/+/e.

O

It is left for future exploration finding whether, for protocol #1 as is, it is possible
to adjust the simulator (in the case of corrupted Py), or adjust its analysis, such that the
number of rewindings becomes strictly polynomial (perhaps at the tradeoff of E[#rw)]
becoming polynomial but not bounded by a constant). An intuition for this is that S may
always start the simulation with a strict polynomial number of rewindings (e.g., linear
in the security parameter) and only then probabilistically decide whether to perform
early-abort or to continue further with at most a strict polynomial number of rewindings
until obtaining the needed opening of the contribution of Py or emulating an abort.

D Instantiations in the plain model (simulatable-with-rewinding)

The coin-flipping|protocol #1 requires exactly one X commitment and one Q commitment
of short strings, and respective openings, besides the direct communication of two strings

Page 58/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

of the target length. In terms of computation per party, it requires: one PRG expansion,
one hash function call, two XOR combinations, and one selection of random bit-string
(all associated with the target length); and participation in the two commitment schemes
(in both commit and open phases), once as sender and once as receiver.

This section discusses concrete instantiations of |protocol #1|in the plain model.
Subsection §D.1|considers an instantiation that requires only 9 exponentiations from
each party (or 11, using practical parameters), 5 of which can be done in a setup phase.
Therein, the commitment schemes have security based on the Decision Diffie-Hellman
(DDH) intractability assumption. Subsection|§D.2 discusses hypothetical problems in
case of other instantiations of pairs of commitment schemes that might have interfering
properties (e.g., malleability). Subsections|§D.3 and §D.4 devise new instantiations of
©x and 6 without any use of exponentiations, but rather based only on regular bit-
commitments (i.e., hiding and binding, but not necessarily X or Q, and assuming that they
do not require exponentiations). These instantiations, which come at the cost of more
communication rounds, are inspired by (but with differences compared to) techniques
described by Pass and Wee [PW09]. While the mentioned prior work has proposed a X
scheme based on bit-string commitments and a Q scheme requiring a quadratic number
of bit-commitments, this section devises a X scheme based only on bit-commitments,
and a Q scheme based only on a linear number of bit-commitments. Going one level
further, such regular commitment schemes can be instantiated for example based on a
PRG (e.g., using the construction of Naor [Nao91] or subsequent improvements) — a
primitive already required by [protocol #1,

D.1 Protocol #1|in the plain model — an instantiation based on DDH

A concrete instantiation of the phases of commitment schemes underlying protocol #1|is
presented in Fig. 12 secure under the DDH assumption. It is left implicit an initial phase
where the parties agree on a computational security parameter (140), a PRG and CR-Hash
function (141), and a cyclic group (in multiplicative notation) based on the intractability
of the DDH assumption, consistently with the computational security parameter (142).
The group order is known by both parties (143), as well as the maximum number of
bits that can be committed under each group element (144) (e.g., sufficient to fit a seed
and/or a hash value). The parties also agree on a generator of the group (145) (hereafter
denoted as first generator). All these parameters can be pre-computed.

— Setup phase. P4 raises the first generator g to the power of a random exponent o
in order to obtain a second generator g'. This random exponent, being the discrete
log of the second generator in the base of the first generator, is kept hidden from Py
(146). PA sends to Pg the second generator, thus completing the needed parameters
for the two commitment schemes (147). Then, P, gives a ZK proof of knowledge of
the discrete logarithm of the second generator in the base of the first (148). Basically,
this can be a ZK adaptation of Schnorr’s protocol [Sch91], as given in [LPSOS,
Fig. 3] (149)-(159). A simulator in the role of Pg would be able to extract the
discrete log from this ZKPoK.

— Pg uses % to commit hash (8). Py uses the Pedersen commitment scheme [Ped92]
to commit to the hash of his contribution. Basically, to commit, Pg sends the product

Page 59/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

An instantiation of ¥x and % based on DDH intractability

Implicit parameters (common input)

Pa,Pp : 1" (computational security parameter) (140) Pa,Pg : g = #(G) (143)
Pa, Pp : (PRG, kprg), (Hash, fpasn) (141) Pa,Pp : k' = |logy(q)] (144)
P4, Py : G € CyclicGroups [DDH [1°],# > 2*"/} (142) Pa, Pg : g € Generators(G) (145)

Common setup (i.e., valid for both commitment schemes) (3)

Pa:o <+ Z,, g’ = g* (decide second generator) (146) Pa:k+® 2y K=g" (153)
Po — Py : (scheme-paranms, context, g') (147) Py — Pp : (ZK-step-commit, context, K) (154)
ZKPoKp, [a i g = g(x:| (taken from [LPSOS]) (148) Pg — Pa : (ZK-step-open-chal, context, (c, 7)) (155)
. _7 o T . .
Pa:a ¥ Zgq, A = g® (ephemeral generator) (149) Pa:C =" g"-g" (verify challenge) (156)
Po — Pp : (ZK-step-ephem-gen, context, A) (150) Pa:z = a-c+ k(mod g) (compute response) a57)
3 Po — Pg : (ZK-step-respond, context, (z, a)) (158)
Pg:c,m <" Zg,C = g° - A" (prepare challenge) (151) R .,
= _7 e _? a .
Pg — Pa : (ZK-step-commit-chal, context, C) (152) Py : (g =9 ‘K) A (A =9) (verify) — (159)

X commitment scheme (based on ElGamal encryption scheme [EIG85])

G omttal---] — Commit seed (s) of Py (10). GO0 ial---] - Open seed (s) of P (16).
Ppirag +° Zg,ca1 =94, can=s-g"4 (160 Pa — Pg : (open-seed, context, (T4, s)) (162)
Py — Pg : (commit-seed, context, (ca,1,ca,2)) (161) Pg:ca =" (974,s-¢'"4) (163)

Q commitment scheme (from Pedersen [Ped92])

oot vial--] — Commit hash (R) of Py (8). Cova oal -] — Open hash (h) of Py (13).
Pp:rp ° Zq,cB = g" - g'"B (164) Pg — Pa : (open-hash, context, (r, h)) (166)
Pg — Pa : (commit-hash, context, cp) (165) Pa:cp 7 g"B .g’h (167)

Fig. 12. Instantiation based on DDH. Legend: context denotes the message context, including
the session identifier (sid), the sub-session identifier (cfid) and the sender and receiver of the
message (e.g., Pa and Pg).

of powers of the two generators, where the first exponent is the hash and the second is
arandom value (164)-(165). This is provably an unconditionally hiding commitment,
not revealing any information about the hash. Note: if the hash (e.g., 256 bits) is too
large to fit into a single commitment, then it can be split into several commitments
(e.g., two commitments if the group order allows up to 128 bits).

— P, uses %k to commits seed (10). P, uses an ElGamal encryption [EIG85] to
commit to her seed s. Basically, P5 computes the encryption as a pair of elements,
where the first element is the first generator g to the power of a random exponent
74, and the second element is the product of the seed s with the second generator g’
to the power of the same random exponent 4 (160)-(161). A simulator in the role
of Pg, in possession of the discrete log v between the two generators, would be able
to simply decrypt the seed. Note: if the seed (e.g., 128 bits) is too large to fit into a
single commitment, then it can be split into several commitments. Nonetheless, it is
henceforth assumed that it fits into a single commitment.

Page 60/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

— Py uses % to open hash (13). Pg reveals the two exponents used in the Pedersen
commitment, namely the random element and the hash (166), thus allowing P
to verify correctness (167). A simulator in the role of Py, knowing the discrete
log between the two generators, would be able to determine open any desired
contribution, namely by solving a set of two linear equations in order to determine
the random value (the exponent of the first generator) corresponding to the intended
equivocated value.

— Pg uses % to open seed (16). P5 reveals the random exponent and the encrypted
seed used in the ElIGamal encryption (162), allowing Py to verify correctness (163).

D.2 Interfering instantiations of two commitment schemes

Since the commitment schemes €x and %, might depend on each other in the plain
model, it must be analyzed whether their combination in the same protocol jeopardizes
the needed properties of the isolated commitment schemes. This subsection discusses
the potential problem of interference between commitment schemes, specially relevant
when two schemes are executed in an interleaved way with parties interchanging roles,
as in|protocol #1| Perhaps the most obvious problem to consider is that of malleability
between ¢, and 6. Other types of possible interference are also discussed below.

Non-malleability. If a protocol uses more than one commitment scheme, with a party
being receiver in one and sender in the other, then the hiding and binding properties might
be insufficient to guarantee independence of opened values. For example, the receiver
of a first commitment to one value might be able to produce a second commitment, to
a related value, which it could open after seeing the opening of the first commitment.
Specifically, this must be prevented in the case of |protocol #1, by requiring a type of
non-malleability property [DDN00, DCIO98, [DCKOSO01, [FF09].

Definition 13 (non-malleability with respect to opening). Consider an adversary in
the role of receiver of a commitment scheme (the first), and in the role of sender in a
possibly different commitment scheme (the second), such that their phases are interleaved
as follows: (i) the first commit phase is executed to commit a value probabilistically
sampled from a publicly known distribution; then (ii) the second commit phase is
executed to commit a value chosen by the malicious party (possibly dependent on the
first commitment), then (iii) the first open phase is executed, finally, (iv) the second open
phase is executed (possibly dependent on the first commitment and opening). The second
commitment scheme is non-malleable with respect to opening of the first commitment
scheme if, for any feasible adversary, the probability that the first and second opened
values satisfy some relation is negligibly close to the probability that the same relation is
satisfied if the second value is instead selected by a suitably defined simulator that does
not need to see any commitment or opening.

For [protocol #1, this type of non-malleability is required between a first Q-scheme
used by Pg to commit a hash value and a second X-scheme used by P, to commit a

Page 61/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

short seed value.?® If ¢ is not non-malleable with respect to opening of g, then P}
could potentially be capable of equivocating”® her seed during the open phase of €,
thus preventing S from inducing the intended final bit-string. It is instructive to start by
analyzing the instantiation exemplified in Fig. 12| where % is Pedersen’s commitment
scheme and %% is ElGamal’s encryption scheme, both with the same disrete-log trapdoor,
with overall security based on the DDH assumption (namely what is needed to ensure
the hiding property of €%). The concrete instantiation has the necessary non-malleability
property (i.e., for the case of a malicious P}), as can be derived directly from information
theoretic arguments. Specifically, since €, is unconditionally hiding, the commit phase
of % (when P, commits to a seed) cannot depend on the value committed by Py using
6. Furthermore, since €x is unconditionally binding, its opening cannot be changed to
a value different from what had been committed in the commit phase. Interestingly, even
though %, is malleable with respect to itself, and ¥x is malleable with respect to itself,
6x is[non-malleable with respect to opening of 6g.

Other types of interference. Malleability is a special aspect in the sense that it may pose
problems even if the basic hiding and binding properties of the commitment schemes
are satisfied. Nonetheless, when considering concrete instantiations, there are further
aspects that must be verified before establishing that two commitment schemes do
not interfere in a way that jeopardizes any of the assumed properties of the isolated
commitment schemes. For the structure of protocol #1, it is useful to consider what
can go wrong for each possibility of breaking a desirable property of an individual
commitment scheme, namely: hiding or binding by the regular parties, extractability (if
needed) or (iv) equivocability (if needed) by the simulator.

For the case of a corrupted Pj: (i) if hiding of %q is broken, then the Q-capability
of § is also broken — once S would equivocate, P, could notice that the opened value
does not correspond to what it supposed to; (ii) if binding of € is broken, then P} gains
some type of Q-capability, thus breaking the X-capability of S — S would extract a value
in the commit phase, but then P} would be able to open a different value.

For the case of a corrupted Pg: (i) if hiding of % is broken, then Pj gains a type
of X-capability, thus becoming able to adjust his probability of early-abort depending
on the final output, thus introducing a bias not possible in the case of an ideal Fycr;
(ii) if binding of %, is broken, then Py gains some type of Q-capability, thus possibly
preventing S in the role of P5 from inducing the intended target outcome.

There is yet another potential problem relevant in the case of a corrupted P}, when
S (in the role of Pg) needs to have X-capability and Q-capability in respective respect to
%x and 6q. In particular, it must also be contemplated the possibility of these properties
being broken, in the sense that their application by S could allow P} to distinguish the
presence of S, even though the hiding and binding of 4 and %k could still remain
intact in a computational sense. Specifically, if Q or X are broken, then S in the role
of Py can no longer guarantee inducing the necessary target outcome in the simulation.

% A more general definition adequate to a concurrent setting would consider non-malleability
with respect to several messages and an adversary trying to take advantage of the possible
interactiveness of each phase [FF09].

2 Here it would be enough to gain the ability to equivocate to a single different value.

Page 62/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

This component is not relevant for the case of a corrupted Pj, because in such case the
simulator (S in the role of P5) does not require X or Q capabilities (i.e., it performs
extraction and equivocation vianon-local/rewinding).

In the exemplified instantiation of Fig. 12| none of the mentioned problems occur.
This is easy to derive from the fact of sharing a common trapdoor. Specifically:

— breaking the binding of ¥ is not possible because it is unconditionally binding;

— breaking the hiding of €x would mean being able to break the DDH assumption;

— breaking the binding of ¢ would mean being able to compute discrete logarithms;

— breaking the hiding of 6g is not possible because it is unconditionally hiding;

— breaking the X-indistinguishability of @ is not possible, because extraction occurs
without interaction with P} (i.e., locally computing the committed value from the
commitment, by using the trapdoor obtained in the setup phase);

— breaking the Q-indistinguishability of %, is not possible, because the scheme is
unconditionally hiding and S sends an opening message that is indistinguishable
from a correct opening.

Definition 14. Let € and €’ be two commitment schemes (i.e., hiding and binding). €
and €’ are said to be interference-free with respect to interleaved application if their
interleaved application, namely first the commit phase of €, then the commit phase of
€, then the open phase of €, then the open phase of €’, does not break the hiding and
binding properties of any of the commitments (namely in the respective commit and open
phases), nor the original X and Q properties (if present) possessed by the individual
commitment schemes.

It is instructive to see an example of interference (different from malleability), even
though it is not applicable to protocol #1:

An example of a failed combination of commitment schemes. As an example of inter-
ference, namely of 6} not being equivocation-hideable with respect to €, consider the
following pairs of (stand-alone secure) commitment schemes:

— %q. Pp is the sender and Py is the receiver; the commit phase consists of an ElGamal
encryption; the open phase consists of revealing the committed value and then giving
a ZK proof that it is a correct opening;

— %x(designed for a single use). P4 is the sender and Pg is the receiver; a commit
phase consists of a Pedersen commitment followed by a perfect ZK argument of
knowledge of the committed value; the open phases consists of opening the Pedersen
commitment (i.e., the sender P, sending the two exponents — the committed value
and the random value) to the receiver Pg, and then having the receiver Py reveal the
trapdoor to P, (i.e., the discrete-log between the two generators).

%éq is computationally equivocable, because S in the role of sender Py can use its
rewinding power to succeed in a fake ZK proof in the open phase. ¥ is extractable
because S in the role of receiver Pg can use its rewinding power to extract the trapdoor
from the respective ZK argument of knowledge. However, if both schemes are based
on the same trapdoor, i.e., a discrete-log selected by Pg, then P, gains the ability to

Page 63 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

distinguish an equivocated opening of the hash of Pg from an honest opening. Specifi-
cally, once learning the trapdoor (that Pg sends to P4 in the open phase of éx), Pa can
check whether the value opened with %, is indeed the value encrypted by the respective
ElGamal encryption (received in the commit phase of).

Note: This paper does not answer on whether or not there might exist an instantiation of
%x and 6 such that G is malleable with respect to opening of 6, within the structure
of [protocol #1, for a stand-alone execution.

D.3 X commitment scheme from regular bit-commitments

This subsection considers X commitment schemes based on more basic primitives,
namely regular bit-commitment schemes (i.e., hiding and binding), which might be
neither X nor Q. The subsection starts by describing a prior method [PW09], based on a
cut-and-choose approach, that builds a X commitment scheme from regular bit-string
commitment schemes. Then it motivates and gives an intuition for a variation, devised
in the remaining subsection, where bit-commitments are used instead of bit-string
commitments. The description of the new method starts with an unoptimized version
(§D.3.1) and then introduces an optimization (§D.3.2) using a random-seed-checking
(RSC) type of technique [GMSO08], which involves a CR-Hash and a PRG (primitives
also already used in|protocol #1), to allow a reduction of the communication complexity.
A comparison in terms of communication is summarized in Table|1|

Note. In the remainder of this section, the word farget (e.g., in target value or target
length) is used in respect to the value being committed by each of the X or Q commitment
schemes. In particular, when considering their application within protocol #1, the value
is a seed (e.g., 128 bits) in case of the X-scheme, or a hash (e.g., 256 bits) in case of
the Q-scheme. This should not to be confused with the use of the word target in the
remainder of the paper, when referring to the target length as the number of bits being
flipped (protocol #1) or committed (protocol #2).

A prior X scheme. Based on prior work, Pass and Wee [PW09] described cut-and-choose
techniques to build X, Q and X&Q commitment schemes from regular commitment
schemes (in a setting of simulation with rewinding). The goal of their constructions is not
efficiency, but rather showing that one-way functions (which can be used to build PRGs
and regular commitment schemes) are enough to build X&Q commitment schemes, and
consequently also to build simulatable coin-flipping (based on the traditional template
protocol). Even though, in terms of communication, their constructions are inefficient as
a function of the length of the values being committed, they can be useful in protocol #1
because there they only need to be applied to short values, e.g., a seed (the X scheme)
and or a hash (the Q scheme). In the X scheme [PW09, §4], in the commit phase the
sender produces regular bit-string commitments (commit and open) in number equal to
twice the statistical security parameter, with each bit-string commitment being for values
as long as the target value. Specifically, each pair of such commitments is committing to
a pair of random shares of the target value; i.e., each pair of committed values XORs
into the target value. Still in the commit phase, one out of each two shares is opened —

Page 64 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Table 1. Communication complexity of X commitment schemes

bx 1¢ Direction of .
(Pa as (senczer) communication Commit phase Open phase
P — Pp o (21e°(1Y| + |€°1" o|e° (1"
— (21£°01)] +1%°(1")) 00
Pg — Pa o _
This paper: | py Py | (C+ox) (26| +[2°0N]) |(C+ox)[€°(1h)]
unoptimized
(Fig. 14) Pg — Pa kprG + (£ + 0x) —
Thi;gzperr Pa = Ps |Apah + (£ + ox)(1 + kerg + |€C(11)]) KRG + £
(Fig. 15) Ps — Pa KPRG + (ﬁ + Gx) —

Legend: € (regular commitment scheme); 6x (extractable commitment scheme); ¢ (length of
the target value being committed by %x — in the context of |protocol #1 fit is £ = kerc); |67 (1°)]
(communication required by phase p of regular commitment %', where p is either C (commit) or O
(open) — 1' is used in the case of a bit-commitment scheme); rprg (size of a PRG seed, e.g., 128
bits); kHash (size of a CR-Hash output, e.g., 256 bits); o (statistical security parameter, e.g., 40
bits); ox (length extension of encoded words (191), ensuring extractability up to statistical security
17 (see|§D.3.1 for further notes)).

this does not reveal any information about the committed value. However, rewinding
allows the simulator to obtain at least one such pair, thus extracting the committed value.
The open phase consists simply on opening the remaining shares and let the receiver
verify they each pair of shares XORs into the same value — the final accepted value.

Intuition for a new X scheme. In contrast with the above mentioned method, this sub-
section devises a X bit-string commitment scheme based on regular bit-commitments, i.e.,
such that the underlying regular commitments are only applied to single bits. Trivially, a
bit-string commitment could be replaced by directly committing to each bit separately,
but this would increase the number of commitment by a multiplicative factor equal to the
target length. The method devised below still increases the concrete number of regular
commitments, but not as in the trivial method. Instead, the already existing multiplicative
factor of the statistical parameter is replaced by a different statistical factor. In spite
of the increase, the result might still be potentially compensatory in scenarios where a
bit-commitment might be significantly less expensive than a bit-string commitment.*

% Tt is worth pointing out that there are efficient ways of instantiating bit-string commitments.
For example, Naor [Nao91] described a PRG-based bit-string commitment technique with
amortized cost, more efficient than a parallel use of bit-commitments. However, said technique
involves an error correction code, whose explanation would make the overall description
more cumbersome. Another typical instantiation of bit-string commitment is via application
of a cryptographic hash function to the concatenation of the value being committed and an
unpredictable suffix — this is hiding based on the assumption, not used in this paper, that the
hash of an unpredictable value is indistinguishable from a random value.

Page 65/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

The intuition follows from the use of an erasure code and a cut-and-choose approach.
The parties agree on a binary and linear encoding scheme (i.e., based on XOR), which
converts the vector of original bits into a new larger vector of checksum bits, with the goal
that the message be recoverable in case of erasure (i.e., omission) of some checksum
bits. Then, the sender splits each resulting checksum bit into a pair of random shares
(i.e., two bits whose XOR equals the checksum bit), and commits individually to each
share. This means that each share bit in isolation does not reveal anything about the
respective checksum bit. Then, the receiver (Pg) makes a cut-and-choose, defining for
each checksum which share must be opened immediately (i.e., in the overall commit
phase) by P, and which one will be opened later (i.e., in the overall open phase). This
overall commit phase does not reveal to Pg anything about the checksum bits, but allows
the simulator to use rewinding in order to obtain the information (i.e., the complementary
shares) necessary to extract enough checksums such that the target value (the vector of
original bits) is recoverable. Later, in the overall open phase, P, opens all remaining
shares, thus letting Pg combine the shares in each pair, thus obtaining all checksum bits
and verifying that all of them are consistent with the target seed.

In comparison with the example of DDH instantiation|of|protocol #1, a practical com-
putational advantage of the described instantiations based on regular bit-commitments is
completely avoiding the use of exponentiations (i.e., considering the practical assumption
that the underlying PRG, the CR-Hash and the regular commitment schemes do not
require exponentiations). In contrast, there are two disadvantages (the importance of
which may depend on the application and context): the commit phase becomes explic-
itly interactive®! (i.e., requires communication rounds); it involves a larger concrete
communication complexity.

Implicit setup phase (Fig. 13). In any of the subsequently defined X and Q commitment
schemes (possibly simultaneously for both, if used within the same protocol, e.g.,
protocol #1) both parties agree on a computational security parameter (e.g., 128 bits)
(168) and a statistical parameter (e.g., 40 bits) (169). Consistently with the security
parameters, the parties also agree on a regular bit-commitment scheme (i.e., hiding and
binding) (170). Furthermore, as needed, the parties know the target length ¢ of elements
to be committed in a X or Q manner, respectively the PRG-seed length (e.g., 128 bits)
(171) and the CR-Hash output length (e.g., 256 bits) (172), and as needed they also agree
on respective PRG and CR-Hash functions.

D.3.1 X commitment scheme — unoptimized
The new X commitment scheme is defined with succinct notation in Fig. 14/and in
textual form in the next paragraphs.

Commit phase.

31 Again, the term explicit is used to denote what does not depend on the instantiation of the
underlying primitives, in this case the regular commitment scheme. A protocol that is not
explicitly interactive might still be interactive in practice, namely if the underlying regular
commitment scheme is interactive.

Page 66,/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Implicit parameters (common input)

Pa,Pg : 17 (computational security parameter) (168) Pa, Ps : (PRG, kprg) (PRG function and seed-length) (171)
Pa,Pp : 17 (statistical security parameter) (169) Pa, Pg : (Hash, kuasn) (CR-Hash and its output-length) (172)
Pa, Pp : € (regular commitment scheme) (170)

Fig. 13. Implicit setup parameters for subsequent instantiations of ¢x and %g

Pa (sender) uses %x to commit (10) and open (16) value v (with £ = |v|) to Pg (receiver).

Commit

EX sid.cia PA (V) < (v, 0); Pp + 7] 1.c. Challenge-response.
/
1.a. Decide encoding. Py :c <+ {0,1}" (183)
Py :sp 8 {0, 1}"PRG (173) Pg — Pa : (challenge-positions, context, c) (184)
Pg — Pa : (seed-checksums, context, sg) (174) Pa,Pp: Dy = d;k kel
Pa,Pg :ox = [a(l,0)] (175) Fork € [Z/] : (Pa — Pp)
Pa,Pp il = £+ 0x 76) GCteia,k e, (D1)[Pa(Dic, D);Po < Di] - (185)
Pa,Pg : u = PRG[s](¢ x £) (code matrix) 177)
. oOpen (. . .
Pa,Pp: (up; ik €[],ict) (178) Xouid,cia (D) [Pa (v, v); Pp = v]:
Prith = Bicp(upi-si) i k€ 1] (179) Pa — Pp : (send-committed-value, context, v) (186)
. - 1—cyp . ’
1.b. Prepare bit-commitments of bit-shares. PasPy 2 D) = dy kel as7)
0 s , Fork € [¢] :
Py:d <% {0,1} : ke [¢] (180) o . o)
& D})[Pa(D},,D});Pp <+ D 188
Prcd =d) @ty kel (181) ateid ,cf, (Di)[Pa(Dis Dy)i Pe = Di] - (188)
Fork € [¢'],5 € {0,1} : (Pa — Pg) Py ity =dgo®dey:k €[] (189)
v . . 2
G, [PA(d],) — (d], d]);Ps — d}] (182) Py ity =" @iepe (ki si) i k€ [¢] (190)

Fig. 14. ¥x from regular bit-commitments (unoptimized). In the context of |protocol #1, this
X scheme may be applied to a PRG seed selected by Pa. Legend: xprg (length of a PRG seed);
context denotes the message context, including session identifier (sid), sub-session identifier (cfid)
and sender and receiver (e.g., P and Pg); ox (number of bits needed beyond the original length,
in order to allow extractability); ¢’ (extended length, i.e., length of the encoding) « (function that
determines the additional length, such that there is an overwhelming probability in o that the
boycott by P of opening certain shares of at most o checksum-bits (¢x) still allows the simulator
to recover the seed-bits; i.e., such that any subset of £ — o rows of the matrix has rank £).

— l.a. Decide encoding. Py (the receiver) selects an auxiliary random seed (173),
whose PRG expansion will be used to determine the form of certain binary check-
sums, and sends the seed to Pa(174). The number of checksums is larger than the
number of original bits by an additive factor that depends on the statistical parameter
and the target length (175) (see discussion below). The overall number of checksums,
denoted extended length, is determined locally by both parties (176) (or agreed
in a setup phase). Both parties locally use the auxiliary seed to pseudo-randomly
generate a bit-string of length equal to the number of checksum bits multiplied by
the target length (177). The resulting bit-string is then parsed to define, for each
checksum bit, a pseudo-random subset of positions of target-bits (i.e., of bits of the
seed being committed) (178). P uses each of these subsets to compute a checksum
as a XOR of the seed-bits whose position is included in the subset (179).

— 1.b. Prepare bit-commitments of bit-shares. Then, P, computes a random pair of
shares for each checksum bit, such that the XOR of each pair of shares is equal to

Page 67/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

the respective checksum bit (180)-(181) and also commits individually to each such
share (182).

— 1l.c. Challenge-response. Then, Py selects a random bit-vector of challenges (183),
defining for each pair of shares one of them to be opened, and sends it to P, (184).
P4 opens only the challenged shares (185).

Open phase. P, (the sender) sends the target value to Pg (186) and opens the comple-
mentary shares (187)-(188), i.e., those that remained unopened in the overall commit
phase. Pg combines each pair of shares into a respective (tentative) checksum bit (189)
and then verifies that the encoding of the target seed leads indeed to the obtained
checksums (190). Pg accepts the opening only if all verifications are successful.

Initial intuition for extractability. 1f P, never aborts, then the simulator (S) extracts
the seed of P, by receiving from P4, upon successive rewindings, the opening of both
shares for several checksum-bits, thus gaining the ability to reconstruct the full sequence
of seed-bits (solving a linear equation to find seed-bits from known XOR-relations with
the checksum-bits), before reaching the overall open phase of the X scheme. If P aborts
the first time that S asks for an opening of shares, then S |emulates an abort. However,
a problem may arise when P, does not abort in the first time but aborts on subsequent
attempts (upon rewinding), namely if P has a secret criterion for abort. This problem
is solved by selecting enough checksum bits such that the probability of non-abort by
P} is: either too small to be meaningful (i.e., negligible in the statistical parameter,
namely lower that two to the power of the statistical parameter); or it is sufficiently
high to prevent P} from being able to boycott the reconstruction of any seed-bit (i.e.,
because S across different rewindings is able to obtain both shares for enough cheksum
bits). Ensuring this property requires that the encoding matrix v has rank resilient to
o-erasures. The simulator is described in the paragraph below. The number of checksum
bits and an upper bound on number of rewindings are defined afterward.

Remark on possible optimizations. There are three optimizations that were avoided for
the purpose of simplicity of description and parameter definition.

— The encoding matrix (177), which defines how the checksum bits are calculated,
could be decided apriori, instead of being derived from a random seed proposed by
Pg (173). In theory, both parties could determine an optimal “Maximum Distance
Separable” matrix (i.e., defining an optimal erasure code) in the sense of having
the minimum size that allows reconstruction of the seed vector, regardless of o
checksums being adaptively erased by a malicious P}, (i.e., by boycotting the opening
of one share of each of o checksum bits).>?|Instead, the method described in Fig. 14
uses a (pseudo-)random matrix ((173)-(178)), subject to having a sufficiently large
length (as a function of the target length and the statistical parameter) — see further
discussion |below)). This makes the number of checksum-bits be larger than the
optimal, but still provides an efficient and feasible X commitment scheme from
regular bit-commitments.

32 At the time of writing this, the author does not know how to efficiently compute such an optimal
matrix for a practical target length xprg = 128 and statistical parameter o = 40.

Page 68 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

— In the overall open phase, P4 does not really need to send the target seed in clear
(186), since Pg can reconstruct it from the checksums (and verify consistency
with all the redundant information). However, this does not impose a significant
communication overhead and prevents Pg from having to invert the encoding matrix.

— The overall communication complexity associated with the several regular bit-
commitments can be reduced using a random-seed checking technique, as explicitly
described [further ahead|(§D.3.2).

The extractor-simulator.

— Initial execution. S (in the role of Py in a simulated execution) interacts with the
black-box P4 for a full commit phase, namely: receiving the commitment of the
shares of checksum bits of P, (182); sending a random challenge of positions of
shares to be opened (184); and finally receiving the respective partial opening (185).
If P} aborts without completing the overall commit phase, then S |emulates an abort
and the simulation ends. Otherwise, S knows one share of each checksum bit.

— Rewindings to obtain complementary shares. S then rewinds until the step of
selecting a random challenge of positions of shares (183), and sends a new random
challenge to P} (184). S attempts to proceed with the simulation until the end of
the commit phase. If P does not abort, then S learns complementary shares for
several checksum bits, thus becoming able to learn the value of these bits. If P3
has aborted, then S does not learn any new shares in this attempt. S proceeds with
more rewindings, using new challenges of positions of shares, until either: obtaining
enough checksum-bits to reconstruct the target seed of P :** or reaching an upper
bound of number of rewindings (discussed below).

Number of checksum bits. Out of the set of checksum bits, consider a subset whose
erasure would prevent the reconstruction of some seed-bit (e.g., the lines of the matrix
that have a 1 in each column corresponding to such seed-bit). Then, in the overall commit
phase, a malicious P} could decide to not-abort only when challenged to open a particular
share of each of those checksum bits. If these shares would indeed be challenged in the
first pass of the simulation, then P5 would initially not abort. However, P} would abort
after any rewinding that would challenge a different share of any of those checksum bits.
Thus, S would not in this case be able to reconstruct the mentioned seed-bit, i.e., Px
would effectively be able to boycott the reconstruction of a seed-bit. However, if this
boycott requires that the number of erasures is larger than o, then this would imply a
probability of not-abort lower than the negligible statistical threshold. In other words, S
could in such case safely abort after an adequate bound of number of rewindings.

To satisfy the above-mentioned condition, there must be an overwhelming probability
that the pseudo-randomly generated encoding-matrix « is such that the erasure of any
subset of o rows still leaves the remaining rows forming a matrix with rank kprg. Clearly,
the number of rows (i.e., the number of checksum bits) must be at least as high as the
number of columns (i.e., as the number of seed-bits) plus the number of erasable bits, or

33 Namely when the characteristic vectors corresponding to the obtained checksums form a matrix
with rank equal to the target length; i.e., when there are enough linearly independent vectors,
modulo 2, to solve the linear equation to obtain the seed-bits from the checksum bits.

Page 69/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

otherwise the erasure of any o rows would lead to a matrix with a number of rows (i.e.,
equations) smaller than the number of bits to decode. The requirement that the rank is
sufficiently high after any the erasure of any subset of ¢ requires yet additional number
of checksum bits (i.e., of rows), namely when o > 1, to ensure that enough random rows
(i.e., equations) are linearly independent.

An over-simplified estimated approximation to a concrete number of checksum bits.
Let extended length denote the number ¢’ of rows of the encoding matrix, i.e., the number
of checksum bits (191). From the set of available rows, the number of relevant subsets of
rows from which P} can choose one to erase (i.e., in the context of the above-mentioned
erasure-attack) is exponential in the statistical parameter (192). As a simplification,
inaccurate but serving the purpose of an approximate estimation of a sufficient number
of checksum bits,**|it is assumed that the erasure of any of these subsets would lead to a
new random matrix. Under this simplification, it is pertinent to consider the probability
that a random binary matrix with a number of rows equal to the original length plus an
added length has maximum rank equal to the number of columns (193). This probability
approaches 1 exponentially fast with the number of additional rows (194). Then, based
on the (contextualized) simplification that the removal of any subset of ¢ rows leads
to a new random matrix, it is easy to calculate the probability that out of the adequate
exponential number of random matrices at least one of them does not have the needed
rank — such probability should be lower than a negligible value in the statistical parameter
(195). The exponents in the equation can be removed by simple transformations and
approximations,*® until the logarithm of a binomial is compared with a linear function
of the parameters that define number of extra rows. The logarithm of the Binomial can
also be approximated?®| by an expression based on logarithms of simple quotients of
the relevant parameters (196). Taking in consideration that the number of rows after
erasure is always larger then the number of erased rows, some logarithms can be further
approximated?’ by quotients (197). An approximate estimation of a sufficient extended
length (i.e., number of rows of the encoding matrix) can thus be numerically calculated
as the minimal integer value that satisfies the mentioned equation (198). For example,
for a target length of ¢ = 128 bits and a statistical security of o = 40 bits, the resulting
(estimated approximation of) extended length is £’ = 391, i.e., ox = 223 beyond the
seed-length plus the bits of statistical security (199). If the target seed length were
£ = 256 bits, the resulting extended length would be ¢/ = 449, for the same statistical
security of o = 40 bits.

3% The number of rows can be lowered, based on a more rigorous analysis of probability, consider-
ing the inter-dependencies between the subsets from which P3 can choose.

35 Based on the approximation log(1 — x) forgo —x
*® Stirling’s approximation: log n! & n(log(n) — 1) + log(27n),/2
for 0<x
37 Based on the approximations: y log(14 /%) P x—2?/(2y)+23/(3y?) and log(1 /0 +

for k+a>o

1/(s+a)) "~ log(1/o) +0/(k+a) = 0*/(2(k + a)?)

Page 70/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

'=l+a+o (191)

Bin(ﬁ',a):'L:iHv (C+a+1i) (192)
cl(l+a)! olllicp)

R(¢,a) = Prob {u = <uk <3401} cke0+ a]> : Rank(u) =7 4 (193)

R(t,a) ~1—27° (194)

1— R(£,a)®™¢7) < 977 = log(Bin(¢', o)) > (a — o) log(2) (195)

=LB

s k+a 1 1 1
LB =~ (k+ a)log (1 + m) + (s)log (1 + S) + 3 (log <§ + m) — log(27r)> (196)

- s—1 s(4s —3) k+a 1
LB~s (1 2k ta) 120k +a) + log (1 + .)) 210g(27rs) (197)
¢ =a(l,0) = [min(¢' : ¢ satisfies (195))] (198)
ox=l-l=a+o (199)

As mentioned, an optimal (i.e., minimal) extended length could be achieved by
agreeing on an optimal encoding matrix in a setup phase. This would also have the
benefit of requiring one less communication step. Clearly, the number of 1’s in each
column — each column corresponds to a seed-bit — must be at least one plus the number
of bits of statistical security, such that the erasure of any subset of rows — each row
corresponds to a checksum bit — leaves intact at least one row with a 1 in each column.
When o > 1, this number of rows is not enough to ensure that the resulting rows contain
a subset of enough mutually linearly independent (modulo 2) rows. If one were to
assume that the first £ rows correspond to the identity matrix (i.e., exactly one 1 in each
column), and assuming that the extra rows have approximately half 0’s and half 1’s, it is
suggestible that the number of extra rows must be at least equal to twice the statistical
parameter, less one. However, the actual minimum may be larger — this is not further
discussed herein and is left as an open problem the determination of optimal matrices
with 128 and 256 columns, resilient to arbitrary erasure of ¢ = 40 rows.

Number of non-aborting rewindings to extract seed of P;. Hereafter it is considered
that P has not aborted in the first step of the simulation (i.e., before any rewinding).
Upon each rewinding, an opening of shares in new challenged positions allows Py to
recover more checksum bits, and thus allows a faster reconstruction of the full seed, even
in the case where P} may try to boycott some openings. Thus, there is a tradeoff between
the expected number of rewindings and the number ¢’ of checksum bits. Assuming a
probability of abort of at most two to the power of minus o, at least £’ — o can be opened
for both shares (i.e., assuming that P can at most boycott ¢ checksum bits). After a
first execution where one share is opened for each bit position, it is expected that each
subsequent rewinding (with a new pseudo-random challenge of positions of shares) that
does not lead to abort will lead to the opening of the complementary shares in about half
of the remaining non-boycotted unopened bits. For example, for £ = 128 bits of original
target value, and ¢’ = 391 checksum bits of which at most o = 40 are boycotted against
extraction, it is expected that about 176 new shares are opened in the first non-abort
upon rewinding. In such case, S could then recover the full 128 bits of the seed of P}
if the respective 156 checksums form a matrix with sufficient rank —i.e., with at least

Page 71 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

128 linearly independent equations modulo 2. However, if that is not the case, then S
attempts again until obtaining a new opening, from which about 88 new complementary
shares are expected to be obtained. In the limit, for a worst case scenario matrix with
erasures, S could have to obtain all # — o checksum bits. Nonetheless, this can be done
with overwhelming probability after non-abort rewindings in number logarithmic in the
number of rows and linear with the statistical security parameter.

Explicit upper bound for number of rewindings. Overall, if P, has a probability of
non-abort equal to two to the minus 40, the expectation is that about 1 in every 24°
attempts will result in a non-abort by the simulator. For higher probabilities of non-abort,
the expected number of rewindings until another non-abort is correspondingly inversely
proportional. Since for lower probabilities it is not necessary to extract the seed, it is
adequate to limit the number of rewinding to about two to the minus 40 rewinding
attempts per each non-abort case. Thus, overall it is defined that the simulator uses an
internal counter, to count the number of rewindings, such that it can limit itself to a
number of rewindings that is at most the inverse of the threshold probability (two the
additive inverse of the statistical security parameter) times the expected needed number
of non-abort rewindings that decreases to a negligible value the probability of not
recovering a subset of needed checksum bits (this depends on the matrix, but is at most
logarithmic in the number of rows). In this way, and considering that a simulation with
initial abort does not require any rewinding, the overall expected number of rewindings
is equal to the expected number of non-aborting rewindings.

D.3.2 X commitment scheme — RSC optimization

Intuition for optimization. Using a random-seed-checking (RSC) type of technique,
the previous protocol can be adjusted to significantly reduce communication complexity.
The initial intuition is that the generation of elements used in the cut-and-choose, namely
the bit-commitments (for simplicity assumed hereafter as non-interactive) of bit-shares,
can themselves be generated from a single short seed (hereafter denoted RSC-auxiliary
seed). The complementary intuition is that a CR-hash of several bit-commitments is
itself a commitment of all the committed bits. Thus, the early opening of the check
bit-shares (only one per cheksum bit), still within the overall commit phase, can be
reduced to revealing other short seeds (themselves generated from the RSC-auxiliary
seed, and each of them used to generate the bit-commitment) and then verified against a
global hash. Then, the final opening (i.e., in the overall open phase) can be achieved by
simply revealing the original committed value (a seed, in the current context) and the
RSC-auxiliary seed from which everything else (i.e., all bit-commitments and all hashes)
can be determined. The optimized scheme is described with succinct notation in Fig. 15
and in textual form in the next paragraphs.

Commit phase.

— l.a. Decide encoding. P, and Py agree on an encoding matrix (200), in a way
that there is an overwhelming probability that it is rank resilient to o erasures.
For example, this might be decided as a sufficiently large pseudo-random matrix

Page 72/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Pa (sender) uses %x to commit (10) and open (16) value v (with £ = |v|) to Pg (receiver).

,Commit

X vid wia [PA (V) = (v,0); Py T2 Po — Pg : (global-hash, context, h) (212)
1.a. Decide encoding. 1.c. Challenge-response.
Pa < Pg : u (decide encoding-matrix) (200) Ps — Pa:c P {0, 1}1’ @13)
Py :ox = a(, o) (201) Pg — Pa : (challenge-positions, context, c) (214)
Pa: 0 = #ofRows(u)(= €+ a(l,0)) (202) Fork € [[/] . (Pa — Pg)
(e.g., using steps (173)-(178)) Py — Pg : (bit-share, context, dk,ck) (215)
Pa ity = @ze[e](uk,L vsi) k€ [ZI] (203) Po — Pp : (help-seed, context, 7'k_(.k) (216)

1.b. Prepare help seeds and global hash. Pa — Pg : (complement-com, confext, Ek,c] L y @1

? K -
Pa : T < {0, 1}"PRG (RSC-auxiliary seed) (204) 1.d. Verify responses.

Pa : U = PRG[T]((1 + 2rpra) - ') Q05) Fork € [¢'] : Py :

Parse

Pai (D e (0,1}, Ve oayma) B 20 Aie, = C " ke, (d ey @18)
Pa: (dpo:kell]) D (207) CR-Hash((dy,; : k € [¢'],5 € {0,1})) =" h (219
Pa:di1 =ty ®dro: kel (208)
(dy, ; are shares of the checksum-bits ¢;,) C"'”)((),g;l‘cw (D) [Pa(v,v); Pp < v]:
Pp:(ri;: ke, je{0,1}) Frse v, (209) Pa — Pg : (send-auxi-seed, context, T') (220)
(7%, 7 are denoted help seeds) Po — Pg : (send-committed-value, context, v) (221)
Fork € [Z'],j € {0,1} : (Pa) Pg : Reconstruct h from (s, u, T") (steps (203)-(211)) (222)
Pg:h="h (223)

Ek,] _)Cumm“[”'k,]](dk,]) @10)
(Tk,j = dj, ; is used as randomness)

h = CR-Hash({dy,; : k € [¢'],j € {0,1})) (21D

Fig. 15. ¢x from regular bit-commitments (RSC optimized). Legend: legend of Fig. 14/ also
applies. €™ *[(r ;)] (dk,;) denotes a commitment (locally produced, non-interactively) of
share-bit di,; whenever the secret auxiliary input r,; is pseudo-random (i.e., 7x,; = d, ;)

(as described for the unoptimized protocol in Fig. 14), or alternatively by simply
agreeing on a suitable matrix pre-computed in a setup phase (for the particular target
length and statistical security parameter). The encoding matrix is parameterized by
an extended length ¢/ (number of rows), which is larger than the number of target
bits (number of columns) by a statistical parameter ox sufficiently larger than the
statistical security parameter o (201), as already discussed §D.3.1. If the matrix is
defined deterministically (or in a setup phase) simply based on the target length ¢ and
the statistical security parameter o, i.e., without depending on any randomness from
Pg, then it is actually not required that Py learns immediately the matrix. Instead, it
can locally calculate it later (215) once necessarily learning the extended length of
the encoded vector. Nonetheless, for simplicity it is assumed that both parties know
in advance the length ¢ of the vector of bits being committed and respectively decide
an encoding matrix.

Based on the encoding matrix, P, (the sender) computes the checksum bits of the
seed being committed, each determined as the inner product (modulo 2) of the seed
with the respective row of the encoding matrix (203).

— 1.b. Prepare help seeds and hash. Then, P, locally selects an auxiliary secret and
random seed (204) that will be used as generator in the RSC technique. P» expands
the auxiliary seed (205) to obtain an initial vector D of bits and enough additional
bits V' for several help seeds (206). The initial vector of pseudo-random bits is

Page 73 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

parsed as the shares (index 0) of the checksum bits (207). The complementary shares
(index 1) are calculated by XOR with the respective checksum bit (208). Then, the
remaining pseudo-random generated bits are parsed into help seeds in number equal
to twice the number of checksum bits (209). Then, P4 locally produces commitments
to all the bit-shares of checksums, using an underlying regular (non-interactive)
bit-commitment scheme, using the respective help-seed as the only needed source
of randomness (210).%® It is paramount that these commitments are not yet sent to
Pg. P4 then calculates a global hash of the concatenation of all bit-commimtents
(211), and sends the result to Pg (212).

— l.c. Challenge-response cut-and-choose. After receiving the global hash, Pz com-
putes a random vector of challenge bits (213), with one such bit per checksum index,
and sends it to P, (214). Still as part of the commit phase, P, answers to the cut-
and-choose challenges, as follows: For each challenge bit, P5 sends to Pg: the check
bit-share of the respective checksum bit, but not the complementary share (215); the
help seed corresponding to the check share, but not the help seed corresponding to
the complementary share (216); the commitment of the complementary share, but
not of the check share (217).

— 1.d. Verify responses. After receiving the replies from Ps, Py locally computes,
for each challenge bit: the commitment of the revealed share, as would be obtained
if using the revealed seed as randomness (218). At this point, Pg has a candidate
commitment for each share of each checksum bit. Using these values, Pg computes
a candidate global hash (219). If the candidate global hash does not match with
the global hash previuosly received from P4, then Py rejects the commit phase and
aborts. Otherwise, if the global hashes match then Py accepts the commit phase.

Open phase. To open, P, (the sender) simply reveals the RSC-auxiliary seed (220) and
the committed value (in the current context also a seed) (221). Using the RSC-auxi seed
and the committed value, Py reconstructs the global hash and verifies it against the one
calculated in the commit phase (222). If the values match, then Py accepts the opening,
other wise it rejects it (223).

Intuition for extractability. Extractability is obtained in the same way as in the unopti-
mized version of the protocol. Specifically, for each completed commit phase without
abort by a possibly malicious P}, the extractor simulator learns one share for each check-
sum bit. After enough non-aborting attempts, S is able to recover enough checksum bits
to reconstruct the value committed by Pj.

Intuition for hiding property. In the commit phase, for each checksum bit only a single
random share is revealed, which does not contain any information about the committed
bit. All other shares are committed, which means the overall hiding is reduced to the
hiding property of the underlying regular bit-commitment scheme.

38 For simplicity, it is here assumed that the underlying regular bit-commitment scheme is non-
interactive. Interactive schemes could be considered with a more intricate description.

Page 74 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Table 2. Communication complexity of Q commitment schemes

%Q(ln““h) Direction of .
Py as sender | COMMunication Commit phase Open phase
Py — P 0 x o) (4N + 2/€° (1! 0 % o) €01
[PW09] §6] B A () (4l +21g°(h)]) ()€ (1))
P Py €00+ 160 -
This paper Pg — Pa (€+ 0q) (21°(1")]) + oq + 2kpre + 0% (€ + o) (1 + |E°(1h))
(Fig. 16) — — -
Pa—Ps | ierg + (e + ox)(2AEC()| + [0 | mewe +ox|€0(1)]
This paper P. — P (£ + oq)x
ash + 2 + o0+
(RSC) B A KHash + 2KpRG + 0Q + 0X (14 1)
(Fig. 17) —
Pa — P |KprRG + KHash + (KprRG + 0%) (1 + Kpra + [€7(17)]) 2KPRG

Legend: legend of Table|1 applies; %, (equivocable commitment scheme); oq (statistical term
such that the probability of breaking the binding property is less than 277 — see|§D.4.1 for details.)
The mentioned communication sizes already include instantiating % (used in Fig. 16 Jand|Fig. 17)
by the complexities calculated in Table | 1|(respectively from Fig. 14|and Fig. 15). *Note: the
mentioned communication from P4 to Pg for the commit phase of %, [PW09! §6] is assuming
that the parallelization across £ bits uses the same challenge for all cases).

D.4 Q commitment schemes from regular bit-commitments

This subsection considers Q commitment schemes based on regular bit-commitments.
First, it gives a brief description of a method from prior work and describes an intuition
for communication improvement. Then it specifies the new protocol, starting with an
unoptimized version (§D.4.1) and then introducing a RSC optimization (§D.4.2) based
on explicit use of a PRG and CR-Hash (both already required in protocol #1). The
comparison in terms of communication is summarized in Table 2| The schemes use a
respective (unoptimized or RSC-optimized) underlying X commitment scheme, which
can be instantiated by regular bit-commitments as described in the previous subsection.

A prior Q scheme. The Q commitment scheme from Pass and Wee [PW09, §6] (also
based on [Kil94, §2.1]) is realized by parallelizing separate Q bit-commitments (commit
and open) of each bit of the target value. Each such Q bit-commitment requires producing
regular bit-commitments in number proportional to (namely four times) the statistical
parameter. The intuition starts with each target bit being represented as a two-by-two
matrix of bits, where the top and bottom rows are equal, and where each row is composed
of two random bits (shares) that XOR together into the target bit. The sender commits
individually to each of the four bits in each representation, and does so for a number of
representations equal to four times the statistical parameter, for each rarget bit being
committed in a Q manner. Then, the sender is asked to open one random column in each
instance, with the column position being chosen by the receiver (who had previously
committed to the choice), to show that the column was committing two equal bits. While
this does not reveal anything about the committed farget, the receiver gains statistical
confidence that at least one matrix is composed of two identical rows (i.e., that at least

Page 75/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

one of the unopened columns is also committing two unknown but equal bits). In contrast,
a simulator in the role of sender in a simulated execution would have been able to guess
the challenge of the receiver (by means of non-locall rewinding), and so could have
built with two different bits each of the unopened columns. Then, in the overall open
phase, the sender randomly selects one row-position (top or bottom) and opens the
corresponding bit in the unopened column across all instances, thus letting the receiver
compute the target bit (equal to the XOR of the two bits in the row). In contrast, the
simulator has different bits in each row so it is able to equivocate the opening to any
intended bit.

Intuition for a new Q scheme. The above described scheme achieves the intended Q
property, but does so at the cost of a quadratic number of bit-commitments, namely
four times the target length multiplied by the statistical parameter. The new Q-schemes,
devised below, improve communication complexity by making the statistical parameter
become additive with (twice) the length of the target value being committed; i.e., bit-
commitments are needed only in number bounded by a function linear in the length of
the committed value and in the statistical parameter.

Intuitively, equivocability can be considered for each bit in isolation, giving Py the
ability to open each bit as a O or a 1. As a starting point, this suggests that Py (the
sender) should produce two commitments for each target bit and later open only one.
In this approach, a simulator (S) would be able to equivocate by controlling which
commitments to open (0 or 1), whereas a real Py (the sender) would not have control
over which commitments are selected for opening and so could not choose a value
to equivocate. Still, if a target bit would be undefined, i.e., if a malicious Pg would
commits to two different values for the same target bit, then the final opening could
vary depending on the challenge selected by P . In order to ensure binding — also in this
flavor of having the committed value defined at the end of the commit stage — the actual
solution involves also committing to additional check-sum bits that must later allow for
a overwhelming probability of error detection in case there is any inconsistency. This is
somewhat similar to what was considered for the X schemes, but with the simplification
that the checksums do not need to ensure ability to reconstruct the original vector of
bits. Consequently, the number of checksums (i.e., besides the original bits) needs to be
only linear with the statistical parameter. In the benefit of statistical security, a way if
found to have P, commit to the pairs of additional bits (i.e., the step where it decides
about honestly committing to the same bit or maliciously committing to different bits)
before the actual checksum-subsets are defined. This is achieved by committing to pairs
of help-bits and only later, after learning the checksum subsets but still in the overall
commit phase, revealing the respective differential bits that transform the help-bits into
the checksum-bits. The remaining subsection describes in more detail the unoptimized
and RSC-optimized versions of the mention new Q scheme.

D.4.1 Q commitment scheme — unoptimized

The unoptimized Q commitment scheme is described with succinct notation in Fig. 16
and in textual form in the next paragraphs.

Page 76 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Commit phase.

— Commit target and help bits. Py (the sender) defines an adequate expanded sta-
tistical term o (224), proportional to the statistical parameter (with multiplicative
factor 2.4, as specified ahead). Pg then selects oq help bits (225)). Then, Pg commits
twice to each target bit (226) and twice to each help bit (227).

— 1.b. Decide and commit cheksums. P, selects a random PRG seed (228) (denoted
seed-for-subsets), which will be used to determine how the ckecksum bits will be
calculated. PA sends the seed to Py (229). Both parties use the seed-for-subsets to
generate a pseudo-random bit-string with a number of bits equal to the product of the
target length and the expanded statistical term (230). Then, the obtained bit-string
is parsed as a sequence of vectors uy, each having the target length ¢ and being
defined as a characteristic vector where a bit 1 corresponds to inclusion in a subset,
whereas 0 corresponds to non-inclusion (231). The number of vectors is thus equal
to the expanded statistical term oq. Equivalently, this list of vectors corresponds to
an encoding matrix (of elements uy, ;). For each vector, Py then calculates a XOR of
the target bits (of the message being committed) that were included in the respective
subset (232), i.e., calculates checksum bits t; in number equal to the expanded
statistical term. Then, Py calculates the differential bits (z;) that are required to
change the previously committed help bits (wy,) into the now calculated checksum
bits (t.) (233). Pg sends the vector of differential bits to P (234).

— 1.c Prepare components for later opening. P, selects a new random seed (235)
and commits to it to Pg, using an extractable commitment scheme (236). It is
assumed that this scheme is based on regular bit-commitments, e.g., as defined in
the previous section (Fig. 14} |Fig. 15).

Open phase.

— 2.a. Finalize decision of positions to open. Py (the sender) selects a random binary
vector with an extended length equal to the number £ of target bits plus the number
oq of help bits (237) and sends it to P» (238). P, then opens to Py the previously
committed seed (239). Locally, each party uses the seed opened by P4 to generate a
random bit-string with the extended length (240). Locally, each party XORs the two
strings with the extended length (241), obtaining as result a vector specifying for
each target bit and each help bit which commitment (one out of two) will be open.

— 2.b. Open selected positions. Pg proceeds to open one out of two commitments of
each target bit (242) and each help bit (243)-(244), in the position specified by the
challenge vector determined above. Then, P, computes the tentative checksums (tx)
as the XOR between the differential bits (z;, previously received) and the respective
tentative help bits (w; ., just opened by Pg.

— 2.c. Verify checksums. Finally, P4 computes the adequate checksums of the opened
target bits and verifies if they are consistent with the respective tentative checksums
obtained in the previous step (246). If all verifications are correct, then P, accepts
the opening of the tentative target bits, otherwise it rejects.

Page 77/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Py (sender) uses éq to commit (8) and open (13) value v (with £ = |v|) to P4 (receiver).

CaarcalPs Ui Py(v) « (u,7)]: CQa ia(P)[Pa = v Py(x) (v,)]:
La. Commit target and help bits. 2.a. Finalize decision of positions to open.

Pa,Pg : 0g = B(0) (as defined in (248)) (224) Po:cp ° (. 1}5+<TQ 237)
Py :w <> {0,1}°Q (help vector) (225) _ s
Fori € [¢],j € {0,1} : (Ps — Py) PBO% Pa : (contrib-pos, context, cg) (238)

~Open . 55): 3
gy [Pa Ty Po(vi) (g5, T0,)] (226) Cx id,cia,0 [PA(52) < (82,52); Pp + 52] (239)
Fori € [0g],j € {0,1} : (P5 — Px) Pa,Pp : ca = PRG[s2](£ + oq) (240)
Pao,Pgp:c=ca Dcr (241)

Camint k2 [Pa < Wi 55 Pa(wi) < (w; 5, @i,5)] (227)

1.b. Decide and commit checksums. 2.b. Open selected positions.

Fori € [¢] : (Pg — P4 : open target bits)

Pp i sy < {0,1}"PRG (228) oen
Py — Pg : (seed-subsets, context, s1) (229) Cridcid, 1,71 (Vise;) [Pa = vis Po(uy)] @4
Pa,Ps : u = PRG[s1](¢ X 0q) (230) Po,Pp i cp = coqk i k€ [oq] (243)
Pa,Ps ¢ (wns i k € [o0], i € [€]) Pase @1 For k € [oq] : (Pg — P4 : open help bits)
Open _
Py ity = @icpe (up,i - vi) @ k € [oq] (232) cf‘.‘j’_(.,d,,c_cw(wk,cil)[PA — wiiPpwy, o)] (244)
Pp:zp =t Dwg : k € [o (233)
Bk k X g X L _Q] 2.c. Verify checksums.
Pg — Pa : (differential-bits, context, z) (234)
Paity =2k @ wy otk € [oq] (245)
1.c. Prepare components for later opening. k .

. Pa: @icpg(up,i-vi) = tr 1 k€ o (246)
Pu : 52 <5 {0, 1}PRG (235) el (7]
CR gm0 [Pa(s2) = (35,52); Pp < 2] (236)

Fig. 16. 6o from regular bit-commitments (unoptimized) In the context of |protocol #1, this
Q scheme may be applied to a CR-Hash output computed by Pg. The sequence of steps
(236),(238),(239),(241) corresponds to a coin-flipping, simulatable for the case of corrupted
P4, but not simulatable for the case of a corrupted Pg. Steps (228)-(230) could be replaced by a
simple select-and-send of a random bit-string of positions of adequate length, at the expense of
a slight increase in communication. Parameter g ~ 2.4c (the number of help/checksum bits,
besides the target bits) is chosen to ensure that the committed value is defined at the end of the
commit phase. The protocol is described based on a X commitment scheme that can be instantiated
based on regular bit-commitments (e.g., as shown in Fig. 14/and Fig. 15).

Intuition for equivocability. In the commit phase, for each pair of commitments associ-
ated with each target bit v; (226) and with each help bit w; (227), S in the role of Py
in a simulated execution commits to a O and a 1, in a randomly permuted order. Later,
in the open phase, S will be able to control the result of the embedded coin-flipping
((236),(238),(239),(241)) that determines the components that need to be opened in each
position of the extended vector. Since, in this simulation, each bit is committed with two
components, one as 0 and another as 1, S will be able to open any target vector and a
respective consistent checksum vector of bits.

Intuition for binding. Once the pairs of bits (i.e., what should be a pair of copies of the
same bit) are committed ((226), (227)), even a malicious Py can later only open a bit that
it had committed to ((242),(244)). The malicious Py may for some pairs commit to two
different bit-values, which means the final value is not actually determined at the end
of the commit phase. These cases are hereafter denoted as bad instances. The scheme
intends to ensure binding also in the sense that at the end of the commit phase there is

Page 78 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

at most one target vector that has noticeable probability of successful opening, despite
whatever malicious behavior by Pj.

For simplicity, assume that Pg produces only one bad target instance, e.g., for the
first target bit it commits to one component as 0 and the other one as 1. Then, assume
that for the help bits it does the same for a particular subset, thus creating a subset of bad
help-bit instances. Since each diffeerential bit imposes a single mapping between each
help-bit componente and a respective checksum-bit component, it follows that the subset
of bad help-bit instances has a direct correspondence with a subset of bad checksum-bits
subset. If one of the good checksum-bit instances includes the single bad target bit in its
XOR-subset, then there is at most one target vector that can be successfully opened, i.e.,
binding is ensured in such case. Thus, in the case of a single bad checksum bit, breaking
the binding property requires that Py selected bad target bits for at least all checksum-bit
positions that include the bad target bit. However, in the devised protocol the checksum
subsets are (on purpose) only defined (231) after P has committed to the target bits and
the help bits, i.e., at a time where Pg has already determined which ones are good and
which ones are bad.

Assume now that all checksum-bits instances that use the bad target bit in their XOR-
subset are themselves bad. For example, P§ could ensure this by making bad all the
help-bit instances, but at the cost of reducing the probability of successful opening to a
negligible amount (two to the minus the number of help bits). Each of the bad checksum
bits contributes with a multiplicative factor 1/2 for the probability of failed opening
(hereafter denoted as error), because in each such position each possible component
has 1/2 probability of being chosen for opening. On the other extreme, if all help-bit
instances are good, then binding is never broken. Thus, the optimal behavior for a
malicious Py is somewhere in the middle, with P} selecting several good and several bad
help-bit instances. Once the number b of bad checksum instances built by P} is fixed,
the probability of error (i.e., of successful opening in spite of inconsistent commitments
of target-bits or help-bits) is given by (247), where n is the total number of checksum
instances.

b
Probger(n, b) = 27 () x ijln! /((n—)5 (247)

This is the result of multiplying 1/2 for each bad instance, and then multiply the
probability that the b bad instances contain all the checksum instances that include the
bad target bit in their XOR-subset. The protocol only needs to use the minimal statistical
term o that implies a probability of error detection consistent with the statistical
parameter (248).

oq = B(o) =min(n : 277 > max(Probgye(n,b) : b € {1,...,n})) (248)

For example: with o = 91 or o = 301 checksum instances, out of which Py would
optimally produce b = 31 or b = 301 bad ones, respectively, the statistical security
is slightly more than o = 40 bits or 0 = 128 bits, respectively. The method could
be improved (e.g., selecting the encoding matrix u from a different distribution), but
the above analysis is sufficient to show that security can be obtained with a linear
number of checksum bits, e.g., with 0q = 2.40 being enough for all practical parameters

Page 79/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

of statistical security o. The case where Po produces more than one bad target bit
commitment does not favor Pj, so the above analysis is enough.

D4.2 Q commitment scheme — RSC optimization

Intuition. Similarly to what was shown with the X commitment scheme, a RSC approach
can also reduce the communication complexity of the Q unoptimized commitment
scheme. The intuition is almost the same: in the commit phase, the sender sends a
global hash instead of sending a sequence of commitments for each instance of the
cut-and-choose; in the open phase, the opening of each instance corresponds to just
sending a seed. The bulk of the communication is for the commitment instances that do
not need to be opened, as the verification of the global hash requires knowing the actual
commitment values for those instances. There is however a difference. For equivocability
the simulator needs to essentially “lie” about some commitments, so the final opening
cannot be of a single seed for all the instances, but rather of a seed for each instance that
needs opening. The RSC-optimized Q commitment scheme is described with succinct
notation in Fig. 17|and in textual form in the next paragraphs.

Commit phase.

— l.a. Prepare seeds, commitments and global hash. Steps similar to those in the
corresponding stage of the unoptimized protocol (Fig. 16), but with the difference
that the commitments are produced locally by Py (the sender), i.e., not sent to Pa.
Then, Py computes the CR-Hash of the concatenation of all commitments (256) and
sends it to P (257).

— 1.b. Decide and commit checksums Same as in|corresponding stage of the unopti-
mized protocol (Fig. 16) — P sends a random seed to Pg, then Py uses it to calculate
the checksum bits and then sends the respective differential bits to P4.

— l.c. Prepare components for later opening Same as in corresponding stage of the
unoptimized protocol (Fig. 16) — P5 commits her contribution to a coin-flipping.

Open phase.

— 2.a. Finalize decision of positions to open Same as in corresponding stage of the
unoptimized protocol (Fig. 16) — both parties learn a binary vector of challenges,
specifying for each position which component should have its seed and bit revealed
— the complementary component will have its commitment revealed.

— 2.b. Open instances and verify global hash Py (the sender) sends the target vec-
tor (272) and the help vector (273) to Po. Then, Py concatenates the challenged
component of all target-bit commitments (274) and of all help-bit commitments
(275), including only the challenged components, and sends it to Py (276). Then,
Pg concatenates the random seeds corresponding only the complementary of the
challenged compoenent (277) and sends it to Py.

P, is now able to reconstruct the global hash. First, it uses the received targets-bits
and respective seeds to recompute the corresponding target-bit commitments (279).

Page 80/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Py (sender) uses 6 to commit (8) and open (13) value v (with £ = |v]) to Pa (receiver).

Comiea[Pa — T3 Pp(v) < (v,7)): Cen a () [Pa = v Py(@) + (v,0)]:

1.a. Prepare seeds, commitments and global hash. 2.a. Finalize decision of positions to open (as in (237)-(241)).

Ps : 0q = (o) (as defined in (248)) (249) Ps:cp «° {0,1}°F7Q (267)
Pg:w P {0, 1}7Q (help vector) (250) Pg — P4 : (contrib-pos, context, cg) (268)
Ps iy — {0,1}"PRG : k€ [0+ 0gl,j € {0,1} (251 GxPcia,0[Pa(52) 4 (35,52); Py = B2 (269)
(RSC-auxiliary seeds for commitments of bits) Pa,Pg : ca = PRG[s2](£ + oq) (270)
Po T, = M)(v) i € (0.5 € {0.1) @52) PaPyic=ca®en @
Pg:V = (v;;:i€[€],je€{0,1}) (253) 2.b. Open instances and verify global hash.
Pp : Wy,; = GO ek) (w) s k € [0g], 4 € {0,1} (254) Pg — Pa : (target-bits, context, v) 272)
Py W 5k.; k€ [ogl, 4 € {0,1}) (255) Pg — Pa : (help-bits, context, w) (273)
Py : h = CR-Hash(V|[W) (256) Py V' = (i, si€L) @714
Ps — Pa : (global-hash, context, h) (257) Py : W' = <W}c,ck 1k € 0q) (275)
1.b. Decide and commit checksums (as in (228)-(234)). Pg — Py : (half-commitments, context, (V/" W) @16)
Pa: sy ¢ {0, 1}7PRG (58) Pg: R=(rg1-¢, : k€ [l+0q]) (277)
Ps — Pp : (seed-subsets, context, s1) (259) Pg — P4 : (half-seeds, context, R) (278)
P, Pp : u = PRG[s1](£ X 0q) (260) Pa:Ti1oc; = €M ri1—c,) (vs) 1 i € [(] (279)
Pa,Ps : (upi : k € [oo),i € [€)) @61) Prik =L+ k:k € [oq] (280)
Py it = Dicpe (ur,i - vi) : k € [0q] (262) Pa i Wh1m, = "™ 1y g, J(wr) K € [o0] (281)
Py iz =th @ wk 1 k € [og] (263) Pa:V =(m;:i€l,je{0,1}) (282)
Pg — Pa : (differential-bits, context, z) (264) P W = (wh,; k € [ogl.4 € {0,1}) (283)
1.c. Prepare components for later opening (as in (235)-(236)). Pg : CR-Hash(V||W) ="h (284)
Pp:so {0, 1}"PRG (265) 2.c. Verify checksums.
G o[Pa(s2) < (s3,52); Py < 53] (266) Paity =2k ©wy ik € [og] (285)
Pa s Biep(uk,ivi) = ti : k € [og] (286)

Fig. 17. %o from regular bit-commitments (RSC-optimized). Legend of Fig. 16 applies.

Then, it uses the received help-bits and respective seeds — the ones in the remaining
positions of the vector of seeds (280) — to recompute the corresponding help-bit
commitments (281). In possession of bit-commitments corresponding to the two
components (i.e., supposedly copies) of each target-bit (282) and help-bit (283), P
computes the hash of their concatenation (in the appropriate order) and compares it
against the global hash (284) that was received in the commit phase. If the values
are not equal, then P rejects the opening phase; otherwise it continues.

— 2.c. Verify checksums. Finally, P5 computes the expected checksums as the XOR
between the tentative help-bits and the respective differential bits (285), and com-
pares the result to what is obtained by applying the encoding procedure to the
respective target bits (286). If all previous comparisons any of the previous compar-
isons yields inconsistent values, then P4 rejects the opening. Otherwise it accepts
the target vector received from Pg.

E Analysis of UC commitment scheme.

This section analyzes in more detail some aspects of the new UC commitment scheme
(X&Q and one-pass simulatable), based on a PRG, a CR-Hash and two underlying
schemes for X-commitments and Q-commitments. The scheme is proven to securely

Page 81/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

realize the ideal multiple commitment scheme functionality in the universal compos-
ability (UC) framework [Can01], in the hybrid model where the sub-protocols for
X-commitments and Q-commitments are replaced by respective ideal commitment func-
tionalities. §E.1| gives the proof of security, by showing suitable simulators, assuming a
concrete instantiation of authenticators. §E.2|describes the security and requirements of
the authenticator mechanism. §E.3|considers concrete instantiations of authenticators.

E.1 Simulation of protocol #2

Simulation of interaction between environment Z and real adversary A. The protocol
in the ideal world starts when Z activates the parties to begin the protocol. All messages
that S receives from Z are relayed to the real adversary A (a black-box), as if they
were coming directly from Z. Correspondingly, every message that A sends to Z are
intercepted by S and then relayed to Z as if originating from S.

E.1.1 Simulation for corrupted P;. The extractor-simulator S X creates a simula-

tion, accessing A as a black-box; letting it believe that it is in the real world controlling
Pj.

— Commit phase. Once the protocol starts, S X (in the role of honest Py in the simu-
lated execution) extracts the seeds committed by P} (30) and later receives from P}
the maskings of authenticated fragments of the message being committed (42). SX
then unmasks each masking, using the PRG-expansion of the respective extracted
seed, obtaining from each a respective tentative authenticated fragment. SX verifies
whether the authentication is correct or not, thus identifying which instances are
good. (he escurity of authenticators are analyzed in the next subsections.) Then, SX
uses the IDS recovery algorithm to reconstruct the message from a number of good
fragments equal to the recovery threshold. Interestingly, the IDS recovery algorithm
only needs to be used by S¥, but it is not needed in a real execution. For appropriate
cut-and-choose parameters, if P} has produced instances such that it will be able
to successfully open a message in the open phase, then there is an overwhelming
probability (in the number of instances) that the number of good evaluation instances
is at least as high as the recovery threshold. In other words, there is an overwhelming
probability that S is able to extract the correct message, i.e., the only one that P}
is later able to open. Finally, in the ideal world, SX (in the role of the ideal 13:)
sends this message to the ideal functionality | Fyicom, thus committing to it.

— Open phase. Once P} opens the message to Pg in the simulated execution, S~
checks that the opening is successful and that it corresponds to the previously ex-
tracted message. If the opening is unsuccessful, e.g., if the global hash verification
fails (53), then S lemulates an abort, leading | Fymcom to halt the execution associ-
ated with this commitment, consequently leading the ideal party Pg to never receive
any opening. If (with negligible probability) the opening is successful but different
from the value previously extracted from S, then S* outputs Fail (i.e., in this
case the simulation fails). Otherwise, if the opening of the expected message is done
successfully, then S asks|Fycom|in the ideal world to open the committed message.

Page 82/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

E.1.2 Analysis of the simulation with corrupted P} - statistical security.

For the above-defined simulation, the environment only distinguishes real from simu-
lated executions if S¥ extracts a message different from the one that P} can successfully
open in the open phase. This can only occur with negligible probability — the analysis of
probabilities depends not only on the number v of check and e of evaluation instances,
but also on the recovery threshold t of the IDS, which may be agreed by the parties as
any number between 1 and the number e of evaluation instances, with corresponding
variations in statistical security and communication: a lower ¢ correspond to a higher
statistical security; a lower proportion e/t correspond to better (i.e., lower) commu-
nication complexity. Asymptotically as the message length increases, the parameters
can be configured to yield arbitrary high levels of statistical security and at the same
time reduce the expansion-rate to values arbitrarily close to 1. Exact probabilities and
parameterizations are described in more detail in Appendix F (Table |3/ and Table S5)). As
an example, with n = 119 instances, e = 46 of which for evaluation, and with an IDS
threshold ¢ = 23, the scheme achieves 40 bits of statistical security and an asymptotic
communication expansion-rate 2 in the commit phase, while the open phase has rate 1
(ignoring the opening of several short commitments). Since S is able to equivocate the
final global hash, it does not need to be able to control the cut-and-choose partition; i.e.,
it is not necessary to use a simulatable coin-flipping protocol to decide the partition).
S simply produces all commitments of seeds and all maskings correctly (for a random
value), so that later all check instances are necessarily verified correctly.

E.1.3 Simulation for corrupted Pj.

The equivocator-simulator S@ creates a simulation, accessing A as a black-box;
letting it believe that it is in the real world controlling Pf;.

— Commit phase. In the ideal world, S @ in the role of ﬁ; waits to receive from
Fmcom|a receipt of commitment done by Pa. Then, in the role of P, in the simulated
execution, S¢ commits a random message to Pj;, which basically involves keeping
state about the respective maskings of authenticated fragments (42)), about the Q-
commitment to the global hash of masks (33) and the commitments to seeds (30).
If P}, aborts at any point before the end of the commit phase, then S© emulates an
abort, i.e., in the role of ?; in the ideal world sends abort to Fycom, thus making it
ignore further actions related with this commitment sub-session.

— Open phase. S waits in the ideal world to receive the opening of the target message
from Fucom. Then, S€ in the role of P, in the simulated execution sends to Py the
target message (44), instead of the previously committed random message. Then,
S@ computes what are the alternative masks s; needed to unmask (the maskings ?;

previously sent) into the target message received from|Fyicom! This is done in the

exact same way that Pg does as receiver: S? computes the message fragments (47),

then their authenticators (48), and then takes the XOR with the maskings ¢; (49) that

were transmitted in the commit phase. Finally, S® computes the respective global
hash (as in (32), but now using the updated masks), and then uses its equivocation
power to equivocate said hash (52). This allows P to perform all verifications as

Page 83 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

if S? was in fact a honest P4. Finally, S¥ outputs in the ideal world whatever P}
outputs in the real world (54).

E.1.4 Analysis of the simulation with corrupted Pj.

The only difference between a real protocol execution and the simulated execution
is that S© commits to a random message and later equivocates it. However, the ability
of Pg to detect equivocation would require differentiating the random masks from
seed-expansions, which is contrary to the pseudo-randomness assumption of the PRG
primitive. Thus, it follows that in case of corrupted Pf the distributions between real and
ideal world are computationally indistinguishable.

E.2 Security of authenticators

This subsection analyzes the authenticator mechanisms referred in protocol #2| where Py
appends an authenticator to each fragment (40), and then masks them both (41), so that
the simulator in the role of Py can verify the correctness of extracted message fragments.
The problem characterization considers two types of unmasking that may occur:

— Seed-based unmasking denotes the result of unmasking a masked-version using
as mask the PRG-expansion of the seed committed by P,. In the commit phase,
this is temporarily a tentative message that SX considers as possibly having been
committed by Py. If the instance is good, then the seed-based unmasking is the only
message that P, is later able to open.

— Hash-based unmasking denotes the result of unmasking a masked-version using as
mask the respective pre-image portion (known by P}) of the global hash committed
by P (33). In particular, this mask corresponds to the value obtained by Pg in the
open phase (49), calculated as the XOR of tentative authenticated fragments (47)-
prot:CTP2c2:PB:eval:authenticator and the respective previously received maskings
(41). When clear in the context, the definition can also refer to the pre-image
(known by S€ in the role of P in a simulated execution) of the hash opened with
equivocation by S@.

A collision-resistance flavor. The authenticator must have some collision-resistant type
of properties (analyzed ahead), in order to guarantee that if the seed-based unmasking is
an authenticated message, and if the hashed (forged-)mask is not the seed-expansion,
then the hash-based unmasking is not well authenticated. In other words, the role of
authenticators is to make infeasible for a malicious P} to produce a masking instance
whose two respective unmaskings (seed-based and hash-based) yield different validly-
authenticated messages, thus preventing S~ from anticipating an incorrect message.

A nonce-based approach. If the authenticator were to depend only on the message
value, then necessarily a malicious P} could break the authenticator: it would calcu-
late two authenticated messages, then would obtain the seed-based masking of one of
them and then would compute the necessary forged mask corresponding to the other
authenticated message. This problem can be avoided by an authenticator mechanism that

Page 84 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

requires P} to commit to the seeds and (via a commitment of the global hash) the masks
before being able to predict what are the authenticators of two different messages. For
example, the authenticator can be made dependent on an unpredictable value (a nonce)
randomly selected by Py only after P4 is bound to her choices. Following this logic, the
authenticator is thus defined as a function () that relates the message m and a nonce z
in a non-trivial way. Two nuances of authenticator-mechanism are defined:

— Loose mode. The authenticator relates the message and a nonce, with the nonce
being disclosed to P}, after the seeds and global hash are committed, but before P}
decides which overall message to commit. (This nuance requires stronger intractabil-
ity assumptions.)

— Strict mode. Same as before, except for the nonce being disclosed to P} only after
P} is committed to the target message being (e.g., by an equivocable commitment
to a hash of the message).

The analysis ahead builds the intuition to understand the two authenticator nuances.
The respective concrete assumptions needed to ensure security are discussed below, and
concrete instantiations are proposed and analyzed in|§E.3!

Requirements. A path for a solution becomes more clear upon comparing goals, re-
quirements and capabilities between P} and S<.

— The case of a malicious P}. The goal of a malicious P} is to lead S into anticipat-
ing an incorrect message. Conversely, the goal of S¥ (in the role of Py in a simulated
execution) is to be able to detect, when looking in isolation to a single evaluation
instance, if a malicious P might have used an arbitrary bad mask, different from the
PRG-expansion of the extracted seed. If P has indeed used a mask different from
the committed seed, then the seed-based unmasking and the hash-based unmasking
will be different. The envisioned authenticator mechanism (an element to append to
the message being masked) will imply that at most one of the unmaskings is well
authenticated, which means at least one of the unmaskings fails to be authenticated.

— The case of the equivocator-simulator. S€ in the role of P, in a simulated execu-
tion must be able to equivocate the opening of any message to Pj. The mask of each
instance is already equivocable, because it is a portion of the known pre-image of a
hash committed in an equivocable way. Thus, the equivocation of each authenticator
is guaranteed if in the commit phase the authenticator is also masked. This only
requires that each mask is generated, as a PRG-expansion of the respective seed,
with an extended length that fits the (possibly very large) fragment concatenated
with the (short) authenticator. Thus, the mask itself is concealing from Pg until Pp
reveals her message.

In summary, in the devised authenticator mechanism there is a sequence of pro-
tections: each authenticator binds P} to a message fragment; the mask hides the (ex-
tractable) fragment and the (extractable) authenticator; the committed hash of the mask
binds P to the extended mask.

In respect to the proof of simulatability of |protocol #2, it is only needed to show
that the authenticator mechanism delivers the promised properties: (i) it prevents P

Page 85/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

from constructing a masking whose seed-based and hash-based unmaskings are different
validly authenticated messages, thus allowing S¥ to detect which instances are good;
(i1) continues allowing equivocability of the committed message. Property (ii) is trivial,
as the authenticator is simply masked by an equivocable mask value. The remainder of
this subsection explores what is required to satisfy property (i).

Attack if nonce is known before commitments. 1t is instructive to notice that P} can
successfully forge a mask if knowing the nonce z before committing to the seeds and
the global hash. In particular, for any pair of fragments m/ and m/, (with the same
length), P} can construct a masked string such that the seed-based unmasking is equal to
the first authenticated fragment and the hash-based unmasking is equal to the second
authenticated fragment. This can be achieved with the following procedure: First, Px
selects a random seed (287) and expands it into an extended mask (31), with size equal
to the length of the fragment plus the length of the authenticator (288). Then, if in
possession of the nonce z, P} calculates the authenticator of each fragment (289)-(290).
Then, the first (and typically large) part of the forged mask is equal to the XOR of the
two fragments and the initial part of the seed-expansion (291). The second part of the
forged mask is equal to the XOR of the two authenticators and the extended part of the
seed-expansion (292). The complete forged mask whose hash needs to be committed by
P} is equal to the concatenation of the first and second parts (293). Finally, the masking
(i.e., masked string) that P} sends to Py is the XOR between the forged mask and the
second authenticated fragment (294), which, as intended, is equal to the XOR between
the seed-expansion and the first authenticated fragment. Consequently, the commitment
of this seed together with the commitment to the global hash (which also incorporates
the forged mask in its known pre-image) constitutes a bad instance that S* would in
isolation anticipate as being good.

Pi:s <" {0,1}"®e (287) Ph:s™'l=mi@mbdst (291)
Pr:s' = s"lel’2 (288) Pi:s"'?=a1®ax @5 (292)
Pi : a1 = a(m}, 2) (289) Pi:s™ = s"0t|s™? (293)
Pi : a2 = a(my, 2) (290) P :t=s"" @ (mhllaz) =5 @ (mi|lar) (294)

Security of loose authenticator. If the nonce is unpredictable before P} commits to the
seeds and hashes, then the above attack cannot take place. Nonetheless, a malicious P}
may still produce a bad instance: by committing to a seed (extractable by the simulator)
that determines the value of a seed-expansion, and to a hash of a string (denoted forged
mask) different from the seed expansion. Then, P} receives the nonce and is instructed
by the protocol to send a masking (i.e., masked version) of an authenticated fragment
(294). From this masking, SX can extract a respective tentative fragment and verify
whether or not it is well authenticated. The pertinent question is: after committing to a
seed and to a mask, can a computationally bounded malicious P} find a masking for
which both the seed-based unmasking and the hash-based unmasking yield two different
correctly authenticated fragments?

Since the forged mask can be arbitrarily chosen by P} before knowing the nonce,
the problem boils down to P} finding two different fragments (with the same length)
that satisfy (see (294)) the following two conditions: (i) the XOR of the two fragments

Page 86,/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

is equal to the XOR combination of the two respective portions of the masks, i.e., a
chosen (non-all-zeros) string ¢; — because the value of the forged mask can be chosen
arbitrarily (before the nonce is revealed) (295); and (ii) the XOR combination of the
respective authenticators is equal to the XOR combination of the two respective mask
components, i.e., a chosen string ¢, — because the value of the forged mask can be be
chosen arbitrarily (before the nonce is revealed) (296).

m, @mh =c, =" s (295)
a(ml,z) & a(mh, z) =c; = 8% @ s*° (296)

Equivalently, the two conditions can be merged into a single equation (297).
a(my, z) ® alm) e, z) = ca (297)

In conclusion, the authenticator scheme is secure if for whatever strategy of P in
choosing two strings (a non-all-zeros fragment-XOR-offset c;, and an authenticator-
offset c3) and becoming bound to them, there is a negligible probability (in the number
of bits of entropy of the nonce) that, after given a random nonce z, P4 can find a
Sfragment m/| for which the respective authenticator XOR’ed with the authenticator of
the XOR-offseted fragment is equal to the authenticator-offset.

Since it has already been shown that P can win this game if guessing the random
nonce (see (287)-(294)), the advantage for successful cheating becomes minimal if it
is also infeasible to find a solution that is simultaneously valid for any pair of distinct
nonces. In particular, this requires the infeasibility of finding a tuple (m/, ¢, ¢, 2,)
satisfying the two equations below (298)-(299). Satisfying each equation individually
requires finding a triplet composed of a fragment and two distinct nonces such that the
two respective authenticators of the fragment are equal.

a(ml,z) @ s =a(m),z) & s (e, a(m), 2) = a(m),) (298)

,2) @ s*% = a(mhy, 2) @52 (e, a(mh, 2) = a(mb, 2')) (299)

One way to prevent the satisfiability of any of the above equations is to require that
the authenticator function is collision-resistant in respect to the second input parameter,>’
Actually, in isolation it would be enough that the authenticator would simply output
the nonce, but such solution would not be compatible with the previous assumption —
intractability of solving equation (297).

Definition 15 (alpha-loose game). For an implicit function o : {0,1}" x Z — {0, 1}e”'
(where Z is the nonce space and L, is the length of an authenticator) and a computational

% Note: while it is assumed that the hash function is pre-image resistant (a.k.a. one-way) because
it is compressive and collision-resistant, the authenticator is not necessarily compressive in
respect to the second input parameter. Thus, collision resistance of the authenticator does not
necessarily imply pre-image resistance. In fact, ahead a secure authenticator solution in the
strict mode is defined where the function is invertible with respect to the second parameter.

Page 87/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

security parameter 1%, the alpha-loose game is defined as follows: (i) P} selects and
commits to constants ¢; € {0,1}" and cy € {0, 1}‘2“', with c; # 0°; (i) an oracle sends
a uniformly random selected nonce z € Z to P}; (iii) Py wins if finding a fragment m/
satisfying a(m/, z) ® a(mf + ¢1, 2) = ca.

Definition 16 (alpha-loose assumption). Let the set of possible nonces Z be expo-
nentially large in the computational security parameter. An authenticator function «,
receiving as first parameter a fragment and as second parameter a nonce, is said to
satisfy the alpha-loose assumption if: (i) it is collision-resistant with respect to the second
parameter (i.e., once fixed a fragment m/' it is infeasible to find different nonces z, z' that
lead to equal message authenticators); and (ii) the probability of any computational P}
winning the alpha game is negligibly small in the computational security parameter,*®

Security of strict authenticator. If the above assumption is too strong, then it can be
weakened by considering the strict mode of authentication. In this case, the condition for
successful cheating becomes stricter, because P}, has to choose the message (and thus
all its fragments) before knowing the nonce. In particular, in the strict mode described
in|Fig. 3, P uses the equivocable commitment scheme, before receiving the nonce, to
also commit to the hash of the message (mo = m1 @ c1) that it wants to be able to open
later (35). This means that a malicious P} only learns the nonce z after having fixed the
triplet (mf, c1, ¢2) (unequivocally defining m4, and based on a chosen seed-expansion s
and forged mask s*'). The final masking can be computed only after the nonce is known,
but is necessarily done in a deterministic way because there are no more free variables.
Thus, successful cheating happens probabilistically only if the chosen triplet satisfies the
stated condition (297) depending on a random variable (the nonce).

Definition 17 (alpha-strict game). Same as|alpha game but P} decides the message m1
in step (i).

Definition 18 (alpha-strict assumption). Same as the|alpha-loose assumption but based
instead on the alpha-strict game.

The alpha assumptions only make sense if Z is of exponential size in the com-
putational security parameter (e.g., & = 1'2®). The assumption below allows a more
tight consideration of probabilities, which makes sense even if considering small nonce
spaces.

Definition 19 (alpha ™ -strict assumption). An authenticator function « is said to satisfy
the alpha™-loose assumption if: (i) it is collision-resistant with respect to the second
argument, i.e., if once fixed the first argument (the fragment m’) it is infeasible to
find different values for the second argument (i.e., nonces z,z') that lead to equal
authenticators; and (ii) the probability of any computational P} winning the alpha-strict
game is negligibly close (in the computational security parameter) to the inverse of the
cardinality of the nonce space Z.

0 In more rigor, the requirement is that there is a family of « functions corresponding to pro-
gressively increasing security parameters, such that the intractabilities hold for any sufficiently
large computational security parameter. For simplicity of description this is ignored but remains
implicit in all definitions and intractability assumptions.

Page 88/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

§E.3 shows an appropriate authenticator function satisfying the alpha™-strict as-
sumption, based only on a collision resistant hash function.

E.3 Concrete authenticator instantiations

Strict method — provable security based only on collision resistance. In the strict
method, a provably secure authenticator function, in the alpha™ sense, can be derived
based on collision resistance of a (compressive) hash function. The idea is to have the
unpredictability of the difference of two authenticators be as unpredictable as the nonce
value. This can be achieved by letting the nonce operate as a (non-null) multiplier in
an algebraic field, whose multiplicand is the output of a collision-resistant function of
the fragment. The image space of the hash function (the set of bit-strings of some fixed
length) can be considered as the base set of a Galois field with characteristic 2 (300),
modulo some irreducible polynomial of degree equal to the hash length (301). This
means that the set Z of possible nonces can be any (large enough) subset of the set of all
non-all-zeros bit-strings of hash length (302). The security intuition is that each different
nonce leads the same pair of messages with different hash to a different difference (i.e.,
the result upon subtraction, which in the current field is the XOR operation) (303). In this
way, as the nonce varies across all non-null values of the field, any pair of messages with
different hash leads the respective authenticators to have a difference that also varies
across all non-null elements.

a(m',z) =z X G (21CRHash) /() CR-Hash(m") (300)
For example, if ICR-Hashl=256: p(z) = 1 + 2**¢ 4 2> 4 2>°* 4 ¢ (301)
ZC ({07 1}\CR-Hash\ \O|CR-Hash|> (302)

(Vm}, mb : CR-Hash(m}) # CR-Hash(m5)) (# ({a(m], 2) & a(mb,2) : 2 € Z}) = #(Z)) (303)

In conclusion, the alpha™ assumption holds. If the nonce z is a random variable
uniformly selected from a set Z, then the probability of equation (297) being satisfied,
i.e., of P} being able to guess the difference ¢, between authenticators of two different
messages (with different hash), is equal to the inverse of the cardinality #(Z) of the
nonce space. For simplicity of description the protocol descriptions consider nonces in-
dependent from the cut-and-choose partition, but in practice the cut-and-choose partition
already provides a source of entropy.

Strict method — a more practical authenticator, based on a stronger assumption. If
from an implementation perspective it is preferable not to consider field multiplications,
then it is possible to devise an authenticator function that uses only hash computations
and XORs, but requiring a stronger assumption. A possibility is to have the authenticator
be the hash of the XOR of the nonce and the hash of the fragment (304)), with the nonce
being selected from the set of all bit-strings with length equal to the hash output. In this
case, the authenticator corresponds to the hash of a random input value (of the given
length). In order for P} to satisfy the necessary condition of a forged instance (297), it

Page 89/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

must chose in advance an offset ¢y as a successful guess of the XOR between a hash
with random pre-image r and another hash with chosen offseted pre-image (305). If
it is possible to achieve this with noticeable probability, then it is also possible with
noticeable probability to find four pre-images whose respective hashes cancel out, i.e.,
their XOR becomes equal to the all-zeros string (306). This is henceforth denoted as
four-pre-image-canceling. Even though resistance against four-pre-image-canceling is
a stronger than needed assumption, it is conceptually simpler to state. It also seems a
reasonable assumption, from the perspective of current state-of-the-art constructions,
such as SHA-256 or SHA-3 (with appropriate length), for which there is currently no
concrete counter-example that breaks the assumption.

a(m’, z) = Hash(z @ Hash(m')) (304)
a(r)@a(r+c) =c (305)
a(z1) ® a(zs) @ a(zs) © a(zl) = 0" (306)

Loose method. 1t is more difficult to argue about the security in the loose case because
the attacker P} becomes flexible in choosing the first parameter m/ of input after
knowing the second parameter z.

— If using an authenticator function based on field multiplication (300), as described
above for the strict case, then the scheme is secure in the loose setting if the hash
function is secure in the sense that there is a negligible probability of winning the
following game: (i) P, selects a fragment offset c;; then (ii) an oracle selects a
random value r; then (iii) P} wins the game if finding a fragment m/ satisfying
Hash(m/) & Hash(m} & c1) = r. Here, the random value r selected by the oracle
corresponds to the multiplicative inverse of the nonce multiplied by the constant cy
selected by P in the alpha-loose game, i.e.,m = 271 X cs.

— If intending to use an authenticator based simply on a collision resistant hash, then
different assumptions may be considered. A simple example is an authenticator
function defined as the hash of the concatenation of the two input parameters
(307). Security requires that it is infeasible to win the alpha-loose gamel If P}
has a noticeable probability of winning this game, when the nonce z is sampled
uniformly from an exponentially sized set, then there is also a noticeable probability
of winning twice for the same constant c. This means breaking resistance against
four-pre-image-canceling. The only reason to mention this assumption is that it is
conceptually easy to state, even though it is stronger than needed. (There may be
overlooked solutions, more efficient or requiring weaker assumptions.)

a(m', z) = Hash(m/||2) 307)

Page 90/97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

F Concrete comparisons

This section considers variations and concrete parameterizations of protocol #2. §F.1
makes some remarks about possible adjustments to the protocol. §F.2 analyzes different
configurations of threshold recovery, and summarizes in Table 3|aspects of communica-
tion and computation in the corresponding application to coin-flipping — also comparing
side-by-side with protocol #1 (devised for a setting of simulation with rewinding). §F.3
makes a high-level comparison with the scheme from [GIKW 14] and then shows optimal
configurations of the cut-and-choose and IDS parameters to achieve 40 bits of statistical
security, for different goals of communication rate.

F.1 Remarks on protocol variations.

— Interactiveness vs. non-interactiveness. Except for the cut-and-choose and the
nonce, the commit phase is non-interactive if the base commitment schemes are
non-interactive. For large enough number of instances in the cut-and-choose, it is
already possible to have the nonce be decided as a pseudo-random value determined
from the cut-and-choose partition. The overall scheme can be made non-interactive
(i.e., each phase consist of a single message sent from P4 to Pg) if the number
of instances is big enough to allow both cut-and-choose and nonce to be decided
pseudo-randomly using as seed the concatenation of all previous short commitments
(with corresponding adjustments to statistical security).

— Replacing the Q-scheme by a X-scheme (and some interactiveness). The use
of a Q-scheme with P, as sender and Py as receiver could be replaced by a X-
scheme with Pg as sender and Pjas receiver. The construction would be somewhat
resembling to that shown in the protocols in|Fig. 16 and Fig. 17/for a Q commitment
scheme in the plain model. Basically it would be used in a way that a simulator in
the role of P, in the simulated execution would be able to determine the outcome of
a two party coin-flipping played between P and Pg.

— Number of equivocable hashes. In the described protocol, there is a single com-

mitted hash. A possible variant could use one Q-commitment per hash of each
PRG-expansion. Then, each check subset could be verified immediately during the
overall commit phase of protocol #2. The advantages and disadvantages of each
choice might vary with the implementation scenario. By opening the check hashes
in the commit phase, Py would immediately obtain statistical confidence about cor-
rectness, preventing P, from committing to something for which it could provably
not be able to open. In other words, Pg would be able to abort immediately in case
any check instances is bad, thus avoiding storing the message maskings until an
(eventual) open phase that will necessarily fail. Conversely, this would be at the cost
of requiring several Q-commitments, instead of just one.
The authenticator mechanisms described in the previous subsections allow S¥ (in
the role of Py in a simulated execution) to anticipate whether or not an instance built
by P} is good, without comparison with other instances, thus guaranteeing extraction
of correct message fragments. This was achieved by adding an authenticator element
to each instance, without requiring additional primitives.

Page 91 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Table 3. Comparison of coin-flipping protocol variants

Simulation type Rewinding One-pass
o : Fig. 7/(with $xq
Protocol description Fig. 1 instantiated with[Fig. 3)
Overall PRG Pa ¢ (n/t)e
output length Ps (v/t)e
Overall Hash Pa
input length Ps ¢ (n/t)e
Communication™ Pa = P L (e/t+ 1)t
PB — PA VA
%Comnm
;(Jpen 1 hash 1 hash
Commitments |2 __
bx n seeds
G I seed v seeds
IDS operations — Split
Optimal attack \ b — e—t+1
Error . (n—b)le!
probability (e=b)in!

*Note: the “communication” row ignores the communication rel-
ative to the commitments of seeds and hash, the cut-and-choose
partition and the authenticators.

— A X&Q commitment scheme based verifiability mechanism. Another conceptu-
ally simple mechanism providing fragment-verifiability can be implemented based
on an X&Q commitment scheme for short strings. In the commit phase, Px would
also commit to the hash of each fragment; in the open phase, P would simply open
those hashes and Pg would verify their consistency against the respective opened
message; this would be in replacement of appending authenticators (a function
of the message and a nonce) to the fragments. With this X&Q-based mechanism
there is an obvious condition for verification for SX of good instances: for each
evaluation instance, SX extracts the CR-Hash of the message fragment (from the
X&Q commitment) and directly compares it against the tentative message fragment
that is also obtained after extracting the respective seed and using its PRG-expansion
to unmask the respective masking. Equivocability is not affected because the hash
of all fragments can still be equivocated by S€ in the Q-open phase of a X&Q
commitment scheme. While this method would defeat the purpose of building a
X&Q commitment scheme from different primitives, it shows another type of UC
commitment length extension.

F.2 Protocol variants
The UC commitment scheme devised in |§5|is suited for direct plugging into the tradi-

tional coin-flipping template. Table 3 summarizes several aspects of computation (i.e.,
PRG, CR-Hash, and commitment schemes) and communication, and takes the chance to

Page 92 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

compare show it side-by-side with the respective complexities of protocol #1|(not UC
secure, as the simulation requires rewinding).

If the recovery threshold of the IDS is 1, the scheme achieves about 1 bit of statistical
security per instance (if there are as many evaluation as check instances) and requires
communication equal to the target length multiplied by the number of evaluation in-
stances added by two. In such case: there is no cost associated with the IDS; each party
has to compute one hash per instance; P4 has to compute one PRG per instance; and Pg
has to compute one PRG per check instance (each hash and each PRG are associated with
the target length). As an example, 40 bits of statistical security can be achieved using 44
instances, fixing in advance that 22 are for evaluation. This requires communication of 24
times the target length (22 to commit the contribution of Py, 1 to reveal the contribution
of Pg, 1 to open the contribution of Pa), computation of 44 or 22 PRG expansions,
respectively by P4 or Pg, and computation of 44 hashes by each party. A lower number
of instances can be achieved by letting the selection (into check or evaluation type)
of each instance be (more) independent of the other instances. For example, 40 bits
of statistical security are also achieved using 41 instances and letting the number of
evaluation instances be variable but limited to 20. Since a variable partition size leads to
a variable communication complexity, for simplicity the analysis hereafter will consider
only fixed partition-sizes.

If the recovery threshold is equal to half the number of evaluation instances, then
about 1 bit of statistical security is achieved for every three instances, and the overall
communication is improved to require just two times the target length to commit to the
contribution of P, . For example, 40 bits of statistical security can be achieved using 119
instances, with 46 being for evaluation and with an IDS threshold of 23. This requires
communication of about four bits per coin (two for the masking of the contribution
of P, one for the contribution of P, and one for the contribution of Pg). In terms of
computation, the overall PRG output and Hash input for P, is about 5.17 times the target
length. For Pg, the hash input is the same, but the PRG output is only concerned with the
check instances, thus being only about 3.17 times the farget length. Each party also needs
to additionally compute an IDS splitting. This example highlights the tradeoff existing
between the computation associated with the IDS and the communication reduction
obtained by a dividing factor equal to the IDS threshold, but the concrete computational
costs should be better explored in future work. It is interesting to notice that the number
of instances in this example is slightly less than the number (123) required in the
unoptimized protocol. The reason is that in this example it is enough that half of the
evaluation instances are good, whereas in the unoptimized protocol it was required that
less than half of the evaluation instances were bad.

As an example of an intermediate parametrization, a recovery-threshold equal to one
third of the evaluation instances leads the commitment of the contribution of P, requires
communication of three times the length the contributions. For example, a statistical
security of 40 bits is achieved using 82 instances, of which 33 are selected for evaluation,
and using a threshold equal to 11. In this case the overall communication of coin-flipping
becomes about five bits per flipped coin (3 for the commitment the contribution of Py, 1
for the opening, 1 for the direct sending of the contribution of Pg).

Page 93 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

If reducing communication is of utmost importance, then a higher recovery threshold
can be used in proportion to the number of evaluation instances. For example, an
expansion factor of 1.5 for commitments (leading to 3.5 bits per flipped coin) can be
achieved with 193 instances, 72 of which for evaluation and using a recovery threshold
equal to 48. As a more extreme example, an expansion factor of 1.1 for commitments
(leading to about 3.1 bits per flipped coin) can be achieved with 775 instances, 275
of which for evaluation and using a recovery threshold equal to 250. As the number
of instances increases, so increases the concrete communication and computational
complexity of the base commitment schemes, becoming more relevant if the target
length remains fixed and not reasonably large.

F.3 Concrete parameters for the UC commitment scheme

For purpose of comparison, the text below describes in high level a recent UC com-
mitment scheme [GIKW14] that can also be parametrized to achieve asymptotic com-
munication rate 1, but with an essential difference of being based on oblivious transfer.
Table 4 compares some aspects in high level. Finally, Table 5 enumerates concrete
parameterizations for different asymptotic communication rates.

Informal description of the rate-1 UC commitment scheme from [GIKW14]

1. In a preparation phase, P5 encodes her message into a vector of blocks, using a multi-
secret sharing encoding scheme [FY92, §3.1]. The encoding scheme, characterized
by a polynomial degree, a 0-info threshold and an error-recovery threshold, has
the following properties: (i) any subset with a number of blocks equal to the 0-
info threshold does not reveal anything about the original message, and from any
such subset it is still possible to choose all remaining blocks in a way that the
decoding yields any intended message (without need to perform error correction);
(i1) a complete vector of blocks has length equal to the polynomial degree plus twice
the error-recovery threshold, and can be decoded into the original message even if
there are erroneous blocks in any number up to the error-recovery threshold; and
(iii) any two error-free vectors of blocks that decode into different messages are
different in a number of blocks that is at least twice the error-recovery threshold.

2. In the commit phase, P, independently sends each of the blocks using a §-Rabin-OT
that is parametrized such that Pg receives the block with a probability equal to the
inverse of half of the 0-info threshold, and otherwise does not receive anything.

3. In the opening phase, P4 sends all the blocks in clear.

4. In an acceptance phase, Py verifies that the blocks received in the commit phase are
consistent with the respective ones received in the opening phase. Pg then decodes
all the blocks into a message, verifying that no block is erroneous. Py accepts the
decoded message if and only if all verifications are successful.

The security of the protocol is proven based on arguments of equivocability and
extractability, using a hybrid approach (i.e., assuming an ideal j-Rabin-OT oracle). The
parameters of the encoding scheme are chosen such that the protocol achieves a desired
statistical security, namely such that: with overwhelming probability, in the commit phase,

Page 94 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

Table 4. Comparison of commitment-schemes (primitive and operations)

Aspect This work [GIKW14]
Explicit PRG, collision-resistant hash, . o
primitives X-commitment, Q-commitment PRG, 9-Rabin-OT

Multi-secret sharing
(error-correcting code)

IDS operations Pa encodes,
p Pa and P encode A

IDS type Erasure code

by parties Pg decodes
IDS operations by Decode using
. Decode .
the extractor-simulator error correction
The cl d Q- X .
Message sent by Pa ¢ clear message and Q-opens a The encoding

hash and X-opens the seeds (seeds

in the opening phase can optionally be opened before)

of the message

*Note: ¢ is the probability with which a message sent is allowed passing through the
OT oracle. The authors show how to efficiently instantiate it from 1-out-of-N OT
and a PRG, and how to obtain 1-out-of-N from 1-out-of-2 OT.

Py receives blocks in number not higher than the 0-info threshold, thus allowing an
equivocator-simulator to open any intended message; with overwhelming probability, in
the open phase, P4 cannot send a valid (i.e., error free) vector of blocks that is consistent
with the blocks previously received by Py but encoding a message different from the
one that could be decoded by the extractor-simulator (possibly with error correction)
from the vector sent in the commit phase. Table|5| (column “original”’) shows concrete
parameters allowing a statistical security of 40 bits, for several communication rates.
The parameters can be slightly improved (i.e., reduced) with simple adaptations, such as
optimizing the parameter of the §-Rabin-OT (column “optimizing §”), instead of being
fixed to be the proportion of twice the 0-info threshold over the number of blocks used
in the multi-secret sharing scheme. Even better, the parameters (i.e., number of blocks)
are reduced by replacing the §-Rabin-OT with an optimized several-out-of-many OT
(the rightmost column).

Page 95/97

Very-efficient simulatable flipping of many coins into a well

(2015-June-28)

Table S. UC X&Q commitment scheme — parameters for 40 bits of statistical security

Maximum This work [GIKW14] (original) Adapting [GIKW14]
allowedrate [r = ¢/t < rae|r”’ = 1/t < Fmax 0 = tointo/(20) Optimal 0 to-info-out-of-n” OT
n= 17159 n= %274 n = 826 n =577 359
v= v= ' =1652 f= n =99
e =46 e =237 t:;nru =428 t:,L» f :115’3?9 n' =704
Tmax < 2 t=23 t =162 _ e to-info = 186
r' &~ 5.17 r=2 teror = |399/2] femor = [239/2] |, W [167/2]
r~1.46 6= 398 ~ 0.1295 6§ ~ 0.2064 error
n= %g? n= ?ZZ n = 2540 n = 1706 1152
v = v = / — 381 I _ orE n=
e="72 e =678 N :386;?0 o 30:891 n' = 1728
Tmax < 3/2 t =48 t = 548 -info Orinfo = toinfo = 296
0 4.02 Y15 temor = |621/2] temor = [373/2) |, " 1281/2]
r=15 ra1.237 5= 25 ~0.0853 8~ 0.1379 error
n=775 | n=12793 n = 48,200 n = 28,740 93530
v =500 v =598 n' = 53,020 ' = 31,614 n =23,
e=275 e=12,195 Py > n' = 25,883
Tmax < 11/10 t =250 t=11.630 L0-info = t0-info = 1498 b — 1185
M =3.1 i temor = 2397/2] tewor = |1377/2] |, O
r=11 303 e L5 teror = [1169/2]
r=11 r~ 1.0489 5= 3% ~0.0229 § ~ 0.03945
n=7310 |n=1,125,645] =4, 474,600 n = 2,384,200
v = 4684 v =15631 ' = 4,519,346 W —2408,042 | "= 2,231,600
e=2626 |e=1,120,014 _ n' = 2,253,916
rmax < 101/100 _ _ to-nfo = 22, 388 toinfo = 12,166 ? 499
= t = 2600 t =1,114,500 to-info = 11,166
=281 =101 termor = [22,359/2] \feror = [11,677/2]|, " [11 {51/2J
r=1.01 r o 1.00495 |6 = % ~ 0.00248| 0 ~ 0.004737 erer = ’

— Legend for columns “This work”. » (communication expansion rate); r’ (overall output length

produced by the PRG, divided by the target length; also the overall length inputted to the hash
function, divided by the target length); n (total number of instances in the cut-and-choose);
e (number of evaluation instances = number of fragments); ¢ (recovery threshold = number
of fragments necessary to recover message). The parameters were chosen to minimize the
total number of instances n, while satisfying the maximum allowed rate (rmax, identified in
the leftmost column), as follows: in the right column (“r = €/t < Tmax "), the communication
expansion-rate is limited to the rmax (in this case the PRG and Hash can be applied to bigger
lengths — see 7). in the right column (¢ = [n/r]), the computed output of the PRG and the
input of the hash computation are limited to a length which in comparison with the target length
has an expansion rate of at most rmax (in this case the overall communication rate is smaller) —
after minimizing n, the remaining parameters were chosen to minimize e.

Legend for columns “[GIKW14]”. n (number of blocks before encoding, i.e., number of
symbols in which the message is partitioned); to.info (0-info threshold — the original notation
iS t); temor (error-recovery threshold — the original notation is A/2); § (probability of message
passing through the §-Rabin-OT - the original version uses to-info = 26n’); n’ (total number of
blocks, satisfying n’ =t +n + A — 1). Parameters were chosen to minimize n; the expansion
rate is equal to r = n’ /n. For the case of the rightmost column, where the equivocator-simulator
can always equivocate; statistical security depends only on the probability that a malicious Px
can guess teror + 1 positions that will not be selected by the OT. In the original notation, the
polynomial degree is equal to d = n +t — 1 (i.e., n + to-info — 1), Or equivalently d = n — A
(i.e., ' — 2terror + 1).

Note: above, the calculation of communication rate does not take into account the setup phase
and the base commitments, whose communication becomes amortized with the increase of the
length of the bit-string being committed.

Page 96 /97

Very-efficient simulatable flipping of many coins into a well (2015-June-28)

G Lists of Figures and Tables

List of Figures

1 Protocol #1 — Parallel coin-flipping, 14
2 Sketch of UC commitment schemeooviiiiiiineeeenn... 19
3 Protocol #2 — X&Q bit-string commitment scheme 22
4 Ideal multicoms X-and-Q i, 33
5 Ideal parallel coin-flipping into a well (succinct notation) 34
6 Ideal parallel coin-flipping o i i 35
7 Traditional template for coin-flipping.............. 36
8 Templates for ideal commitment schemes 38
9 Ideal multi coms X-but-not-Qt 39
10 Ideal multi coms not-X-but-Qt 40
11 Commitments in a nested-hybrid model 43
12 Instantiation basedon DDH........ i 60
13 Tmplicit SEtUP PArAMELErSo vttt et ettt e e et 67
14 % from regular bit-commitments (unoptimized) 67
15 %x from regular bit-commitments (RSC optimized)...................... 73
16 %, from regular bit-commitments (unoptimized) 78
17 %4 from regular bit-commitments (RSC-optimized) 81
List of Tables

1 Communication complexity of X commitment schemes 65
2 Communication complexity of Q commitment schemes 75
3 Comparison of coin-flipping protocol variants 92
4 Comparison of commitment-schemes (primitive and operations) 95
5 UC X&Q commitment scheme — parameters for 40 bits of statistical security 96

Page 97/97

	Very-efficient simulatable flipping of many coins into a well
	Abstract
	Index
	1 Introduction
	1.1 Coin-flipping and primitives
	1.2 Contributions
	1.3 Roadmap

	2 Related work
	2.1 Basic primitives
	2.2 Constant-round parallel coin-flipping (with rewinding)
	2.3 UC commitment schemes

	3 Preliminaries
	3.1 Ideal/real simulation paradigm
	3.2 Commitment schemes
	3.3 Coin-flipping

	4 A new coin-flipping protocol simulatable-with-rewinding
	4.1 Intuition
	4.2 Detailed description (protocol #1)
	4.3 Security analysis

	5 A new UC commitment scheme
	5.1 Intuition
	5.1.1 Cut-and-choose warmup
	5.1.2 Authenticator aid
	5.1.3 Communication reduction

	5.2 Detailed description (protocol #2)
	5.2.1 X-commit phase
	5.2.2 Q-open phase

	5.3 Security analysis
	Intuition

	Acknowledgments
	References

	 Appendix
	A Ideal functionalities
	A.1 Ideal/real paradigm
	A.2 X-and-Q bit-string commitments
	A.3 Parallel coin-flipping into a well
	A.4 A base protocol template

	B Ideal commitments with suppressed properties
	B.1 Motivation for simulation based security
	B.2 An initial attempt
	B.3 A nested hybrid model
	B.4 Different models of simulation

	C Coin-flipping with rewinding
	C.1 Coin-flipping into a well
	Blum's coin-flipping
	A note on bias
	Single coin-flip into the well

	C.2 (Non-)simulatability of the traditional template
	C.3 Proof of security of coin-flipping protocol #1
	C.3.1 Simulator for corrupted Pᴀ*
	C.3.2 Simulation analysis when corrupted Pᴀ*
	C.3.3 Simulator for corrupted Pʙ*
	C.3.4 Simulation analysis when corrupted Pʙ*
	C.3.5 Other simulation settings

	C.4 Bound on number of rewindings

	D Plain Model
	D.1 Based on DDH assumption
	D.2 Interfering com-schemes
	D.3 X-com-scheme from regular BitComs
	D.3.1 X commitment scheme – unoptimized
	D.3.2 X-com-scheme – RSC optimization

	D.4 Q-com-scheme from regular BitComs
	D.4.1 Q-com-scheme – unoptimized
	D.4.2 Q-com-scheme – RSC optimization

	E Analysis of UC commitment scheme.
	E.1 Simulation of protocol #2
	E.1.1 Simulation for corrupted Pᴀ*.
	E.1.2 Analysis of the simulation with corrupted Pᴀ* – statistical security.
	E.1.3 Simulation for corrupted Pʙ*.
	E.1.4 Analysis of the simulation with corrupted Pʙ*.

	E.2 Security of authenticators
	E.3 Concrete authenticator instantiation

	F Concrete comparisons
	F.1 Remarks on protocol variations.
	F.2 Protocol variants
	F.3 Concrete parameters

	G Lists of Figures and Tables
	List of Figures
	List of Tables

