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Abstract: Certificate-based encryption (CBE) is an important class of public key encryption but the 
existing schemes are secure only under the premise that the decryption key (or private key) and master 
private key are absolutely secret. In fact, a lot of side channel attacks and cold boot attacks can leak 
secret information of a cryptographic system. In this case, the security of the cryptographic system is 
destroyed, so a new model called leakage-resilient (LR) cryptography is introduced to solve this 
problem. While some traditional public key encryption and identity-based encryption with 
resilient-leakage schemes have been constructed, as far as we know, there is no leakage-resilient 
scheme in certificate-based cryptosystems. This paper puts forward the first certificate-based 
encryption scheme which can resist not only the decryption key leakage but also the master secret key 
leakage. Based on composite order bilinear group assumption, the security of the scheme is proved by 
using dual system encryption. The relative leakage rate of key is close to 1/3.  
Keywords: certificate-based encryption, master secret key leakage, dual system encryption, composite 
order bilinear group 

1 Introduction 

In order to solve certificate management problem in traditional public key cryptosystems and the key 
escrow problem in identity based cryptosystems, Gentry [1] proposed a new cryptography paradigm 
called certificate-based encryption. From then on, many concrete schemes [2, 3, 4, 5, 6, 7, 8] were 
constructed under the assumption that the decryption key and master secret key are absolutely 
confidential. 

But that is not always the case, and some side channel attacks [9, 10, 11, 12, 13] have been found in 
real world. From the attacks, the adversary can obtain some information by observing execution timing, 
energy consumption, etc. This results in secret information leakage which includes the information of 
the vital master secret key and decryption key. Side channel attacks give the adversaries an advantage 
to obtain the secret information. Therefore, the security of previous cryptographic schemes is 
compromised under the circumstances. New model must be constructed to capture such attacks. 

In order to guarantee the security of cryptographic systems under some circumstances, we usually 
define an attack model to limit the attacker’s behavior. If the attacker satisfies the constraints, the 
corresponding cryptosystems are regarded as safe in the model. Leakage resilient cryptography is to 
capture side channel attacks. In fact, it has become a research hotspot in recent years. 

For identity-based cryptosystems and traditional public key cryptosystems, some leakage-resilient 
schemes have been constructed. For certificate-based cryptosystems, as far as we know, no 
leakage-resilient scheme is presented. The paper puts forward the first certificate-based encryption 
scheme resilient to master secret key leakage and decryption key leakage. 

1.1 Related Work 

In 2004, Micali and Reyzin [14] proposed “only computation leaks information” model: computation 
is divided into many steps. Only the part of the secret state which is accessed (i.e. active) in that step 
can leak. The other part of the secret state that is not accessed (i.e. inactive) will not leak in that step. 
Under this model, the leakage-resilient stream cipher [15, 16] and leakage-resilient signature [17] were 
constructed. Although “only computation leaks information” model describes a large class of leakage 
attacks, it has shortcomings, namely, it does not capture the setting where the inactive part in memory 
also leaks information (for example, the cold boot attack [9]). In order to solve this problem, the work 
[18] introduced “bounded leakage” model, it is a stronger model than “only computation leaks 
information” model. In “bounded leakage” model, the leakage of inactive part is also considered. Under 
the “bounded leakage” model, leakage-resilient encryption and signature schemes [19, 20, 21] were 
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constructed. The constructions of leakage-resilient identity-based schemes attract more attention. Some 
achievements have been given in the works [22, 23, 24]. 

By constructing the hash proof system, the work [20] gave the leakage-resilient encryption scheme 
which can resist / 4l  bits information leakage about private key ( l  is the bit length of private key). 
The work [25] extended the method of the work [20] to construct the identity-based hash proof system 
and further to put forward the leakage-resilient identity-based encryption (LR-IBE) in the bounded 
retrieval model. To improve the property of leakage resilience, the work [26] introduced the dual 
system encryption. 

1.2 Our Contribution 

Similar to traditional security model of CBE, we consider two types of adversaries as well. The first 
type of adversary A1  is the malicious user who is allowed to replace public key without knowing 
the master secret key. The second type of adversary A2  is the dishonest certificate authority (CA) 
who has the master secret key for generating the certificate but he is not allowed to replace the public 
key. Inspired by the leakage-resilient certificateless encryption (CLE) [27] and the certificate-based 
encryption [28], we propose the formal definition and the security model of the leakage-resilient 
certificate-based encryption (LR-CBE) and further present the first leakage-resilient certificate-based 
encryption scheme in the “bounded leakage” model. The security of the scheme has been proved by 
utilizing dual system encryption technique. The leakage bound amounts to 1/3 if n  is large enough. 
Performance comparison illustrates the encryption operation of our scheme is faster than that of the 
schemes given in [1]. However, decryption cost is linearly correlated with the vector size n. In order to 
make the scheme more efficient, we can take n=2 and the decryption operation needs 4 pairings which 
is acceptable in practical application. 

1.3 Our Technique 

In the security proof we use dual system encryption technique proposed in [29]. The dual system 
encryption technique can be used to improve the security of cryptographic systems. In the dual system 
encryption the decryption keys and ciphertexts have two states: normal and semi-functional (SF). The 
normal decryption keys can decrypt the normal and semi-functional ciphertexts. The semi-functional 
decryption keys can only decrypt the normal ciphertexts correctly. In real security game, all decryption 
keys and ciphertexts are normal. The security proof is a hybrid argument where the ciphertexts are first 
altered to semi-functional ones, then, the keys are altered to semi-functional ones gradually. For the 
consecutive two games we prove that the attacker cannot detect the difference between them with 
non-negligible advantage. Finally, we give such a game: we only need to produce semi-functional 
decryption keys and ciphertexts. Thus the attacker cannot correctly decrypt. This allows us to prove 
security. 

1.4 Organization  

  In Section 2, we give some preliminaries that will be used. Formal description and security model of 
LR-CBE are given in Section 3. In Section 4, concrete construction of LR-CBE is put forward. Security 
proof of the proposed scheme is shown in Section 5. The leakage bound is analyzed in Section 6. The 
comparisons with other schemes are given in Section 7. Section 8 concludes this paper. 

2 Preliminaries 

2.1 Several Basic Conceptions 

Definition 1: Bilinear Map 
Let G  and TG  be multiplicative cyclic groups of order q  and P  be a generator of G , a 

bilinear map : Te G G G× →  has three properties as follows: 

(1) Bilinearity: For ,P Q G∈  and *,a b Z∈ , ( , ) ( , )a b abe P Q e P Q= . 
(2) Non-degeneracy: For ,P Q G∈ , ( , ) 1≠e P Q . 
(3) Computability: There is an effective algorithm to calculate ( , ) Te P Q G∈ . 
Definition 2: NIZK Proof System 



 

Let R  be a binary relation in a language L . For ( , )x w R∈ , x  is called the statement and w is 
called the witness. A non-interactive zero-knowledge (NIZK) proof system consists of three 
algorithms ( , , )Prn fe VerG .  The algorithm Gen  takes as input a security parameter 1ϑ  and 
outputs the common reference string crs . The prover Prf  takes as input ( , , )crs x w  and gives an 
argument or proof π  if ( , )x w R∈ . The verifier Ver  takes as input ( , , )crs x π  and outputs 
“accept” or “reject”. We call ( , , )Prn fe VerG  an NIZK proof system for the relation R  if it has 
three properties: soundness, completeness and zero knowledge as [31]. 

Definition 3: Collision-Resistant Hash Function 
For the hash function :{0,1} {0,1}kH ∗ → , the algorithm A  can obtain the advantage ε  in 

breaking the collision-resistance of H if 0 1 0 1 0 1Pr[ ( ) ( , ) : , ( ) ( )]A H m m m m H m H m ε= ≠ = ≥ , 
where the advantage is over the random bits of A . A hash function is collision-resistant if the advantage 
that any probabilistic polynomial-time (PPT) adversary can obtain is negligible. 

2.2 Complexity Assumptions  

2.2.1 Composite Order Bilinear Groups 

Composite order bilinear groups are first introduced in [32]. Let ψ  denote a generator algorithm of 
composite order bilinear groups. ψ  takes as input a security parameter and outputs a description of 
composite order bilinear groups 1 2 3{ , , , }TN p p p G G eΩ= = , where 1 2 3, ,p p p  are three λ -bit primes 
(The λ  is related to the security parameter and has an influence on the leakage bound which will be 
analyzed in Section 6), G  and TG  are cyclic groups of order 1 2 3N p p p=  and e  is a bilinear 

map: TG G G× → . 

Denote 
1 2
,p pG G and 

3pG as the subgroups of G  with order 1 2 3, ,p p p  respectively. If 

ii ph G∈ ,
jj ph G∈ and i j≠ , we have ( , )i je h h =1. For example, suppose 

11 ph G∈ , 
22 ph G∈ , and 

g  is a  generator of G . Thus, 1 2p pg is a generator of 
3pG , 1 3p pg  is a generator of 

2pG  and  
2 3p pg  is a generator of 

1pG . So, there exists 1 2,α α such that 2 3 1
1 ( )p ph g α=  and 1 3 2

2 ( )p ph g α= . 

Then, 2 3 1 1 3 2 3 2 1 2 31
1 2( , ) ( , ) ( , ) 1p p p p p p p pe h h e g g e g gα α αα= = = . Therefore, 

1 2
,p pG G  and 

3pG  are 
mutual orthogonal. 

If an element X  can be written uniquely as the product of an element of 
1pG and an element of 

2pG , we call them “
1pG  part of X ” and “

2pG  part of X ” respectively. 
We denote vectors by angle brackets , ,< ⋅ ⋅ ⋅ >  and denote collections of elements of different types 

by parentheses ( , , )⋅ ⋅ ⋅ . Denote dot product of vectors by ⋅ and denote component-wise multiplication 

by ∗ . We denote the size or number of bits of the term W  as W .  

We define the exponentiation for vectors as follows: For 1 2, , ,..., n
ng G u u u u G∈ =< >∈ , 

1 2, , ,...,N n Na Z b b b b Z∈ =< >∈ , we define 1 2, ,..., nbb bbg g g g=< > , 1 2, ,...,a a a a
nu u u u=< > . 

The resulting terms are elements of nG . For a bilinear group G , we define the pairing operation 
in nG : For 1 2, ,..., n

nu u u u G=< >∈ and 1 2, ,..., n
nv v v v G=< >∈ , the pairing is ( , )e u v  

1

( , )
n

i i T
i

e u v G
=

= ∈∏ . 

2.2.2 Three Assumptions 

Here we review three assumptions given in [27, 29, 30] which will be used in our security proof. 
Denote 

1 2p pG  as the subgroup of G  with order 1 2p p . 



 

Let ψ  be a generator algorithm of composite order bilinear groups. On input a security parameter 

1ϑ , ψ  outputs a description of composite order bilinear groups. That is, ( , , , ) R
TN G G e ψ←⎯⎯ , 

where 1 2 3N p p p= . Let 1g , 2g and 3g  be the generators of 
1pG ,

2pG and 
3pG , respectively. 

Assumption 1：Given 1
1 3( , , , , , )TD N G G e g g= , no PPT adversary succeeds in distinguishing 

1
0 1

zT g=  from 1
1 1 2

z vT g g=  with non-negligible advantage, where , Nz v Z∈ . 
The advantage that adversary A  breaks assumption 1 is defined as: 
       1 1 1 1

, 0 11 ( ) | Pr[ ( , ) 1] Pr[ ( , ) 1]|.Adv D T D Tψ ϑ = = − =A A A  

We say that assumption 1 holds if the advantage ,1 ( )Adv ψ ϑA  is negligible for any PPT adversary.  

Assumption 2: Given 2
1 3 1 2 2 3( , , , , , , , )z v u

TD N G G e g g g g g g ρ=  where , , , Nz v u Zρ ∈ , no PPT 

adversary succeeds in distinguishing 2
0 1 3T g gω σ=  from 2

1 1 2 3T g g gω κ σ=  with non-negligible 

advantage, where , , NZω κ σ ∈ . 
The advantage that adversaryA breaks assumption 2 is defined as: 
       2 2 2 2

, 0 12 ( ) |Pr[ ( , ) 1] Pr[ ( , ) 1]|.Adv D T D Tψ ϑ = = − =A A A  

We say that assumption 2 holds if the advantage ,2 ( )Adv ψ ϑA  is negligible for any PPT adversary.  

Assumption 3：Given 3
1 2 3 1 2 1 2( , , , , , , , , )v s u

TD N G G e g g g g g g gα=  where ,s, , Nv u Zα ∈ , no 

PPT adversary succeeds in distinguishing 3
0 1

zT gα=  from 
1

3
1 pT G∈  with non-negligible advantage. 

The advantage that adversary A  breaks assumption 3 is defined as: 
       3 3 3 3

, 0 13 ( ) |Pr[ ( , ) 1] Pr[ ( , ) 1]|.Adv D T D Tψ ϑ = = − =A A A  

We say that assumption 3 holds if the advantage ,3 ( )Adv ψ ϑA  is negligible for any PPT adversary.  

3 Formal Definition and Security Model of LR-CBE 

3.1 Formal Definition of LR-CBE 

Inspired by the works [26, 27], we put forward the formal definition of LR-CBE which is resilient to 
master secret key leakage and decryption key leakage. We will use a hash function: 

:H × →ID PK ID , where ID  is the identity space and PK  is the public key space. The 
functionality of the hash function is to maintain the security when a CLE is converted to a CBE 
( Please refer to [28]). Our LR-CBE scheme is composed of the following seven algorithms. 

Setup: (1 ) ( , )Setup mpk mskϑ → . The algorithm is run by the CA. By taking a security parameter 

1ϑ as input, the algorithm generates the master public key mpk  and the master secret key msk . The 
mpk  is public to all users. The mpk  includes the information presentation of the identity space. 

SetPrivateKey: ( , ) IDSetPrivateKey ID mpk sk→ . The algorithm is run by the user. It takes as 

input the master public key mpk  and the identity ID . It outputs the user’s private key IDsk . 

SetPublicKey: ( , , )ID IDSetPublicKey ID sk mpk pk→ . The algorithm is run by the user ID . It 

takes as input the master public key mpk  and the private key IDsk . It outputs the user’s public key 

IDpk .  

SetCertificate: ( , , , )ID IDSetCertificate ID pk mpk msk Cert→ . The algorithm is run by CA. 

For an identity ID , it first calculates ( , )IDH ID pk ID′→ . Then, it takes as input the master public 

key mpk , the master secret key msk , ID′  and the public IDpk . It outputs the user’s certificate 

IDCert . 

Encrypt: ( , , , )IDEncrypt ID mpk M pk C→ . The algorithm is run by the sender. It takes as input 



 

the master public key mpk , the plaintext M , the receiver’s identity ID  and its corresponding 
public key IDpk . It outputs the ciphertext C .  

SetDecryptKey: ( , )ID ID IDSetDecryptKey sk Cert dk→ . The algorithm generates the decryption 

key IDdk  by using IDsk  and IDCert . 

Decrypt: ( , , )IDDecrypt mpk C dk M→ . The algorithm is run by the receiver. It takes as input 

the master public key mpk , the ciphertext C , the decryption key IDdk  which is generated by using 

IDsk  and IDCert . It outputs the plaintext M .  

3.2 Adversaries and Oracles of LR-CBE 

We consider two types of adversaries in our model like the works [2-8]. One type of adversaries is 
denoted by A1 . Another type of adversaries is denoted byA2 . A1 acts as the dishonest users. 
A1 can not query the certificate of the target user but he is allowed to replace any user’s public key. 
A2  acts as the CA. A2  can not replace the public key of the target user but he may generate any 
user’s certificate. 

The security of LR-CBE against A1  is defined by the game _ _Game RT1�  which will be given 
in the next subsection. In the game the challenger holds a list: ( , , , , , ,ID ID IDH ID ID pk sk Cert′=L1  

, , )ID dk mskdk l l . The item consists of a handle counter, an identity, a hashed identity, a public key, a 
private key, a certificate, a decryption key, the amount of decryption key leakage and the amount of 
master secret key leakage. When an attacker makes a create query -CreateO (Please refer to the 
concrete definition in the following), the challenger generates a unique handle H  and a related item 
( , , , , , , ,0,0)ID IDH ID ID pk sk′ ⊥ ⊥ . Given a handle, an adversary can make leakage query. After the 

leakage query, the value of dkl  or mskl  which is initially zero will be updated. The other oracle 
queries will refer the handle.  

The security of LR-CBE against A2  is defined by the game _ _Game RT2�  which will be given 
in the next subsection. In the game the challenger holds a list: ( , , , , , ,ID ID IDH ID ID pk sk Cert′=L2  

, )ID dkdk l . The item consists of a handle counter, an identity, a hashed identity, a public key, a private 
key, a certificate, a decryption key and the amount of decryption key leakage. When an attacker makes 
a create query, the challenger generates a unique handle H  and a related item ( , , , ,IDH ID ID pk′  

, , ,0)IDsk ⊥ ⊥ . Given a handle, an adversary can make leakage query. After the leakage query, the 

value of dkl which is initially zero will be updated. The other oracle queries will refer the handle.  
We give the oracles that will be used. 
(1) -CreateO ：On the given identity ID  from the adversary, the challenger C  does as follows. 

( , ) IDSetPrivateKey ID mpk sk→ , ( , , )ID IDSetPublicKey ID sk mpk pk→ . For the adversary A1 , 

it adds an item ( , , , , , , ,0,0)ID IDH ID ID pk sk′ ⊥ ⊥  in L1 . For adversary A2 , it calculates: 

( , )IDID H ID pk′ ← , ( , , , )ID IDSetCertificate ID pk mpk msk Cert′ → . It adds an item ( , ,H ID  

, , , , ,0)ID ID IDID pk sk Cert′ ⊥  in L2 . For the two cases, C  will update 1H H← + . We suppose 
that the other oracles defined later only respond to the identity which has been created. 

(2) -PublickeyO : For a handle H , the challenger looks up the identity ID  in the list L1  or 
L2  and returns the public key IDpk  to the adversary A1  or A2 .  

(3) -O Replacepublickey : The adversary A1 can replace the public key IDpk  of the identity ID  

with a new public key IDpk′  of its choice. In order to ensure that the public key IDpk′  is valid, the 

challenger runs ( , ) IDSetPrivateKey ID mpk sk→  and adds an item ( , , , , , , ,IDH ID ID pk′ ′ ⊥ ⊥ ⊥  



 

0,0)  in the list L1 . It updates 1H H← + . The constraint is that for the challenge identity ID∗  
the adversary A1  isn’t allowed to replace the public key before the challenge phase and at the same 
time queries the certificate at some point. Thus A1  obtains a challenge ciphertext about a public key 
on which he calculates the decryption key. 

(4) -CertificateO : For a handle H , the challenger looks up the identity ID  in the list L1 . The 

challenger calculates: ( , )IDH ID pk ID′→ , ( , , , )ID IDSetCertificate ID pk mpk msk Cert′ → . It 

returns the certificate IDCert  to the adversary A1 and updates the item ( , , , , , ,ID IDH ID ID pk sk′ ⊥  

,0,0)⊥  with ( , , , , , , ,0,0)ID ID IDH ID ID pk sk Cert′ ⊥ . 
(5) -DecryptionkeyO : The query can be done for the identity that his public key is not replaced. If 

an adversary queries the decryption key for the identity ID , the challenger C  scans the list L1  or 
L2  to find IDsk  and IDCert . Then it calculates the decryption key: ( ,IDSetDecryptKey sk  

)ID IDCert dk→ . For A1 , C  outputs IDdk  to A1  and updates the item ( , , , ,IDH ID ID pk′  

, , ,0,0)ID IDsk Cert ⊥  with ( , , , , , , ,0,0)ID ID ID IDH ID ID pk sk Cert dk′ . For A2 , C outputs IDdk  

to it and updates the item ( , , , , , , ,0)ID ID IDH ID ID pk sk Cert′ ⊥  with 

( , , , , , ,ID ID IDH ID ID pk sk Cert′  ,0)IDdk . 
(6) -DecryptO : If the adversary queries a decryption for ( , )ID C , the challenger scans the list 
L1  or L2  to get the decryption key IDdk . The challenger invokes the algorithm Decrypt to obtain 
the corresponding plaintext M and gives it to the adversary A1 or A2 . 

(7) -LeakdecryptionkeyO : Given a handle H  and a leakage function f  with the output of 
constant size, the challenger C  looks up the item ( , , , , , , , , )ID ID ID ID dk mskH ID ID pk sk Cert dk l l′ or 

( , , , , , , , )ID ID ID ID dkH ID ID pk sk Cert dk l′  which includes H  in list L1  or L2 . dkl  and mskl  

are initially zero. C  judges if | ( ) |dk ID dkl + f dk λ≤  where dkλ is the leakage bound of the 

decryption key. If this is true, the challenger returns the output of ( )IDf dk  to A1  or A2  and 

updates dkl  with | ( ) |dk IDl + f dk  in list L1  or L2 . 
(8) -LeakmasterkeyO : Given a handle H  and a leakage function f  with the output of 

constant size, the challenger looks up the item ( , , , , , , , , )ID ID ID ID dk mskH ID ID pk sk Cert dk l l′  which 

includes H  in list L1 . It judges if | ( ) |msk mskl + f msk λ≤  where mskλ  is the leakage bound of 
the master secret key. If this is true, the challenger returns the output of ( )f msk  to A1 and updates 

mskl  with | ( ) |mskl + f msk  in list L1 . 

3.3 Security Model of LR-CBE 

In our model there are two type adversaries, so the security is obtained from two security games. The 
challenger plays the games with the adversary A1  or A2 . 

3.3.1 Security against Type I Adversary  

The security of LR-CBE against A1  is defined by the game _ _Game RT1�  which is played 
between the challenger and the adversary A1 . _ _Game RT1�  is defined as follows. 

_ _Game RT1� : 
Initialize: The challenger invokes the algorithm Setup to generate the master secret key and the 

master public key: (1 ) ( , )Setup mpk mskϑ → . The challenger keeps the master secret key as secret 
and issues the master public key to all users.  

Phase 1: The adversary queries the oracles: -CreateO , -PublicKeyO , -LeakdecryptionkeyO , 



 

-LeakMasterKeyO , -CertificateO , -ReplacepublickeyO , -DecryptionkeyO , -DecryptO .  
The constraints are as follows. 
A1 can not query the decryption key for the challenge identity ID∗ . For the challenger identity ID∗ , 

if A1  replaces the public key, he is not allowed to query the corresponding certificate.  
Challenge: The adversary A1  gives two equal length messages 0 1,M M ∈M  and an identity 

ID∗  to the challenger. M  is a given message space. The challenger looks up the corresponding item 
consisting of the ID∗  in list L1 . If the item is not in list L1 , the challenger will make create query 

-CreateO  for the identity ID∗  firstly. Then the challenger randomly selects a bit {0,1}ξ ∈  and 

runs algorithm Encrypt to generate the ciphertext C∗ about the message Mξ : 

( , , , )
ID

Encrypt ID mpk M pk Cξ ∗
∗ ∗→ . At last, the challenger sends the ciphertext C∗  to A1 .  

Phase 2: Just similar to Phase 1, A1 queries the oracles: -CreateO , -PublickeyO , -DecryptO , 
-ReplacepublickeyO , -CertificateO , -DecryptionkeyO . The basic constraints are the same as 

that of Phase 1. The other constraints are that these oracles can not query the challenge identity ID∗ . 
Furthermore, no leakage query is allowed in this phase. If we allow leakage queries, the adversary can 
encode the Decrypt algorithm of C∗ as a leakage function and wins the game trivially. 

 Guess: At last, A1 guesses a bit {0,1}ξ ′∈ . If ξ ξ′ = , A1  wins the game. 

The advantage that an adversary A1  wins this game is _ _ 1( , ) Pr[ ]
2

Game R
dk mskAdv λ λ ξ ξ′= = −T1�

A1 . 

Definition 4: If there is no PPT adversary A1who can win _ _Game RT1�  with non-negligible 

advantage ( _ _ ( , )Game R
dk mskAdv λ λ ε≤T1�

A1  where ε  is a negligible value), the LR-CBE is called type I 
secure against the adaptive chosen ciphertext attacks. 

3.3.2 Security against Type II Adversary 

The security of LR-CBE against A2  is defined by the game _ _Game RT2  which is played 
between the challenger and the adversary A2 . _ _Game RT2  is defined as follows. 

_ _Game RT2� :  
Initialize: The challenger invokes the algorithm Setup to generate the master public key and the 

master secret key: (1 ) ( , )Setup mpk mskϑ → . The challenger issues the master public key and the 
master secret key to A2 . 

Phase 1: The adversary may query the oracles: -CreateO , -PublickeyO , -DecryptionkeyO , 
-DecryptO , -LeakdecryptionkeyO . Because A2  knows the master secret key it does not need to 

query the oracle -LeakmasterkeyO and -CertificateO . The constraints are as follows. 

A2  can not query the decryption key for the challenge identity ID∗ . A2  is not allowed to 
replace the public key at any point. 

Challenge: The adversary A2  gives two equal length messages 0 1,M M ∈M  and an identity 

ID∗  to the challenger. M  is a given message space. The challenger looks up the corresponding item 
consisting of the ID∗  in list L2 . If the item is not in list L2 , The challenger will make create 
query -CreateO  for the identity ID∗ .  

Then the challenger randomly selects a bit {0,1}ξ ∈  and runs algorithm Encrypt to get the 

ciphertext C∗  about the message Mξ : ( , , , )
ID

Encrypt ID mpk M pk Cξ ∗
∗ ∗→ . At last, the 

challenger sends the ciphertext C∗  to the adversary A2 . 
Phase 2: Just similar to Phase 1, A2  queries the oracles: -CreateO , -PublickeyO , -DecryptO , 
-DecryptionkeyO . The basic constraints are the same as that of Phase 1. The other constraints are 



 

that these oracles can not query the challenge identity ID∗ . Furthermore, no leakage query is allowed 
in this phase. If we allow leakage queries, the adversary can encode the Decrypt algorithm of C∗ as a 
leakage function and wins the game trivially. 

 
 Guess: At last, A2  guesses a bit {0,1}ξ ′∈ . If ξ ξ′ = , A2  wins the game. 

  The advantage that an adversary A2  wins this game is _ _ 1( ) Pr[ ]
2

Game R
dkAdv λ ξ ξ′= = −T2�

A2 . 

Definition 5: If there is no PPT adversary A2  who wins _ _Game RT2  with non-negligible 

advantage ( _ _ ( )Game R
dkAdv λ ε≤T2�

A2 ), the LR-CBE is called type II secure against the adaptive chosen 
ciphertext attacks. 

4 Construction of our LR-CBE 

  We firstly give an NIZK proof system ( , , )Gen Prf Ver∏ = which will be employed in our scheme. 

We define ( , , )Gen Prf Ver∏ = is an NIZK proof system with the language L { : }Y Zββ= =  

where NZβ ∈ , and , TY Z G∈ . :H × →ID PK ID  is a hash function, where ID  is the 
identity space and PK  is the public key space. The hash function is used to maintain the security 
when a CLE is converted to a CBE (Please refer to [28]). Suppose that any identity is an element of 

NZ . Our LR-CBE consists of the following seven algorithms. 

Setup: It firstly creates composite order bilinear groups 1 2 3( , , )TN p p p G,G e= . Then, it 

randomly selects 
11 1 1 1, , , pg u h v G∈ and 

33 pg G∈ . It runs algorithm Gen  of ∏  to generate the 

common reference string crs and selects random 2 2
1 2 1 2( , , ,..., , , , ,..., ) n

n n Nx x x r y y y Zα +∈  and a 

vector 3
1 2 3, ,..., n

n+ NZρ ρ ρ ρ +=< >∈  where 2n ≥  is an integer. The value of n  can be varied. A 
bigger value of n  will generate a bigger leakage rate. Leakage rate is the value that the number of 
leaked bits from the decryption key or the master secret key divides by the number of bits for the 
decryption key or master secret key. A smaller value of n  will lead to a smaller master public key. It 
outputs the master public key 1

1 1 1 1 1 1 1 1 3, , , , ( , ) , , ,..., , , , ,( ),nxx
Tmpk N G G e e g v g g g u h v g crsα=  and 

the master secret key 1 -
1 2 3 1 1 1 1 1 1 1 3

1

( , , , ) ( ,..., , , , )n i i

n
y x yy r r r

i

msk K K K K v v g h g v u gα ρ−

=

= = < > ∗∏ . 

SetPrivateKey: The user sets the private key IDsk β=  where NZβ ∈ . 

SetPublicKey: The user sets public key 1 1( , )( ,, ) ( )ID epk Y g v αβπ π= =  where ( ,Prf crsπ ←  

1 1 1 1( , ), )( , ) ( , )e g v e g vαβ α β  is an NIZK proof that β  is the discrete logarithm of 1 1( , )e g v αβ  to 

the base 1 1( , )e g v α . 

SetCertificate: The CA randomly selects a vector 2
1 2 2, ,..., n

n NZρ ρ ρ ρ +
+′ ′ ′ ′=< >∈ and 1n +  

elements 1
1( , ,..., ) n

n Nr z z Z +′ ∈ . Then, it calculates the certificate as follows: ( , )IDH ID pk ID′= , 

1
1 2 1 2 1 1 3 1 1 1 1 3

1

( , , ) ( , , ) ( ,..., , ( ) ( ) , )n i i

n
z x zz ID ID r r

ID
i

Cert D D D K K K v v K u h g v g ρ′ ′ ′ ′ ′−−

=

= = ∗ < > ∗∏ . The 

1pG  part of IDCert  can be viewed as 1
1 1 1 1 1 1 1

1

( ,..., , ( ) , )n i i

n
z x zz ID r r

i

v v g u h g vα′ ′′ ′ ′′ ′′−−

=

< > ∏  for some 

1
1( , ,..., ) n

n Nr z z Z +′′ ′ ′ ∈  where i i iz y z′ = + for 1i = to n  and r r r′′ ′= + .  

Encrypt: The sender verifies the validation for proof π . If π  is valid, it picks randomly ns Z∈  

and computes the ciphertext: 1
1 1 1 1 10 1 2 1 1. ( , ) ,( , , , ) ( (,..., , , ) )nx sx ss s ID sM e g v gC C C C C u hg vαβ ′= = < > , 



 

where ( , )IDID H ID pk′ = . 

SetDecryptKey: The user picks 2
1 2,..., n

n NZρ ρ ρ +
+′′ ′′ ′′=< >∈ , 1,...,

n
n Nw w w Z=< >∈  and Nt Z∈  

randomly. The user calculates the decryption key as follows: ( , )IDH ID pk ID′= , ( ,IDdk S=  

1
1 2 1 2 1 1 1 1 1 1 3

1

, ) ( , , ) ( ,..., , ( ) , )n i i

n
w x ww ID t t

i

S S D D D v v u h g v gβ ρ′ ′′−−

=

= ∗ < > ∗∏ . The 
1pG  part of IDdk  

can be viewed as 1
1 1 1 1 1 1 1

1

( ,..., , ( ) , )n i i

n
w x ww ID t t

i

v v g u h g vαβ′ ′′ ′ ′ ′−−

=

< > ∏  for some 1
1( , ,..., ) n

n Nt w w Z +′ ′ ′ ∈  

where ( )i i i iw w y z β′ = + +  for 1i = to n  and ( )t t r r β′ ′= + + . 

Decrypt: By using the decryption key, the user gets 0

1 1 2 2( , ) ( , ) ( , )
CM

e C S e C S e C S
=

⋅ ⋅
. 

Correctness.  

1 1 2 2( , ) ( , ) ( , )e C S e C S e C S⋅ ⋅  

= 1 1 1 11 ( )( )
1 11 3 31( ,..., * ,.,..., , .., )n n n nn wwx sx se v v g gg g

ββ ρ ρ ρρ ρ ρ′ ′ ′′′ ′ ′′ + ++ +<> > < >< ⋅  

1
1 1 1 1 3

1
1( , ( ) )i i n

n
xDs wI t

i

e g u h g gv ραβ +′ ′′′ ′ −−

=

⋅ ⋅∏ 2
1 1 1 3(( ) , )nID s te u h v g ρ +′′′ ′ ⋅  

  = 11 1 1 1 ( )( )
11 3 1 31( ,...,,..., , )n n n n nx sx s wwe v g vg gg

ββ ρ ρ ρρ ρ ρ ′ ′ ′′′ ′ ′′ + ++ +⋅ ⋅< < >> ⋅  

1
1 1 1 1 3

1
1( , ( ) )i i n

n
xDs wI t

i

e g u h g gv ραβ +′ ′′′ ′ −−

=

⋅ ⋅∏ 2
1 1 1 3(( ) , )nID s te u h v g ρ +′′′ ′ ⋅  

= ( )

1
1 1 3( ), i ii i i

n
w

i

x se v gg
βρ ρ ρ′ ′ ′′+ +

=

⋅ ⋅∏ 1
1 1 1 1 3

1
1( , ( ) )i i n

n
xDs wI t

i

e g u h g gv ραβ +′ ′′′ ′ −−

=

⋅ ⋅∏ 2
1 1 1 3(( ) , )nID s te u h v g ρ +′′′ ′ ⋅  

  = 1 1
1

,( )i ix
n

s w

i

e vg ′

=

⋅∏ ( )
3

1
1( ), i i iix s

n

i

e g g
βρ ρ ρ′ ′′+ +

=

⋅∏ 1 1 1 11
1

( , ( ) )i is
n

x wID t

i

e g u h gv αβ ′′ ′ −−

=

⋅∏ 1
31( , )nse gv ρ +′′ ⋅  

   1 1 1(( ) , )ID s te u h v′ ′ ⋅ 2
1 1 3(( ) , )nID se u h g ρ +′′′  

  = 1 1
1

,( )i ix
n

s w

i

e vg ′

=

⋅∏ 1 1 1 11
1

( , ( ) )i is
n

x wID t

i

e g u h gv αβ ′′ ′ −−

=

⋅∏ 1 1 1(( ) , )ID s te u h v′ ′  

  = 1 1
1

,( )i ix
n

s w

i

e vg ′

=

⋅∏ 11
1

( , )i i

n
x w

i

se gv ′−

=

⋅∏ 11( , )se gv αβ ⋅ 1 11( , ( ) )ID tse u hv ′ ′− ⋅ 1 1 1(( ) , )ID s te u h v′ ′  

=
1

1 1( ),i i

n
wx s

i

e vg ′

=

⋅∏ 11
1

( , )i i

n
x w

i

se gv ′−

=

⋅∏ 11( , ) se gv αβ ⋅ 11 1( , ( ) )t ID sve u h′ ′ − ⋅ 1 1 1(( ) , )ID s te u h v′ ′  

= 1 1
1

,( ).i i

n
w s

i

xe g v′

=
∏ 11

1

( , )i i

n
x w

i

se gv ′−

=

⋅∏ 1 1( , ) se gv αβ  

= 1 1( , ) se gv αβ  

5 Security Proof 

Inspired by dual system encryption method [26, 29, 30], we uses semi-functional ciphertexts and 
keys in our proof. In order to accomplish our proof, we give dual system construction of our LR-CBE. 

5.1 Dual System Description of Our LR-CBE 

DS-Setup: The algorithm is based on Setup. It outputs a normal master public key and a 
semi-functional master secret key msk . 

DS-SetCertificate: The algorithm is based on SetCertificate. It is run by the certificate authority. It 



 

takes as input master public key mpk , the SF master secret key msk , the identity ID  and the 

corresponding public IDpk . It outputs the user’s SF certificate IDCert .  
DS-SetDecryptKey: The algorithm is run by the user ID . It takes as input the master public key. It 

outputs the user’s semi-functional decryption key IDdk . 
DS-Encrypt: The algorithm is run by the sender. It takes as input the master public key mpk , the 

plaintext M , the receiver’s identity ID  and the corresponding public IDpk . It outputs the SF 

ciphertext C . 
  The SF decryption keys can only decrypt normal ciphertexts. The normal decryption keys can 
decrypt normal and semi-functional ciphertexts. Of course, if the input of the algorithm   
SetCertificate is the SF master secret key msk , the output of SetCertificate is SF certificate IDCert . 

If the input of the algorithm SetDecryptKey is SF certificate IDCert , the output of the algorithm 

SetDecryptKey is SF decryption key IDdk . 

  Here, we use X  to denote the semi-functional construction of X . When the semantic context is 
clear, we also use X  to denote the corresponding semi-functional construction.  

5.2 Dual System Construction of Our LR-CBE 

  In section 4, keys and ciphertexts are normal. That is to say, they don’t contain 
2pG  part. Here, we 

give the dual system construction of our LR-CBE according to the description in Subsection 5.1. 
DS-Setup: The algorithm invokes Setup to generate a normal master secret key 1( , ,msk K K=  

2 3, )K K . It selects 3
1 2 3, ( , , )n

N NZ Zι ι ι ι∈ ∈  randomly, then computes the semi-functional master 

secret key 31 2
2 1 2 2 2 3 2( , , , )msk K g K g K g K gιι ιι= ∗ ⋅ ⋅ ⋅ . 

DS-SetCertificate: The algorithm runs SetCertificate to generate the normal certificate 

1 2( , , )IDCert D D D= . It selects 2
1 2, ( , )n

N NZ Zη η η∈ ∈  randomly, then computes the 

semi-functional certificate 1 2
2 1 2 2 2( , , )IDCert D g D g D gη ηη= ∗ ⋅ ⋅ . 

DS-SetDecryptKey: The algorithm runs SetDecryptKey to generate the normal decryption key 

1 2( , , )IDdk S S S= . Next, it randomly selects 2
1 2, ( , )n

N NZ Zθ θ θ∈ ∈  and computes the semi 

functional decryption key 1 2
2 1 2 2 2( , , )IDdk S g S g S gθ θθ= ∗ ⋅ ⋅ . 

DS-Encrypt: The algorithm invokes Encrypt to get normal ciphertext 0 1 2( , , , )C C C C C= . Next, 

it selects 2
1 2, ( , )n

N NZ Zδ δ δ∈ ∈  randomly and computes the semi-functional ciphertext 0( ,C C=  
1 2

2 1 2 2 2, , )C g C g C gδ δδ∗ ⋅ ⋅ . 

If 1 1 2 2 20 mod pθ δ θ δ θ δ⋅ + + = , the SF decryption key is called as nominal semi-functional 
(NSF) decryption key. In this case, even if the ciphertext is semi functional, Decrypt will be done 
successfully. Otherwise, we call the SF decryption key as true SF decryption key. 

5.3 Security of Our LR-CBE 

5.3.1 Security Proof against Type I Adversary 

In order to prove the security with leakage resilience, we give a series of games here, which are 
modifications of the game _ _Game RT1� . If we prove that these games are indistinguishable we 
finish the security proof of our scheme. We use Q  to denote the maximum number of -CreateO  
queries in the games. 

These additional games are as follows. 



 

_ _Game 0T1� : It is nearly the same as _ _Game RT1�  besides the challenge ciphertext. In 
_ _Game 0T1�  the challenge ciphertext is semi-functional. 

_ _Game kT1� ( 1k =  to Q ): The challenge ciphertext is semi-functional. For the adversary’s 
queries, the challenger answers in two ways. Toward the first k  queries, the challenger does as 
follows. 
  If the adversary makes a certificate query or decryption key query, the challenger creates the SF 
certificate and SF decryption key. If the adversary makes a replace public key query, the challenger 
only creates the SF certificate. The challenger adds the corresponding item in list L1  and gives it to 
the adversary. 

For the remaining queries, the challenger creates normal certificate and normal decryption key. 
_ _Game MskT1� : It is nearly the same as _ _Game QT1�  except that in _ _Game MskT1� the 

master secret key is semi-functional. Thus, for -LeakmasterkeyO  query, the challenger creates 
semi-functional master secret key and sends the output of the leakage function to the adversary. The 
leakage function takes the semi-functional master secret key as input. 

_ _Game FinalT1� : It is nearly the same as _ _Game MskT1�  except that the challenger 
randomly selects a message Mς  and encrypts it. In _ _Game MskT1� , the challenger encrypts a 

challenge message Mξ . From the adversary’s point of view, in _ _Game FinalT1�  the bit ξ ′ of 

his choice is independent of the challenger’s bit ξ . 
In the following table 1, we explain the types of master secret key, ciphertexts and decryption keys 

which are created in different games. Let SF denote the semi-functional key or ciphertext. Let N denote 
the normal key or ciphertext. We use MT , CT  and DT  to denote the types of master secret key, 
ciphertext and decryption key, respectively. In each game, the maximum number of create 
query -CreateO  is Q . Thus, we use M C D M C D( (T ,T ,T ),...,(T ,T ,T ) )

Q

 to denote the according types 

of Q  create queries in a game. For every game above, the types of the ciphertexts are the same in 
every create query. At the same time, the types of master keys are the same in every create query. Thus, 

M C D M C D((T ,T ,T ),...,(T ,T ,T ))  could be shortened as M C D D(T ,T ,(T ,...T ))
Q

 to denote the according 

types of Q  create queries in a game.   
Table 1. The types of master secret keys, ciphertexts and decryption keys in different games. 

Games 
The type of master secret keys, ciphertexts and decryption keys:  

M C D D(T ,T ,(T ,...,T ))  

_ _Game RT1�  (N,N,(N,...,N))  
_ _Game 0T1�  (N,SF,(N,......,N))  
_ _Game kT1�  
(1,..., 1)k Q∈ −  

(N,SF,(SF,...,SF,N,...,N))
k

 

_ _Game QT1�  (N,SF,(SF,..,SF))  
_ _Game MskT1�  (SF,SF, (SF,...,SF))  
_ _Game FinalT1�  (SF,SF, (SF,...,SF))  

Theorem 1. Under the assumption 1, assumption 2 and assumption 3, for ( 2 1)dk n cλ λ= − −  bits 

leakage of the decryption key and ( 2 1)msk n cλ λ= − −  bits leakage of the master secret key, the 
LR-CBE scheme is secure against A1  where 2n ≥  is an integer and c  is a fixed positive constant. 

The value of n  can be varied. A larger value of n  will generate a larger leakage rate. The smaller 
value of n  will lead to a smaller master public key. The concrete explanation is given in Section 6. 
  Proof. The general idea of proof is as follows. We will use a series of games _ _Game RT1� , 

_ _Game kT1�  ( (0,1,..., )k Q∈ ), _ _Game MskT1�  and _ _Game FinalT1� and Lemma 1 to 



 

Lemma 9 to finish our security proof. On one hand, we prove that these games are indistinguishable by 
Lemma 2 to Lemma 9. On the other hand, the advantage that the adversary wins in 

_ _Game FinalT1�  is negligible. We get the leakage bound by Lemma 1. Thus, we can obtain the 
security of the scheme.  

A bit more precisely, we use the following table 2 to show the difference of advantages that the 
adversary wins in the successive two games. Thus, we are easy to obtain the security. Here, we only use 
the results of Lemma 1 to Lemma 9. The specific proofs of Lemma 1 to Lemma 9 are given in the 
following. Let _ _ ( , )Game k

dk mskAdv λ λT1�
A1  denote the advantage that the adversary A1  wins in game 

_ _Game kT1�  ( (1,..., )k Q∈ ). Let _ _ ( , )Game Msk
dk mskAdv λ λT1�

A1  denote the advantage that the 

adversary A1  wins in game _ _Game MskT1� . Let _ _ ( , )Game Final
dk mskAdv λ λT1�

A1  denote the 
advantage that the adversary A1  wins in game _ _Game FinalT1� . 

Table 2. The difference of advantages that the adversary wins in the successive two games. 

Two successive games Difference of advantages Related 
lemmas 

_ _Game RT1�  and 
_ _Game 0T1�  

_ _ _ _ 0| ( , ) ( , ) |Game R Game
dk msk dk mskAdv Advλ λ λ λ ε− ≤T1� T1�

A1 A1  Lemma 2

_ _Game kT1�  and 
_ _ 1Game k +T1�  
(0,1,..., 1)k Q∈ −  

_ _ _ _ 1| ( , ) ( , ) |Game k Game k
dk msk dk mskAdv Advλ λ λ λ ε+− ≤T1� T1�

A1 A1  

Lemma 3
Lemma 4
Lemma 5
Lemma 6

_ _Game QT1�  and 
_ _Game MskT1�  

_ _ _ _| ( , ) ( , ) |Game Q Game Msk
dk msk dk mskAdv Advλ λ λ λ ε− ≤T1� T1�

A1 A1  Lemma 7
Lemma 8

_ _Game MskT1� and 
_ _Game FinalT1�  

_ _ _ _| ( , ) ( , ) |Game Q Game Final
dk msk dk mskAdv Advλ λ λ λ ε− ≤T1� T1�

A1 A1  Lemma 9

From table 2, the security of our scheme is obtained directly. We have: 

 _ _ _ _| ( , ) ( , ) |Game R Game Final
dk msk dk mskAdv Advλ λ λ λ−T1� T1�

A1 A1  

=

_ _ _ _ 0 _ _ 0

_ _ _ _

_ _ _ _

| ( , ) ( , ) ( , ) ...

( , ) ( , ) ...

( , ) ( , )

Game R Game Game
dk msk dk msk dk msk

Game k Game k
dk msk dk msk

Game Msk Game Msk
dk msk dk msk

Adv Adv Adv

Adv Adv

Adv Adv Adv

λ λ λ λ λ λ

λ λ λ λ

λ λ λ λ

− + −

− + −

− + −

T1� T1� T1�
A1 A1 A1

T1� T1�
A1 A1

T1� T1�
A1 A1 A1

_ _ ( , ) |Game Final
dk mskλ λT1�

 

≤

_ _ _ _ 0

_ _ 0 _ _1

_ _ _ _ 1

_ _

| ( , ) ( , ) |

| ( , ) ( , ) | ...

| ( , ) ( , ) | ...

| ( , )

Game R Game
dk msk dk msk

Game Game
dk msk dk msk

Game k Game k
dk msk dk msk

Game Q
dk msk

Adv Adv

Adv Adv

Adv Adv

Adv A

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ

+

−

+ − +

+ − +

+ −

T1� T1�
A1 A1

T1� T1�
A1 A1

T1� T1�
A1 A1

T1�
A1

_ _

_ _ _ _

( , ) |

| ( , ) ( , ) |

Game Msk
dk msk

Game Msk Game Final
dk msk dk msk

dv

Adv Adv

λ λ

λ λ λ λ+ −

T1�
A1

T1� T1�
A1 A1

 

≤ (Q 1)ε ε ε+ + + = (Q 3)ε+ . 

So, _ _ _ _| ( , ) ( , ) | ( 3)Game R Game Final
dk msk dk mskAdv Adv Qλ λ λ λ ε− ≤ +T1� T1�

A1 A1 . What’s more, 
_ _ ( , )Game Final

dk mskAdv λ λ ε≤T1�
A1  is proved similarly to that of Theorem 6.8 in the full version of [26]. 

To sum up, _ _ ( , )Game R
dk mskAdv λ λ ε≤T1�

A1 . In addition, Lemma 1 proves the leakage bound. Thus, we 
finish the proof of Theorem 1.   
  The specific proofs of Lemma 1 to Lemma 9 are given as follows. 

Lemma 1. The leakage size is at most ( 2 1)dk msk n cλ λ λ= = − − . 
  Proof. We first introduce a useful conclusion (we called it as Conclusion 1) given in [33]. 



 

Conclusion 1. Let p  be a prime. Let 2m l≥ ≥  ( ,m l N∈ ). Let m l
pX Z ×← , 1

1( )l
pT Rk Z ×← , 

m
pU Z← . 1

1( )l
pRk Z ×  denotes that the rank of 1l

pZ ×  is 1. For an arbitrary leakage function 

: m
pf Z W→ , if 1 21| | 4 (1 ) lW p

p
ε−≤ ⋅ − ⋅ ⋅  we have the statistical distance 

(( , ( )), ( , ( ))SD X f X T X f U ε⋅ ≤  where ε  is a negligible value. 
Conclusion 1 shows that random subspace is resilient to leakage in the view of information theory. 

m l
pX Z ×∈  is a random matrix with rank 2l ≥ . X is also used to denote the linear subspace of 

dimention l  which is generated by columns of this matrix. The function f  is an arbitrary leakage 

function over space m
pZ . We can see that if the output length of the leakage function is sufficiently 

short, the random variables ( , ( ))X f V  and ( , ( ))X f U  are statistically close or indistinguishable, 

where V X T X= ⋅ ⊆  and m
pU Z∈ . Because ( )f U  and X  are independent, ( )f U  does not 

leak the information of X . Thus, we conclude that if the output length of the leakage function is 
sufficiently short ( )f V  does not leak the information of X .  

We can see | | logV l p=  easily. If the leakage size is at most log | | ( 1) log 2logW l p ε≤ − + , 
the leakage ( )f V  hides the subspace X .  

In our paper, we use the following Corollary 1.  
Corollary 1. Let p  be a prime. Let ,m m

p pZ Zδ τ← ← , m
pZτ ′←  such that τ ′  is orthogonal to 

δ  modulo p  under the dot product, where 3m ≥  ( m N∈ ). For an arbitrary leakage function 

: m
pf Z W→ , if 1 21| | 4 (1 ) nW p

p
ε−≤ ⋅ − ⋅ ⋅  we have (( , ( )), ( , ( )))SD f fδ τ δ τ ε′ ≤  where ε  

is a negligible value. 
  Proof. We apply Conclusion 1 with 1l m= − . Then, τ corresponds to U and the basis of the 
orthogonal space of δ  corresponds to X . We will see that τ ′  is distributed as X T⋅  where 

( 1) 1
1( )m

pT Rk Z − ×← . Because m
pZδ ∈  is selected uniformly at random, ( 1)m m

pX Z × −← is determined 

by δ . Thus, we have (( , ( )), ( , ( ))) (( , ( )), ( , ( ))SD f f dist X f X T X f Uδ τ δ τ′ = ⋅ . 

If we let 1n m+ = , 2p p=  and 2
cpε −= , we get that the leakage size is at most log W ≤  

2 2( 1) log 2 logn p c p− − 2( 2 1) logn c p= − − = ( 2 1)n c λ− − , where 2log p λ= . Thus, we get 

that the leakage size is at most ( 2 1)dk msk n cλ λ λ= = − − .  
Lemma 2. Under assumption 1, the advantage that PPT adversary A1 succeeds in distinguishing 
_ _Game RT1�  and _ _Game 0T1�  is negligible. That is 

_ _ _ _ 0| ( , ) ( , ) |Game R Game
dk msk dk mskAdv Advλ λ λ λ ε− ≤T1� T1�

A1 A1 . 
Proof. If there is a PPT adversary A1who distinguishes _ _Game RT1�  and _ _Game 0T1�  

with non-negligible advantage, we can construct a simulator B  to break assumption 1. 
Firstly, B  is given an instance 1 3( , , , , , )TN G G e g g  and a challenge item T , where 1

zT g=  or 

1 2
z vT g g=  for , Nz v Z∈ . B  interacts with A1  as follows. 

Setup Phase: B  firstly creates composite order bilinear groups 1 2 3( , , )TN p p p G,G e= . Then, 

B  selects , , Na b d Z∈  uniformly at random and sets 1 1 ,au g= 1 1
bh g= and 1 1

dv g= . Given 

11 pg G∈  and 
33 pg G∈ , B  runs the algorithm Gen  of ∏  to generate the common reference 

string crs  and selects random 2 2
1 2 1 2( , , ,..., , , , ,..., ) n

n n Nx x x r y y y Zα +∈  and a vector 

1 2 3, ,..., n+ρ ρ ρ ρ=< >  3n
NZ +∈  where 2n ≥  is an integer.  



 

It outputs the master public key 1
1 1 1 1 1 1 1 1 3, , , , ( , ) , , ,..., , , , ,( ),nxx

Tmpk N G G e e g v g g g u h v g crsα=  

and the master secret key 1 -
1 2 3 1 1 1 1 1 1 1 3

1

( , , , ) ( ,..., , , , )n i i

n
y x yy r r r

i

msk K K K K v v g h g v u gα ρ−

=

= = < > ∗∏ . 

Oracle Query: For the public key which is not replaced, B  knows the decryption key because he 
has the msk . Hence, B can answer the adversary’s queries. In addition, B  stores the private key of 
each user. 

Challenge: A1 gives challenge identity ID∗ and two message 0M and 1M to B . B  scans list 

L1  to find public key ( , )Y π  of ID∗where 1 1( , )Y e g v αβ= . If the A1  doesn’t replace the public 
key B  knows β . Otherwise, B  extracts β  from π  by NIZK proof. B  selects {0,1}ξ ∈  at 

random and outputs the ciphertext: 0 1 2( , , , )C C C C C∗ ∗ ∗ ∗ ∗= 1
1( ( , ), ,..., , ,nxx dM e v T T T Tβ

ξ= ⋅ < >  

)aID bT
∗ + . 

  When 1
zT g=  (that is, no 

2pG part is contained in T ), the given ciphertext is normal. Thus, B  

simulates the _ _Game RT1�  correctly. 

  When 1 2
z vT g g= , we set 1 1 2,..., , ,nx x d aID bδ δ δ ∗=< > = = + . We can see that 1,δ δ  and 

2δ  are distributed uniformly at random from the adversary’s view. The reason is that the 

1,..., , ,nx x d a  and b  are merely calculated under modulo 1p  in mpk . From the adversary’s point 

of view, 1,..., , ,nx x d a  and b  are random under modulo 2p . Thus, B simulates the 
_ _Game 0T1�  correctly. 

If A1  can distinguish _ _Game RT1�  and _ _Game 0T1�  with non-negligible advantage, B  
may break assumption 1 by A1  with non-negligible advantage. Namely, 

_ _ _ _ 0| ( , ) ( , ) |Game R Game
dk msk dk mskAdv Advλ λ λ λ ε− ≤T1� T1�

A1 A1 . 

Lemma 3. If ( 2 1)dk n cλ λ= − −  and assumption 2 holds, the advantage that PPT adversary A1  
distinguishes _ _Game kT1�  and _ _ 1Game k +T1�  is negligible. That is 

_ _ _ _ 1| ( , ) ( , ) |Game k Game k
dk msk dk mskAdv Advλ λ λ λ ε+− ≤T1� T1�

A1 A1 . 
Proof. In order to prove the Lemma 3, another game which is called _ _AltGame kT1�  is defined. 

Compared with _ _Game kT1� , in _ _AltGame kT1�  the certificate is normal instead of 
semi-functional if the kth query are create oracle. The decryption key is still semi-functional. Therefore, 
the Lemma 3 can be proved by the following three lemmas.  

Lemma 4. If ( 2 1)dk n cλ λ= − −  and assumption 2 holds, the advantage that PPT adversary A1  
can succeed in distinguishing _ _Game kT1�  and _ _AltGame kT1�  is negligible. That is 

_ _ _ _| ( , ) ( , ) |Game k AltGame k
dk msk dk mskAdv Advλ λ λ λ ε− ≤T1� T1�

A1 A1 . 
Compared with _ _Game kT1� , in _ _AltGame kT1�  the certificate is normal instead of 

semi-functional if the kth query are create oracle. The decryption key is still semi-functional. 
Proof. If there is a PPT adversary A1who distinguishes _ _Game kT1� and _ _AltGame kT1�  

with non-negligible advantage, we can construct a simulator B  who can break assumption 2.  Firstly, 
B  is given an instance 1 3 1 2 2 3( , , , , , , , )z v u

TN G G e g g g g g g ρ  and a challenge item T  which is 

1 3g gω σ  or 1 2 3g g gω κ σ . B  interacts with A1  as follows. 

Setup Phase: B  firstly creates composite order bilinear groups 1 2 3( , , )TN p p p G,G e= . B  

selects , , Na b d Z∈  uniformly at random and sets 1 1 ,au g=  1 1
bh g= and 1 1

dv g= . Given 

11 pg G∈  and 
33 pg G∈ , B  runs the algorithm Gen  of ∏  to generate the common reference 



 

string crs  and selects random 2 2
1 2 1 2( , , ,..., , , , ,..., ) n

n n Nx x x r y y y Zα +∈ and a vector 
3

1 2 3, ,..., n
n+ NZρ ρ ρ ρ +=< >∈  where 2n ≥  is an integer.  

It outputs the master public key 1
1 1 1 1 1 1 1 1 3, , , , ( , ) , , ,..., , , , ,( ),nxx

Tmpk N G G e e g v g g g u h v g crsα=  

and the master secret key 1 -
1 2 3 1 1 1 1 1 1 1 3

1

( , , , ) ( ,..., , , , )n i i

n
y x yy r r r

i

msk K K K K v v g h g v u gα ρ−

=

= = < > ∗∏ . 

Oracle Query: B  may reply every query because he knows , , ,i ix y rα . Specifically, B  

answers the jth query for jID  as follows. 

 (1) If it is the create query, B  generates normal certificate 
jIDCert  by using msk . The 

jIDCert can leak information. B  runs SetPrivateKey to get  β and runs SetPublicKey to get 

jIDpk .  B  picks randomly 1
1 2( , ,..., , ) n

n Nt Zω ω ω +∈  and 2n
NZρ +∈ . 

   (a) If j k≤ , B selects randomly a vector 2n
NZγ +∈  and calculates the decryption key 

jIDdk  

1
1 1 1 1 1 1 2 3 3

1

( ,..., , ( ) , ) ( )jn i i

n
ID xt t

i

v v g u h g v g g gω ωω αβ μ ρ γ ρ−−

=

= < > ∗ ∗∏ . 

(b) If 1j k> + , B calculates the decryption key 1
1 1( ,..., ,n

jIDdk v vωω= < > 1 1( )jID tg u hαβ −  

1 1 3
1

, )i i

n
x t

i

g v gω ρ−

=

∗∏ . 

   (c) If 1j k= + , B  calculates the decryption key 11

1

( )( ,..., ,n k

k

dw aID bdw
IDdk T T T +

+

− += < > ∗  

1 3
1

, )i i

n
x d

i

T g T gω αβ ρ−

=

∗ ∗∏  by using the challenge item T . 

If 1 3T g gω σ= , from the B ’s point of view, the decryption key is distributed uniformly at random 

because no 
2pG  part is in T . 

If 1 2 3T g g gω κ σ= , the decryption key is semi-functional and the corresponding parameters are: 

1,..., ndw dwθ κ κ=< > , 1 1 1
( )n

k i ii
aID b x wθ κ + =

= − + +∑ , 2 dθ κ= .  

Because 1 1,..., , ,..., , , ,n nw w x x d a b  are merely calculated by modulo 1p  in mpk , from 

the A1 ’s point of view, they are random by modulo 2p . Thus, the semi-functional decryption key is 
properly distributed. 
B  sets 1H H← + , adds the item ( , , , , , ,0,0)

j j j jj j ID ID ID IDH ID ID pk sk Cert dk′  to list L1  

and returns H  to A1 . 

(2) If it is the replace public key query with 
jIDpk′ , B  picks randomly 1

1 2( , ,..., , ) n
n Nz z z r Z +∈  

and 2n
NZρ +∈ . 

   (a) If j k≤ , B  randomly selects a vector 2n
NZγ +∈  and calculates the certificate 

jIDCert  

1
1 1 1 1 1 1 1 2 3 3

1

( ,..., , ( ) , ) ( )jn i i

n
IDz x zz r r

i

v v g u h g v g g gα μ ρ γ ρ−−

=

= < > ∗ ∗∏ . 

(b) If 1j k> + , B calculates the certificate 1
1 1 1 1 1 1

1

( ,..., , ( ) ,jn i i

j

n
IDz x zz t

ID
i

Cert v v g u h gα −−

=

= < > ∏  

1 3)rv g ρ∗ . 
(c) If 1j k= + , by using the challenge item T  the challenger B  calculates the certificate 



 

11

1

( )
1 3

1

( ,..., , , )n k i i

k

n
dz aID b x zdz d

ID
i

Cert T T T T g T gα ρ+

+

− + −

=

= < > ∗ ∗∏ . 

If 1 3T g gω σ= , from the B ’s point of view, the certificate is properly distributed because no 
2pG  

part is in T . 
If 1 2 3T g g gω κ σ= , the certificate is semi-functional and we set 1,..., ndz dzη κ κ=< > , 1 (η κ= −  

1 1
)n

k i ii
aID b x z+ =

+ +∑  and 2 dη κ= . 

Because 1 1,..., z , ,..., , , ,n nz x x d a b  are merely calculated by modulo 1p  in mpk , from 

the A1 ’s point of view, they are random by modulo 2p . Thus, the SF certificate is properly distributed. 

B  sets 1H H← + , adds the item ( , , , , , , ,0,0)
j jj j ID IDH ID ID pk Cert′ ′ ⊥ ⊥  to list L1 , and 

returns H  to A1 . 

Challenge: A1  gives an identity ID∗  and two messages 0M  and 1M . B  selects a random 

bit {0,1}ξ ∈ . B  scans the list L1  to find ( , )
jIDp Yk π=  about ID∗  for the largest handle 

where 1 1( , )Y e g v αβ∗

= . If the A1  doesn’t replace the public key B  knows β ∗ . Otherwise, 

B can extract β ∗  from π  by NIZK proof. By using 1 2
z vg g  B  outputs the SF ciphertext 

1
0 1 2 1 1 2 1 2 1 2 1 2 1 2( , , , ) ( ( , ) , ( ) , , ( ) , ( ) , ( ) )nxxz v z v z v z v d z v aID bC C C C C M e v g g g g g g g g g gβ α

ξ

∗ ∗∗ ∗ ∗ ∗ ∗ += = ⋅ < ⋅⋅⋅ > .  

From the SF ciphertext we get SF parameters 1 1 2,..., , , ( )nvx vx vd v aID bδ δ δ ∗=< > = = + . For the 

same reason as before, from the A1 ’s point of view, 1,..., , , ,nx x d a b  are random under modulo 2p  

and the given ciphertext is distributed uniformly at random if ID∗  isn’t the identity for the ( 1)thk +  
handle. 

(Ⅰ) If the ( 1)thk +  inquiry is create inquiry, we can get the conclusion: If T contains 
2pG  part, 

the decryption key towards the ( 1)thk +  handle is semi-functional for the C∗ . The NSF property is 

embodied as follows. 2
1

mod
n

i i
i

d x w pθ δ κν
=

⋅ = ∑ , 1 1 1
1

( )
n

k i i
i

d aID b x wθ δ κν +
=

⋅ = − + +∑  

2mod p  and 2 2 2( ) modd aID b pθ δ κν ∗⋅ = − + . 

If 1 2 3
wT g g gκ σ= , B  imitates the _ _AltGame kT1�  correctly when 1 2modkID ID p∗

+≠ .  Or 
else, B  imitates the _ _Game kT1� . 

(Ⅱ) If the ( 1)thk +  inquiry is -ReplacepublickeyO , we can get the conclusion: Though the 
public key is replaced, the decryption key has the same 

2pG  part with the corresponding certificate. 

The reason is that if A1  doesn’t affect the 
1pG  part A1  can’t randomize 

2pG  part. The NSF 
property is embodied as follows. 

2
1

mod
n

i i
i

d x w pβθ δ η δ κνβ
=

⋅ = ⋅ = ∑ , 1 1 1 1 1 2
1

( ) mod
n

k i i
i

d aID b x w pβθ δ η δ κνβ +
=

⋅ = ⋅ = − + +∑  

and 2 2 2 2 2( ) modd aID b pβθ δ η δ κνβ ∗⋅ = ⋅ = − + . 

If 1 2 3
wT g g gκ σ=  B  imitates the _ _AltGame kT1�  correctly when 1 2modkID ID p∗

+≠ . Or 
else, B  imitates the _ _Game kT1� .  

In the above two cases, NSF is taken into account as follows. 
(1) 1 2 1mod modk kID ID p and ID ID N∗ ∗

+ += ≠ . 

(2) 1 modkID ID N∗
+= . 



 

For the case (1), if B  computes 1gcd( , )ka ID ID N∗
+′ = −  he can generate a nontrivial factor of 

N . Subgroup decision assumption is broken, which implies that assumption 1, 2, 3 are broken.  
  For the case (2), the challenge identity ID∗  is pointed out by the ( 1)thk +  handle. In the case, 

A1 can’t extract the decryption key of ID∗ . We further divide it into two subcases: 

  (a) A1may obtain the certificate and some leakage of the decryption key for identity ID∗ . 
  (b) A1 is able to replace the corresponding public key and get some leakage of the certificate for 

identity ID∗ . 
The following Lemma 5 is to show that normal SF and NSF are indistinguishable. 

  Lemma 5. For the case (2) of Lemma 4, when the decryption key/certificate changes from normal 
SF to NSF for the ( 1)thk +  handle of identity ID∗  in the case of dkλ leakage of the decryption 

key，the advantage that A1  wins  is a negligible value, where ( 2 1)dk n cλ λ= − −  and c is a 
fixed positive constant. 
  Proof. If there is a PPT adversary A1  who distinguishes the SF and NSF decryption key or 
certificate with non-negligible advantage, we can construct an algorithm B  to break Corollary 1. That 
is to say, the advantage that B  succeeds in distinguishing the distribution ( , ( ))fδ τ ′  and 

( , ( ))fδ τ  is non-negligible. Thus, there is a contradiction. 
B  runs Setup. B  keeps the msk  and gives the mpk  to A1 . Because B  has the msk  and 

knows 
22 pg G∈ , he can generate normal and semi-functional keys. Thus, he can answer all the 

inquiries of A1 . 

Towards the ( 1)thk +  replace public key or create inquiry about identity ID , B  replies with the 

handle H ∗  and doesn’t create the private key. If A1  asks for the leakage of decryption key for 

( , )H f∗ , B  encodes the leakage that A1  inquiries in Phase 1 for the ID  as a PPT function f : 

2
2 dkn

pZ λ→ . This can be done if all the values of other keys and other variables for the challenge key 

are regarded as fixed. Then B  gets ( , ( ))fδ Γ , where Γ  is τ  or τ ′  according to Corollary 1 

and has 1n +  components. B  returns ( )f Γ  to A1  as the leakage about the ( 1)thk +  handle, 
which defines the challenge keys in the following. 

(1) If the ( 1)thk +  inquiry is create query, B calculates normal certificate IDCert  by using 

msk . B selects randomly 
21 2, pr r Z∈ and sets implicitly 

2pG part in decryption key to be 2g ′Γ , 

where ′Γ  is defined as 1 2,0 0,...,0, ,
n

r r< Γ > + < > . B  sets non-
2pG part in decryption key to 

satisfy the proper distribution. It is able to solve the subcase (a) of Lemma 4.  
(2) If the ( 1)thk +  inquiry is -ReplacepublickeyO , B selects randomly 

21 2, pr r Z∈ and sets 

2pG  part in the certificate to be 2g ′Γ , where ′Γ is defined as 1 2,0 0,...,0, ,
n

r r< Γ > + < > . B  sets 

non-
2pG part in the certificate to satisfy the proper distribution. It is able to solve the subcase (b) of 

Lemma 4.   
In certain circumstances, A1  gives the challenge message. B  selects 

22 pt Z∈ which satisfies 

1 2 2 20 modnr t r pδ + ≡ . By using 2,0 0,...,0,0, tδ< > + < >  as 
2pG  part where δ  has 1n +  

components, B  generates the challenge ciphertext. If δ  and Γ  are orthogonal, the ( 1)thk +  
handle is about the NSF decryption key/certificate. 

It is obvious that B  is able to reply easily the inquiries in Phase 2. By using the output of A1 , 



 

B succeeds in distinguishing the distribution ( , ( ))fδ τ ′  and ( , ( ))fδ τ  with non-negligible 
advantage. 

If assumption 2 holds the _ _Game kT1�  and _ _AltGame kT1�  are indistinguishable from the 

adversary’s point of view.  Namely, _ _ _ _| ( , ) ( , ) |Game k AltGame k
dk msk dk mskAdv Advλ λ λ λ ε− ≤T1� T1�

A1 A1 . 

Lemma 6. If ( 2 1)dk n cλ λ= − −  and assumption 2 holds, _ _AltGame kT1�  and 
_ _ 1Game k +T1�  are indistinguishable from the adversary’s point of view. That is 

_ _ _ _ 1| ( , ) ( , ) |AltGame k Game k
dk msk dk mskAdv Advλ λ λ λ ε+− ≤T1� T1�

A1 A1 . 
  Proof. If there is a PPT adversary A1  who distinguishes the _ _AltGame kT1�  and 

_ _ 1Game k +T1�  with non-negligible advantage, we can construct a simulator B  who breaks 

assumption 2. Firstly, B  is given an instance 1 3 1 2 2 3( , , , , , , , )z v u
TN G G e g g g g g g ρ . B  is given a 

challenge item T  which is 1 3g gω σ  or 1 2 3g g gω κ σ . B  interacts with A1  as follows. 

Setup Phase: B  firstly creates composite order bilinear groups 1 2 3( , , )TN p p p G,G e= . B  

selects , , Na b d Z∈  uniformly at random and sets 1 1 ,au g= 1 1
bh g= and 1 1

dv g= . Given 
11 pg G∈  

and 
33 pg G∈ , B  runs the algorithm Gen  of ∏  to generate the common reference string crs  

and selects random 1 2 1 2( , , ,..., , , , ,..., )n nx x x r y y yα 2 2n
NZ +∈ and a vector 

3
1 2 3, ,..., n

n+ NZρ ρ ρ ρ +=< >∈  where 2n ≥  is an integer.  

It outputs the master public key 1
1 1 1 1 1 1 1 1 3, , , , ( , ) , , ,..., , , , ,( ),nxx

Tmpk N G G e e g v g g g u h v g crsα=  

and the master secret key 1 -
1 1 1 1 1 1 1 3 1 2 3

1

( ,..., , , , ) ( , , , )n i i

n
y x yy r r r

i

msk v v g h g v u g K K K Kα ρ−

=

= < > ∗∏ . 

Oracle Query:  B  may reply every query because he knows , , ,i ix y rα . Specifically, B  

answers the jth query for identity jID  as follows. 

(1) If it is the create query, B  generates normal certificate 1 2( , , )
jIDCert D D D=   by using 

msk . The 
jIDCert can leak information. B  runs SetPrivateKey to get β and runs SetPublicKey to 

get 
jIDpk .  

  (a) If j k≤ , B selects randomly vectors 2
1 1 2 2, , , n

NZρ γ ρ γ +∈  and calculates the decryption key: 
1 1

1 2 2 3 3( , , ) ( )IDCert D D D g g gγ ρμ ρ= ∗ ∗ , 2 2
1 2 2 3 3( , , ) ( )IDdk S S S g g gγ ρμ ρ= ∗ ∗ . B  adds ( , ,jH ID  

, , , , ,0,0)
j j j jj ID ID ID IDID pk sk Cert dk′  to the list L1 . 

(b) If 1j k> + , B calculates normally the decryption key 
jIDdk  and adds ( , , , ,

jj j IDH ID ID pk′  

, , ,0,0)
j j jID ID IDsk Cert dk  to the list L1 .  

(c) If 1j k= + , B selects randomly vectors 2
1 2 1, , n

NZρ ρ γ +∈  and 1 2( , ,..., ) n
n Nz z z Z∈ . By 

using the challenge item B  calculates the certificate 1 11 1

1

( )( ,..., ,n k

k

d z aID bd z
IDCert T T T +

+

− += < >  

1
3

1

, )i i

n
x z d

i

T g T g ρα−

=

∗ ∗∏ . 

B invokes SetDecryptKey to get decryption key
jIDdk and calculates SF decryption key 

2 2
1 2 2 3 3( , , ) ( )

jIDdk S S S g g gγ ρμ ρ= ∗ ∗ . B adds ( , , , , , , ,0,0)
j j j jj j ID ID ID IDH ID ID pk sk Cert dk′  to 

the list L1 . 
If 1 3T g gω σ= , from the B ’s point of view, the decryption key is uniformly distributed at random 



 

because no 
2pG  part is in T . 

If 1 2 3T g g gω κ σ= , the decryption key is semi-functional and the corresponding parameters are 

1 1 1,..., nd z d zη κ κ=< > , 1 1 1
( )n

k i ii
aID b x zη κ + =

= − + +∑  and 2 dη κ= .  

Because 1 1,..., , ,..., , , ,n nz z x x d a b  are merely calculated by modulo 1p  in mpk , from the A1 ’s 

point of view, they are random by modulo 2p . Thus, the semi-functional decryption key is properly 
distributed. 
B  sets 1H H← +  and returns 1H +  to A1 . 
(2) If the jth inquiry is replace public key inquiry, the simulation is run in the same way as that of 

Lemma 4. 
Challenge: It is run in the same way as the Challenge of Lemma 4. 
The NSF property is analyzed in a similar way as that of Lemma 4. 

  To summarize, if the assumption 2 holds and the leakage amount is at most ( 2 1)n c λ− − ,  
_ _Game kT1�  and _ _AltGame kT1�  are indistinguishable from the adversary’s point of view. 

Likewise, _ _AltGame kT1�  and _ _ 1Game k +T1�  are indistinguishable from the adversary’s 
point of view. Thus, _ _Game kT1�  and _ _ 1Game k +T1�  are indistinguishable from the 
adversary’s point of view. 
  By Lemma 4 to Lemma 6, we have  

_ _ _ _ 1| ( , ) ( , ) |Game k Game k
dk msk dk mskAdv Advλ λ λ λ+−T1� T1�

A1 A1  

=
_ _ _ _ _ _

_ _ 1

| ( , ) ( , ) ( , )

( , ) |

Game k AltGame k AltGame k
dk msk dk msk dk msk

Game k
dk msk

Adv Adv Adv

Adv

λ λ λ λ λ λ

λ λ+

− +

−

T1� T1� T1�
A1 A1 A1

T1�
A1

 

≤
_ _ _ _

_ _ _ _ 1

| ( , ) ( , ) |

| ( , ) ( , ) |

Game k AltGame k
dk msk dk msk

AltGame k Game k
dk msk dk msk

Adv Adv

Adv Adv

λ λ λ λ

λ λ λ λ+

−

+ −

T1 T1�
A1 A1

T1 T1
A1 A1

 

=ε ε+ = 2ε . This finishes Lemma 3. Thus, we have 
_ _ _ _ 1| ( , ) ( , ) |Game k Game k

dk msk dk mskAdv Advλ λ λ λ ε+− ≤T1 T1
A1 A1 . 

Lemma 7. If ( 2 1)msk n cλ λ= − −  and assumption 2 holds, _ _Game QT1�  and 
_ _Game MskT1�  are indistinguishable from the adversary’s point of view. That is 

_ _ _ _| ( , ) ( , ) |Game Q Game Msk
dk msk dk mskAdv Advλ λ λ λ ε− ≤T1 T1

A1 A1 . 
Proof. If there is a PPT adversary A1 who may distinguish the _ _Game QT1�  and 
_ _Game MskT1�  with non-negligible advantage, we can construct a simulator B  who breaks 

assumption 2.  Firstly, B  is given an instance 1 3 1 2 2 3( , , , , , , , )z v u
TN G G e g g g g g g ρ . B  is given a 

challenge item T  which is 1 3g gω σ  or 1 2 3g g gω κ σ . B  interacts with A1  as follows. 

Setup Phase: B  selects 1, , , , ,..., n na b d x x Zα ∈  and sets 1 1 1 1 1 1, ,a bg g u g h g= = =  and 

1
dv g= . B  issues the 1 1 1 1 1 1 1 1( , , , , , , , , , ( , ) , )ix

Tmpk N G G e g u h q v e g v gα= . B  selects 

1( ,..., ) n
n Ny y Z∈  and 3n

NZρ +∈ . By using the challenge item B  generates the master secret key 

1
3

1

( ,..., , , , )n i i

n
dy x ydy b d a

i

msk T T g T T T T gα ρ−−

=

= < > ∗∏ . 

If 1 3T g gω σ= , from the B ’s point of view, the msk  is properly distributed because no 
2pG  

component is in T . 
If 1 2 3T g g gω κ σ= , the msk is semi-functional and the corresponding parameters are 1,dyι κ=<  

..., ndyκ > , 1 1
( )n

i ii
b x yι κ

=
= − +∑ , 2 dι κ=  and 3 aι κ= .  



 

Because 1 1,..., , ,..., , , ,n ny y x x d a b  are merely calculated by modulo 1p  in mpk , from the 

A1 ’s point of view, they are random by modulo 2p . Thus, the SF msk is distributed uniformly at 
random. 

Oracle Query: B  uses 2 3g g  to re-randomize the 
2 3p pG . Similarly, B  uses 3g  to 

re-randomize the 
3pG . Thus, B  is able to create the corresponding semi-functional keys by using the 

semi-functional master secret key. 
Challenge: The phase is the same as that of Lemma 4. 

  Because the msk  is NSF for the challenge ciphertext, we must make further efforts to prove that 
NSF and SF msk  are indistinguishable from the A1 ’s point of view in the case of the leakage of 
msk . 
  Lemma 8. The advantage that A1wins when the msk  is adjusted from normal SF to NSF has a 
negligible difference in the case of mskλ leakage of the master secret key where ( 2 1)msk n cλ λ= − −  
and c  is a fixed positive constant. 
   Proof. The proof is very similar to that of Lemma 5 except for the following differences. Note that 
in Lemma 5 the 

2pG  part of the certificate/decryption key is 1 2( ,0) (0,...,0, , )r rΓ + . For the msk  

in Lemma 8 the 
2pG  part is 1 2( ,0,0) (0,...,0, , ,0) (0,...,0, )r r θΓ + +  where 

21 2, , pr r Z∈ . 

When A1  gives the challenge message for the challenge identity ID∗  to B , B  chooses  

22 pt Z∈  such that 1 1 2 2 2( ) 0 modn r ID t r pδ θ∗+ − + ≡ . By using the output of the adversary A1  

we succeed in distinguishing ( , ( ))fδ ′τ  and ( , ( ))fδ τ  with non-negligible advantage. Thus, there 
is a contradiction. 

By Lemma 7 and Lemma 8, we have _ _ _ _| ( , ) ( , ) |Game Q Game Msk
dk msk dk mskAdv Advλ λ λ λ ε− ≤T1� T1�

A1 A1 . 
Lemma 9. Under the assumption 3 the advantage that PPT adversary succeeds in distinguishing 
_ _Game MskT1�  and _ _Game FinalT1�  is negligible. That is 

_ _ _ _| ( , ) ( , ) |Game Msk Game Final
dk msk dk mskAdv Advλ λ λ λ ε− ≤T1� T1�

A1 A1 . 
Proof. If there is a PPT adversary A1  who may succeed in distinguishing _ _Game MskT1�  

and _ _Game FinalT1�  with non-negligible advantage, we are able to construct a simulator B  to 

break the assumption 3. B  is given an instance 1 2 3 1 2 1 2( , , , , , , , , )v s u
TN G G e g g g g g g gα . B  is given 

a challenge item T  which is 1
sgα  or a random value in G . B  interacts with A1  as follows. 

Setup: B selects randomly 1, ,..., , , ,n Nx x a b d Zα ∈  and sets the master public key mpk  

1 2 1 1 1 1 1 1 1 1( ( , ), , , , )ix a b de g g v g u g h g v gα ν= = = = . B selects randomly 1,..., ,n Ny y r Z∈  and two 

vectors 3, n
NZρ γ +∈  and calculates the SF 1

1 1 1 1 1 1 2 3
1

( ,..., , , , )n i i

n
y x yy r r r

i

msk v v h g v u g gγ ρ−−

=

= < > ∗ ∗∏ . 

Oracle Query: By using the SF master secret key, B  simulates all oracles. 
Challenge: A1 gives an identity ID∗  and two messages  0M  and 1M  to B . B  selects a 

random bit {0,1}ξ ∈ . B  scans the list L1 to find ( , )
ID

pk Y π∗ = about ID∗  for the largest 

handle where 1 1( , )Y e g v αβ∗

= . If the A1  doesn’t replace the public key B  knows β ∗ . Otherwise, 

B  can extract β ∗  from π  by NIZK proof. By using 1 2
s ug g  and T  given from the assumption 

B  outputs the SF ciphertext 0 1 2 1 1 2 1 2( , , , ) ( ( , ), ( ) , ( ) ,ixs s dC C C C C M e T v g g g gβ μ μ
ξ

∗∗ ∗ ∗ ∗ ∗ ∗= = ⋅  

1 2( ) )s aID bg g μ ∗+ . 

From the A1 ’s point of view, 1,..., , , ,nx x d a b  are random under modulo 2p . So, the given SF 
ciphertext is distributed uniformly at random. 



 

If 1
sT gα= , the ciphertext is distributed uniformly at random. In this case, B  correctly simulates 

the _ _Game MskT1� . If T is a random element of G , the item 0C∗  is random. Thus the 
ciphertext is SF for a random message. In this case, B  correctly simulates the _ _Game FinalT1� . 
B can break assumption 3 by using the output of A1 . There is a contraction. Thus, we have 

_ _ _ _| ( , ) ( , ) |Game Msk Game Final
dk msk dk mskAdv Advλ λ λ λ ε− ≤T1� T1�

A1 A1 . 
All in all, under the above nine lemmas we have that _ _Game RT1�  and _ _Game FinalT1�  

are indistinguishable from the adversary’s point of view. What’s more, 
_ _ ( , )Game Final

dk mskAdv λ λ ε≤T1�
A1  is proved in Theorem 6.8 of the full version of [26]. To sum up, 

_ _ ( , )Game R
dk mskAdv λ λ ε≤T1�

A1 . In addition, Lemma 1 proves the leakage bound. Thus, we finish the 
proof of Theorem 1.   

5.3.2 Security Proof against Type II Adversary 

Theorem 2. Under assumption 1, assumption 2 and assumption 3, the LR-CBE scheme is secure in 
the case of dkλ  leakage of the decryption key against A2 , where the amount of the leakage is at most 

( 2 1)dk n cλ λ= − − . 
  Proof. The proof of the Theorem 2 is similar to that of Theorem 1. The concrete proofs are given in 
Appendix A. 

6 Leakage Bound 

Our scheme is resilient to the mskλ leakage of the master secret key and the dkλ  leakage of the 

decryption key. The mskλ and dkλ  have the same maximum value ( 2 1)n c λ− − , where 2n ≥  is 

an integer and c  is a fixed positive constant. The leakage is subject to the size of the subgroup 
2pG . 

The value of n  can be varied.  
In our system 1 2 3N p p p=  and 1 2 3, ,p p p  are λ -bit primes. The size of the master secret key is 

( 3)( ) 3( 3)n nλ λ λ λ+ + + = + . Similarly, the size of the decryption key is 3( 2)n λ+ . The leakage 

rate of master secret key is 
( 2 1) ( 2 1)

3( 3) 3( 3)
n c n c

n n
λ

λ
− − − −

=
+ +

. The leakage rate of decryption key is 

( 2 1) ( 2 1)
3( 2) 3( 2)
n c n c

n n
λ

λ
− − − −

=
+ +

. 

The value of n  can be varied and thus we obtain variable key size and variable leakage amount. 
The bigger value of n  will allow us to get the higher leakage rate. Thus we can achieve the stronger 
security. The smaller value of n  will lead to the smaller master public key. The leakage rate is close 
to 1/3 if n  is large enough. 

Theoretically speaking, we can get a very high leakage rate when n  is large enough. The leakage 
rate of our scheme can come up to 1/3 which far exceeds that of the scheme [20]. In view of 
engineering practice, we hope that n  is a small value. We can see that when 4n =  the leakage rate 
of our scheme can come up to 1/6 which already reaches that of the scheme [20]. What’s more, we need 
only 6 pairings in our decryption which is acceptable in decryption calculation. In some settings, if the 
leakage is not serious we can even set 2n = . Even so, the leakage rate of our scheme is 1/12 which is 
slightly good. Thus, our scheme is also practically usable if we select the small n .  
7 Comparisons 
  We compare our scheme with the schemes in [1, 5]. There are two CBE schemes in [1], BasicCBE 
and FullCBE, neither of which has leakage resilience. The major contribution of [5] is a key 
encapsulation mechanism which can be used to construct CBE. The key encapsulation mechanism has 
no leakage resilience either. Our scheme is a practical and secure scheme with leakage resilience. 
Denote the hash operation by H and the pairing computation by P . The calculations of encryption 



 

and decryption of the above schemes are given in the following table 3.  
Table 3. Performance comparison of our scheme and schemes in [1, 5] 

Schemes Encryption Calculation Decryption Calculation Leakage Resilience 
BasicCBE in [1] 3 2H P+  1 1H P+  No 

FullCBE in [1] 4 2H P+  3 1H P+  No 
Scheme in [5] 1 1H P+  1 1H P+  No 
Our scheme 1 1H P+  1 ( 2)H n P+ +  Yes 

As shown in table 3, for the encryption calculation, our scheme is as good as that of the work in [5].  
What’s more, the value of n  has an important impact on the decryption calculation of our scheme. 
The value of n  also determines the key leakage rate. From table 3, we can see that a bigger n  will 
lead to more decryption operations in our scheme. But as shown in Section 6, a bigger n  will help us 
to achieve a higher leakage rate (and stronger security). In practice, we should make a trade off 
between security and computational overhead in encryption and decryption. 
  When n  varies, the following table 4 gives the corresponding changes of the decryption calculation 
and leakage rate. 

Table 4. The changes of leakage rate and decryption calculation about the parameter n . 

n  2 3 4 5 …… n  …… +∞ 

Pairings of decryption 4 5 6 7 …… 2n +  …… +∞ 

Leakage rate 
1

12
 

2
15

 
1
6

 
4
21

 …… 
1

3( 2)
n
n
−
+

 …… 
1
3

 

  We can see from the table 3 that the decryption needs 2n +  pairings. According to table 4, we will 
know the following fact easily. When n  is very large, both the decryption overhead and the leakage 
rate are very large. On the other hand, when the n  is smaller, the key leakage rate is smaller and 
accordingly the decryption overhead is smaller. Even 2n =  is a very small valve, the key leakage 

rate may come to 
1

12
 which can afford the better leakage resilience in practice. At the same time, 

when 2n =  the decryption only needs 4 pairings which is acceptable in practical application. To say 

the least, when 4n =  the leakage rate may amount to 
1
6

 which affords a very good leakage 

resilience ( please refer to [20] ), but even so the decryption needs no more than 6 pairings which is 
also acceptable for engineering practice. Thus, we may select smaller value of n  for the practicality, 
such as 2n = , 3n =  or 4n = . At the same time, the leakage resilience of our scheme is very 
good. 

8 Conclusion 

Formal definitions and security models for LR-CBE are given in this paper. We present a 
leakage-resilient certificate-based encryption scheme in which leakage about the decryption key and 
the master secret key is considered. The security of the scheme is reduced to the composite order 
bilinear groups assumption. To the best of our knowledge, this is the first LR-CBE resilient to master 
secret key leakage. Our scheme has good leakage resilience. The leakage rate is close to 1/3 if we 
adjust n  properly. Performance analysis shows our scheme has low computation overhead in 
encryption phase. To improve efficiency for decryption operation, we can select n=2 and decryption 
operation only needs 4 pairings which is acceptable in practical applications. As a direction of future 
work, we will construct secure LR-CBE under standard complexity assumptions such as prime order 
bilinear groups assumption, which can make the scheme more efficient. 
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Appendix A. Proof of Theorem 2 

In order to prove the security with leakage resilience against Type II adversary, we give a series of 
games here. These games are modifications of the game _ _Game RT2� . Thus, if we prove that these 
games are indistinguishable we complete the proof of Theorem 2. We use Q  to denote the maximum 
number of -CreateO  queries in the games. 

These additional games are as follows. 

The hybrid games are as follows.  
_ _Game 0T2� : It is nearly the same as _ _Game RT2  besides the challenge ciphertext. In 

_ _Game 0T2�  the challenge ciphertext is semi-functional. 
_ _Game kT2� ( 1k =  to Q ): In the game, for the adversary’s queries, the challenger answers in 

two ways.  
Towards the first k  queries, the challenger answers with the SF certificate and SF decryption key. 

The challenger adds the corresponding item in list L2  and gives it to the adversary. 
Towards the remaining queries, the challenger answers with normal certificate and normal 

decryption key. 
_ _Game FinalT2� : It is nearly the same as _ _Game QT2  except that in the game the 

challenger selects randomly a message Mζ  and encrypts it. In _ _Game QT2 , the challenge 

encrypts a challenge message Mξ . From the adversary’s point of view, in _ _Game FinalT2  the 

bit ξ ′  of his guess is independent of the bit ξ . 



 

In the following table 5, we explain the types of ciphertexts and decryption keys which are created in 
different games. Let SF denote semi-functional key or ciphertext. Let N denote normal key or 
ciphertext. We use CT  and DT  to denote the types of ciphertext and decryption key, respectively. In 
each game, the maximum number of create query -CreateO  is Q . Thus, we use 

C D C D( (T ,T ),...,(T ,T ) )
Q

 to denote the corresponding types of Q  create queries in a game. For every 

game above, the types of the ciphertexts are the same in every create query. Thus, 

C D C D((T ,T ),...,(T ,T ))  may be shortened as C D D(T ,(T ,...T ))
Q

 to denote the according types of Q  

create queries in a game.   
Table 5. The types of ciphertexts and decryption keys in different games. 

Games 
The type of ciphertexts and decryption keys:  C D D(T ,(T ,...,T ))  

_ _Game RT2�  (N,(N,...,N))  
_ _Game 0T2  (SF,(N,......,N))  
_ _Game kT2  
(1,..., 1)k Q∈ −  k

(SF,(SF,...,SF,N,...,N))  

_ _Game QT2  (SF,(SF,..,SF))  
_ _Game FinalT2�  (SF,(SF,...,SF))  

  Theorem 2. Under assumption 1, assumption 2 and assumption 3, the LR-CBE scheme is secure in 
the case of dkλ  leakage of the decryption key against A2 , where the amount of the leakage is at most 

( 2 1)dk n cλ λ= − − . 

  Proof.  The general idea of proof is as follows. We will use a series of games _ _Game RT2� , 
_ _Game kT2  ( (0,1,..., )k Q∈ ) and _ _Game FinalT2�  and Lemma 10 to Lemma 16 to finish 

our security proof. We will use the following Lemma 10 to Lemma 16 to prove the security concretely. 
On one hand, we prove that these games are indistinguishable by Lemma 11 to Lemma 16. On the other 
hand, the advantage that the adversary wins in _ _Game FinalT2�  is negligible. We get the leakage 
bound by Lemma 10. Thus, we can obtain the security of the scheme.  

A bit more specifically, we use the following table 6 to show the difference of advantages that the 
adversary wins in the successive two games. Thus, we are easy to obtain the security. Here, we only use 
the results of Lemma 10 to Lemma 16. The specific proofs of Lemma 10 to Lemma 16 are given in the 
following. Let _ _ ( )Game k

dkAdv λT2�
A2  denote the advantage that the adversary A2  wins in game 

_ _Game kT2  ( (1,..., )k Q∈ ). Let _ _ ( )Game Final
dkAdv λT2

A2  denote the advantage that the 

adversary A2  wins in game _ _Game FinalT2 . 
Table 6. The difference of advantages that the adversary wins in the successive two games. 

Two successive games Difference of advantages Related 
lemmas 

_ _Game RT2�  and 
_ _Game 0T2  

_ _ _ _ 0| ( ) ( ) |Game R Game
dk dkAdv Advλ λ ε− ≤T2� T2�

A2 A2  Lemma 11 

_ _Game kT2  and 
_ _ 1Game k +T2  
(0,1,..., 1)k Q∈ −  

_ _ _ _ 1| ( ) ( ) |Game k Game k
dk dkAdv Advλ λ ε+− ≤T2 T2�

A2 A2  

Lemma 12 
Lemma 13 
Lemma 14 
Lemma 15 

_ _Game QT2� and 
_ _Game FinalT2  

_ _ _ _| ( ) ( ) |Game Q Game Final
dk dkAdv Advλ λ ε− ≤T2 T2�

A2 A2  Lemma 16 

From table 6, the security of our scheme is obtained directly. We have: 



 

 _ _ _ _| ( ) ( ) |Game R Game Final
dk dkAdv Advλ λ−T2� T2�

A2 A2  

=

_ _ _ _ 0 _ _ 0

_ _ _ _ _ _ 1

_ _ _ _ _ _

| ( ) ( ) ( ) ...

( ) ( ) ... ( ) ...

( ) ( ) ( )

Game R Game Game
dk dk dk

Game k Game k Game k
dk dk dk

Game Q Game Q Game Final
dk dk dk

Adv Adv Adv

Adv Adv Adv

Adv Adv Adv

λ λ λ

λ λ λ

λ λ λ

+

− + −

− + − +

− + −

T2 T2 T2�
A2 A2 A2

T2� T2 T2
A2 A2 A2

T2 T2 T2�
A2 A2 A2 |

 

≤

_ _ _ _ 0

_ _ 0 _ _1

_ _ _ _ 1

_ _ _ _

| ( , ) ( , ) |

| ( ) ( ) | ...

| ( ) ( ) | ...

| ( ) ( ) |

Game R Game
dk msk dk msk

Game Game
dk dk

Game k Game k
dk dk

Game Q Game Final
dk dk

Adv Adv

Adv Adv

Adv Adv

Adv Adv

λ λ λ λ

λ λ

λ λ

λ λ

+

−

+ − +

+ − +

+ −

T2 T2
A1 A1

T2 T2
A2 A2

T2� T2�
A2 A2

T2 T2�
A2 A2

 

≤ (Q 1)ε ε+ + = (Q 2)ε+ . 

So, _ _ _ _| ( ) ( ) | ( 2)Game R Game Final
dk dkAdv Adv Qλ λ ε− ≤ +T2� T2

A2 A2 . What’s more, 
_ _ ( )Game Final

dkAdv λ ε≤T2�
A2  is proved similarly to that of Theorem 6.8 in the full version of [26]. To 

sum up, _ _ ( )Game R
dkAdv λ ε≤T2�

A2 . In addition, Lemma 10 proves the leakage bound. Thus, we finish 
the proof of Theorem 2.   
  The specific proofs of Lemma 10 to Lemma 16 are given as follows. 

Lemma 10. The leakage size is at most ( 2 1)dk n cλ λ= − − . 
  Proof. The proof of the lemma is identical to the proof of Lemma 1. 

Lemma 11. Under assumption 1, the advantage that PPT adversary A2  succeeds in distinguishing  
_ _Game RT2�  and _ _Game 0T2�  is negligible. That is 

_ _ _ _ 0| ( ) ( ) |Game R Game
dk dkAdv Advλ λ ε− ≤T2� T2�

A2 A2 . 

Proof. If there is a PPT adversary A2  who distinguishes _ _Game RT2  and _ _Game 0T2�  
with non-negligible advantage, we can construct a simulator B  to break assumption 1. 

Firstly, B  is given an instance 1 3( , , , , , )TN G G e g g  and a challenge item T  where 1
zT g=  or 

1 2
z vT g g=  for , Nz v Z∈ . B  interacts with A2  as follows. 

Setup Phase: B  firstly creates composite order bilinear groups 1 2 3( , , )TN p p p G,G e= . Then, 

B  selects , , Na b d Z∈  uniformly at random and sets 1 1 ,au g= 1 1
bh g= and 1 1

dv g= . Given  

11 pg G∈  and 
33 pg G∈ , B  runs Gen  of ∏  to generate the common reference string crs  and 

selects random 2 2
1 2 1 2( , , ,..., , , , ,..., ) n

n n Nx x x r y y y Zα +∈  and a vector 1 2 3, ,..., n+ρ ρ ρ ρ=< >  
3n

NZ +∈ where 2n ≥  is an integer. It outputs the master public key 1 1, , , , ( , ) ,( TN G G e e gm vpk α=  
1

1 1 1 1 1 1 3, ,..., , , ), , ,nxxg g g u h v g crs  and the master secret key 1 2 3( , , , )msk K K K K=  

1 -
1 1 1 1 1 1 1 3

1

( ,..., , , , )n i i

n
y x yy r r r

i

v v g h g v u gα ρ−

=

= < > ∗∏ . 

Oracle Query: B  knows the decryption key because he has the msk . Thus, B  can answer the 
adversary’s queries. In addition, B  stores the private key of each user. 

Challenge: A2  gives identity ID∗  and two message 0M  and 1M  to B . B  scans list L2  

to find public key ( , )
ID

pk Y π∗ =  of ID∗where 1 1( , )Y e g v αβ= . Because the A2  doesn’t replace 

the public key B  knowsβ . B  selects {0,1}ξ ∈  at random and outputs 0 1 2( , , , )C C C C C∗ ∗ ∗ ∗ ∗=  

1
1( ( , ), ,..., , , )nxx d aID bM e v T T T T Tβ

ξ

∗+= ⋅ < > . 

  When 1
zT g=  (that is, no 

2pG  part is contained in it), the given ciphertext is normal. Thus, B  



 

simulates the _ _Game RT2�  correctly. 

  When 1 2
z vT g g= , we let 1 1 2x ,..., x , ,n d aID bδ δ δ ∗=< > = = + . We see that 1,δ δ  and 2δ  

are distributed uniformly at random from the adversary’s view. The reason is that the 1,..., , ,nx x d a  

and b  are merely calculated under modulo 1p  in mpk . So, from the adversary’s point of view, 

1,..., , ,nx x d a  and b  are random under modulo 2p . Thus, B simulates the _ _Game 0T2�  
correctly. 

Therefore, if A2  can distinguish _ _Game RT2�  and _ _Game 0T2 with non-negligible 
advantage, B  breaks assumption 1 by A2  with non-negligible advantage. We have 

_ _ _ _ 0| ( ) ( ) |Game R Game
dk dkAdv Advλ λ ε− ≤T2� T2�

A2 A2 . 

Lemma 12. If ( 2 1)dk n cλ λ= − −  and assumption 2 holds, the advantage that PPT adversary 
A2  distinguishes _ _Game kT2�  and _ _ 1Game k +T2�  is negligible. That is 

_ _ _ _ 1| ( ) ( ) |Game k Game k
dk dkAdv Advλ λ ε+− ≤T2 T2�

A2 A2 . 

Proof. In order to prove the Lemma 12, another game which is called _ _AltGame kT2  is 
defined. Compared with _ _Game kT2� , in _ _AltGame kT2� , for the kth query B answers with 
normal certificate. The decryption key is semi-functional. Therefore, the Lemma 12 is proved by the 
following three lemmas. 

Lemma 13. If ( 2 1)dk n cλ λ= − −  and assumption 2 holds, the advantage that PPT adversary 
A2  succeeds in distinguishing _ _Game kT2�  and _ _AltGame kT2  is negligible. That is 

_ _ _ _| ( ) ( ) |Game k AltGame k
dk dkAdv Advλ λ ε− ≤T2 T2�

A2 A2 . 

Proof. If there is a PPT adversary A2  who can distinguish the _ _Game kT2�  and 
_ _AltGame kT2�  with non-negligible advantage, we can construct a simulator B  who breaks 

assumption 2.  Firstly, B  is given an instance 1 3 1 2 2 3( , , , , , , , )z v u
TN G G e g g g g g g ρ . B  is given a 

challenge item T  which is 1 3g gω σ  or 1 2 3g g gω κ σ . B  interacts with A2  as follows.  

Setup Phase: B  firstly creates composite order bilinear groups 1 2 3( , , )TN p p p G,G e= . B  

selects , , Na b d Z∈  uniformly at random and sets 1 1 ,au g= 1 1
bh g=  and 1 1

dv g= . Given 
11 pg G∈  

and 
33 pg G∈ , B  runs Gen  of ∏  to generate the common reference string crs and selects 

random 2 2
1 2 1 2( , , ,..., , , , ,..., ) n

n n Nx x x r y y y Zα +∈  and a vector 3
1 2 3, ,..., n

n+ NZρ ρ ρ ρ +=< >∈  where 
2n ≥ is an integer.  

It outputs the master public key 1
1 1 1 1 1 1 1 1 3, , , , ( , ) , , ,..., , , , ,( ),nxx

Tmpk N G G e e g v g g g u h v g crsα=  

and the master secret key 1 -
1 2 3 1 1 1 1 1 1 1 3

1

( , , , ) ( ,..., , , , )n i i

n
y x yy r r r

i

msk K K K K v v g h g v u gα ρ−

=

= = < > ∗∏ . 

Oracle Query: B  may reply every query because he knows , , ,i ix y rα . Specifically, B  

answers the jth query for jID  as follows. 

 For a create query, B  generates normal certificate 
jIDCert  by using msk . The 

jIDCert  can 

leak information. B  runs SetPrivateKey to get β  and runs SetPublicKey to get 
jIDpk .  B  

picks randomly 1
1 2( , ,..., , ) n

n Nt Zω ω ω +∈  and 2n
NZρ +∈ . 

   (a) If j k≤ , B selects randomly a vector 2n
NZγ +∈  and calculates the decryption key 

jIDdk  

1
1 1 1 1 1 1 2 3 3

1

( ,..., , ( ) , ) ( )jn i i

n
ID xt t

i

v v g u h g v g g gω ωω αβ μ ρ γ ρ−−

=

= < > ∗ ∗∏ . 



 

(b) If 1j k> + , B calculates the decryption key 1
1 1 1 1 1

1

(( ,..., ), ( ) ,jn i i

j

n
ID xt

ID
i

dk v v g u h gω ωω αβ −−

=

= ∏  

1 3)tv g ρ∗ . 

(c) If 1j k= + , B  calculates the decryption key 11

1

( )( ,..., ,n k

k

dw aID bdw
IDdk T T T +

+

− += < > ∗  

3
1

, )i i

n
x d

i

T g T gω αβ ρ−

=

∗ ∗∏  by using the challenge item T . 

If 1 3T g gω σ= , from the B ’s point of view, the decryption key is normal because no 
2pG  part is 

in T . 
If 1 2 3T g g gω κ σ= , the decryption key is semi-functional and the corresponding parameters are 

1,..., ndw dwθ κ κ=< > , 1 1 1
( )n

k i ii
aID b x wθ κ + =

= − + +∑  and 2 dθ κ= .  

Because 1 1,..., , ,..., , , ,n nw w x x d a b  are merely calculated by modulo 1p  in mpk , from 

the A2 ’s point of view, they are random by modulo 2p . Thus, the SF decryption key is properly 
distributed. 
B  adds the item ( , , , , , , ,0)

j j j jj j ID ID ID IDH ID ID pk sk Cert dk′  to list L2 , sets 1H H← +  

and returns H to A2 . 

Challenge: A2  gives an identity ID∗  and two messages 0M  and 1M  to B . B  selects a 

random bit {0,1}ξ ∈ . B  scans the list L2  to find ( , )
ID

pk Y π∗ =  about ID∗  for the largest 

handle where 1 1( , )Y e g v αβ∗

= . B  knows β ∗  because the public key is not replaced. Otherwise, 

by using 1 2
z vg g , B  outputs the SF ciphertext 0 1 2 1 1 2( , , , ) ( ( , ) ,z vC C C C C M e v g gβ α

ξ

∗∗ ∗ ∗ ∗ ∗= = ⋅  

1
1 2 1 2 1 2 1 2( ) , , ( ) , ( ) , ( ) )nxxz v z v z v d z v aID bg g g g g g g g

∗ +< ⋅⋅⋅ > . 

From the SF ciphertext we can get SF parameters: 1 1 2,..., , , ( )nvx vx vd v aID bδ δ δ ∗=< > = = + . 

For the same reason as before, from the A2 ’s point of view, 1,..., , , ,nx x d a b  are random under 

modulo 2p  and the given ciphertext is properly distributed if ID∗  isn’t the identity for the 

( 1)thk +  handle. 

For the ( 1)thk +  create inquiry, we can get the conclusion: If there is 
2pG part in T , the 

decryption key towards the ( 1)thk +  handle is semi-functional for the C∗ . The NSF property is 

embodied as follows. 2
1

mod
n

i i
i

d x w pθ δ κν
=

⋅ = ∑ , 1 1 1 2
1

( ) mod
n

k i i
i

d aID b x w pθ δ κν +
=

⋅ = − + +∑ , 

and  2 2 2( ) modd aID b pθ δ κν ∗⋅ = − + . 

So, if 1 2 3
wT g g gκ σ= , B  imitates the _ _AltGame kT2�  correctly when 1 2modkID ID p∗

+≠ . 
Or else, B  imitates _ _Game kT2� . 

Furthermore, we should think over of NSF towards the ( 1)thk +  handle in the following two cases. 

(1) 1 2 1mod , modk kID ID p ID ID N∗ ∗
+ += ≠ . 

(2) 1 modkID ID N∗
+= . 

For the case (1), if B  computes 1gcd( , )ka ID ID N∗
+′ = −  he can generate a nontrivial factor of 

N . Subgroup decision assumption is broken, which implies that assumption 1, 2, 3 are broken.  
For the case (2), the challenge identity ID∗  is pointed out by the ( 1)thk +  handle. In the case, 

A2  can’t extract the decryption key of ID∗ . In fact, A2  may obtain the certificate and some 



 

leakage of the decryption key of identity ID∗ . 
The following Lemma 14 is to prove that normal SF and NSF are indistinguishable. 

  Lemma 14. For the case (2) of Lemma 13, the advantage difference that A2  wins is negligible 

when the decryption key is changed from normal SF to NSF for the ( 1)thk +  handle of identity ID∗  
in the case of dkλ leakage of the decryption key，where ( 2 1)dk n cλ λ= − −  and c  is a fixed 
positive constant. 
  Proof. If there is a PPT adversary A2  who may distinguish the SF and NSF decryption 
key/certificate with non-negligible advantage, we can construct a simulator B  to break Lemma 10. 
That is to say, the advantage that B  can succeed in distinguishing the distribution ( , ( ))fδ τ ′  and 

( , ( ))fδ τ  is non-negligible. Thus, there is a contradiction. 
B  runs Setup to give the mpk and msk  to A2 . Because B  has the msk  and knows 

22 pg G∈ , he can generate normal and semi-functional keys. Thus, he can answer all the inquiries of 

A2 . 

Towards the ( 1)thk +  create inquiry about identity ID , B  replies with the handle H ∗  and 

doesn’t create the keys. If A2  asks for the leakage of decryption key for ( , )H f∗ , B encodes the 

leakage that A2  inquiries in Phase 1 for the ID  as a PPT function f : 
2

2 dkn
pZ λ→ . This can be 

done if all the values of other keys and other variables of the challenge key are seen as fixed. Then B  
gets ( , ( ))fδ Γ , where Γ  is τ  or τ ′  according to Lemma 10. B  returns ( )f Γ  to A2  as 

the leakage about the ( 1)thk +  handle, which defines the challenge keys in the following. 

For the ( 1)thk +  create inquiry, B  calculates normal certificate IDCert  by using msk . B  

selects randomly 
21 2, pr r Z∈ and sets implicitly 

2pG  part in decryption key to be 2g ′Γ , where ′Γ is 

defined as 1 2( ,0) (0,...,0, , )r rΓ + . B  sets non-
2pG  part in decryption key to satisfy the proper 

distribution. It is able to solve the case (2) of Lemma 13.  
   In certain circumstances, A2  gives the challenge messages. B  selects 

22 pt Z∈ which satisfies 

that 1 2 2 20 modnr t r pδ + ≡ . By using 2,0 0,...,0,0, tδ< > + < >  as 
2pG part where δ  has 

1n +  components, B further forms the challenge ciphertext. If δ  and Γ  are orthogonal, the 
decryption key/certificate of the ( 1)thk +  handle is NSF. 
   It is obvious that B  is able to reply easily the inquiry in Phase 2. Thus, by using the output of 
A2 . B  succeeds in distinguishing the distribution ( , ( ))fδ τ ′  and ( , ( ))fδ τ  with 

non-negligible advantage. 
   If assumption 2 holds the _ _Game kT2�  and _ _AltGame kT2�  are indistinguishable from 

the adversary’s point of view. We have _ _ _ _| ( ) ( ) |Game k AltGame k
dk dkAdv Advλ λ ε− ≤T2 T2�

A2 A2 .   

   Lemma 15. If ( 2 1)dk n cλ λ= − −  and assumption 2 holds, _ _AltGame kT2�  and 
_ _ 1Game k +T2�  are indistinguishable from the adversary’s point of view. That is 

_ _ _ _ 1| ( ) ( ) |AltGame k Game k
dk dkAdv Advλ λ ε+− ≤T2 T2�

A2 A2 . 

Proof. If there is a PPT adversary A2  who distinguishes the _ _AltGame kT2  and 
_ _ 1Game k +T2�  with non-negligible advantage, we can construct a simulator B  who breaks 

assumption 2. Firstly, B  is given an instance 1 3 1 2 2 3( , , , , , , , )z v u
TN G G e g g g g g g ρ . B  is given a 

challenge item T  which is 1 3g gω σ  or 1 2 3g g gω κ σ . B  interacts with A2  as follows. 

Setup Phase: B  firstly creates composite order bilinear groups 1 2 3( , , )TN p p p G,G e= . B  



 

selects , , Na b d Z∈ uniformly at random and sets 1 1 ,au g= 1 1
bh g=  and 1 1

dv g= . Given 
11 pg G∈  

and 
33 pg G∈ , B  runs Gen  of ∏  to generate the common reference string crs  and selects 

random 1 2 1 2( , , ,..., , , , ,..., )n nx x x r y y yα 2 2n
NZ +∈ and a vector 3

1 2 3, ,..., n
n+ NZρ ρ ρ ρ +=< >∈  where 

2n ≥  is an integer.  
It outputs the master public key 1

1 1 1 1 1 1 1 1 3, , , , ( , ) , , ,..., , , , ,( ),nxx
Tmpk N G G e e g v g g g u h v g crsα=  

and the master secret key 1 -
1 2 3 1 1 1 1 1 1 1 3

1

( , , , ) ( ,..., , , , )n i i

n
y x yy r r r

i

msk K K K K v v g h g v u gα ρ−

=

= = < > ∗∏ . 

Oracle Query:  B  may reply every query because he knows , , ,i ix y rα . Specifically, B  

answers the  jth create query for identity jID  as follows. 

B  generates normal certificate 1 2( , , )
jIDCert D D D=   by using msk . The 

jIDCert can leak 

information. B  runs SetPrivateKey to get β  and runs SetPublicKey to get 
jIDpk .  

 (a) If j k≤ , B selects randomly vectors 2
1 1 2 2, , , n

NZρ γ ρ γ +∈  and calculates the decryption key 
1 1

1 2 2 3 3( , , ) ( )
jIDCert D D D g g gγ ρμ ρ= ∗ ∗ , 2 2

1 2 2 3 3( , , ) ( )
jIDdk S S S g g gγ ρμ ρ= ∗ ∗ . B  adds ( , ,jH ID  

, , , , ,0)
j j j jj ID ID ID IDID pk sk Cert dk′  to the list L2 . 

(b) If 1j k> + , B calculates normally the decryption key 
jIDdk  and adds ( , , , ,

jj j IDH ID ID pk′  

, , ,0)
j j jID ID IDsk Cert dk  to the list L2 .  

(c) If 1j k= + , B selects randomly vectors 2
1 2 1, , n

NZρ ρ γ +∈  and 1 2( , ,..., ) n
n Nz z z Z∈ . By 

using the challenge item B calculates the certificate  1 11 1

1

( )( ,..., ,n k

k

d z aID bd z
IDCert T T T +

+

− += < > ∗  

1
3

1

, )i i

n
x z d

i

T g T g ρα−

=

∗ ∗∏ . 

B  invokes SetDecryptKey to get decryption key 1 2( , , )S S S  and calculates SF decryption key 
2 2

1 2 2 3 3( , , ) ( )
jIDdk S S S g g gγ ρμ ρ= ∗ ∗ . B adds ( , , , , , , ,0)

j j j jj j ID ID ID IDH ID ID pk sk Cert dk′  to the 

list L2 . 
If 1 3T g gω σ= , from the B ’s point of view, the decryption key is properly distributed because no 

2pG  part is in T . 

If 1 2 3T g g gω κ σ= , the decryption key is semi-functional and the corresponding parameters are 

1 1 1,..., nd z d zη κ κ=< > , 1 1 1
( )n

k i ii
aID b x zη κ + =

= − + +∑  and 2 dη κ= . 

Because 1 1,..., , ,..., , , ,n nz z x x d a b  are merely calculated by modulo 1p  in mpk , from 

the A2 ’s point of view, they are random by modulo 2p . Thus, the SF decryption key is properly 
distributed. 
B  sets 1H H← +  and returns H  to A2 . 
Challenge: It is run in the same way as the Challenge phase of Lemma 13. 
The NSF property is analyzed in a similar way as that of Lemma 13. 

   To summarize, if the assumption 2 holds and the amount of leakage adds up to ( 2 1)dk n cλ λ= − − , 
_ _Game kT2�  and _ _AltGame kT2� are indistinguishable from the adversary’s point of view. 

Likewise, _ _AltGame kT2  and _ _ 1Game k +T2�  are indistinguishable from the adversary’s 
point of view. Thus, _ _Game kT2� and _ _ 1Game k +T2�  are indistinguishable from the 

adversary’s point of view. We get _ _ _ _ 1| ( ) ( ) |AltGame k Game k
dk dkAdv Advλ λ ε+− ≤T2 T2�

A2 A2 . 



 

By Lemma 13 to Lemma 15, we have  
_ _ _ _ 1| ( ) ( ) |Game k Game k

dk dkAdv Advλ λ+−T2 T2�
A2 A2  

= _ _ _ _ _ _ _ _ 1| ( ) ( ) ( ) ( ) |Game k AltGame k AltGame k Game k
dk dk dk dkAdv Adv Adv Advλ λ λ λ+− + −T2 T2 T2 T2�

A2 A2 A2 A2  

≤ _ _ _ _ _ _ _ _ 1| ( ) ( ) | | ( ) ( ) |Game k AltGame k AltGame k Game k
dk dk dk dkAdv Adv Adv Advλ λ λ λ+− + −T2 T2 T2 T2�

A2 A2 A2 A2  

=ε ε+ = 2ε . This finishes Lemma 12. Thus, we have 
_ _ _ _ 1| ( ) ( ) |Game k Game k

dk dkAdv Advλ λ ε+− ≤T2 T2�
A2 A2 . 

 
Lemma 16. Under the assumption 3, the advantage that PPT adversary succeeds in distinguishing 
_ _Game QT2  and _ _Game FinalT2�  is negligible. That is 

_ _ _ _| ( ) ( ) |Game Q Game Final
dk dkAdv Advλ λ ε− ≤T2 T2�

A2 A2 . 

Proof. If there is a PPT adversary A2  who succeeds in distinguishing _ _Game QT2  and 
_ _Game FinalT2  with non-negligible advantage, we are able to construct an algorithm B  to 

break the assumption 3. B  is given an instance 1 2 3 1 2 1 2( , , , , , , , , )v s u
TN G G e g g g g g g gα . B  is given 

a challenge item T which is 1
sgα  or a random value in G . B  interacts with A2  as follows. 

Setup: B  randomly selects 1,..., , , ,n Nx x a b d Z∈  and sets 1 2 1 1 1 1( ( , ), , ,ix ampk e g g v g u gα ν= =  

1 1 1 1, )b dh g v g= = . B  randomly selects the vectors 3, n
NZρ γ +∈ and 1

1( ,..., , ) n
n Ny y r Z +∈ and then 

calculates the SF master secret key 1
1 1 1 1 1 1 2 3

1

( ,..., , , , )n i i

n
y x yy r r r

i

msk v v h g v u g gγ ρ−−

=

= < > ∗ ∗∏ . 

Oracle Query: By using the SF master secret key B  simulates all oracles. 
Challenge: A2  gives an identity ID∗  and two messages 0M ∗  and 1M ∗  to B . B  selects a 

random bit {0,1}ξ ∈ . B  scans the list L2  to find ( , )
ID

pk Y π∗ =  about ID∗  for the largest 

handle where 1 1( , )Y e g v αβ∗

= . Because the A2  doesn’t replace the public key B  knows β ∗ . By 

using 1 2
s ug g  and T given from the assumption, B outputs the SF ciphertext 0 1 2( , , , )C C C C C∗ ∗ ∗ ∗ ∗=  

1 1 2 1 2 1 2( ( , ), ( ) , ( ) , ( ) )ixs s d s aID bM e T v g g g g g gβ μ μ μ
ξ

∗ ∗∗ += ⋅ . 

From the A2 ’s point of view, 1,..., , , ,nx x d a b  are random under modulo 2p . So, the given SF 
ciphertext is properly distributed. 

If 1
sT gα= , the ciphertext is distributed uniformly at random. In this case, B  correctly simulates 

the _ _Game QT2 . If T  is a random element of G , the item 0C∗  is random. Thus the ciphertext 
is SF for a random message. In this case, B  correctly simulates the _ _Game FinalT2� . B  
breaks assumption 3 by using the output of A2 . There is a contraction. We get 

_ _ _ _| ( ) ( ) |Game Q Game Final
dk dkAdv Advλ λ ε− ≤T2 T2�

A2 A2 . 

All in all, under the above seven Lemma 10 to Lemma 16 we know that _ _Game RT2�  and 
_ _Game FinalT2�  are indistinguishable from the adversary’s point of view. What’s more, 

_ _ ( )Game Final
dkAdv λ ε≤T2�

A2  is proved in Theorem 6.8 of the full version of [26]. To sum up, 
_ _ ( )Game R

dkAdv λ ε≤T2�
A2 . In addition, Lemma 10 proves the leakage bound. Thus, we complete the 

proof of Theorem 2. 


