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Abstract. The internal state size of a stream cipher is supposed to be at
least twice the key length to provide resistance against the conventional
Time-Memory-Data (TMD) tradeoff attacks. This well adopted security
criterion seems to be one of the main obstacles in designing, particularly,
ultra lightweight stream ciphers. At FSE 2015, Armknecht and Mikhalev
proposed an elegant design philosophy for stream ciphers as fixing the
key and dividing the internal states into equivalence classes where any
two different keys always produce non-equivalent internal states.

The main concern in the design philosophy is to decrease the internal
state size without compromising the security against TMD tradeoff at-
tacks. If the number of equivalence classes is more than the cardinality of
the key space, then the cipher is expected to be resistant against TMD
tradeoff attacks even though the internal state (except the fixed key) is
of fairly small length. Moreover, Armknecht and Mikhalev presented a
new design, which they call Sprout, to embody their philosophy.

In this work, ironically, we mount a TMD tradeoff attack on Sprout
within practical limits using 2d output bits in 271−d encryptions of Sprout
along with 2d table lookups. The memory complexity is 286−d where
d ≤ 40. In one instance, it is possible to recover the key in 231 encryp-
tions and 240 table lookups if we have 240 bits of keystream output by
using tables of 770 Terabytes in total. The offline phase of preparing the
tables consists of solving roughly 241.3 systems of linear equations with
20 unknowns and an effort of about 235 encryptions. Furthermore, we
mount a guess-and-determine attack having a complexity about 268 en-
cryptions with negligible data and memory. We have verified our attacks
by conducting several experiments. Our results show that Sprout can be
practically broken.
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1 Introduction

One of the main design principles for stream ciphers is that internal state size
should be at least twice the key size. Otherwise, the cipher will be vulnerable
to generic Time-Memory-Data (TMD) tradeoff attacks [16, 3, 11, 7, 6, 5]. This
principle makes lightweight stream cipher design more challenging in comparison
to designing block ciphers even though the same generic attacks are valid for
block ciphers, particularly, when they are used in stream cipher modes such as
OFB or CTR mode.

There have been several lightweight block cipher designs appeared in the
literature such as Present [8], ITUBee [17], Lblock [21], Prince [9], Ktantan
[10], Twine [20] and many more in the last decade. An example that does not
follow the common tendency of designing lightweight block ciphers rather than
lightweight stream ciphers is the new stream cipher design Sprout, presented at
FSE 2015 [2] by Armknecht and Mikhalev. The cipher makes use of a variable
internal state of only 80 bits and a fixed key of 80 bits as well. The authors show
that a cipher design such as Sprout is resistant to classical TMD tradeoff attacks
even though its (variable) internal state size is strictly less than twice the key
size.

The property of having a smaller internal state size results from the un-
common design principle adopted by the designers of Sprout [2]. According to
this principle, the key is also incorporated into the next state function of the
cipher as a fixed vector and the internal states including the keys are divided
into equivalence classes. Each key is in a different equivalence class. That is, it
is impossible to obtain two equivalent internal states with different keys. There-
fore, the conventional TMD tradeoff attacks are ineffective since the number of
equivalence classes is not less than the cardinality of the key space and one needs
to travel almost all the equivalence classes to recover one specific key, rendering
the generic tradeoff attacks slower than the exhaustive search.

The design of Sprout is inspired by Grain 128a in [1]. The sizes of both the
NLFSR and the LFSR of Grain family are reduced to half of their values and
the functions are slightly changed. The design philosophy of output generation
and feedback functions is almost conserved except adding a round key function
to incorporate key bits for each clock. As a result, a stream cipher of area cost
roughly 800 GE is developed whereas Grain needs 1162 GE for the same level
of 80-bit security [2].

Sprout has immediately attracted the interest of the cryptology community
intensively, indicating that the design philosophy itself introduces several open
questions about the security of such ciphers. Even though it is a very recent
cipher, there have been a couple of its analyses [18, 19, 4, 12].

The first attack paper is by Lallemand and Naya-Plasencia, and they have
shown that it is possible to recover the key with a time complexity equivalent
to roughly 270 Sprout encryptions by merging the sets of possible LFSRs and
NLFSRs through a careful sieving [18]. Indeed, the actual workload is 274.51

steps but since the cost of each step is considered to be 25.64 times faster than



one step of exhaustive search in [18], the overall time complexity is finalized as
269.36. The memory complexity for leading the values for the registers is 246.

In another analysis, Maitra et al. show that when the whole (variable) internal
state is known, the key can be found using a SAT solver [19]. The system of
nonlinear equations generated from the output is quite easy to solve. The authors
show that it is possible to solve the system with roughly 900 keystream bits in
less than half a second on an ordinary PC. Moreover, the authors show that
it is still possible to solve the system even though two thirds of LFSR bits are
also unknown. However, solving the system takes around one minute this time.
Hence, guessing the variables of whole NLFSR and one third of the variables
of LFSR and then solving all the corresponding 254 systems of equations, it is
possible to recover the key. On the other hand, the authors do not compare the
time complexity of solving 254 equations with that of exhaustive search. Besides
their algebraic attack, they give an example of a fault attack as well [19].

The guess-and-determine attack in [19] using a SAT solver is further improved
in [4] by Banik. After guessing 50 bits of the state, the remaining bits including
key bits can be solved in roughly half a minute on a standard PC by means
of Cryptominisat 2.9.5 solver installed in SAGE 5.7. Moreover, Banik observed
that the LFSR is expected to be initialized to the all zero vector in one of
240 random synchronizations. When such an event occurs, the NLFSR is easily
recovered with the key by guessing 33 bits of its state. The total time complexity
is around 267 encryptions with negligible memory and about 242 bits of output.
A distinguisher attack is also included by observing that it is possible to produce
shifted versions of a keystream up to a factor of 80 with the same key by using
different IVs. When the factor for shifting is limited as 210, it is possible to
distinguish Sprout output with 257 bits of memory and 232 encryptions [4].

In [12], a related-key chosen-IV distinguisher is shown. However, the designers
of the Sprout regard related-key attacks as out of scope since the key is assumed
to be fixed.

Time Data Memory

[18] 270 negligible 246

[19] 275 negligible negligible

Sec. 3 in [4] 270 negligible negligible

Sec. 5 in [4] 266.7 242 bits negligible

Sec. 3 in this work 268 negligible negligible

Sec. 4.1 in this work 240 TLs + 231 240 bits 246

TMD Tradeoff in this work 2d TLs + 271−d 2d bits 286−d

Table 1. The time complexities are given in terms of number of encryptions except
when specified as number of table lookups (TLs). The memory complexities are given
in terms of number of rows. Additionally, we assume an effort of 1 sec = 215 encryptions
and that of 1 min = 221 encryptions on a standard PC.



In Table 1, we compare the complexities of known attacks on Sprout. Our
straightforward C/C++ implementation of Sprout runs more than 223.5 clocks
in a second on a standard PC. Thus, we make the assumption that an effort
of a second is equivalent to 215 Sprout encryptions and that of a minute to 221

Sprout encryptions. One may further improve these numbers by a more efficient
and performance-oriented implementation. As we show in Appendix A, one clock
of Sprout costs about 2−8.33 Sprout encryptions.

Our Contribution: None of the attacks in the literature so far has practi-
cal workloads. We introduce a new TMD tradeoff cryptanalysis of full Sprout
within the practical bounds where all data, memory and time complexities can
be upperbounded by 245. We first show that when the internal state is known
(excluding the key), it is much easier to obtain the secret key when the cipher
is run backwards compared to running the cipher forward. Later, guessing the
internal states from the keystream bits is described based on a time-memory-
data tradeoff approach. For the key-recovery part, our attack is a combination
of both guess-and-determine and divide-and-conquer approaches. We show that
the key recovery part itself can be transformed to a guess-and-determine attack
of a complexity 268 encryptions with negligible data and memory.

Our TMD tradeoff attack is based on a specific occasion where incorporation
of key bits into the register can be discarded during the keystream production.
So, Sprout behaves like Grain family since the round key function is bypassed.
We can compute the internal states in advance for all the predefined occasions
and store them with the produced keystream bits in a table. We can produce
some keystream bits for these special internal states without knowing the key.

In general, one may expect that the special internal states to be stored are
deduced by exhaustively searching them. However, we can deduce these states
without a search-and-eliminate mechanism, reducing the time complexity of the
precomputation phase dramatically. We show that computing the special internal
states which cause to bypass the key bits is as easy as solving some systems of
linear equations. Each of our guesses gives a valid solution. So, unlike generic
TMD tradeoff attacks where the offline phase is generally as expensive as an
exhaustive search, our offline phase of the attack is also in practical limits. To
sum up, we explore and exploit a special kind of lack of sampling resistance in
Sprout. The objective of this procedure is similar to the one of BSW sampling
applied to A5/1 cipher [7].

In the online phase of the attack, we check if a special occasion occurs in the
given keystream. The time complexity is 279−d Sprout clocks when we have 2d

bits of keystream (not necessarily from the same IV). The memory requirement
is about 286−d. For example, when d = 40, we can recover the key in only 231

encryptions and 240 table lookups by using 240 bits of keystream with 770 Ter-
abytes of memory. The precomputation cost of preparing the tables is equivalent
to solving about 241.32 systems of linear equations with 20 unknowns and about
235 encryptions. We have verified our results by conducting several experiments.

Organization of the paper: Section 2 describes the high level structure of
Sprout. In Section 3, we show how to efficiently recover the secret key when the



(variable) internal state of Sprout is known and introduce a guess-and-determine
attack. Section 4 introduces a TMD tradeoff approach to deal with filling the
internal state, including how to construct systems of linear equations during
the off-line phase of the attack. We conclude the paper with some remarks and
propose a solution in Section 5. Some details of Sprout is given in Appendix A
and we provide experimental results verifying our attack in Appendix B.

2 High Level Description of Sprout

Sprout [2] is a lightweight stream cipher inspired by Grain family [1, 13, 15, 14].
The (variable) internal state of Sprout consist of an LFSR and an NLFSR, and
there is also a fixed key that is used in the state update function. The sizes
of LFSR and NLFSR are 40 bits each and the key length is 80 bits. An IV of
size 70 bits is also incorporated during the initialization phase. The feedback
functions of NLFSR and LFSR, and the nonlinear part of the output function
are denoted by g, f and h, respectively (See Figure 1 in the appendix). We follow
the notations below throughout the paper.

– t - the clock-cycle number

– ⊕ - the XOR operation

– Lt := (lt0, l
t
1, . . . , l

t
39) - state of the LFSR at clock-cycle t

– Nt := (nt0, n
t
1, . . . , n

t
39) - state of the NLFSR at clock-cycle t

– Ct := (ct0, c
t
1, . . . , c

t
8) - state of the counter at clock-cycle t

– K := (k0, k1, . . . , k79) - the fixed key

– IV := (iv0, iv1, . . . , iv69) - the initialization vector

– k∗t - the round key bit generated during clock t

– nt - the output bit of NLFSR during clock t

– lt - the output bit of LFSR during clock t

– zt - the keystream bit generated during clock t

A 9-bit counter is used in the algorithm to count the number of rounds for the
initialization phase (which has 320 rounds). After initialization, its first seven
bits run cyclically from 0 to 79 and determine the index of the key bit selected
at the current time. Moreover, the fourth bit of the counter ct4 is involved in the
NLFSR feedback.

The linear relation of the LFSR is lt+1
39 = f(Lt) = lt0⊕ lt5⊕ lt15⊕ lt20⊕ lt25⊕ lt34.

The function g is the nonlinear feedback function for the NLFSR. Its output
is XORed with the round key bit k∗t , the counter bit ct4 and the output of the
LFSR as nt+1

39 = g(Nt) ⊕ k∗t ⊕ lt0 ⊕ ct4 where k∗t = kt mod 80 · δt with δt :=
lt4 ⊕ lt21 ⊕ lt37 ⊕ nt9 ⊕ nt20 ⊕ nt29. Remark that one clock of Sprout is equivalent to
2−8.33 encryption of an exhaustive key search. We give the necessary details in
the analysis sections. Also, one can refer to [2] or Appendix A for details.



3 A Key Recovery Attack

It is easy to see that Sprout’s next state function is invertible. So, once we obtain
the whole state (including the key), we can clock the internal states of the cipher
forward and backwards, as well. So, it is straightforward to recover the internal
state at clock-cycle t from the internal state at clock-cycle t+1. We first decrease
the counter. Then, for the LFSR feedback, we have

lt0 = lt+1
39 ⊕ l

t+1
4 ⊕ lt+1

14 ⊕ l
t+1
19 ⊕ l

t+1
24 ⊕ l

t+1
33 (1)

and lti+1 = lt+1
i for 0 ≤ i ≤ 38. For the NLFSR feedback, we have

nt0 = k∗t ⊕ ct4 ⊕ lt+1
39 ⊕ l

t+1
4 ⊕ lt+1

14 ⊕ l
t+1
19 ⊕ l

t+1
24 ⊕ l

t+1
33

⊕ nt+1
39 ⊕ n

t+1
12 ⊕ n

t+1
18 ⊕ n

t+1
34 ⊕ n

t+1
38 ⊕ n

t+1
1 nt+1

24

⊕ nt+1
2 nt+1

4 ⊕ nt+1
6 nt+1

7 ⊕ nt+1
13 nt+1

20 ⊕ n
t+1
15 nt+1

17 ⊕ n
t+1
21 nt+1

23 ⊕ n
t+1
25 nt+1

31

⊕ nt+1
32 nt+1

35 nt+1
36 nt+1

37 ⊕ n
t+1
9 nt+1

10 nt+1
11 ⊕ n

t+1
26 nt+1

29 nt+1
30 (2)

where

k∗t = kt, 0 ≤ t ≤ 79

k∗t = kt mod 80 · (lt+1
3 ⊕ lt+1

20 ⊕ l
t+1
36 ⊕ n

t+1
8 ⊕ nt+1

19 ⊕ n
t+1
28 )

and nti+1 = nt+1
i for 0 ≤ i ≤ 38 (see [2] or Appendix A). Now, the keystream zt

can be generated while the index t is decreasing.
Maitra et al. has shown in their recent paper that it is possible to recover the

key once the (variable) internal state is known by solving a system of nonlinear
equations by a SAT Solver in less than half second on a single PC, using roughly
900 bits of keystream sequence [19]. We have a similar problem indeed: We
make a guess for the internal state and then, we do not just want to determine
the key from the internal state but also we would like to check if our guess is
correct simultaneously without recovering the whole set of the key bits. The
simple observation below gives us a much faster key recovery and internal state
checking mechanism. Indeed, we do not need to solve a system of nonlinear
equations. The following property suggests that recovering key from the internal
state and output is much easier if we trace backwards through the registers.

Proposition 1. Assume that at time t+ 1, we know the internal states of both
registers NLFSR and LFSR, but the whole key is unknown and that δt = 1. While
clocking the registers backwards, when a key bit appears in the keystream for the
first time, it will appear as a single unknown inside nt−11 in the keystream bit
zt−1. This happens before the key bit is incorporated into the feedback of NLFSR
through the g function.

The proof of Proposition 1 is straightforward. Assume that while the cipher
is run backwards, at some clock-cycle t + 1, we guess the value of the whole
internal state (excluding the key) and δt = 1. One clock later, nt0 becomes a term



of the form ki⊕a where a is a known value obtained from the NLFSR feedback,
the LFSR output and the counter. Now, at time t, nt0 is not incorporated into
the NLFSR feedback function. Thus, ki ⊕ a shifts to the position nt−11 and
nt−10 does not depend on ki (it may depend on another key bit but that is not
important). Now, at time t− 1, we know all the register values except for nt−10

and nt−11 = ki ⊕ a. But, nt−10 is not involved in the output function. So, we can
easily determine ki as ki = zt−1 ⊕ a⊕ a′ where a′ is a known value coming from
the tap points of the output function.

As a result, when we make a guess for the registers, at each clock, we will
either have opportunity to check if the keystream bit we generate matches the
corresponding output bit, or a key bit will appear as a single unknown and we
will determine the key bit from the output. Hence, if the state candidate does
not yield a contradiction, we again end up with registers that are completely
known except maybe for the first bit nt0 of NLFSR. However, if a key bit is
involved in that term, it will be determined one clock later before going into the
feedback. To sum up, continuing the procedure recursively, either we recover a
single key bit or we have a check bit for each clock. Let us illustrate this with a
simple example.

Example 1. Assume that at time t+ 1 we know the whole internal state but the
secret key and let δt = δt−1 = δt−2 = 1 and δt−3 = 0. Let k0, k1, k2 and k3
be the key bits selected in given order. In Table 1, we show how the values of
NLFSR bits and keystream bits proceed.

Clock-cycle δi ni
0 ni

1 ni
2 ni

3 · · · ni
39 zi D/C

i = t+ 1 - X X X X X X X C

i = t 1 k0 ⊕X X X X X X X C

i = t− 1 1 k1 ⊕X k0 ⊕X X X X X k0 ⊕X D(k0)

i = t− 2 1 k2 ⊕X k1 ⊕X X X X X k1 ⊕X D(k1)

i = t− 3 0 X k2 ⊕X X X X X k2 ⊕X D(k2)

i = t− 4 - ? X X X X X X C

Table 2. Xdenotes a known value, ? a value that is either known or unknown, D(ki)
determining the value of ki and C is a check if the keystream bit generated matches
the actual one.

The probability that a key bit does not appear in the output for p blocks of length
80 bits is 2−p. Hence, after roughly 160 clocks, 60 different key bits will appear
in the output and will thus be determined. The time complexity of recovering
roughly 60 bits of the key for a correct guess of internal state is almost 160 clocks
of Sprout. The remaining 20 bits can be recovered by searching exhaustively. On
the other hand, the probability that a guess for an internal state survives for
2r clocks is 2−r. On average for each 2 clocks, half of the possible guesses will



be eliminated. So, the average number of clocks for each elimination among 2s

possible guesses is

s∑
i=0

2 · 2s−i

2s
=

s∑
i=0

1

2i−1
≈ 4 for 21 ≤ s ≤ 40.

We see that we can check if a given state is correct in 4 clocks on aver-
age. Moreover, it is possible to mount a guess-and-determine attack by using
Proposition 1. We can guess 77 bits of the internal state and determine the
three remaining bits that appear as XOR in the output (such as lt31, l

t
30, l

t
29)

since three bits of keystream can be produced without knowing the key. Observe
that the bits lti for 28 ≥ i ≥ 25 are incorporated into the output as XOR at
time t+ i− 30 for the first time after clock t during the backward clocking. So,
the guess-and-determine attack can be improved by further determining lti for
28 ≥ i ≥ 25, if a key bit is not involved in the output along with lti (that is,
δt+i−29 = 0). If δt+i−29 = 1, then guess lti as well and determine the related
key bit. So, we guess at least 73 and at most 77 bits according to the values
of δt+i−29. The overall complexity is around 270 encryptions. It can be further
improved by assuming that δt+i−29 = 0 for 28 ≥ i ≥ 25. In this case, we guess
69 bits and determine 11 bits (lt36, l

t
35, l

t
34, l

t
33 from δt+i−29 = 0 and lt31, . . . , l

t
25

from keystream bits). The cipher is clocked 9 times on average to come up with
a contradiction (5 clocks during determining lt31, . . . , l

t
25 and 4 clocks for the key

recovery and checking). Repeat the attack 16 times by using shifted keystreams
to fulfill the assumption. Hence, the average complexity is 24 · 269 · 23.17 = 276.17

clocks and thus 276.17 · 2−8.33 = 267.84 encryptions of Sprout. The data and
memory complexities are negligible.

4 A Time-Memory-Data Tradeoff Attack

Recall that, treating the bits of the registers as the terms of a sequence, we denote
lt+i+j := lt+j

i and nt+i+j := nt+j
i . We mount an attack on Sprout with 2d data

and a time complexity of 279−d clocks where d ≤ 40 by enhancing the idea of
the guess-and-determine attack given in Section 3. We make use of memory also,
having roughly 286−d entries.

The attack scenario is simple. Assume that δt is zero for consecutive d clocks.
That is, the key bits are not incorporated into the NLFSR during d consecutive
clocks: t−9, t−8, . . . , t+d−10. Then we can make a guess to the internal state
at time t and then check if the guess is correct and the condition is satisfied
since we can produce d bits of outputs without knowing any key bit.

Assuming that δt−9 = δt−8 = · · · = δt+d−10 = 0, we get the following d linear
equations of the internal state bits.



lt−5 ⊕ lt+12 ⊕ lt+28 ⊕ nt ⊕ nt+11 ⊕ nt+20 = 0
lt−4 ⊕ lt+13 ⊕ lt+29 ⊕ nt+1 ⊕ nt+12 ⊕ nt+21 = 0

·
·
·

lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29 = 0
lt+5 ⊕ lt+22 ⊕ lt+38 ⊕ nt+10 ⊕ nt+21 ⊕ nt+30 = 0

·
·
·

lt+d−6 ⊕ lt+d+11 ⊕ lt+d+27 ⊕ nt+d−1 ⊕ nt+d+10 ⊕ nt+d+19 = 0

If d ≤ 20, we have d linear equations with at most 80 unknowns since there
will be no feedback for NLFSR. Note that we can write an LFSR feedback as a
linear equation without adding new unknowns. So, we simply exclude both the
linear equations and new unknowns coming from LFSR feedback. However, if
d > 20, the new unknowns from the feedback of the NLFSR will appear with
some nonlinear equations. The new equations coming from the feedback are

ct4 ⊕ lt ⊕ nt+40 ⊕ g(Nt) = 0
ct+1
4 ⊕ lt+1 ⊕ nt+41 ⊕ g(Nt+1) = 0

·
·
·

ct+d−21
4 ⊕ lt+d−21 ⊕ nt+d+19 ⊕ g(Nt+d−21) = 0,

which are adding d − 20 more equations with d − 20 new unknowns nt+40,. . .,
nt+d+19. We have 2d − 20 equations with 60 + d unknowns. We see that by
carefully choosing 80 − d unknowns to be guessed, we mostly come up with
2d−20 linear equations with 2d−20 unknowns. Solving the linear system for each
counter set, we can determine 2d− 20 unknown bits. That is, we can determine
the whole internal state. Then we can produce the output up to d + 3 bits
for all possible counter combinations. See Section 4.1 for solving the system of
equations in the most extreme case.

Let us store all the guessed internal states where δt = 0 for d consecutive
clocks with their outputs up to d+ 3 bits for each counter, sorted according to
the outputs. Note that we can generate keystream bits zt−10, zt, . . . , zt+d−8 due
to the fact that the output is not affected by the most and the least significant
taps of the NLFSR.

We need at most 80 tables having 280−d rows each to produce a table for
each counter. During the online phase of the attack, any d + 3 clock output x
at a certain time (so counter is known) is searched in the table with the related
counter. There are 277−2d internal states producing the output x . Check if any of
the internal state is correct. Repeat this procedure 2d times since the probability
that δt = 0 for d consecutive clocks is 2−d. We expect this event to occur once.
Then, we can recover the internal state from the tables and then recover the



key easily once the internal state is known. Recovering the key from a known
internal state is explained in Section 3.

For each output of d + 3 bits, we have on average 277−2d internal states
producing the output. We both check the validity of the internal state and recover
the key bits for each candidate. On average, clocking 4 times is enough for
the checking. Hence, the time complexity is 4 · 277−d = 279−d clocks which is
equivalent to 271−d encryptions of Sprout along with 2d table lookups.

4.1 Detailed workload for d = 40

We focus on the extreme case d = 40 (i.e., δt = 0 for 40 consecutive t values)
and give the workloads in detail for this case. We need to solve the following
systems of equations: a linear system LS and a nonlinear system NS.

LS :=



lt−5 ⊕ lt+12 ⊕ lt+28 ⊕ nt ⊕ nt+11 ⊕ nt+20 = 0
lt−4 ⊕ lt+13 ⊕ lt+29 ⊕ nt+1 ⊕ nt+12 ⊕ nt+21 = 0

·
·
·

lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29 = 0
lt+5 ⊕ lt+22 ⊕ lt+38 ⊕ nt+10 ⊕ nt+21 ⊕ nt+30 = 0

·
·
·

lt+33 ⊕ lt+50 ⊕ lt+66 ⊕ nt+38 ⊕ nt+49 ⊕ nt+58 = 0
lt+34 ⊕ lt+51 ⊕ lt+67 ⊕ nt+39 ⊕ nt+50 ⊕ nt+59 = 0

NS :=



ct4 ⊕ lt ⊕ nt+40 ⊕ g(Nt) = 0
ct+1
4 ⊕ lt+1 ⊕ nt+41 ⊕ g(Nt+1) = 0

·
·
·

ct+18
4 ⊕ lt+18 ⊕ nt+58 ⊕ g(Nt+18) = 0
ct+19
4 ⊕ lt+19 ⊕ nt+59 ⊕ g(Nt+19) = 0

First of all, we can easily write all li’s in LS as linear combinations of lj ’s
for t ≤ j ≤ t + 39. Let LS ′ be the new system of equations where all li’s
for t − 5 ≤ i ≤ t − 1 and t + 40 ≤ i ≤ t + 67 are replaced with lj ’s for
t ≤ j ≤ t + 39 in accordance with the LFSR feedback function. Now denoting
L := (lt, lt+1, . . . , lt+39)T and

B := (nt ⊕ nt+11 ⊕ nt+20, nt+1 ⊕ nt+12 ⊕ nt+21, . . . , nt+39 ⊕ nt+50 ⊕ nt+59)T ,

we can write LS ′ asM·L = B whereM is the 40× 40 coefficient matrix of lj ’s
and T is the transpose operation.

The sequence lt−5⊕lt+12⊕lt+28 can be also produced by the LFSR of Sprout.
Since its characteristic polynomial is primitive, the coefficient matrix M is a



power of the next state matrix and hence it is invertible. We also have verified
on a computer thatM is invertible. Hence, L =M−1B implying we can equate
each lj , t ≤ j ≤ t + 39, to linear combinations of some ni’s for t ≤ i ≤ t + 59.
Plugging in the values of lj ’s for t ≤ j ≤ t+ 19 in NS, we end up with a system,
denoted by NS ′, of 20 nonlinear equations in 60 variables (ignoring the counter
values for the moment). As a result, the main goal is to find all the solutions of
NS ′ and store them in a table with their outputs.

It’s expected that there exist 240 solutions for the system. One approach for
solving it may be to use a SAT solver. However, this approach is quite inefficient
compared to solving a system of linear equations. Having a more detailed look at
the equations in NS ′, we see that by carefully guessing 40 ni values, the system
becomes almost linear. To do that, one possible choice for selected ni values,
SEC{ni} is as follows:

nt+5 nt+6 nt+8 nt+9 nt+11 nt+12 nt+14 nt+15 nt+17 nt+18

nt+19 nt+21 nt+22 nt+23 nt+25 nt+26 nt+27 nt+29 nt+30 nt+31

nt+32 nt+33 nt+34 nt+35 nt+36 nt+38 nt+39 nt+40 nt+41 nt+42

nt+43 nt+45 nt+46 nt+47 nt+48 nt+49 nt+50 nt+52 nt+54 nt+55

Selection of these ni values mostly (but not always) follows the rule that ni+1 and
ni+2 should be guessed to make an ni value appear as a linear term. Fixing the
values in SEC{ni}, there still exists (at most 3) nonlinear terms nt+51nt+53,
nt+51nt+56 and nt+56nt+57 with probability 1

2 . We see some nonlinear terms
when (nt+48, nt+52, nt+54, nt+55) ∈ S where

S :={(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1),

(1, 1, 1, 0), (0, 0, 1, 1), (0, 1, 0, 1), (1, 1, 0, 0)}.

It is expected that each 40-bit guess in both cases,

(nt+48, nt+52, nt+54, nt+55) ∈ S and (nt+48, nt+52, nt+54, nt+55) 6∈ S

yields 1 solution on average, which we have verified experimentally (see Appendix
B). Hence, by solving all the cases where the system is linear, we can obtain
around 239 solutions. As a result, we can obtain half of the solutions with an
effort of solving 1

2 · 2
40 = 239 systems of linear equations. If one wishes to obtain

all the solutions, then in order to make the system linear, 2 more ni values
(e.g., adding nt+51 and nt+57 to SEC{ni} and forming EXSEC{ni}) need to
be guessed. Hence, the effort of finding all the solutions is equivalent to solving
1
2 · 2

42 + 239 ≈ 241.32 systems of linear equations. The nonlinear cases can be
solved using a SAT solver as well. However, this is still less efficient than guessing
2 more bits and solving a linear system.

We can repeat the computations for each candidate of the counter values. For
d = 40, there are 39 different values of (ct4, c

t+1
4 , . . . , ct+d−21

4 ), which we will refer
as a counter array. Observe that the counter values are added to the system NS ′
linearly. Therefore, we can do row reduction operation once and find solutions
for different counter arrays. However, we still need to store separate tables for



Algorithm 1 Creating Tables

for each choice of 40 ni values in SEC{ni} with (nt+48, nt+52, nt+54, nt+55) ∈ S do
Nt ← Solve(NS′)
for each Ci where Ci’s denote possible counter arrays do

Find NCi
t from Nt by plugging in the values in Ci

LCi
t ←M−1 · B

Zt+32
t−10 ← (zt−10, . . . , zt+32) // generate keystream for 43 clocks.

Store (Zt+32
t−10 , N

Ci
t−9, L

Ci
t−9) in a table TCi

Z sorted by Zt+32
t−10

end for
end for
for each choice of 42 ni values in EXSEC{ni} with (nt+48, nt+52, nt+54, nt+55) 6∈ S
do

Nt ← Solve(NS′)
for each Ci where Ci’s denote possible counter arrays do

Find NCi
t from Nt by plugging in the values in Ci

LCi
t ←M−1 · B

Zt+32
t−10 ← (zt−10, . . . , zt+32) // generate keystream for 43 clocks.

Store (Zt+32
t−10 , N

Ci
t−9, L

Ci
t−9) in a table TCi

Z sorted by Zt+32
t−10

end for
end for

each counter array to produce 43 bits of output for each internal state. Since
there are 74 possible counter arrays to produce 43 output bits, we need to store
74 separate tables. The solutions give internal states at the t-th clock. Store the
internal states at time (t − 9) just to avoid clocking backwards 9 times before
mounting the key recovery attack in Section 3.

Algorithm 1 and Algorithm 2 summarizes the full attack. Algorithm 1 is
the off-line phase of the attack, related to preparing tables for each counter
value. Algorithm 2 gives the set of instructions of how to recover key or come
to a contradiction in a formal way for each trial of 43-bit keystream segment.
We verified by producing some test values that Algorithm 1 generates internal
states ((Nt, Lt) pairs) for which (δt−9, δt−8, . . . , δt+30) = (0, 0, . . . , 0) and that
Algorithm 2 finds the correct key when our assumption about δt is fulfilled during
keystream generation (see Appendix B).

The data complexity is given as D = 240 bits of output, not necessarily
produced by just one IV, and we have 74 tables of each having 240 rows. Each
row contains 80-bit internal state and 3 output bits, indexed by the remaining 40
bits of the output. Hence, the memory requirement M is roughly 770 Terabytes3

(this can be reduced by storing some of the tables in cost of increased data
complexity). The precomputation for creating the tables is 241.32 row reduction
operations of at most 20 by 20 matrices along with producing 43 bit outputs
for each solution. Since 60 ni values and all the li values are known, 33-bit

3 One may choose to store only 60 ni values to reduce the memory requirement. In
this case about 580TB of memory is needed. But, in the online phase, the values of
LFSR need to be computed.



Algorithm 2 Online Phase of the Attack

Take 240 keystream bits (not necessarily generated using the same IV)
for each 43-bit keystream block do

// Cj := corresponding counter array for the current clock-cycle

if Keystream block exists in T
Cj

Z then

Fill NLFSR and LFSR according to values in T
Cj

Z

while Internal state does not produce a contradiction do
Clock cipher backwards
if keystream is in {0, 1} then

Check state!
else

Determine key bit value involved
end if

end while
end if

end for

output may be generated by substituting the appropriate values in the output
function without needing to clock the whole cipher. In addition, we need to
clock backwards 9 times to produce the remaining 10 output bits, which brings
an additional effort of about 9 ·240 ·2−8.33 ≈ 234.84 encryptions. The workload of
adding an output with its internal state to the appropriate table in a sorted way
is negligible. The time complexity during the online phase is 240 table lookups
along with 2−3 · 240 · 5 · 2−8.33 ≈ 231 encryptions. Recall that only 1/8 of the
keystreams are in one of the tables. And, if a keystream is found in a table, the
corresponding internal state obtained is for time t− 9, but we already make use
of zt−10. Hence, a candidate is checked in 1 + 4 = 5 clocks on average.

4.2 Reducing the data complexity

Let ∆d
t := (δt, δt+1, . . . , δt+d−1). We focused on the case when ∆40

t = (0, 0, . . . , 0)
for some t. However, suppose ∆40

t contains a single 1 at i-th index and ki is
incorporated into the NLFSR feedback at clock-cycle t+ i. In that case, we can
create the tables for ki = 0 and ki = 1 separately (which would double the
table size) and apply the same attack. If we do this for each possible index i, M
increases by a factor of 2·40 = 80 and D decreases by a factor of 40. Generalizing
this idea, we can create tables for each possible ∆d

t . If there are n 1s in ∆d
t , M

increases by a factor of 2n ·
(
d
n

)
while D decreases by a factor of

(
d
n

)
.

5 Conclusion and Discussion

We illustrated Time-Memory-Data tradeoff attacks and a guess-and-determine
attack mounted on full Sprout. The TMD attacks combine both guess-and-
determine and divide-and-conquer techniques. We have guessed some taps of



the internal state satisfying a certain property and then determined the remain-
ing taps by solving a specific system of linear equations. After storing all such
internal states in tables with their outputs (we can produce some output bits
without knowing the key bits, thanks to the special property that the internal
states satisfy), we mount a divide-and-conquer attack to recover the key from
the given output keystream bits. The complexities indicate that the attack is
highly feasible. We have verified our statements by conducting several exper-
iments. The detailed experimental results including an implementation of the
attack with a small-scale table are given in Appendix B.

Designing ultra lightweight stream ciphers allocating less than 1K GE in
hardware with a moderate security level such as 80 bits, is a new challenge,
initiated by Armknecht and Mikhalev [2]. Even though their first design attempt
does not achieve the required security level, we believe that several other designs
will likely appear in the literature soon and some of them will probably be secure
enough to be used in the industry.

We claim that producing output during each clocking of the registers is not a
convenient design philosophy for ciphers whose internal state sizes are not large
enough. Otherwise, they may be prone to guess-and-determine or divide-and-
conquer attacks. We think that adopting the design philosophy of Grain family,
particularly in bitwise operations and clockwise output generation, has brought
the security failure to Sprout. The research question is about the optimization of
the rate of the output generation over the register clocking in terms of security
versus throughput. This can be considered as a generic question relating to all
ultra lightweight stream ciphers. One straightforward countermeasure against all
the attacks on Sprout may be decreasing the throughput of Sprout and giving
only one bit output in, for instance, 16 clockings of Sprout registers. That output
may be the sum of all the 16 bit outputs of the original Sprout.

Acknowledgments. We would like to thank anonymous reviewers for their
helpful comments, especially the second reviewer who makes a comprehensive
analysis of the paper and a lot of useful suggestions. We would also like to thank
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11. Jovan Dj. Golić. Cryptanalysis of alleged A5 stream cipher. In Walter Fumy,
editor, Advances in Cryptology - EUROCRYPT ’97, International Conference on
the Theory and Application of Cryptographic Techniques, Konstanz, Germany, May
11-15, 1997, Proceeding, volume 1233 of Lecture Notes in Computer Science, pages
239–255. Springer, 1997.

12. Yonglin Hao. A related-key chosen-iv distinguishing attack on full Sprout stream
cipher. Cryptology ePrint Archive, Report 2015/231, 2015. http://eprint.iacr.org/.

13. Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A stream
cipher proposal: Grain-128. In Information Theory, 2006 IEEE International Sym-
posium on, pages 1614–1618, July 2006.

14. Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. The Grain
family of stream ciphers. In Matthew Robshaw and Olivier Billet, editors, New
Stream Cipher Designs, volume 4986 of Lecture Notes in Computer Science, pages
179–190. Springer Berlin Heidelberg, 2008.

15. Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for
constrained environments. Int. J. Wire. Mob. Comput., 2(1):86–93, May 2007.

16. Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions
on Information Theory, 26(4):401–406, 1980.
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A Details of Sprout
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Fig. 1. The High Level Structure of Sprout

RKF in Figure 1 represents the round key function. The LFSR is clocked as
lt+1
39 = f(Lt) = lt0 ⊕ lt5 ⊕ lt15 ⊕ lt20 ⊕ lt25 ⊕ lt34 and lt+1

i = lti+1 for 0 ≤ i ≤ 38.
The function g is the nonlinear feedback function for the NLFSR. Its output



is XORed with the round key bit k∗t , the counter bit ct4 and the output of the
LFSR lt = lt0. So, the feedback of the NLFSR nt+1

39 is given as follows:

nt+1
39 = g(Nt)⊕ k∗t ⊕ lt0 ⊕ ct4

= k∗t ⊕ lt0 ⊕ ct4 ⊕ nt0 ⊕ nt13 ⊕ nt19 ⊕ nt35 ⊕ nt39 ⊕ nt2nt25
⊕ nt3nt5 ⊕ nt7nt8 ⊕ nt14nt21 ⊕ nt16nt18 ⊕ nt22nt24 ⊕ nt26nt32
⊕ nt33nt36nt37nt38 ⊕ nt10nt11nt12 ⊕ nt27nt30nt31

where

k∗t = kt, 0 ≤ t ≤ 79

k∗t = kt mod 80 · (lt4 ⊕ lt21 ⊕ lt37 ⊕ nt9 ⊕ nt20 ⊕ nt29)

with δt := lt4 ⊕ lt21 ⊕ lt37 ⊕ nt9 ⊕ nt20 ⊕ nt29. Once the internal state is determined
for clock-cycle t, the keystream bit zt is generated as follows:

zt = nt4l
t
6 ⊕ lt8lt10 ⊕ lt32lt17 ⊕ lt19lt23 ⊕ nt4lt32nt38

⊕ lt30 ⊕ nt1 ⊕ nt6 ⊕ nt15 ⊕ nt17 ⊕ nt23 ⊕ nt28 ⊕ nt34

Initialization phase: The feedback registers are initialized as follows:

ni = ivi, for 0 ≤ i ≤ 39
li = iv40+i, for 0 ≤ i ≤ 29
li = 1, for 30 ≤ i ≤ 38
l39 = 0

After filling the registers, the cipher is run 320 clocks without producing keystream
while the output zt is fed back into both feedback registers such that lt+1

39 =
zt ⊕ f(Lt) and nt+1

39 = zt ⊕ k∗t ⊕ lt0 ⊕ ct4 ⊕ g(Nt). The keystream generator starts
generating the keystream after the initialization phase.

The designers of Sprout suggest to generate up to 240 keystream bits with one
(key, IV) pair.
Workload of exhaustive search: To exhaustively search a key, one has to run
the initialization phase first (320 clocks), and then generate 80 bits of keystream
for a unique match. However, since each keystream bit generated matches the
corresponding actual keystream bit one with probability 1

2 , 280 keys are tried for
1 clock and roughly half of them are eliminated, 279 for one more clock and half
of the remaining keys are eliminated, and so on. Hence, the average number of
clocks per one trial after the initialization step among 280 keys is

79∑
i=0

280−i

280
=

79∑
i=0

1

2i
≈ 2

As a result, we will assume that clocking the registers once will cost roughly
1

322 ≈ 2−8.33 encryptions.



B Experiments

We did not implement the whole attack due to our memory shortage. Instead, we
have conducted several experiments to verify our attack. We have solved millions
of the systems of linear equations to collect some of the special internal states
where δt = 0 for consecutive 40 values of t and stored the solutions in tables.
Then, we have accomplished to recover an internal state in the table with the
key used in the given keystream sequence.

First of all, we performed a run test on δt values to check if the probability
that 40 consecutive δt values vanish simultaneously is around 2−40 for the Sprout
internals. We chose 30 random (IV, K) pairs, and run the cipher 240 clocks for
each selection. We depict the average number of runs having length i in Table
3. The values for 10 ≤ i ≤ 21 are not given in the table since they are too
big to display. However, we can simply say that the empirical result for any
10 ≤ i ≤ 21 does not deviate from the corresponding expected value more than
0.0678 percent.

i i+ 1 i+ 2

Empirical Expected Empirical Expected Empirical Expected

i = 22 65596.66 65536 32802.60 32768 16398.17 16384

i = 25 8202.73 8192 4114.03 4096 2042.5 2048

i = 28 1025.9 1024 509.9 512 259.4 256

i = 31 127.8 128 64.2 64 31.33 32

i = 34 17.63 16 7.7 8 4.13 4

i = 37 1.83 2 1.2 1 0.400 0.500

i = 40 0.333 0.250 0.133 0.125 0 0.062

i = 43 0 0.031 0.067 0.016 0.033 0.008

Table 3. Comparison between the empirical results and the expected number of runs.

Moreover, we have implemented the attack with a small-scale table in Sage
6.5. We found more than 5 million solutions for the system NS ′ and generated
tables for different counter values. The total size of all the tables is about 215
MB. For a randomly chosen state in the tables, we have found a valid (IV, K)
pair generating the state. Then, we mounted the attack on the corresponding
keystream sequence and successfully recovered the key. The (IV, K) pair was

IV = 1101010110100000111010011001011101111010

011011100110110011000001001010

K = 1000100100011001111111110000011000111110

0011001110100100010110100010000100101001

where the left-most bit represents the value for index 0. At time t = 25916
(after initialization), (δt−9, δt−8, . . . , δt+30) = (0, 0, . . . , 0) is satisfied. The target



internal state at time t was

Lt = 0100111111110010000010111111011100101111

Nt = 1111011001011111111011111001000101100000

which is in one of the tables. Running the key recovery attack, we have found
62 key bits in 160 clocks, verifying our statements. The remaining bits can be
recovered by an exhaustive search.

We also verified the average number of clocks iterated before arriving at
a contradiction during the internal-state-check mechanism. We chose 1 million
random internal states and ran the key recovery attack for each of them. Each
state was clocked backwards once before starting the test since the output at this
clock is definitely a check bit. Table 4 shows how many states were eliminated at
each clock i. The average number of clocks run for a candidate was about 3.999,
as expected (See Section 3).

Clock-cycle number
# of states eliminated

at i-th clock

i = 1 250071

i = 2 187325

i = 3 140862

i = 4 105620

i = 5 79061

i = 6 59067

i = 7 44714

i = 8 33287

i = 9 25044

i = 10 18590

Average # of
clocks run

3.999 · · ·

Table 4. Number of state candidates eliminated at each clock i.

Another experiment was about verifying the assumption that there exists
approximately 240 solutions for the system NS ′ in total. We have solved the
system 16000 times for each case when

(nt+48, nt+52, nt+54, nt+55) ∈ S and (nt+48, nt+52, nt+54, nt+55) 6∈ S.

Table 5 summarizes the results of the experiment, supporting our assumption
about the number of solutions.



# of solutions
# of eqns with i solns when

(nt+48, nt+52, nt+54, nt+55) ∈ S
# of eqns with i solns when

(nt+48, nt+52, nt+54, nt+55) 6∈ S
i = 0 6049 6478

i = 1 5198 4376

i = 2 3704 4637

i = 3 671 0

i = 4 344 501

i = 5 9 0

i = 6 20 0

i = 7 1 0

i = 8 4 8

Average 1.012 0.982

Table 5. Number of solutions forNS ′ for each cases when (nt+48, nt+52, nt+54, nt+55) ∈
S or (nt+48, nt+52, nt+54, nt+55) 6∈ S.


