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Abstract. In this paper we experiment with cube testers on reduced round Trivium that can act
as a distinguisher. Using heuristics, we obtain several distinguishers for Trivium running more than
800 rounds (maximum 829) with cube sizes not exceeding 27. In the process, we also exploit state
biases that has not been explored before. Further, we apply our techniques to analyse Trivia-SC,
a stream cipher proposed by modifying the parameters of Trivium and used as a building block
for TriviA-ck (an AEAD scheme, which is submitted to the ongoing CAESAR competition). We
obtain distinguishers till 900 rounds of Trivia-SC with a cube size of 21 only and our results refute
certain claims made by the designers. These are the best results reported so far, though our work
does not affect the security claims for the ciphers with full initialization rounds, namely 1152.
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1 Introduction

Cube attack, introduced by Dinur and Shamir [6,7], and cube tester, introduced by Aumasson et al. [8]
have attracted serious attention recently. This is now being extensively used to cryptanalyse quite a few
ciphers. One may also relate cube attacks with higher order differential cryptanalysis [14] proposed long
back. For our explanations, let us consider the following model: Consider that the key, IV (Initialization
Vector) and suitable padding bits are loaded in the initial state of a stream cipher. We denote this initial
state by S(0) and obtain the state S(r) after the r-th step of evolution. In our model, we consider that
the key bits are unknown; some of the IV bits (say, v many) are tried with all the 0, 1 possibilities;
rest of the IV bits are assigned to some specific value (we mostly experiment with the all-zero set-up);
and the initial padding bits are fixed. Thus, for a single key, we try out 2v IVs, and consider the GF(2)

addition of all the distinct 2v bits corresponding to each state location (denote it by S
(r)
i for the bit

at the state location i) or the output key-stream bit f(S(r)) after t rounds of evolution during the Key

Scheduling Algorithm (KSA). One may check that S
(r)
i (k) and f(S(r)(k)) are functions on the secret

key bits k = k1, k2, . . . , k`, where the secret key is `-bit long. Presuming that well designed stream
ciphers have so clever update rules that, after certain number of evolutions t it becomes very hard (if
not impossible with today’s computational ability), to carry out the complete algebraic calculation of

the functions S
(r)
i (k) and f(S(r)(k)), even with sophisticated tools that support symbolic computations

(e.g., Sage [20]). However, over a random choice of keys (much less than 2`), if one can demonstrate
that the behaviour of f(S(r)(k)) can be distinguished from an ideal random number generator, then that
is considered as a distinguisher (or, distinguishing attack) for that stream cipher. Since it may not be
possible to obtain a distinguisher after the full rounds (say, τ) of evolution in KSA, one may try to study
till t (< τ) rounds. The choice of proper v locations from the IV bits is an important task and naturally
identifying a smaller set to obtain a distinguisher for larger t is the prime challenge here. We study this
situation for the stream ciphers Trivium and Trivia-SC in this paper and provide new results in this
direction. Similar to other existing cube attacks against Trivium, our work relies on heuristics to obtain
interesting cubes and then we validate the results with experiments.

The Trivium [4] stream cipher, designed by De Cannière and Preneel, has a simple structure to
understand and implement. It has been selected in the eStream [5] hardware portfolio and has also been
standardized in ISO 29192 [15]. Even after more than a decade of effort by cryptanalysts, no attack
could break the security conjectures made by the designers of Trivium. It has been studied extensively
and there are several results with reduced initialization rounds of Trivium (see table 2). In this paper,
we improve certain state of the art results by using suitable cubes of much smaller sizes and provide the
distinguisher till 829 rounds which could not be reached so far.
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TriviA-ck-v1 [1] is an AEAD (Authenticated Encryption with Associated Data) scheme, designed by
Chakraborti & Nandi, and submitted to the ongoing “CAESAR - the Competition for Authenticated
Encryption: Security, Applicability, and Robustness” project [3]. It uses the stream cipher Trivia-SC
(sometimes refered to as SCTrivia or SC-Trivia, e.g., in [1, page 18], [2]) as a component. Trivia-SC
is inspired from Trivium, but with a larger state size and also a larger key size. We succeed to find
distinguishers for this cipher till 900 rounds that clearly refutes certain claims made by the designers.

1.1 Description of the Ciphers

Before proceeding further, let us describe the structures of Trivium and Trivia-SC. Table 1 briefly gives
an overview.

Table 1: Overview of Trivia-SC and Trivium

Cipher Key size IV size State size
Initialization

rounds
# Bits involved
in key-stream

# Operations
in key-stream

Trivium 80 80 288 1152 (= 4× 288) 6 5 ⊕
Trivia-SC 128 128 384 1152 (= 3× 384) 8 6 ⊕, 1 ∧

Throughout this document, and for both the ciphers, we use the convention of numbering both the
key and IV bits as 1, 2, 3, . . .. Accordingly, we use k1, k2, k3, . . . and x1, x2, x3, . . . to represent the key and
IV bits, respectively. We explain Trivium with a single array S and Trivia-SC with three arrays A,B,C,
though each of these can be represented in any of the two manners.

Algorithm 1.1 Trivium: KLA

1: (S1, S2, . . . , S93)← (k1, k2, . . . , k80, 0, . . . , 0)
2: (S94, S95, . . . , S177)← (x1, x2, . . . , x80, 0, . . . , 0)
3: (S178, S179, . . . , S288)← (0, 0, . . . , 0, 1, 1, 1)

Algorithm 2.1 Trivia-SC: KLA

1: (A1, A2, . . . , A132) ← (k1, k2, . . . , k128, 1, 1, 1, 1)
2: (C1, C2, . . . , C147) ← (x1, x2, . . . , x128, 1, . . . , 1)
3: (B1, B2, . . . , B105) ← (1, 1, . . . , 1)

Algorithm 1.2 Trivium: KSA & PRGA

1: for i = 1 to N do
2: t1 ← S66⊕S93; t2 ← S162⊕S177; t3 ← S243⊕S288

3: zi ← t1 ⊕ t2 ⊕ t3
4: t1 ← t1 ⊕ S91 ∧ S92 ⊕ S171

5: t2 ← t2 ⊕ S175 ∧ S176 ⊕ S264

6: t3 ← t3 ⊕ S286 ∧ S287 ⊕ S69

7: (S1, S2, . . . , S93)← (t3, S1, . . . , S92)
8: (S94, S95, . . . , S177)← (t1, S94, . . . , S176)
9: (S178, S179, . . . , S288)← (t2, S178, . . . , S287)

10: end for

Algorithm 2.2 Trivia-SC: KSA & PRGA

1: for i = 1 to N do
2: t1 ← A66 ⊕A132 ⊕ (A130 ∧A131)⊕B96

3: t2 ← B69 ⊕B105 ⊕ (B103 ∧B104)⊕ C120

4: t3 ← C66 ⊕ C147 ⊕ (C145 ∧ C146)⊕A75

5: (A1, A2, . . . , A132)← (t3, A1, . . . , A131)
6: (B1, B2, . . . , B105)← (t1, B1, . . . , B104)
7: (C1, C2, . . . , C147)← (t2, C1, . . . , C146)
8: zi ← A66 ⊕ A132 ⊕ B69 ⊕ B105 ⊕ C66 ⊕ C147 ⊕

(A102 ∧B66)
9: end for

Let us now describe the stream cipher Trivium [4]. As stated, this cipher consists of a 288-bit state,
that can be seen as three Non-linear Feedback Shift Registers (NFSRs). One can consider these three
NFSRs together and thus we denote this as a single 288-bit register S, and its bits by S1, S2, . . . , S288

respectively. The KLA (Key Loading Algorithm), by which the key and IV are initially loaded to the
register, is given in algorithm 1.1. After the completion of KLA, the Key Scheduling Algorithm (KSA)
routine is carried out. The cipher is clocked 1152 times without producing any key-stream bit. After
KSA, required number of key-stream bits are generated by the Pseudo-Random Generation Algorithm
(PRGA) routine. The algorithm of KSA and PRGA are same, so we put it in 1.2. The only difference
between these two is that the step 3 of algorithm 1.2 remains ‘off’ in case of KSA (first 1152 rounds),
and remains ‘on’ afterwards in PRGA.

In a similar fashion, Trivia-SC consists of 3 NFSRs: A,B and C of size 132, 105 and 147 bits; whose bits
are represented as A1, A2, . . . , A132, B1, B2, . . . , B105 and C1, C2, . . . , C147 respectively. We represent the
internal state register (384 bits) by S and denote its bits by S1, S2, . . . , S384, where A ≡ (S1, S2, . . . , S132),
B ≡ (S133, S134, . . . , S237) and C ≡ (S238, S239, . . . , S384). Likewise Trivium, the KLA routine is described
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in algorithm 2.1. The KSA follows it (the evolution is done for 1152 rounds without producing any key-
stream bit), which is followed by PRGA, which are given in algorithm 2.2. Likewise Trivium, the algorithm
for both KSA and PRGA are the same, except for step 8 is ‘off’ during KSA, and ‘on’ afterwards in
PRGA.

By carefully observing the description of Trivia-SC in [1, step 10 and 11 of algorithm 3], one may
find out a subtle difference: unlike Trivium [4, section 2.1], which first outputs a key-stream bit and then
updates the state, Trivia-SC first runs the evolution then outputs the key-stream bit.

1.2 Existing Works & Our Contributions

Study of cube attacks on Trivium has received serious attention in literature. Table 2 summarizes the
relevant state of the art results, including our own work. Cube attacks are key recovery attacks, which

Table 2: Overview of cube attacks and cube testers on Trivium

Author(s): Type of the attack Cube size : Round(s)

Dinur, Shamir
[6] (Eurocrypt’09)
[7] (Eprint’08)

: Cube attack 12 : 672− 685; 23 : 735− 747; 29 : 767− 774

Aumasson, Dinur, Meier, Shamir [8]
(FSE’09): Cube tester

24 : 772; 30 : 790 (Distinguisher)
24 : 842; 27 : 885 (Non-randomness)

Stankovski [9] (Indocrypt’10): Cube tester
44 : 806 (Distinguisher)

45 : 1026; 54 : 1078 (Non-randomness)

Knellwolf, Meier, Naya-Plasencia [12]
(SAC’11): Cube tester

25 : 772, 782, 789, 798 (Distinguisher)
25 : 868 (231 key space);

25 : 953, 961 (226 key space)
(Non-randomness)

Fouque, Vannet [13] (FSE’13): Cube attack 30 : 784; 37 : 799

Our work: Cube tester (Distinguisher)
13 : 710; 20 : 766, 792; 21 : 777, 801;
22 : 804, 810; 27 : 822, 823, 826, 829

attempt to guess at least one bit (with probability significantly > .5) of a secret key with complexity
less than the brute-force attack. On the other hand, cube testers are distinguishing attacks. As stated in
section 1, they try to distinguish a given cipher from a truly random scenario. Informally, such type of
attacks may or may not manipulate the secret key bits, depending on which we define the following two
terms:

– Distinguisher A detector of some state/key-stream bits, if those are deviated from truely random
scenario, where the attacker controls the (all or some) public variables only.

– Non-randomness A detector of the same, when the attacker has control over some private variables
too.

It may be noted from table 2 that one may obtain non-randomness for more rounds than obtaining
the distinguisher. This is not surprising, since, the key bits may also be manipulated that may give rise
to certain class of weak keys in case of non-randomness. In this paper, we look at the distinguishing
attack, where we have control over the IVs only. In this respect, we obtain the improved results with
cube sizes in the range of twenties. One may note that results with significantly larger cubes have been
reported in [9]. However, those results are hard to emulate without high end facilities. Thus, further
efforts have been made later in [12,13] to obtain relatively smaller cubes that can be checked quickly on
commonly available laptop or desktop computers. In that direction, our efforts provide currently the best
known results as evident from table 2. Our heuristics are built over the idea of [9]. We first make some
experiments with a few runs to obtain a potentially good cube and then run that for larger iterations to
see how far the cube can be used to identify a distinguisher. That is, with our heuristics, we are able to
quickly discard the cubes that may not provide good distinguishing results in further rounds. We also
optimize our software implementation to certain level to obtain faster execution.

Trivia-SC, being a recently proposed cipher, have not attracted much cryptanalysis yet. Very recently,
Xu, Zhang and Feng [11] points out a distinguisher against Trivia-SC with complexity 2152, which is
larger than the brute force attack of complexity 2128. Now, let us explain the implication of our work to
Trivia-SC. The designers of this cipher claimed in [1, chapter 3.1, page 15]:

“It has been observed from the results that the output bit polynomial for Trivia-SC with 896 or
more rounds of initialization behaves as random polynomial . . ..”
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However, with our heuristics, we could discover cubes of size 13 and 21 respectively to obtain distin-
guishers till 897 and 900 rounds. This clearly refutes the claim of the designers.

Informally speaking, the security margin of Trivium, by itself is very tight. This is one of the excellent
stream ciphers that is tempting to the cryptanalysts due to its very small and simple structure. In fact,
in [10], it has been commented that it may not be judicious to increase the key size of Trivium with some
increase in state as weaknesses can be found on Trivium with complexity little beyond the exhaustive
key search. We show in this paper that Trivia-SC, which increases the key size as well as state size of
Trivium, can be distinguished for significantly more rounds with small cubes. Thus, one may conclude
that Trivia-SC is weaker compared to Trivium with respect to cube testers.

2 Finding the Cubes: Results on Trivium

The prime question about the efficiency of cube attack and cube tester kind of cryptanalysis is as asked in
[16, slide 69] that how to discover the best cubes. We study this issue in detail, propose some heuristics,
and present some good cubes for Trivium and Trivia-SC. As evident from the literature, there is not
much concrete theory available to obtain a good cube, and most of the efforts are based on clever
heuristics. The backbone of a cube tester is to obtain a (as minimal as possible) set of public variables,
and experimentally check for the presence of bias for this set, if any, at some rounds rounds over certain
iterations.

At this point, let us refer to the notations that we have described in the introduction. Since we are
considering reduced round model of the ciphers, we consider as if the key-stream bits are available from

just after the completion of KLA. In this regard, we have already noted that S
(r)
i (k) are the state bits

and f(S(r)(k)) are functions on the key bits only after the t-th round. For Trivium, by S
(0)
i (k) we mean

the state bits just after the KLA and f(S(0)(k)) is the output key-stream bit at that point. Consider
that U be the set of all IVs and we consider a subset V of U , with v = |V |. The IVs in V will be taken
as the cube.

2.1 Maximum all zero [9]

Let us first describe the basic idea of GreedyBitSet heuristic proposed in [9]. We explain that in algorithm
3. Here the idea is to obtain the set of IV bits in the cube V so that Pr[f(S(r)(k)) = 1] = 0. As we will
keep on updating the cubles, let us refer this as indexed by V (as and when required), i.e., we require
P [fV (S(r)(k)) = 1] = 0 for all the rounds till r. Since it is being checked whether P [fV (S(r)(k)) = 1] = 0,
i.e., whether the function fV (S(r)(k)) is identically zero, only a very few run with random keys will suffice
with high confidence for this test. In [9], it is also described how in each step more than one bits can
be added; this was proposed so that the local optima can be better avoided. From now on, we refer to
GreedyBitSet as ‘maximum all zero’ approach.

Algorithm 3 GreedyBitSet

Input: Key k, set of IV bits U , desired cube size t
Output: Cube V of size t
1: V ← ∅
2: for i← 0 to t− 1 do
3: V ← GreedyAdd1Bit(k, U, V )
4: end for
5: return V

. GreedyAdd1Bit(k, U, V )
Input: k, U , cube V of size n
Output: Cube V of size n+ 1
1: BestBit← None; max← −1
2: for all x ∈ U \ V do
3: V ′ ← V ∪ {x}
4: i is the maximum round up to & including which

all fV ′(S(r)(k))’s are zero
5: if i > max then
6: max← i; BestBit← x
7: end if
8: end for
9: return V ∪ {BestBit}
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2.2 Our Strategies: Maximum last zero & Maximum frequency of zero

Instead of the ‘maximum all zero’ approach [9], we consider the ‘maximum last zero’ & ‘maximum
frequrncy of zero’ approaches. That is, instead of considering the IV bit(s) for which we get all zero up
to & including a particular round, we now consider the IV bit(s) for which we get the maximum last
zero and maximum frequency of zero, respectively. A bit formally, line 4 in the above algorithm should
be replaced by

1. “i is the last round for which the corresponding fV ′(S(r)(k)) = 0”, and

2. “i is the round for which the corresponding fV ′(S(r)(k)) = 0 gives maximum zero count (counted up
to some fixed round, say, R)”,

respectively for maximum last zero and maximum frequrncy of zero. We explain these 3 heuristics with
an example below.

Consider the function for the first 10 rounds. By 0 we mean that the function is identically zero,
and we denote it by ? otherwise. Let V = ∅ and for the cube {x1}, sequence of initial f{1}(S

(r)(k)) is
6︷ ︸︸ ︷

0 · · · 0?0??; whereas for {x2} (respectively, {x3}), say the sequence of initial f{2}(S
(r)(k)) is

5︷ ︸︸ ︷
0 · · · 0????0

(respectively, f{3}(S
(r)(k)) is

5︷ ︸︸ ︷
0 · · · 0?00?0). While the strategy of [9] will choose the first one, we will

choose the second one (‘maximum last zero’) and the third one (‘maximum frequency of zero’). Similar
to [9], in our strategy too, one may consider more than one IV bits can be included at a time for getting rid
of local optima. For R (up to & including which round we will be counting the frequency), in ‘maximum
frequency of zero’, we take 1152, the full KSA round for the ciphers.

We also consider a few other issues for obtaining good cubes with the following ideas:

1. Once we get a cube V = {x1, x2, . . . , xv}, we also consider the cubes of size v + 1 as {x1, x2, x3,
. . . , xv, xv+1}, where xv+1 is chosen randomly from ∈ U \V and check its usefulness as a good cube.

2. Following [9,12], we sometimes consider the IV bits in V with a gap of three. This performs well for
Trivium, though for Trivia-SC this is not that effective.

3. Once we get a cube V = {x1, x2, . . . , xv}, we also consider the cubes of size v− 1 as {x2, x3, . . . , xv},
{x1, x3, . . . , xv}, . . ., {x1, x2, . . . , xv−1} and check whether they are also good cubes.

4. Once we get a cube V = {x1, x2, . . . , xv}, we also consider the cubes {x1 − 1, x2, . . . , xv}, {x1, x2 −
1, . . . , xv}, . . ., {x1, x2, . . . , xv − 1} and {x1 − 1, x2 − 1, . . . , xv − 1} (assuming xi > 1, wherever
necessary).

5. We also study GreedyBitSet heuristic along with our own heuristics. In all our experiments, we note
that our heuristics outperform GreedyBitSet. Also, it does not prove that GreedyBitSet is indeed
weaker to our heuristics, since some randomness is always associated and initially we test with very
small runs.

6. While nothing is said about tie cases in [9], we notice that one particular tie case candidate performs
much better than others. Hence, we propose another minor modification: At line 5 of algorithm 3 ‘>’
should be replaced by ‘≥’, and the next line will look for the best IV bit(s) which outperform(s) others
(if any). Althogh, it is not possible for us to check all tie case candidates with our computational
power, we try to cover as many as possible. We notice that the ‘maximum last zero’ heuristic gives
maximum number of tie case in comparison to other two heuristics.

7. While finding the cubes, we mostly study 3+3+3+3+2+2+2+2+1+1+ . . . strategy, i.e., starting
from an empty cube, we first set 3 IV bits at a time; then with that 3-cube, we insert another 3 IV
bits; etc.

8. While we mostly consider IV bits of U \ V to be assigned to zero, we also make experiments with
random choice of those IV’s in certain cases

As for the convention, we denote by ?, ∗, †, ‡ the cubes we obtain by using maximum last zero approach,
maximum frequency of zero approach, the idea of random bit insertion, and the idea of cubes of a gap of 3,
respectively.

Based on these ideas we try out many cubes with small number of iterations. Once we obtain a cube
that seems promising, we go for longer runs for exact estimation of probabilities to obtain distinguishers
after significant number of rounds. It is needless to mention that our method do not use any automated
tool and we need to inspect quite a large amount of data by ‘trial and error’.
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2.3 Experimental Results

Before proceeding to the results in detail, we state our ideas of how we implement in computers and how
we detect the biases.

Since we need to run a lot of independent runs to detect biases in our computers, we need to have
a quite fast implementation. We use C programming language with GCC [19] compiler under Linux
environments. We make our codes run faster by exploiting two levels of parallelism. In the first place,
we use each variable of type unsigned long long, which has 64 bits of precision, thus we can run 64
independent stream ciphers parallelly. Roughly speaking, this gives us nearly 64-fold speed up. Secondly,
we update 64 KSA rounds at a time, then generate 64 key-stream bits (instead of updating 1 KSA
round, then generating 1 key-stream bit); then again update 64 KSA rounds; etc. This strategy works
for both the ciphers because of the update patterns of its registers. Empirical results show that the
speed-up obtained is almost two-fold in our software implementation. With such an efficient software
implementation, we could experiment and observe the biases from a few seconds to at most in a day till
22 size cubes in laptops. However, for the experiments with the 27 size cube and for the biases for more
than 820 rounds in Trivium, we required much higher computational power and used a machine with
120 processors of 2.80 GHz clock each for almost 2 weeks in a multiuser environment.

Now we describe the statistical criteria needed to detect a bias (i.e., to be sure that it is not a false
alarm). Consider that we have two key-stream bits, one is generated from an ideally random source (say
I) and the other one is the key-stream bits of a stream cipher (say J). Consider that the probability of
ocurrance of some event in I is p and the same from J is p(1 + q), where q is significantly smaller than

p. Then one can distinguish I, J in O
(

1
pq2

)
trials, i.e., one needs to have those many key-stream bits

available in J . This underlines one component of the complexity. Thus, if p = 1
2 and q = ± 1

2u , then the
complexity is O

(
22u+1

)
. The other component here is 2v, where v is the cube size. That is the total

complexity to obtain a cube distinguisher is 2v+2u+1.

Now, the main issue is what constant is to be taken for O
(

1
pq2

)
trials when actually running the

experiments. For 1
pq2 trials the success probability of distinguishing J from I is approximately 69%,

whereas it increases to more than 99.9% with 39
pq2 trials. Thus, for all the experiments when we try to be

confident about a bias, we run at least 39
pq2 trials to obtain proper estimate of the deviation q. However,

for complexity figures, we consider 1
pq2 trials as it provides success probability significantly more than

50%.
With this background, let us present some interesting experimental results in table 3 (Trivium) and

table 6 (Trivia-SC). For a short-hand notation, we write P(r) in place of Pr[f(S(r)(k)) = 1]. In the first
colums of the tables 3 & 6, we present two rounds, r and r0; where r gives the maximum round up to
which a bias (given in column 2) can be detected with complexity given in last column; and r0 gives the
maximum round up to which an exact bias of zero (i.e., P(r0) = 0) can be detected in 2v+1 complexity.
One may note that the starting index for the IV bits is 1 and the key-stream couting for Trivia-SC starts
from 0. We mark by those IV indices by bold fonts, which are inserted to a previous cube to yield a new
cube.

Table 3: Cubes obtained for Trivium giving bias in key-stream

r (r0) P(r) Cube indices (#) Complexity

710 (686) 0.462977 1, 3, 10, 12, 14, 23, 38, 45, 48, 50, 69, 75, 79 (13)† 221.511

766 (747) 0.496747 2, 4, 6, 8, 11, 13, 15, 17, 19, 26, 28, 30, 32, 37, 55, 58, 67, 73, 76, 79 (20)∗ 235.528

777 (747) 0.491104 2, 4, 6, 8, 11, 13, 15, 17, 19, 26, 28, 30, 32, 34, 37, 55, 58, 67, 73, 76, 79 (21)∗ 233.625

792 (736) 0.495842 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 47, 50, 68, 74, 77, 80 (20)‡ 234.820

801 (741) 0.497301 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 68, 74, 77, 80 (21)‡ 237.067

804 (766) 0.497907 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 56, 68, 74, 77, 80 (22)‡ 238.800

822
823

(778)
0.495747
0.496973

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65,
68, 71, 74, 77, 80

(27)‡ 241.755

242.736

One very special distinguisher in table 3 is in the first row, this cube is originally obtained from a 12
cube given in [6, table 1, row 15 - excluding the header], which gives a key-recovery attack on Trivium
at round 685. We extended the given cube by inserting 23, which gives a clear distinguisher till round
710.
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In table 3 (last 4 rows), the IV bits are differing by 3 or multiples of 3. The 27-cube (last row) gives
a bias for maximal round, this is the full cube of gap 3. So far, we obtain clear bias up to 823 round, and
we are trying to see (with the same cube) if the bias is present in some later rounds also. Note that in
Section 2.4, we show how one can obtain a distinguisher for Trivium at 810-th round using the 22-cube
(second row from bottom) and at 826-th & 829-th round using the 27-cube mentioned here. One may
also note that the detection complexity (with the same cube) rises when we try to detect biases at later
rounds; e.g., the detection complexity (with the 27-cube) for round 822 is 241.755, which is nearly doubled
(242.736) in case of round 823.

2.4 Exploiting Biases Observed at the State Bits of Trivium

One may note that the key-stream bit of Trivium is the XOR of six state bits. Thus, if one considers:

i. each of those six state bits are biased (this can be experimentally checked in this scenario), and
ii. each of the state bits are independent (this is actually not true as each of the state bits is a function

of the same secret key bits; but in a stream cipher design it is expected that after quite a few rounds
of initialization, the individual state bits should not have much correlation and one may assume the
independence),

then one may use the Piling-up lemma [17, chapter 3.3.1]. Consider that X1, X2, . . . , Xq are independent
binary random variables. Let, Pr(Xi = 1) = 1

2 (1 − εi), where εi ≥ 0 ∀i = 1, 2, . . . , q. Here, according to
the notations of Trivium, q = 6 and

X1 ← S66, X2 ← S93, X3 ← S162, X4 ← S177, X5 ← S243, X6 ← S288.

Let X = X1 ⊕ X2 ⊕ · · · ⊕ X6. This provides the key-stream bits in reduced round Trivium. Then
Pr(X = 1) = 1

2 (1−
∏6

i=1 εi). One may easily note that ε =
∏6

i=1 εi is much smaller than each of the εi’s
and thus it requires much less complexity to experimentally detect higher individual bias εi rather than
the composite bias ε.

First, we explain the scenario for the 22 size cube (second row from the bottom in table 3). In this
case, with experiments, we do obtain biases at rounds 801 and 804 with high confidence, but it is not
possible for the round 810. However, the biases corresponding to the six state bits could be identified
properly and from that we can identify the bias of the key-stream bit at 810 rounds. Table 4 explains
the scenario clearly.

Table 4: Obtaining the bias of the key-stream bit from the biases of the state bits (22 cube)

Round ε1 ε2 ε3 ε4 ε5 ε6 Observed (ε) Estimated (ε̂)

801 0.220354 1.000000 0.81480 1.000000 0.0319700 1.000000 0.014384 0.005740

804 0.096706 1.000000 0.912068 0.980624 0.012794 0.970144 0.004522 0.001073

810 0.019522 1.000000 0.447160 0.931532 0.003122 0.992302 0.000308 0.000025

The bias for the key-stream bit at 810 round is so small that we need to run the experiment for far
more times than we have done for the state bits. However, for the biases in the state bits, we have run
enough experiments and thus from those biases, using Piling-up lemma, one may estimate the bias of
the key-stream bit. One may note that we accumulate the experimental data for the relevant state bits
(εi, i = 1, 2, . . . , 6) and the output key-stream bit (ε) as well. At the same time, we use the experimental
data of the state bits and the Piling-up Lemma to obtain the estimated bias (ε̂) for the output key-stream
bit. With the given data, the observed & estimated probabilities for this key-stream are found 0.499846
and 0.499987, respectively. Note that, to be confident with the observed probability, we need to run
the experiment for around 224.330 random keys for each cube (i.e., total detection complexity is around
224.330×222 = 246.330), whereas with the estimated probability, we need to run the experiment for around
231.462 random keys for each cube (i.e., total detection complexity is around 231.462×222= 253.462). Both
of these cases are quite challenging to execute with our computational facilities. However, the state biases
(εi, i = 1, 2, . . . , 6) are such that it is enough for us to experiment with 217.647 (in case of ε5, where the
probability is 0.498439) random keys for each cube (i.e., total detection complexity is around 217.647×222

= 239.647) to discover the biases with very high confidence.
We also like to point out that with such cubes, there are certain state bits where we can obtain bias till

further rounds. As for an example, at the 854-th round, the input corresponding to X6 ← S288 remains
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biased to a significant extent. This shows that there exists at least one input to the key-stream generation
process for which significant biases can be observed. However, the output may not demonstrate significant
bias as for the other five inputs the biases could not be observed with the amount of experiment we have
done.

We also record similar results with our 27-cube (last row of table 3). So far, we obtain that this
scenario at round 829, and further attempts are ongoing to extend this round with the same cube. Table
5 shows necessary calculations with the 27 cube, the cases of round 820, 822, 826 & 829 are also given
here. At this point, we would like to point out that the bias at rounds 826 and 829 are not observed
directly from the key-stream. The observed and estimated probabilities at round 826 are respectively
0.499661 & 0.499859; and that of round 829 are 0.499900 & 0.499969, respectively. The complexity of
detection for these 2 cases are given by 225.575 & 228.955 respectively for each cube (that means, the total
detection complexties are respectively 252.575 & 255.955). Likewise the previous cases (in table 4), one may
observe that it is too difficult to detect the key-stream bias directly with our present computational power.
However, we can detect even the most difficult state bias (in case of ε5, where the actual probabilities
are 0.495017 and 0.497464 for round 826 and 829 respectively) with complexity for each cube 214.298 and
216.246 for round 826 and for round 829 respectively (i.e., total detection complexities for this state are
given by 214.298×227 = 241.298 and 216.246×227 = 243.246 respectively, which are within our scope). Here
also, we can find one biased state bit (X6 ← S288), which participates in key-stream at round 881.

Table 5: Obtaining the bias of the key-stream bit from the biases of the state bits (27 cube)

Round ε1 ε2 ε3 ε4 ε5 ε6 Observed (ε) Estimated (ε̂)

820 0.128770 1.000000 0.962410 1.000000 0.021830 1.000000 0.010078 0.002705

822 0.137094 0.999174 0.944876 1.000000 0.018380 1.000000 0.009132 0.002379

826 0.036620 0.982358 0.791138 1.000000 0.009966 0.995456 0.000678 0.000282

829 0.019288 0.890656 0.741232 1.000000 0.005072 0.946106 0.000200 0.000061

One may also note (from tables 4, 5) that, ε is much higher than ε̂. So, the detection complexity for
the biases will be indeed less than which is governed by last columns of tables 4, 5. The piling-up lemma
is not obeyed exactly, and this is not unusual; since the state bits are not actually independent. However,
our analysis shows that one can assume independence with a very low margin of error.

3 Results on Trivia-SC

For Trivia-SC, the cubes and related results are presented in table 6. One challenging task here is to
find a distinguisher for more than 896 rounds in the initialization as the designers commented that they
could not discover any non-randomness beyond that. We show here that non-randomness can indeed be
discovered till round 900 with cube size as small as 21.

Table 6: Cubes for Trivia-SC giving bias in key-stream
r (r0) P(r) Cube indices (#) Complexity

802 (801) 0.433241 1, 2, 3, 5, 9, 24, 54, 69, 84 (9)† 215.810

897 (882) 0.246883 1, 2, 3, 7, 16, 22, 32, 37, 46, 52, 67, 82, 97 (13)† 215.964

890 (889) 0.475783 9, 10, 11, 15, 24, 25, 26, 30, 45, 60, 75, 90, 105, 106, 121, 126 (16)? 225.736

900 (884) 0.418750 4, 10, 13, 16, 19, 25, 34, 40, 46, 49, 55, 70, 79, 85, 91, 94, 100, 115, 121, 125, 127 (21)∗ 227.243

900 (885) 0.415210 4, 10, 13, 16, 19, 25, 34, 40, 44, 46, 49, 55, 70, 79, 85, 91, 94, 100, 115, 121, 125, 127 (22)∗ 228.120

We obtain a cube of size 13 (second row of table 6) giving bias at round 897 for Trivia-SC. In fact,
the same cube can be extended with additional IV’s to obtain improved probabilities (towards closer to
zero) at the same round as shown in table 7.

In table 8, we show for Trivia-SC that starting from a fixed cube of size 12: {4, 10, 19, 25, 40, 55, 70,
85, 100, 121, 125, 127} (which we obtain using maximum frequency of zero approach, under 3 + 3 + 3 + 3
strategy), we insert 4 new IV bits to get a 16 cube by the same approach (maximum frequency of zero),
but by two different strategies. In one strategy, we insert one bit at a time (12 + 1 + 1 + 1 + 1), and in the
other we insert 2 bits at a time (12 + 2 + 2). We show that the latter way is better than the former in
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Table 7: Cubes obtained for Trivia-SC by inserting new IVs

Cube size 14 16 17 18 19 20

Additional IV’s 18 8, 68 112 23 33 127

P(897) (r0) 0.149 (882) † 0.113 (882) † 0.056 (882) † 0.0326 (883) † 0.012 (883) † 0.006 (883) †

table 8. Particularly, the maximum round (880) which shows bias at key-stream has not been improved
from the 12-cube in the former strategy. One may note that the cube at last row of table 8 is a subset
of last two rows of table 6.

Table 8: Effects of inserting variable number of IV bits at a time in Trivia-SC

Strategy r (r0) P(r) Cube indices (#) Complexity

3 + 3 + 3 + 3 880 (849) 0.428235 4, 10, 19, 25, 40, 55, 70, 85, 100, 121, 125, 127 (12)∗ 218.601

+1 + 1 + 1 + 1 880 (865) 0.182461 4, 10, 16, 19, 25, 34, 40, 55, 70, 81, 85, 91, 100, 121, 125, 127 (16)∗ 218.310

+2 + 2 895 (879) 0.493476 4, 10, 13, 19, 25, 40, 46, 55, 70, 85, 91, 100, 115, 121, 125, 127 (16)∗ 229.520

Further, we show that exploiting very small cubes of size 9 only, one can obtain distinguishers for
more than 800 rounds in Trivia-SC. This indicates that under this kind of analysis, Trivia-SC is indeed
weaker than Trivium.

One may note, there are some interesting observations regarding the well-applicability of the heuris-
tics. As an instance, consider the case of Trivia-SC (table 6). We get a 16-cube which gives a 0 probability
at 889-th round, but the last detectable bias is located at 890-th round (row 3). But, with a 21 cube,
the last zero probability is at 884th round, while the bias is clearly detectable at 900th round (row 4).

We would like to point out that the state bias related analysis, as in Section 2.4, cannot directly
be applied on Trivia-SC because of the AND operation. However, one may indeed use the state biases
towards estimating the non-randomness in keystream. This we will explore in the full version of this
paper.

3.1 One Suggested Key-stream Expression for Trivia-SC

Here we show that, even with retaining everything as it is (in algorithms 2.1, 2.2), the security of Trivia-SC
can be greatly improved just by changing the key-steam expression (at step 8 of algorithm 2.2). The idea
here is to use one such expression for generating key-stream which has better cryptographic properties
than that one chosen by the designers. We use a rotation symmetric Boolean function on 5 variables as
given in [18, section 3.2.1]. The algebraic normal form of the function is: x1⊕x2⊕x3⊕x4⊕x5⊕x1∧x2⊕
x2∧x3⊕x3∧x4⊕x4∧x5⊕x5∧x1⊕x1∧x2∧x3⊕x2∧x3∧x4⊕x3∧x4∧x5⊕x4∧x5∧x1⊕x5∧x1∧x2; we
substitute x1, x2, . . ., x5 by B66, A102, C147, B105, A132 respectively; and XOR the resulting expression
with A66 ⊕ B69 ⊕ C66 (to make use of all the 8 state bits, as in the original design). Thus, we get our
suggested key-stream expression as:

(A66 ⊕ B69 ⊕ C66) ⊕ [B66 ⊕ A102 ⊕ C147 ⊕B105 ⊕ A132 ⊕ B66 ∧ A102 ⊕ A102 ∧ C147 ⊕ C147 ∧ B105

⊕B105∧A132⊕A132∧B66⊕ B66∧A102∧C147⊕A102∧C147∧B105 ⊕ C147∧B105∧A132⊕B105∧A132∧B66

⊕A132 ∧B66 ∧A102].
The part inside [·] has the best possible cryptographic properties (in terms of nonlinearity, resiliency,

algebraic degree and autocorrelation values) among all 5 variable Boolean functions. We run our heuristics
on this proposed design too. The best cubes we obtain this way are given in table 9. One may note that
for the same size of the cubes, the distinguishers are for much smaller rounds; e.g., we can not go
beyond round 819 here, whereas in the original Trivia-SC, we could go up to 900-th round. Hence, one
can conclude that the resulting stream cipher seems more secure than than Trivia-SC considering cube
attack.

Future AEAD designers, who will be relying on a stream cipher, may use this idea to make their
design even better. One may argue that incorporating a different Boolean function may increase the gate
count in hardware implementation. This argument has merit for a stream cipher design in constrained
environment. However, for an AEAD scheme, there are additional components involved and thus, the
increase in gate count with a 5-variable function will be minimal, if at all. Particularly, Trivium, being a
hardware profile finalist in eStream, typically uses much lesser gates; but this is not the case for the the
TriviA-ck AEAD scheme, as a whole.
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Table 9: Cubes for our suggested variant of Trivia-SC giving bias in key-stream

r (r0) P(r) Cube indices (#) Complexity

746 (745) 0.474401 5, 14, 44, 59, 80, 89, 119, 121, 125 (9)? 218.576

749 (703) 0.489759 2, 5, 11, 20, 26, 41, 80, 86, 122 (9)∗ 221.219

781 (780) 0.142615 5, 8, 14, 29, 35, 44, 59, 68, 74, 80, 89, 103, 107, 119, 121, 125 (16)? 217.969

813 (768) 0.495023 2, 5, 7, 11, 20, 22, 26, 35, 41, 56, 71, 80, 86, 92, 101, 122 (16)∗ 230.301

819 (804) 0.075385 2, 5, 7, 11, 14, 20, 22, 26, 35, 41, 50, 56, 69, 71, 80, 83, 86, 92, 95, 101, 122 (21)∗ 222.472

4 Conclusion

In this paper, we discuss some new heuristics, and also their usefulness to find bias after more than 800
(namely, 823) rounds of Trivium with small sized cubes. To the best of our knowledge, biases till such
higher rounds could not be reached earlier with such small cubes, where size of the cubes do not exceed
27. In another direction, we also provide a novel idea for exploiting the state biases to estimate bias in
keystream till 829 rounds of Trivium. In fact, such state biases could be observed till 881 rounds. It is
expected that further extensions can be made over our heuristics to cryptanalyse more rounds and to
use it in key-recovery attacks. We also study Trivia-SC that is a part of the AEAD scheme TriviA-ck.
We provide empirical evidences to show that Trivia-SC is weaker than Trivium and thus propose certain
modifications in keystream generation.

References

1. A. Chakraborti, M. Nandi. TriviA-ck-v1. Available at http://competitions.cr.yp.to/round1/

triviackv1.pdf.
2. A. Chakraborti, M. Nandi. Important Features and Flexibilities of TriviA. Presentation at DIAC 2014,

available at http://2014.diac.cr.yp.to/slides/nandi-trivia.pdf.
3. CAESAR: Competition for authenticated encryption: Security, applicability, and robustness. Available at

http://competitions.cr.yp.to/caesar.html.
4. C. De Cannière, B. Preneel. Trivium. Available at http://www.ecrypt.eu.org/stream/p3ciphers/

trivium/trivium_p3.pdf.
5. eSTREAM: the ECRYPT Stream Cipher Project. Available at http://www.ecrypt.eu.org/stream/.
6. I. Dinur, A. Shamir. Cube Attacks on Tweakable Black Box Polynomials. In Eurocrypt 2009, LNCS, Vol.

5479, pp. 278-299, 2009.
7. I. Dinur, A. Shamir. Cube Attacks on Tweakable Black Box Polynomials. In Eprint, 2008. Available at

http://eprint.iacr.org/2008/385.pdf.
8. J-P. Aumasson, I. Dinur, W. Meier, A. Shamir. Cube Testers and Key Recovery Attacks on Reduced-Round

MD6 and Trivium. In FSE 2009, LNCS, Vol. 5665, pp. 1–22, 2009.
9. P. Stankovski. Greedy Distinguishers and Nonrandomness Detectors. In Indocrypt 2010, LNCS, Vol. 6498,

pp. 210–226, 2010.
10. A. Maximov, A. Biryukov. Two trivial attacks on Trivium. In SAC 2007, LNCS, Vol. 4876, pp. 36–55,

2007.
11. C. Xu, B. Zhang, D. Feng. Linear Cryptanalysis of FASER128/256 and TriviA-ck. In Indocrypt 2014,

LNCS, Vol. 8885, pp. 237–254, 2014.
12. S. Knellwolf, W. Meier, M. Naya-Plasencia. Conditional Differential Cryptanalysis of Trivium and KATAN.

In SAC 2011, LNCS, Vol. 7118, pp. 200–212, 2011.
13. P.-A. Fouque, T. Vannet. Improving Key Recovery to 784 and 799 Rounds of Trivium Using Optimized

Cube Attacks. In FSE 2013, LNCS, Vol. 8424, pp. 502–517, 2013.
14. L. R. Knudsen. Truncated and higher order differentials. In FSE 1994, LNCS, Vol. 1008, pp. 196–2111,

1994.
15. ISO/IEC 29192-2:2012. Available at http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=56552.
16. W. Meier. Cube Testers and Key Recovery in Symmetric Cryptography. Presentation at Indocrypt 2009,

available at http://indocrypt09.inria.fr/slides_cube_ind09.pdf

17. D. R. Stinson. Cryptography Theory and Practice. Chapman & Hall/CRC. Third Edition, 2006.
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