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Abstract. In this paper, we study the security of multi-prime RSA with small prime dif-
ference and propose two improved factoring attacks. The modulus involved in this variant is
the product of r distinct prime factors of the same bit-size. Zhang and Takagi (ACISP 2013)
showed a Fermat-like factoring attack on multi-prime RSA. In order to improve the previous
result, we gather more information about the prime factors to derive r simultaneous modular
equations. The first attack is to combine all the equations and solve one multivariate equa-
tion by generic lattice approaches. Since the equation form is similar to multi-prime Φ-hiding
problem, we propose the second attack by applying the optimal linearization technique. We
also show that our attacks can achieve better bounds in the experiments.
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1 Introduction

1.1 Background

RSA [22] is a famous public key cryptosystem that has been widely used in various settings.
However, the original RSA is not fit for some constrained environments. Since people need
faster and more efficient RSA encryption/decryption processes, several variants have been
proposed and surveyed [3]. In this paper, we focus on a variant called multi-prime RSA.
It is described as follows.

Key Generation. Generate r distinct primes p1, p2, . . . , pr of same bit-size and modulus
N =

∏r
i=1 pi. Pick a random number that is coprime to ϕ(N) =

∏r
i=1(pi − 1) as the

public key e and compute the corresponding private key d = e−1 mod ϕ(N).
Encryption. Transform the message string into an integer M ∈ ZN and compute the

ciphertext as C = M e mod N .
Decryption. Compute Mi = Cdi mod pi for di = d mod (pi − 1), 1 ≤ i ≤ r. Combine

Mi’s by the Chinese Remainder Theorem to obtain the plaintext M = Cd mod N .

This variant modifies the modulus to N = p1p2 · · · pr for r ≥ 3. It was patented by Compaq
[5], using a modulus of the form N = p1p2p3. We then discuss the performance of multi-
prime RSA. The advantage is the efficiency when using Chinese Remainder Theorem in its
decryption process. From [3], we know that the asymptotic speedup over the standard RSA

is approximately r2

4 . Moreover, ordinary attacks such as small private exponent attack
and partial key exposure attack are less effective as r increases. But r should not be
unrestrictedly large because of the Elliptic Curve Method [20]. Since factoring a multi-
prime RSA modulus using ECM is much easier with increasing r, one might choose r = 3,
4 and 5 for most settings. Generally speaking, multi-prime RSA with appropriate r might
be a practical alternative for reducing the decryption costs.

? This paper is the full version of [29].
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Without loss of generality, we have the following assumption for a multi-prime RSA
modulus N with r prime factors p1 < p2 < · · · < pr,

1

2
N

1
r < p1 < N

1
r < pr < 2N

1
r .

It indicates that the prime factors are balanced, which means that they are roughly of the
same bit-size. The prime difference ∆ is defined as

∆ := max
i 6=j
|pi − pj | = pr − p1 = Nγ

for 0 < γ < 1
r . The security of multi-prime RSA has been investigated for small private

exponent [4,13,14] and for small prime difference [1,24,27,28].
Prime difference was introduced by de Weger [11] to show that one can find an enhanced

small private exponent attack with small prime difference. As for multi-prime RSA, it is
also applied to obtain some improvements. Thereafter we review some related previous
attacks. Suppose that N is a multi-prime RSA modulus with r prime factors. Let e ≈ N
be a valid public key and d = N δ be its corresponding private key.

Bahig-Bhery-Nassr [1]. Given the prime difference ∆ = Nγ and the public key (N, e),
then multi-prime RSA is insecure if γ and d satisfy

2d2 + 1 <
N

2
r
−γ

6r
.

Zhang-Takagi [27,28]. Given the prime difference ∆ = Nγ and the public key (N, e),
then d can be probabilistically found in time polynomial in logN if γ and δ satisfy

δ < 1−
√

1 + γ − 2

r
.

The bound was later refined to

δ < 1−
√

1 + 2γ − 3

r
for γ ≥ 3

2r
− 1 + δ

4
,

δ <
3

r
− 1

4
− 2γ for γ <

3

2r
− 1 + δ

4
.

They also presented a Fermat-like factoring attack for

γ <
1

r2
.

Takayasu-Kunihiro [24]. Given the prime difference ∆ = Nγ and the public key (N, e),
then d can be probabilistically found in time polynomial in logN if γ and δ satisfy

δ < 1−
√

1 + 2γ − 3

r
for

3

2

(
1

r
− 1

4

)
≤ γ < 1

r
,

δ < 1− 2

3

(√(
7 + 8γ − 12

r

)(
1 + 2γ − 3

r

)
− 1− 2γ +

3

r

)
for γ <

3

2

(
1

r
− 1

4

)
.

Notice that the condition 3
2r−

1+δ
4 in Zhang-Takagi attack degenerates to − δ

4 for r = 6,
and the condition 3

2(1r −
1
4) in Takayasu-Kunihiro attack degenerates to 0 for r = 4. Thus,

Zhang-Takagi attack and Takayasu-Kunihiro attack depend on δ with γ < 1
r for larger r.

In such cases, factoring attacks with quite small γ are much more effective without any
restriction on δ. The distinction is the dependence on the private exponent and this is also
the advantage of factoring attacks.
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1.2 Our Contributions

In this paper, we aim to factor the multi-prime RSA modulus with small prime difference.
More concretely, N can be factored in polynomial time under which condition when given
the multi-prime RSA modulus N that is the product of r distinct primes and its prime
difference Nγ .

Let xi = pi − p for i = 1, 2, . . . , r with |xi| = |pi − p| < pr − p1 = Nγ for p = [N
1
r ].

At ACISP 2013, Zhang and Takagi [27] solved xi from each equation and computed prime
factors by pi = xi+p. In our opinion, they only made use of partial advantage about given
information. In contrast, we transform the knowledge of all balanced prime factors with
prime difference into the following system of equations,

x1 + p = p1,

x2 + p = p2,

...

xr + p = pr.

Furthermore, we can derive the following system of modular equations,
x1 + p = 0 mod p1,

x2 + p = 0 mod p2,

...

xr + p = 0 mod pr.

Our factoring problem is somewhat similar to multi-prime Φ-hiding problem introduced
by Kiltz et al. [18] because of the modular equation form. The definition of multi-prime
Φ-hiding problem is given. Let N = p1 · · · pr be a composite integer (of unknown factor-
ization) with r distinct prime factors of same bit-size. Given N and a prime e, decide
whether e divides pi for 1 ≤ i ≤ r − 1 or not.

In order to solve multi-prime Φ-hiding problem, one can try to solve the following
simultaneous equations and then conclude that e is Φ-hidden in N or not.

ex1 + 1 = 0 mod p1,

ex2 + 1 = 0 mod p2,

...

exr−1 + 1 = 0 mod pr−1.

There exist some differences between these two problems. In Φ-hiding problem, since it
is not necessary to know the exact values of the unknowns but enough to know if the
equations can be solved, one can perform a linearization on the product

r−1∏
i=1

(exi + 1)

and then decide if
∏r−1
i=1 (exi + 1) = 0 mod p1p2 · · · pr−1 can be solved. Thus, it is like a

“decision”-form problem. Our factoring problem is like a “search”-form one because we
must extract the value of every unknown variable. In our optimized method, we can trans-
form the factoring problem into a “decision”-form problem and then apply the optimal
linearization technique.
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Another difference is that we do not have exr + 1 = 0 mod pr in Φ-hiding problem.
This special feature can be applied to improve the bound [26]. However we can not directly
use the same technique to solve the factoring problem.

Our improvements are based on two ideas. The first one is a direct method by gath-
ering all the equations together to solve an r-variate modular (or integer) equation. The
drawback of this method is that the running time is exponential in r. Thus, we provide
an optimized method by combining fewer equations. Inspired by Tosu and Kunihiro [25],
we can benefit from the optimal linearization technique with fewer unknowns and less
cost. Thus, we will tobtain a great speedup and efficient performance in the practical
implementation.

We show that multi-prime RSA modulus with small prime difference can be efficiently
factored in the following cases due to various r’s.

– For r = 3, we have

γ <
2

r(r + 2)
.

– For r > 3 with an optimal l, we have

γ <
2

l + 1

(
1

r

) l+1
l

.

– For much larger r with the base of natural logarithm e, we have

γ <
2

er(log r + 1)
.

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we introduce the lattice-based
method to solve modular and integer equations. In Sect. 3, we present our improved
factoring attacks on multi-prime RSA with small prime difference. In Sect. 4, we verify
our attacks by various experiments and comparisons. We conclude the paper in Sect. 5.

2 Preliminaries

2.1 Lattice-Based Method

We briefly introduce lattice-based method including the LLL algorithm [19], Coppersmith’s
technique [6,7,8], Howgrave-Graham’s lemma [15] and Coron’s reformulation [9,10].

The technique is to construct a set of polynomials modulo R sharing the common
roots and then reduce them to the equations over the integers. After transforming known
parameters into constructed polynomials’ coefficients that form a lattice basis matrix with
dimension w. One can compute some short lattice vectors whose norm is expected to be
sufficiently small by the LLL algorithm. Eventually, one can solve the desired roots. The
LLL algorithm proposed by Lenstra, Lenstra and Lovász is practically used for finding
approximately small lattice vectors.

Lemma 1 (Lenstra-Lenstra-Lovász [19]). Let L be a given lattice with determinant
det(L). The LLL algorithm outputs a reduced basis (v1,v2, . . . ,vw) in polynomial time,
and for 1 ≤ i ≤ w, the reduced basis vectors satisfy

‖v1‖, ‖v2‖, . . . , ‖vi‖ ≤ 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i .
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The following lemma given by Howgrave-Graham helps us to judge whether the roots of
a modular equation are also roots over the integers. To a given polynomial of n variables

g(x1, . . . , xn) =
∑

ai1,...,inx
i1
1 · · ·x

in
n ,

its norm is defined as ‖g(x1, . . . , xn)‖2 :=
∑
|ai1,...,in |2.

Lemma 2 (Howgrave-Graham [15]). Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an integer
polynomial that is a sum of at most m monomials. Suppose that

1. ‖g(x1X1, . . . , xnXn)‖ ≤ R/
√
m,

2. g(x
(0)
1 , . . . , x

(0)
n ) = 0 mod R for |x(0)1 | ≤ X1, . . ., |x(0)n | ≤ Xn.

Then we have g(x
(0)
1 , . . . , x

(0)
n ) = 0 over the integers.

The above fundamental lemmas give us the final condition, which is roughly

det(L) < Rw.

Some RSA cryptanalytic applications [2,8,12] are derived from such lattice-based method.
But Boneh and Durfee [2] have noted that solving multivariate equations is heuristic
because the polynomials derived from lattice reduction algorithms are not guaranteed to
be algebraically independent. In order to extract the exact roots in practice, we rely on
the following assumption.

Assumption 1. The polynomials derived from the LLL algorithm in lattice-based method
are algebraically independent. Furthermore, the solution can be efficiently found by Gröbner
basis computations.

Our improved attacks can be reduced to solving multivariate linear equations that was
studied by Herrmann and May.

Lemma 3 (Herrmann-May [12]). Let ε > 0 and let N be a sufficiently large composite
integer (of unknown factorization) with a divisor p ≥ Nβ. Furthermore, let f(x1, . . . , xn) ∈
Z[x1, . . . , xn] be a linear polynomial in n variables. Under Assumption 1, we can find solu-

tions (x
(0)
1 , . . . , x

(0)
n ) of the equation f(x1, . . . , xn) = 0 mod p with |x(0)1 | ≤ Nη1 , . . . , |x(0)n | ≤

Nηn if
n∑
i=1

ηi ≤ 1− (n+ 1)(1− β) + n(1− β)
n+1
n − ε.

The running time is polynomial in logN and (e/ε)n.

The lattice-based algorithm for solving modular equations was later improved by Lu et al.
[21] and Takayasu and Kunihiro [23].

Oppositely, we can solve an r-variate integer polynomial f(x1, . . . , xr) by the following
lemma. Let Xi for positive integer N and real positive number ηi be the upper bounds on
the unknown variables for i = 1, 2, . . . , r. We also define ‖f(·)‖∞ as the largest coefficient
(in absolute value form) of all the monomials in polynomial f(·).

Lemma 4 (Jochemsz [16]). Given an r-variate integer polynomial

f(x1, x2, . . . , xr) =

r∏
i=1

(xi + p)−N ∈ Z[x1, x2, . . . , xr].
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For any ε > 0 with sufficiently large N and W = ‖f(x1X1, x2X2, . . . , xrXr)‖∞, the root

(x
(0)
1 , x

(0)
2 , . . . , x

(0)
r ) satisfying |x(0)i | ≤ Xi for i = 1, 2, . . . , r can be found if

X1X2 · · ·Xr < W
2
r+1
−ε.

The running time is polynomial in logN and (1/ε)r.

One can refer to [16] for detailed analysis. One special case was showed by Coppersmith

in [8] for finding the bound XY < W
2
3 of the polynomial f(x, y) = (p0 +x)(q0 + y)−N in

order to factor the modulus N with known bits of prime factors. Later, Jochemsz [16,17]
provided a generic strategy for finding roots of integer (and also modular) polynomials.
Since our cryptanalysis is based on approximations, we neglect the lower order terms and
remove ε in our methods for simplicity.

2.2 Some Notations

We introduce the following notations for our methods.

– p denotes the value of rounding N
1
r to the nearest integer and it is mentioned above

as p = [N
1
r ].

– σki denotes the elementary symmetric polynomial in k variables y1, . . ., yk of degree i
and it is defined by

σki :=
∑

λ⊂{1,2,...,k},|λ|=i

∏
j∈λ

yj

 .

– Qk denotes the product of k prime factors that are chosen from p1, p2, . . . , pr and hence
Qk is a divisor of N .

– Q′k denotes the numerical value of the left side after solving the equation and hence
Q′k is a multiple of Qk.

3 Improved Factoring Attacks

3.1 The Direct Method

As mentioned before, we gather all the equations together to solve an r-variate modular
(or integer) equation. More concretely, we present the following factoring attack.

Proposition 1. Let N = p1 · · · pr be a multi-prime RSA modulus for p1 < · · · < pr and
pr − p1 = Nγ for 0 < γ < 1

r . Then under Assumption 1, N can be factored in time
polynomial in logN but exponential in r if

γ <
2

r(r + 1)
.

Our approach utilizes the equation form of multi-prime Φ-hiding problem. Let e be the
inverse of p modulo N , namely e = p−1 mod N . Then yi + p = 0 mod pi can be rewritten
as eyi + 1 = 0 mod pi and we obtain

ey1 + 1 = 0 mod p1,

...

eyr + 1 = 0 mod pr.
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Combining all equations together gives us

r∏
i=1

(eyi + 1) =

r∑
i=1

eiσri + 1 = 0 mod N.

We have e = p−1 mod N that is equivalent to ep = 1 mod N . It can be reduced to∑r
i=1 e

iσri + ep = 0 mod N and further

r∑
i=1

ei−1σri + p = 0 mod N.

Regarding each σri as a new variable makes
∑r

i=1 e
i−1σri + p a linear equation. We then

figure out each ηi of |σri | < Nηi for i = 1, . . . , r and apply Lemma 3 with β = 1. It is not
hard to know that ηi = iγ for 1 ≤ i ≤ r. Thus, the final condition is

∑r
i=1 iγ < 1, which

can be simplified to

γ <
2

r(r + 1)
.

After solving the linear equation, we obtain the values of σr1, . . . , σ
r
r . Then we extract

x1, . . . , xr by solving xr−σr1xr−1+· · ·+(−1)rσrr = 0 over the integers. Finally, we compute
the prime factors p1, . . . , pr for pi = xi + p. The full description of the algorithm is given
below.

Algorithm 1
Input: Multi-prime RSA modulus N with r and small prime difference Nγ .
Output: The factorization N = p1 · · · pr.
1: Compute p = [N

1
r ] and e = p−1 mod N .

2: Construct the linear modular equation with unknown variables σri :

σr1 + e1σr2 + · · ·+ er−1σrr + p = 0 mod N.

3: Figure out ηi’s that are related to the bounds Nηi on σri for 1 ≤ i ≤ r:

|σri | < N iγ .

4: Extract each σri by applying Lemma 3 .
5: Solve xr − σr1xr−1 + · · ·+ (−1)rσrr = 0 over the integers.
6: Set pi = p+ xi in increasing order with roots xi for 1 ≤ i ≤ r.

However, we observe that the experimental results are always a certain distance away
from the asymptotic predictions. In this case, solving an integer polynomial gives us a
more precise and credible condition. Thus, we present a revised and corrected factoring
attack.

Proposition 2. Let N = p1 · · · pr be a multi-prime RSA modulus for p1 < · · · < pr and
pr − p1 = Nγ for 0 < γ < 1

r . Then under Assumption 1, N can be factored in time
polynomial in logN but exponential in r if

γ <
2

r(r + 2)
.

In fact, we have

f(x1, x2, . . . , xr) =

r∏
i=1

(xi + p)−N =

r∏
i=1

fpi(xi)−N =

r∏
i=1

pi −N = 0.
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Before we apply Lemma 4 to above polynomial, we must figure out ηi (satisfying Xi = Nηi)
for i = 1, . . . , r and W . It is clear that ηi = γ since |xi| = |pi−p| < pr−p1 = Nγ . However,
it may be a little complicated for W . We roughly have W = max{N − pr, pr−1Nγ} by its
definition. Since all primes have a small difference Nγ , N and pr differ from each other in
Nγr least significant bits. Hence, it can be easily inferred that

W = max{Nγr, N
r−1
r

+γ} = N
r−1
r

+γ .

From Lemma 4, the condition reduces to (we omit the tiny term ε)

γr <
2

r + 1

(
r − 1

r
+ γ

)
,

that is

γ

(
r(r + 1)

2
− 1

)
<
r − 1

r
.

Thus, the final condition is

γ <
2

r(r + 2)
.

For the completeness, we provide the concrete lattice construction for solving above
integer polynomial

f(x1, x2, . . . , xr) =

r∏
i=1

(xi + p)−N.

Define two sets S and SR for a positive integers s.

S =
⋃{

xi11 x
i2
2 · · ·x

ir
r : xi11 x

i2
2 · · ·x

ir
r is a monomial of fs−1

}
,

SR =
⋃{

xi11 x
i2
2 · · ·x

ir
r : xi11 x

i2
2 · · ·x

ir
r is a monomial of fs

}
.

By calculating the expansion of f s−1 (and f s), we know the relation of every element in
S (and SR) to its exponent ij for j = 1, 2, . . . , r.

xi11 x
i2
2 · · ·x

ir
r ∈ S : ij = 0, . . . , s− 1, for j = 1, 2, . . . , r,

xi11 x
i2
2 · · ·x

ir
r ∈ SR : ij = 0, . . . , s, for j = 1, 2, . . . , r.

For R = W
∏r
i=1X

s−1
i = N

r−1
r

+γ+γr(s−1), we define

f ′ = (pr −N)−1f mod R

and the following shift polynomials,

g : xi11 x
i2
2 · · ·x

ir
r f
′ · R

W
∏r
j=1X

ij
j

, for xi11 x
i2
2 · · ·x

ir
r ∈ S,

g′ : xi11 x
i2
2 · · ·x

ir
r ·R, for xi11 x

i2
2 · · ·x

ir
r ∈ SR\S.

Notice that above shift polynomials g and g′ modulo R are equal to zero. Afterwards, we
use the LLL algorithm to search several integer linear combinations of g and g′, whose
norm is ensured to be sufficiently small. (This has been mentioned in Sect. 2.) The lattice
L is constructed by the coefficient vectors of g and g′ by substituting xiXi for each xi. It
is always represented by a square basis matrix whose rows are corresponding vectors.
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Table 1. A toy example of the lattice basis matrix for s = 1 and r = 3

1 x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3
g0,0,0 1 – – – – – – –

g′1,0,0 RX1

g′0,1,0 RX2

g′0,0,1 RX3

g′1,1,0 RX1X2

g′1,0,1 RX1X3

g′0,1,1 RX2X3

g′1,1,1 RX1X2X3

Before showing an example of such a basis matrix, we first define the monomial order
≺ in our method as xi11 x

i2
2 · · ·xirr ≺ xj11 x

j2
2 · · ·x

jr
r if i1 + i2 + · · · + ir < j1 + j2 + · · · + jr

or
∑r

k=1 ik =
∑r

k=1 jk,
∑t

k=1 ik >
∑t

k=1 jk for t = 1, 2, . . . , r − 1. Then a toy example is
showed in Table 1, where non-zero off-diagonal entries are marked by –.

When the condition is satisfied and a suitable s is chosen, we can obtain many integer
equations apart from f . Moreover, they share a common root (p1 − p, p2 − p, . . . , pr − p)
over the integers. We can solve pi for 1 ≤ i ≤ r under Assumption 1, which directly lead
to the factorization of N . The description of the algorithm is similar to Algorithm 1, so
we omit it here.

The running time depends on reducing the basis matrix and extracting the common
roots. The LLL algorithm can output the desired polynomials in time polynomial in logN
but exponential in r. This may be a drawback due to large r and forces us to find more
efficient method. The Gröbner basis computation for finding the common roots is usually
polynomial time in practice. Additionally, one can obtain more polynomials derived from
the LLL algorithm and hence the Gröbner basis computation is suggested rather than
resultant computation.

3.2 The Optimized Method

As described in the direct method, we still solve the factoring problem in the view of
a “search”-form problem. Its drawback is that the time complexity is exponential in r.
Consequently, the factoring attack becomes less efficient for larger r.

When considering taking fewer equations to form one modular equation, we have some
interesting observations. We randomly choose k (2 ≤ k ≤ r−1) equations and obtain a new
equation F (y1, . . . , yk) = 0 mod Qk. Fortunately, it is enough to know the numerical value
Q′k of the left side and not necessary to know exact values of y1, . . . , yk. Then, computing
the greatest common divisor gcd (Q′k, N) gives us all combinations of k prime factors that
indicate every prime factor.

In fact, the factoring problem is refined to become of “decision”-form. Thus, we can
employ the optimal linearization similar to the technique proposed by Tosu and Kunihiro
[25] when solving multi-prime Φ-hiding problem. The idea is to examine all possible lin-
earization cases to find the optimal setting when it can be efficiently solved. We present
the optimized factoring attack below.

Proposition 3. Let N = p1 · · · pr be a multi-prime RSA modulus for p1 < · · · < pr and
pr − p1 = Nγ for 0 < γ < 1

r . Then under Assumption 1, N can be factored in time
polynomial in logN with an optimal l if

γ <
2

l + 1

(
1

r

) l+1
l

.
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We consider combining k equations and performing a linearization of l (2 ≤ l ≤ k)
variables. Note that the parameters k and l need to be decided later. First, we have
(y1 + p)(y2 + p) · · · (yk + p) = 0 mod Qk. It can be rewritten as

k∑
i=0

pk−iσki = 0 mod Qk.

The expansion is
σkk + pσkk−1 + p2σkk−2 + · · ·+ pk = 0 mod Qk.

Then, we apply a linearization for the case of l variables. Let t1, . . . , tl+1 be the integers
satisfying t1 = k > t2 > · · · > tl+1 = 0. We obtain

pk−t1u1 + pk−t2u2 + · · ·+ pk−tlul + pk = 0 mod Qk,

where

ui :=

ti∑
j=ti+1+1

pti−jσkj

for 1 ≤ i ≤ l. For |yi| < Nγ , p ≈ N
1
r and γ < 1

r , we know that the bound is

|ui| < N
ti−ti+1−1

r
+(ti+1+1)γ .

In other words, we have

ηi =
ti − ti+1 − 1

r
+ (ti+1 + 1)γ.

Thus, we can find the roots of the linear equation by Lemma 3 with β = k
r and above ηi if

n∑
i=1

ηi < 1− (l + 1)(1− β) + l(1− β)
l+1
l .

Then we have

γ <

l ·
(
k+1
r +

(
1− k

r

) l+1
l − 1

)
l +
∑l

i=2 ti
.

The above bound reaches its maximum by setting (t1, t2, t3, . . . , tl) to be (k, l−1, l−2 . . . , 1).
The condition now is

γ <
2

l + 1

(
k + 1

r
+

(
1− k

r

) l+1
l

− 1

)
.

We can further optimize k to obtain the best bound on γ by calculating the derivative
on k. It can be verified that k = r − 1 is the most suitable choice. Thus, we derive the
condition

γ <
2

l + 1

(
1

r

) l+1
l

.

It means that we need to solve

u1 + pr−lu2 + · · ·+ pr−2ul + pr−1 = 0 mod Qr−1.

The optimal value of l can be discovered by numerical computation. For each positive
integer r ≤ 10, the optimal cases are l = 2 for r = 3, 4, 5, and l = 3 for r = 6, 7, 8, 9, 10.
To be specific, we show the final equations need to be solved in our optimized method as
follows.
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– For r = 3, 4, 5, that is

u1 + pr−2u2 + pr−1 = 0 mod Qr−1.

– For r = 6, 7, 8, 9, 10, that is

u1 + pr−3u2 + pr−2u3 + pr−1 = 0 mod Qr−1.

As analyzed in [25], we set l ≈ log r for much larger r and the condition is approximated

γ <
2

er(log r + 1)
,

where e is the base of natural logarithm. Therefore, we also present the factoring attack
for much larger r.

Proposition 4. Let N = p1 · · · pr be a multi-prime RSA modulus for p1 < · · · < pr and
pr − p1 = Nγ for 0 < γ < 1

r . Then under Assumption 1, N can be factored in time
polynomial in logN for much larger r if

γ <
2

er(log r + 1)
.

After solving the modular equation, we obtain the values of u1, . . . , ul. Then we know
all combinations of r − 1 prime factors by gcd (Q′r−1, N). Finally, we compute each prime
factor by

N

gcd (Q′r−1, N)
.

Note that the unknown variables ui’s in the optimized method are quite unbalanced.
So we can make further improvement by applying better lattice constructions proposed by
Takayasu and Kunihiro [23]. The full description of the optimized algorithm and detailed
lattice construction are given below.

Algorithm 2
Input: Multi-prime RSA modulus N with r and small prime difference Nγ .
Output: The factorization N = p1 · · · pr.
1: Compute p = [N

1
r ].

2: Choose an optimal l according to r.
3: Construct the linear modular equation with unknown variables ui:

u1 + pr−lu2 + · · ·+ pr−2ul + pr−1 = 0 mod Qr−1.

4: Figure out ηi’s that are related to the bounds Nηi on σri for 1 ≤ i ≤ l with known (t1, t2, t3, . . . , tl, tl+1)
= (r − 1, l − 1, l − 2 . . . , 1, 0):

|ui| < N
ti−ti+1−1

r
+(ti+1+1)γ .

5: Extract each ui by using Takayasu-Kunihiro lattice construction.
6: Compute Q′r−1 = u1 + pr−lu2 + · · ·+ pr−2ul + pr−1 with roots {u1, . . . , ul}.
7: Set pi = N/ gcd (Q′r−1, N) in increasing order for 1 ≤ i ≤ r.

In Takayasu-Kunihiro lattice construction, we carefully work out the selection of poly-
nomials by considering the sizes of root bounds. For example, we deal with u1 + pr−2u2 +
pr−1 = 0 mod Qr−1 in our optimized method. We use

ui22 (u1 + pr−2u2 + pr−1)i1Nmax{t−i1,0}
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as the shift polynomials with positive integers m and t that will be optimized later. The
indexes i1 and i2 satisfy 0 ≤ i1 + i2 ≤ m and 0 ≤ γ1i1 + γ2i2 ≤ r−1

r t in order to select as
many helpful polynomials as possible and to let the basis matrix be triangular.

Thus, the shift polynomials modulo pt have the common roots for u1 and u2. We span
a lattice by the coefficient vectors of above shift polynomials and the equations are derived
from the reduced LLL basis vectors. The small roots can be easily recovered by Gröbner
basis computation.

Note that we can find all prime factors by solving the linear equation once because
every combination (or product) of r − 1 prime factors is equivalent to each other. Using
l ≈ log r implies that our method works in time polynomial in logN and r.

3.3 Discussions

Compared with the direct method, we have two improvements in our optimized method.
Firstly, we decrease the number of unknown variables and significantly improve the prac-
tical performance for larger r. Secondly, we can achieve a better bound for much larger r
at the same time. But for smaller r, the direct method offers a higher bound and hence
the factoring attack still stays in polynomial time.

Note that the unknown variables ui’s in the optimized method are quite unbalanced
and we apply Takayasu-Kunihiro lattice constructions [23]. Here we omit the complicated
analysis and show another advantage. For r ≤ 10, the optimal l is always 2. It means that
the final equation we need to solve in the optimized method is

u1 + pr−2u2 + pr−1 = 0 mod Qr−1.

Thus, we further reduce the running time of the optimized factoring attack.
Table 2 shows the comparison of the upper bounds on γ due to above factoring attacks

for r ≤ 10. The fourth column provides the results using better lattice construction that
is discussed above. It is visible that our methods are superior.

Table 2. The comparison of the upper bounds on γ due to distinct factoring attacks

r Sect. 3.1 Sect. 3.2 Sect. 3.3 [27]

3 0.1333 0.1283 — 0.1111
4 0.0833 0.0833 0.0835 0.0625
5 0.0571 0.0596 0.0608 0.0400
6 0.0416 0.0458 0.0474 0.0277
7 0.0317 0.0373 0.0387 0.0204
8 0.0250 0.0312 0.0327 0.0156
9 0.0202 0.0267 0.0282 0.0123
10 0.0166 0.0232 0.0248 0.0100

4 Experimental Results

We now state some experimental results to show the practical performance of our methods.
These experiments are carried out under Sage 7.3 running on a laptop with Intel Core i7
CPU 2.70 GHz and 8 GB RAM. The numbers we used are chosen uniformly at random
and Assumption 1 is found to hold for the experiments.

During the experiments, we always deal with modular equations (though the revised
condition is obtained from an integer polynomial in Sect. 3.1) and collect many polynomials
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satisfying our requirements. In other words, we obtain enough sufficiently short vectors
after running the LLL algorithm. Hence, we extract the common roots by Gröbner basis
computation and finally attain the factorization of multi-prime RSA modulus.

We provide the experimental results on two attacks according to Sect. 3.1 and Sect. 3.2
(actually refined by Sect. 3.3), namely the γe1-column and γe2-column, respectively. The
γzt-column provides the experimental bound of Zhang-Takagi method. The results about
the comparison are showed in Table 3.

Table 3. The experimental results of the upper bounds on γ

r γzt γe1 γe2

3 0.1109 0.1132 0.1120

4 0.0620 — 0.0750
5 0.0396 — 0.0533
6 0.0275 — 0.0337
7 0.0202 — 0.0286

We firstly comment the experiments for r = 3. We reduce a 220-dimensional lattice
for the direct method while we use a lattice whose dimension is 300 for the optimized
method. A 1536-bit multi-prime RSA modulus can be successfully factored by a 174-
bit prime difference by the direct method. While using the optimized method, a 172-bit
difference leads to the factorization of a 1536-bit modulus. Thus, we conclude that the
direct method performs better for r = 3 with roughly similar lattice setting. On the other
hand, we observe that the optimized method runs much faster, which is predicted above.

For 4 ≤ r ≤ 7, we use the optimized method with lattices whose dimension is around
300 since it is more efficient. We carry out experiments for much smaller moduli with almost
the same lattice setting and they work much better. We also do experiments for moduli
of the same size with various lattice dimensions for r = 3, 4. The results become better as
the lattice dimension increases. So the lattice dimension may be a critical limitation that
influences the practical performance of lattice-based methods. The optimized bounds for
4 ≤ r ≤ 7 showed in the γe2-column are those observed in the experiments with much
smaller moduli.

More details about the experimental results are showed below. Firstly, as showed in
Fig. 1 and Fig. 2, upper bound on γ gets better when the lattice dimension increases.
For the direct method, upper bound on γ remains stable when the lattice dimension is
between 50 and 170. For the optimized method, the value is between 60 and 300.

We then show the experimental results for r = 3 using the direct method in Fig. 3. As
the size of the modulus increases, γ finally arrives around 0.113. This value is beyond the
asymptotic bound 1

9 of previous Zhang-Takagi method.

The remaining graphs are related to the experiments for 3 ≤ r ≤ 7 with various moduli
using the optimized method. The lattice dimension of each experiment is set around 300.
From Fig. 4, Fig. 5, Fig. 6, Fig. 7 and Fig. 8, we find that upper bound on γ is higher
for smaller modulus and then goes to a lower value. Also it will finally arrive at a certain
value that may be determined by the lattice dimension.

Another observation is that these lattices whose dimension is around 300 seem less
effective for moduli with larger bit-size. To be specific, it is less effective for the moduli of
greater than 500-bit when r = 3. The critical bit-size is 700-bit for r = 4, 5 and 1000-bit
for r = 6, 7. Thus, we guess that the lattices used in our experiments are effective for the
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prime factor of less than 160-bit. To obtain desired upper bounds, we need to apply some
lattices with huge dimension.
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Fig. 1. The experimental results of upper bound on γ with various lattice dimensions and the same bit-size
moduli for r = 3 using the direct method

5 Conclusions

Factoring attack works better than small private exponent attack on multi-prime RSA
with much smaller prime difference, and the former removes the restriction on the private
exponents. We further upgrade the insecure bound on the prime difference and propose
improved factoring attacks based on lattice approach and the optimal linearization tech-
nique.

To summarize, our factoring attacks make significant improvements by taking full
knowledge of the small prime difference. We combine more equations rather than only one
equation to solve the factoring problem. Furthermore, applying the optimal linearization
technique on unknown variables helps us to reduce the time cost and obtain better results.

For our factoring attacks on multi-prime RSA modulus with r primes, solving an r-
variate linear equation constructed by r simultaneous modular equations is preferred for
r = 3. And solving an l-variate (that depends on r) linear equation constructed by r − 1
equations is preferred for r > 3. Both factoring attacks can be done in polynomial time.
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