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Abstract

The question whether there exist verifiable random functions with exponential-sized input
space and full adaptive security based on a non-interactive, constant-size assumption is a long-
standing open problem. We construct the first verifiable random functions which achieve all these
properties simultaneously.

Our construction can securely be instantiated in groups with symmetric bilinear map, based
on any member of the (n− 1)-linear assumption family with n ≥ 3. This includes, for example,
the 2-linear assumption, which is also known as the decision linear (DLIN) assumption.

1 Introduction

A verifiable random function (VRF) Vsk is essentially a pseudorandom function, but with the
additional feature that it is possible to create a non-interactive and publicly verifiable proof π
that a given function value Y was computed correctly as Y = Vsk (X). VRFs are useful ingre-
dients for applications as various as resettable zero-knowledge proofs [37], lottery systems [38],
transaction escrow schemes [31], updatable zero-knowledge databases [34], or e-cash [4, 5].

Desired properties of VRFs. The standard security properties required from VRFs are
pseudorandomness (when no proof is given, of course) and unique provability. The latter means
that for each X there is only one unique value Y such that a proof for the statement “Y =
Vsk (X)” exists. Unique provability is a very strong requirement, because not even the party
that creates sk (possibly maliciously) may be able to create fake proofs. For example, the
natural attempt of constructing a VRF by combining a pseudorandom function with a non-
interactive zero-knowledge proof system fails, because zero-knowledge proofs are simulatable,
which contradicts uniqueness.

Most known constructions of verifiable random functions allow an only polynomially bounded
input space, or do not achieve full adaptive security, or are based on an interactive complex-
ity assumption. In the sequel, we will say that a VRF has all desired properties, if is has
an exponential-sized input space and a proof of full adaptive security under a non-interactive
complexity assumption.

VRFs with all desired properties. All known examples of VRFs that possess all desired
properties are based on so-called Q-type complexity assumptions. For example, the VRF of
Hohenberger and Waters [28] relies on the assumption that, given a list of group elements

(g, h, gx, . . . , gx
Q−1
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and a bilinear map e : G×G→ GT , it is computationally infeasible to distinguish t = e(g, h)x
Q

from a random element of GT with probability significantly better than 1/2. Note that the
assumption is parametrized by an integer Q, which determines the number of group elements
in a given problem instance.

The main issue with Q-type assumptions is that they get stronger with increasing Q, as
demonstrated by Cheon [18]. For example, the VRF described in [28] is based on a Q-type
assumption with Q = Θ(q · k), where k is the security parameter and q is the number of
function evaluations queried by the attacker in the security experiment. Constructions from
weaker Q-type assumptions were described by Boneh et al. [11] and Abdalla et al. [2], both
require Q = Θ(k). A VRF-security proof for the classical verifiable unpredictable function of
Lysyanskaya [35], which requires a Q-type assumption with only Q = O(log k), was recently
given in [29]. Even though this is complexity assumption is relatively weak, it is still Q-type.

In summary, the construction of a VRF with all desired security properties, which is based
on a standard, constant-size assumption (like the decision-linear assumption, for example) is
a long-standing open problem, posed for example in [28, 29]. Some authors even asked if it is
possible to prove that a Q-type assumption is inherently necessary to construct such VRFs [28].
Indeed, by adopting the techniques of [30] to the setting of VRFs, one can prove [33] that some
known VRF-constructions are equivalent to certain Q-type assumptions, which means that a
security proof under a strictly weaker assumption is impossible. This includes the VRFs of
Dodis-Yampolskiy [20] and Boneh et al. [11]. It is also known that it is impossible to construct
verifiable random functions from one-way permutations [13] or even trapdoor permutations in
a black-box manner [23].

Our contribution. We construct the first verifiable random functions with exponential-sized
input space, and give a proof of full adaptive security under any member of the (n − 1)-linear
assumption family with n ≥ 3 in symmetric bilinear groups. The (n− 1)-linear assumption is a
family of non-interactive, constant-size complexity assumptions, which get progressively weaker
with larger n [42]. A widely-used special case is the 2-linear assumption, which is also known
as the decision-linear (DLIN) assumption [10].

Recently, a lot of progress has been made in proving the security of cryptosystems which
previously required a Q-type assumption, see [43, 26, 16], for example. Verifiable random
functions with all desired properties were one of the last cryptographic applications that required
Q-type assumptions. Our work eliminates VRFs from this list.

The new construction and proof idea. The starting point for our construction is the VRF
of Lysyanskaya [35]. Her function is in fact the Naor-Reingold pseudorandom function [40] with

Vsk (X) = g
∏k

i=1 ai,xi ,

where X = (x1, . . . , xk), and the ai,b are randomly chosen exponents. However, unlike [40],
Lysyanskaya considers this function in a “Diffie-Hellman gap group”.1 The corresponding veri-
fication key consists of all gai,xi . Relative to this verification key, an image y can be proven to

be of the form g
∏k

i=1 ai,xi by publishing all “partial products in the exponent”, that is, all values

π` := g
∏`

i=1 ai,xi for ` ∈ {2, . . . , k− 1}. (Since the Decisional Diffie-Hellman problem is assumed
to be easy, these partial products can be checked for consistency with the gai,b one after the
other.)

Note that pseudorandomness of this construction is not obvious. Indeed, Lysyanskaya’s
analysis requires a computational assumption that offers k group elements in a computational

1In a Diffie-Hellman gap group, the Decisional Diffie-Hellman problem is easy, but the Computational Diffie-
Hellman is hard. A prominent candidate of such groups are pairing-friendly groups.
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challenge. (This “size-k” assumption could be reduced to a “size-(log(k))” assumption re-
cently [29].) One reason for this apparent difficulty lies in the verifiability property of a VRF.
For instance, the original Naor-Reingold analysis of [40] (that shows that this Vsk is a PRF ) can
afford to gradually substitute images given to the adversary by random images, using a hybrid
argument. Such a proof is not possible in a setting in which the adversary can ask for “validity
proofs” for some of these images. (Note that by the uniqueness property of a VRF, we cannot
expect to be able to simulate such validity proofs for non-images.) As a result, so far security
proofs for VRFs have used “one-shot reductions” to suitable computational assumptions (which
then turned out to be rather complex).

We circumvent this problem by a more complex function (with more complex public param-
eters) that can be modified gradually, using simpler computational assumptions. Following [22],
in the sequel we will write gu, where u = (u1, . . . , un)> ∈ Znp is a vector, to denote the vector
gu := (gu1 , . . . , gun). We will also extend this notation to matrices in the obvious way. To
explain our approach, consider the function

Gsk (X) = gu
>·

∏k
i=1 Mi,xi

for random (quadratic) matrices Mi,xi and a random vector u. The function Gsk will not be
the VRF Vsk we seek, but it will form the basis for it. (In fact, Vsk will only postprocess
Gsk ’s output, in a way we will explain below.) Vsk ’s verification key will include gu and the
gMi,b . As in the VRF described above, validity proofs of images contain all partial products

gu
>·

∏`
i=1 Mi,xi . (However, note that to check proofs, we now need a bilinear map, and not only

an efficient DDH-solver, as with Lysyanskaya’s VRF.)
To show pseudorandomness, let us first consider the case of selective security in which the

adversary A first commits to a challenge preimage X∗. Then, A receives the verification key
and may ask for arbitrary images Vsk (X) and proofs for X 6= X∗. Additionally, A gets either
Vsk (X∗) (without proof), or a random image, and has to decide which it is.

In this setting, we can gradually adapt the gMi,b given to A such that
∏k
i=1 Mi,xi has full

rank if and only if X = X∗. To this end, we choose Mi,b as a full-rank matrix exactly for b = x∗i .
(This change can be split up in a number of local changes, each of which changes only one Mi,b

and can be justified with the (n−1)-linear assumption, where n is the dimension of Mi,b.) Even
more: we show that if we perform these changes carefully, and in a “coordinated” way, we can
achieve that v> := u>

∏k
i=1 Mi,xi lies in a fixed subspace U> if and only if X 6= X∗. In other

words, if we write v =
∑n

i=1 βibi for a basis {bi}ni=1 such that {bi}n−1i=1 is a basis of U, then we
have that βn = 0 if and only if X 6= X∗. Put differently: v has a bn-component if and only if
X = X∗.

Hence, we could hope to embed (part of) a challenge from a computational hardness assump-
tion into bn. For instance, to obtain a VRF secure under the Bilinear Decisional Diffie-Hellman
(BDDH) assumption, one could set Vsk (X) = e(Gsk (X), gα)β for a pairing e and random α, β.
A BDDH challenge can then be embedded into bn, α, and β. (Of course, also validity proofs
need to be adapted suitably.)

In the main part of the paper, we show how to generalize this idea simultaneously to adaptive
security (with a semi-generic approach that employs admissible hash functions), and based on
the (n− 1)-linear assumption for arbitrary n ≥ 3 (instead of the BDDH assumption).

We note that we pay a price for a reduction to a standard assumption: since our construc-
tion relies on matrix multiplication (instead of multiplication of exponents), it is less efficient
than previous constructions. For instance, compared to Lysyanskaya’s VRF, our VRF has less
compact proofs (by a factor of about n, when building on the (n − 1)-linear assumption), and
requires more pairing operations (by a factor of about n2) for verification.
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Programmable vector hash functions. The proof strategy sketched above is implemented
by a new tool that we call programmable vector hash functions (PVHFs). Essentially, PVHFs
can be seen as a variant of programmable hash functions of Hofheinz and Kiltz [27], which
captures the “coordinated” setup of Gsk described above in a modular building block. We hope
that this building block will be useful for other cryptographic constructions.

More related work. VRFs were introduced by Micali, Rabin, and Vadhan [36]. Number-
theoretic constructions of VRFs were described in [36, 35, 19, 20, 1, 28, 11, 2, 29]. Ab-
dalla et al. [1, 2] also gave a generic construction from a special type of identity-based key
encapsulation mechanisms. Most of these either do not achieve full adaptive security for large
input spaces, or are based on interactive complexity assumptions, the exceptions [28, 11, 2, 29]
were mentioned above. We wish to avoid interactive assumptions to prevent circular arguments,
as explained by Naor [39].

The notion of weak VRFs was proposed by Brakerski et al. [13], along with simple and
efficient constructions, and proofs that neither VRFs, nor weak VRFs can be constructed (in
a black-box way) from one-way permutations. Several works introduced related primitives, like
simulatable VRFs [15] and constrained VRFs [25].

Other approaches to avoid Q-type assumptions. One may ask whether the techniques
presented by Chase and Meiklejohn [16], which in certain applications allow to replace Q-type
assumption with constant-size subgroup hiding assumptions, give rise to alternative construc-
tions of VRFs from constant-size assumptions. This technique is based on the idea of using the
dual-systems approach of Waters [43], and requires to add randomization to group elements.
This randomization makes it difficult to construct VRFs that meet the unique provability re-
quirement. Consequently, Chase and Meiklejohn were able to prove that the VRF of Dodis and
Yampolski [20] forms a secure pseudorandom function under a static assumption, but not that
it is a secure VRF.

Open problems. The verifiable random functions constructed in this paper are relatively
inefficient, when compared to the q-type-based constructions of [28, 11, 2, 29], for example. An
interesting open problem is therefore the construction of more efficient VRFs from standard
assumptions. In particular, it is not clear whether the constructions in this paper can also be
instantiated from the SXDH assumption in asymmetric bilinear groups. This would potentially
yield a construction with smaller matrices, and thus shorter proofs.

2 Certified Bilinear Group Generators

In order to be able to prove formally that a given verifiable random function satisfies uniqueness
in the sense of Definition 5.1, we extend the notion of certified trapdoor permutations [7, 8, 32]
to certified bilinear group generators. Previous works on verifiable random functions were more
informal in this aspect, e.g., by requiring that group membership can be tested efficiently and
that each group element has a unique representation.

Definition 2.1. A bilinear group generator is a probabilistic polynomial-time algorithm GrpGen

that takes as input a security parameter k (in unary) and outputs Π = (p,G,GT , ◦, ◦T , e, φ(1))
$←

GrpGen(1k) such that the following requirements are satisfied.
1. p is prime and log(p) ∈ Ω(k).
2. G and GT are subsets of {0, 1}∗, defined by algorithmic descriptions of maps φ : Zp → G

and φT : Zp → GT .
3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in the security parameter)

maps ◦ : G×G→ G and ◦T : GT ×GT → GT , such that
(a) (G, ◦) and (GT , ◦T ) form algebraic groups and
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(b) φ is a group isomorphism from (Zp,+) to (G, ◦) and
(c) φT is a group isomorphism from (Zp,+) to (GT , ◦T ).

4. e is an algorithmic description of an efficiently computable (in the security parameter) bi-
linear map e : G×G→ GT . We require that e is non-degenerate, that is,

x 6= 0 =⇒ e(φ(x), φ(x)) 6= φT (0)

Definition 2.2. We say that group generator GrpGen is certified, if there exists a deterministic
polynomial-time algorithm GrpVfy with the following properties.
Parameter validation. Given a string Π (which is not necessarily generated by GrpGen), al-

gorithm GrpVfy(Π) outputs 1 if and only if Π has the form

Π = (p,G,GT , ◦, ◦T , e, φ(1))

and all requirements from Definition 2.1 are satsified.
Recognition and unique representation of elements of G. Furthermore, we require that

each element in G has a unique representation, which can be efficiently recognized. That is,
on input two strings Π and s, GrpVfy(Π, s) outputs 1 if and only if GrpVfy(Π) = 1 and it
holds that s = φ(x) for some x ∈ Zp. Here φ : Zp → G denotes the fixed group isomorphism
contained in Π to specify the representation of elements of G (see Definition 2.1).

3 Programmable Vector Hash Functions

Notation. As explained in the introduction, for a vector u = (u1, . . . , un)> ∈ Znp we will write
gu to denote the vector gu := (gu1 , . . . , gun), and we will generalize this notation to matrices
in the obvious way. Moreover, whenever the reference to a group generator g ∈ G is clear
(note that a generator g = φ(1) is always contained in the group parameters Π generated by
GrpGen), we will henceforth follow [22] and simplify our notation by writing [x] := gx ∈ G
for an integer x ∈ Zp, [u] := gu ∈ Gn for a vector u ∈ Znp , and [M] := gM ∈ Gn×n for a
matrix M ∈ Zn×np . We also extend our notation for bilinear maps: we write e([A], [B]) (for
matrices A = (ai,j)i,j ∈ Zn1×n2

p and B = (bi,j)i,j ∈ Zn2×n3
p ) for the matrix whose (i, j)-th entry

is
∏n2
`=1 e([ai,`], [b`,j ]). In other words, we have e([A], [B]) = e(g, g)AB.

For a vector space U ⊆ Zn×np of column vectors, we write U> := {u> | u ∈ U} for the

respective set of row vectors. Furthermore, we write U> ·M := {u> ·M | u> ∈ U>} for an
element-wise vector-matrix multiplication. Finally, we denote with GLn(Zp) ⊂ Zn×np the set
of invertible n-by-n matrices over Zp. Recall that a uniformly random M ∈ Zp is invertible
except with probability at most n/p. (Hence, the uniform distributions on GLn(Zp) and Zn×np

are statistically close.)

3.1 Vector Hash Functions

Definition 3.1. Let GrpGen be group generator algorithm and let n ∈ N be a positive integer.
A verifiable vector hash function (VHF) for GrpGen with domain {0, 1}k and range Gn consists
of algorithms (GenVHF,EvalVHF,VfyVHF) with the following properties.

• GenVHF takes as input parameters Π
$← GrpGen(1k) and outputs a verification key vk and an

evaluation key ek as (vk , ek)
$← GenVHF(Π).

• EvalVHF takes as input an evaluation key ek and a string X ∈ {0, 1}k. It outputs ([v] , π)←
EvalVHF(ek , X), where [v] = ([v1] , . . . , [vn])> ∈ Gn is the function value and π ∈ {0, 1}∗ is a
corresponding proof of correctness.
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• VfyVHF takes as input a verification key vk, vector [v] ∈ Gn, proof π ∈ {0, 1}∗, and X ∈
{0, 1}k, and outputs a bit: VfyVHF(vk , [v] , π,X) ∈ {0, 1}.

We require correctness and unique provability in the following sense.

Correctness. We say that (GenVHF,EvalVHF,VfyVHF) is correct, if for all Π
$← GrpGen(1k), all

(vk , ek)
$← GenVHF(Π), and all X ∈ {0, 1}k holds that

Pr

[
VfyVHF(vk , [v] , π,X) = 1 :

(vk , ek)
$← GenVHF(Π),

([v] , π)← EvalVHF(ek , X)

]
= 1

Unique provability. We say that a VHF has unique provability, if for all strings vk ∈ {0, 1}∗
(not necessarily generated by GenVHF) and all X ∈ {0, 1}k there does not exist any tuple
([v0] , π0, [v1] , π1) with [v0] 6= [v1] and [v0] , [v1] ∈ Gn such that

VfyVHF(vk , [v0] , π0, X) = VfyVHF(vk , [v1] , π1, X) = 1

3.2 Selective Programmability

Definition 3.2. We say that VHF (GenVHF,EvalVHF,VfyVHF) is selectively programmable, if
additional algorithms TrapVHF = (TrapGenVHF,TrapEvalVHF) exist, with the following properties.

• TrapGenVHF takes group parameters Π
$← GrpGen(1k), matrix [B] ∈ Gn×n, and X(0) ∈

{0, 1}k. It computes (vk , td)
$← TrapGenVHF(Π, [B] , X(0)), where vk is a verification key

with corresponding trapdoor evaluation key td.
• TrapEvalVHF takes as input a trapdoor evaluation key td and a string X ∈ {0, 1}k. It outputs

a vector β← TrapEvalVHF(td , X) with β ∈ Znp and a proof π ∈ {0, 1}k.
We furthermore have the following requirements.

Correctness. For all Π
$← GrpGen(1k), all [B] ∈ Gn×n, and all X,X(0) ∈ {0, 1}k we have

Pr

VfyVHF(vk , [v] , X) = 1 :
(vk , td)

$← TrapGenVHF(Π, [B] , X(0))
(β, π)← TrapEvalVHF(td , X)
[v] := [B] · β

 = 1

Indistinguishability. Verification keys generated by TrapGenVHF are computationally indis-
tinguishable from keys generated by GenVHF. More precisely, we require that for all PPT
algorithms A = (A0,A1) holds that

Advvhf-sel-indVHF,TrapVHF
(k) := 2 · Pr


Π

$← GrpGen(1k); (X(0), st)
$← A0(1

k)

(vk0, ek)
$← GenVHF(Π); B

$← GLn(Zp)

(vk1, td)
$← TrapGenVHF(Π, [B] , X(0))

b
$← {0, 1}; AOb

1 (st , vk b) = b

− 1

is negligible, where oracles O0 and O1 are defined in Figure 1.

Well-distributed outputs. Let q = q(k) ∈ N be a polynomial, and let β
(i)
n denote the n-th co-

ordinate of vector β(i) ∈ Znp . There exists a polynomial poly such that for all (X(0), . . . , X(q)) ∈
({0, 1}k)q+1 with X(0) 6= X(i) for i ≥ 1 holds that

Pr

 β
(0)
n 6= 0 ∧ β(i)n = 0
∀i ∈ {1, . . . , q}

:

Π
$← GrpGen(1k)

B
$← GLn(Zp)

(vk , td)
$← TrapGenVHF(Π, [B] , X(0))

(β(i), π)← TrapEvalVHF(td , X(i)) ∀i

 ≥ 1

poly(k)
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O0(X) :

(v, π)← EvalVHF(ek , X)
Return ([v] , π)

O1(X) :

(β, π)← TrapEvalVHF(td , X)
[v] := [B] · β
Return ([v] , π)

Ocheck(X) :

(β, π)← TrapEvalVHF(td , X)
(β1, . . . , βn) := β

If βn 6= 0 then Return 1
Else Return 0

Figure 1: Definition of oracles O0, O1, and Ocheck.

We note that in our security definitions, B is always a random invertible matrix, although
TrapGenVHF would also work on arbitrary B.

Furthermore, note that we only require a noticeable “success probability” in our “well-
distributed outputs” requirement above. This is sufficient for our application; however, our
(selectively secure) PVHF construction achieves a success probability of 1. (On the other hand,
our adaptively secure construction only achieves well-distributedness in the sense above, with a
significantly lower – but of course still noticeable – success probability.)

3.3 Adaptive Programmability

Definition 3.3. We say that VHF (GenVHF,EvalVHF,VfyVHF) is (adaptively) programmable,
if algorithms TrapVHF = (TrapGenVHF,TrapEvalVHF) exist, which have exactly the same syntax
and requirements on correctness, indistinguishability, and well-formedness as in Definition 3.2,
with the following differences:
• TrapGenVHF(Π, [B]) does not take an additional string X(0) as input.
• In the indistinguishability experiment, A0 is the trivial algorithm, which outputs the empty

string ∅, while A1 additionally gets access to oracle Ocheck (see Fig. 1). We stress that
this oracle always uses td to compute its output, independently of b. We denote with
Advvhf-ad-indVHF,TrapVHF

(k) the corresponding advantage function.

4 A PVHF based on the Matrix-DDH Assumption

Overview. In this section, we present a programmable vector hash function, whose security
is based upon the “Matrix-DDH” assumption introduced in [22] (which generalizes the matrix-
DDH assumption of Boneh et al. [12] and the matrix d-linear assumption of Naor and Segev [41]).
This assumption can be viewed as a relaxation of the (n − 1)-linear assumption, so that in
particular our construction will be secure under the (n− 1)-linear assumption with n ≥ 3.

Assumption 4.1. The n-rank assumption states that [Mn−1]
c
≈ [Mn], where Mi ∈ Zn×np is a

uniformly distributed rank-i matrix, i.e., that

Advn-rankA (k) := Pr [A([Mn−1]) = 1]− Pr [A([Mn]) = 1]

is negligible for every PPT adversary A.

4.1 The construction

Assume a bilinear group generator GrpGen and an integer n ∈ N as above. Consider the following
vector hash function VHF:
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• GenVHF(GrpGen) uniformly chooses 2k invertible matrices Mi,b ∈ Zn×np (for 1 ≤ i ≤ k and

b ∈ {0, 1}) and a nonzero vector u> ∈ Znp \ {0}. The output is (vk , ek) with

vk =
(
([Mi,b])1≤i≤k,b∈{0,1}, [u]

)
ek =

(
(Mi,b)1≤i≤k,b∈{0,1},u

)
.

• EvalVHF(ek , X) (for X = (x1, . . . , xk)) computes and outputs an image [v] = [vk] ∈ Gn and
a proof π = ([v1], . . . , [vk−1]) ∈ (Gn)k−1, where

v>i = u> ·
i∏

j=1

Mj,xj . (1)

• VfyVHF(vk , [v], π,X) outputs 1 if and only if

e([v>i ], [1]) = e([v>i−1], [Mi,xi ]), (2)

holds for all i with 1 ≤ i ≤ k, where we set [v0] := [u] and [vk] := [v].

Theorem 4.2 (Correctness and uniqueness of VHF). VHF is a vector hash function. In partic-
ular, VHF satisfies the correctness and uniqueness conditions from Definition 3.1.

Proof. First, note that (2) is equivalent to v>i = v>i−1 ·Mi,xi . By induction, it follows that (2)

holds for all i if and only if v>i = u> ·
∏i
j=1 Mj,xj for all i. By definition of EvalVHF, this yields

correctness. Furthermore, we get that VfyVHF outputs 1 for precisely one value [v] = [vk] (even
if the Mi,b are not invertible). In fact, the proof π is uniquely determined by vk and X.

4.2 Selective Security

We proceed to show the selective security of VHF:

Theorem 4.3 (Selectively programmabability of VHF). VHF is selectively programmable in the
sense of Definition 3.2.

The trapdoor algorithms. We split up the proof of Theorem 4.3 into three lemmas (that
show correctness, well-distributed outputs, and indistinguishability of VHF). But first, we define
the corresponding algorithms TrapGenVHF and TrapEvalVHF.
• TrapGenVHF(Π, [B], X(0)) first chooses k + 1 subspaces Ui of Znp (for 0 ≤ i ≤ k), each of

dimension n− 1. Specifically,
– the first k subspaces Ui (for 0 ≤ i ≤ k − 1) are chosen independently and uniformly,
– the last subspace Uk is the subspace spanned by the first n− 1 unit vectors. (That is, Uk

contains all vectors whose last component is 0.)
Next, TrapGenVHF uniformly chooses u ∈ Znp \ U0 and 2k matrices Ri,b (for 1 ≤ i ≤ k and
b ∈ {0, 1}), as follows:

R
i,1−x(0)i

uniformly of rank n− 1 subject to U>i−1 ·Ri,1−x(0)i

= U>i

R
i,x

(0)
i

uniformly of rank n subject to U>i−1 ·Ri,x
(0)
i

= U>i .
(3)

Finally, TrapGenVHF sets

Mi,b = Ri,b for 1 ≤ i ≤ k − 1

[Mk,0] = [Rk,0 ·B>] [Mk,1] = [Rk,1 ·B>],
(4)

and outputs

td =
(
(Ri,b)i∈[k−1],b∈{0,1},u, [B]

)
vk =

(
([Mi,b])i∈[k],b∈{0,1}, [u]

)
.
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• TrapEvalVHF(td , X) first computes an image [v] = [vk], along with a corresponding proof
π = [v1, . . . ,vk−1] exactly like EvalVHF, using (1). (Note that TrapEvalVHF can compute all
[vi] from its knowledge of u, all Ri,b, and [B].) Next, observe that the image [v] satisfies

v> = v>k = u> ·
k∏
j=1

Mj,xj =
(

u> ·
k∏
j=1

Rj,xj︸ ︷︷ ︸
=:β>

)
·B>. (5)

Hence, TrapEvalVHF outputs (β, π).

Lemma 4.4 (Correctness of TrapVHF). The trapdoor algorithms TrapGenVHF and TrapEvalVHF
above satisfy correctness in the sense of Definition 3.2.

Proof. This follows directly from (5).

Lemma 4.5 (Well-distributedness of TrapVHF). The above trapdoor algorithms TrapGenVHF and
TrapEvalVHF enjoy well-distributed outputs in the sense of Definition 3.2.

Proof. Fix any preimage X(0) = (x
(0)
i )ki=1 ∈ {0, 1}k, matrix [B] ∈ Gn×n, and corresponding

keypair (td , vk)
$← TrapGenVHF(Π, [B], X(0)). We will show first that for all X = (xi)

k
i=1 ∈

{0, 1}k, the corresponding vectors v>i computed during evaluation satisfy

u> ·
i∏

j=1

Ri,xi ∈ U>i ⇐⇒ xj 6= x
(0)
j for some j ≤ i. (6)

(6) can be proven by induction over i. The case i = 0 follows from the setup of u /∈ U0. For the
induction step, assume (6) holds for i− 1. To show (6) for i, we distinguish two cases:

• If xi = x
(0)
i , then Ri,xi has full rank, and maps U>i−1 to U>i . Thus, u> ·

∏i
j=1 Rj,xj ∈ U>i

if and only if u> ·
∏i−1
j=1 Rj,xj ∈ U>i−1.

2 By the induction hypothesis, and using xi = x
(0)
i ,

hence, u> ·
∏i
j=1 Rj,xj ∈ U>i if and only if xj 6= x

(0)
j for some j ≤ i. This shows (6).

• If xi 6= x
(0)
i , then Ri,xi has rank n− 1. Together with U>i−1 ·Ri,xi = U>i , this implies that in

fact (Znp )> ·Ri,xi = U>i . Hence, both directions of (6) hold.
This shows that (6) holds for all i. In particular, if we write

β> = (β1, . . . , βn) = u> ·
k∏
j=1

Ri,xi

(as in (5)), then β ∈ Uk if and only if X 6= X(0). By definition of Uk, this means that
βn = 0⇔ X 6= X(0). Well-distributedness as in Definition 3.2 follows.

Lemma 4.6 (Indistinguishability of TrapVHF). If the n-rank assumption holds relative to GrpGen,
then the above algorithms TrapGenVHF and TrapEvalVHF satisfy the indistinguishability property
from Definition 3.2. Specifically, for every adversary A, there exists an adversary B (of roughly
the same complexity) with

Advvhf-sel-indVHF,TrapGenVHF,TrapEvalVHF,A(k) = k · Advn-rankG,n,B (k) + O(kn/p).

2Recall our notation from Section 3.
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Proof. Fix an adversary A. We proceed in games.

Game 0. Game 0 is identical to the indistinguishability game with b = 0. In this game, A first
selects a “target preimage” X(0), and then gets a verification key vk generated by GenVHF, and
oracle access to an evaluation oracle O. Let G0 denote A’s output in this game. (More generally,
let Gi denote A’s output in Game i.) Our goal will be to gradually change this setting such
that finally, vk is generated by TrapGenVHF(GrpGen, [B], X(0)) (for an independently uniform
invertible B), and O uses the corresponding trapdoor to generate images and proofs. Of course,
A’s output must remain the same (or change only negligibly) during these transitions.

Game 1.` (for 0 ≤ ` ≤ k). In Game 1.` (for 0 ≤ ` ≤ k), vk is generated in part as by
TrapGenVHF, and in part as by GenVHF. (O is adapted accordingly.) Specifically, Game 1.`
proceeds like Game 0, except for the following changes:
• Initially, the game chooses `+1 subspaces Ui (for 0 ≤ i ≤ `) of dimension n−1 independently

and uniformly, and picks u ∈ Znp \U0. (Note that unlike in an execution of TrapGenVHF, also
Uk is chosen uniformly when ` = k.)
• Next, the game chooses 2k matrices Ri,b (for 1 ≤ i ≤ k and b ∈ {0, 1}), as follows. For
i ≤ `, the Ri,b are chosen as by TrapGenVHF, and thus conform to (3). For i > `, the Ri,b

are chosen uniformly and independently (but invertible).
• Finally, the game sets up Mi,b := Ri,b for all i, b. (Again, note the slight difference to
TrapGenVHF, which follows (4).)

The game hands the resulting verification key vk to A; since all Mi,b are known over Zp, oracle
O can be implemented as EvalVHF.

Now let us take a closer look at the individual games Game 1.`. First, observe that Game 1.0
is essentially Game 0: all Mi,b are chosen independently and uniformly, and O calls are answered
in the only possible way (given vk). The only difference is that u is chosen independently
uniformly from Znp \{0} in Game 0, and from Znp \U0 (for a uniform dimension-(n−1) subspace
U0) in Game 1.0. However, both choices lead to the same distribution of u, so we obtain

Pr [G0 = 1] = Pr [G1.0 = 1] . (7)

Next, we investigate the change from Game 1.(`− 1) to Game 1.`. We claim the following:

Lemma 4.7. There is an adversary B on the n-rank problem with

k∑
`=1

Pr [G1.` = 1]− Pr
[
G1.(`−1) = 1

]
= k · Advn-rankG,n,B (k) + O(kn/p). (8)

We postpone a proof of Lemma 4.7 until after the main proof.

Game 2. Finally, in Game 2, we slightly change the way Uk and the matrices Mk,b (for
b ∈ {0, 1}) are set up:
• Instead of setting up Uk uniformly (like all other Ui), we set up Uk like TrapGenVHF would

(i.e., as the subspace spanned by the first n− 1 unit vectors).
• Instead of setting up Mk,b = Rk,b, we set Mk,b = Rk,b · B> for an independently and

uniformly chosen invertible B, exactly like TrapGenVHF would.
Observe that since B is invertible, these modifications do not alter the distribution of the
matrices Mk,b (compared to Game 1.`). Indeed, in both cases, both Mk,b map U>k−1 to the
same uniformly chosen (n− 1)-dimension subspace. In Game 1.`, this subspace is Uk, while in
Game 2, this subspace is the subspace spanned by the first n− 1 columns of B. We obtain:

Pr [G1.` = 1] = Pr [G2 = 1] . (9)
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Finally, it is left to observe that Game 2 is identical to the indistinguishability experiment
with b = 1: vk is prepared exactly as with TrapGenVHF(Π, [B], X(0)) for a random B, and O
outputs the images and proofs uniquely determined by vk . Hence,

Advvhf-sel-indVHF,TrapVHF,A(k) = Pr [G2 = 1]− Pr [G0 = 1]

(7),(9)
= Pr [G1.k = 1]− Pr [G1.0 = 1]

=

k∑
`=1

Pr [G1.` = 1]− Pr
[
G1.(`−1) = 1

]
(8)
= k · Advn-rankG,n,A(k) + O(kn/p)

as desired.

It remains to prove Lemma 4.7.

Proof of Lemma 4.7. We describe an adversary B on the n-rank problem. B gets as input a
matrix [A] “in the exponent,” such that A is either of rank n, or of rank n − 1. Initially,
B uniformly picks ` ∈ {1, . . . , k}. Our goal is construct B such that it internally simulates
Game 1.(`− 1) or Game 1.`, depending on A’s rank. To this end, B sets up vk as follows:
• Like Game 1.(`− 1), B chooses ` subspaces U0, . . . ,U`−1, and u ∈ Znp \ U0 uniformly.
• For i < `, B chooses matrices Ri,b like TrapGenVHF does, ensuring (3). For i > `, all Ri,b are

chosen independently and uniformly but invertible. The case i = ` is more complicated and
will be described next.
• To set up M`,0 and M`,1, B first asks A for its challenge input X(0) = (x

(0)
i )ki=1. Next, B

embeds its own challenge [A] as [R
`,1−x(0)`

] := [A]. To construct an [R
`,x

(0)
`

] that achieves

(3) (for i = `), B first uniformly chooses a basis {c1, . . . , cn} of Znp , such that {c1, . . . , cn−1}
forms a basis of U`−1. (Note that B chooses the subspace U`−1 on its own and over Zp, so
this is possible efficiently for B.) In the sequel, let C be the matrix whose i-th row is c>i , and
let C−1 be the inverse of C. Jumping ahead, the purpose of C−1 is to help translate vectors
from U`−1 (as obtained through a partial product u>

∏`−1
j=1 Mj,xj ) to a “more accessible”

form.
Next, B samples n− 1 random vectors [c′i] (for 1 ≤ i ≤ n− 1) in the image of [A] (e.g., by
choosing random r>i and setting [c′i] = r>i · [A]). Furthermore, B samples c′n ∈ Znp randomly.

Let [C′] be the matrix whose i-th row is [c′i
>]. The purpose of C′ is to define the image of

R
`,x

(0)
`

. Specifically, B computes

[R
`,x

(0)
`

] := C−1 · [C′].

(Note that B can compute [R
`,x

(0)
`

] efficiently, since C−1 is known “in the clear.”) We will

show below that, depending on the rank of A, either U>`−1 ·R`,x
(0)
`

= U>`−1 ·A, or U>`−1 ·R`,x
(0)
`

is an independently random subspace of dimension n− 1.
• Finally, B sets [Mi,b] = [Ri,b] for all i, b, and hands A the resulting verification key vk .

Furthermore, B implements oracle O as follows: if A queries O with some X = (xi)
k
i=1 ∈ {0, 1}k,

then B can produce the (uniquely determined) image and proof from the values

[v>i ] = [u> ·
i∏

j=1

Mj,xj ]. (10)

11



On the other hand, B can compute all [v>i ] efficiently, since it knows all factors in (10) over Zp,
except for (at most) one factor [M`,x` ].

Finally, B outputs whatever A outputs.
We now analyze this simulation. First, note that vk and O are simulated exactly as in both

Game 1.(`−1) and Game 1.`, except for the definition of [R
`,x

(0)
i

] and [R
`,1−x(0)i

]. Now consider

how these matrices are set up depending on the rank of B’s challenge A.
• If A is of rank n, then R

`,x
(0)
`

and R
`,1−x(0)`

are (statistically close to) independently and

uniformly random invertible matrices. Indeed, then each row c′i
> of C′ is independently

and uniformly random: c′1, . . . , c
′
n−1 are independently random elements of the image of A

(which is Znp ), and c′n is independently random by construction. Hence, C′ is independently
and uniformly random (and thus invertible, except with probability n/p). On the other
hand, R

`,x
(0)
`

= A is uniformly random and invertible by assumption.

• If A is of rank n− 1, then R
`,x

(0)
`

and R
`,1−x(0)`

are (statistically close to) distributed as in

(3). Indeed, then the rank of R
`,1−x(0)`

= A is n − 1, and the rank of R
`,x

(0)
`

= C−1 ·C′ is

n, except with probability at most n/p.3 Moreover, if we write U>` := (Znp )> ·A, then by

construction (Znp )> ·R
`,1−x(0)`

= U>` , but also

(Znp )> ·R
`,x

(0)
`

= W> ·C′ = U>` ,

where W is the vector space spanned by the first n − 1 unit vectors. Furthermore, R
`,x

(0)
`

and R
`,1−x(0)`

are distributed uniformly with these properties.

Hence, summarizing, up to a statistical defect of at most 2/p, B simulates Game 1.(`− 1) if A
is of rank n, and Game 1.` if A is of rank n− 1. This shows (8).

4.3 Adaptive Security

The idea behind the adaptively-secure construction is very similar to the selective case. Both the
construction and the security proof are essentially identical, except that we apply an admissible
hash function (AHF) AHF : {0, 1}k → {0, 1}`AHF (cf. Definition 4.8) to the inputs X of EvalVHF

and TrapEvalVHF before computing the matrix products. (We mention that suitable AHFs with
`h = O(k) exist [35, 24].) Correctness and unique provability follow immediately. In order
to prove well-distributedness, we rely on the properties of the admissible hash function. By a
slightly more careful, AHF-dependent embedding of low-rank matrices in the verification key,
these properties ensure that, for any sequence of queries issued by the adversary, it holds with
non-negligible probability that the vector

[
v(0)

]
assigned to input X(0) does not lie in the

subspace generated by (b1, . . . ,bn−1), while all vectors
[
v(i)
]

assigned to input X(i) do, which
then yields the required well-distributedness property.

Admissible hash functions. To obtain adaptive security, we rely on a semi-blackbox tech-
nique based on admissible hash functions (AHFs, [35, 9, 14, 3, 24]). In the following, we use
the formalization of AHFs from [24]:

Definition 4.8 (AHF). For a function AHF : {0, 1}k → {0, 1}`AHF (for a polynomial `AHF =
`AHF(k)) and K ∈ ({0, 1,⊥})`AHF, define the function FK : {0, 1}k → {CO, UN} through

FK(X) = UN ⇐⇒ ∀i : Ki = AHF(X)i ∨Ki = ⊥,
3To see this, observe that except with probability (n − 1)/p, the first n − 1 columns of C′ are linearly

independent (as they are random elements in the image of the rank-(n − 1) matrix A). Further, the last row
(which is independently and uniformly random) does not lie in the span of the first n − 1 rows except with
probability at most 1/p.
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where AHF(X)i denotes the i-th component of AHF(X). We say that AHF is q-admissible if there
exists a PPT algorithm KGen and a polynomial poly(k), such that for all X(0), . . . , X(q) ∈ {0, 1}k
with X(0) 6∈ {X(i)},

Pr
[
FK(X(0)) = UN ∧ FK(X(1)) = · · · = FK(X(q)) = CO

]
≥ 1/poly(k), (11)

where the probability is over K
$← KGen(1k). We say that AHF is an admissible hash function

(AHF) if AHF is q-admissible for all polynomials q = q(k).

There are efficient constructions of admissible hash functions [35, 24] with `AHF = O(k)
from error-correcting codes.

A hashed variant of VHF. Fix an AHF AHF : {0, 1}k → {0, 1}`AHF and a corresponding KGen
algorithm. Essentially, we will hash preimages (using AHF) before feeding them into VHF to
obtain a slight variant VHF′ of VHF that we can prove adaptively secure. More specifically, let
VHF′ be the verifiable hash function that is defined like VHF, except for the following differences:
• Gen′VHF(GrpGen) proceeds like GenVHF(GrpGen), but samples 2`AHF (not 2k) matrices Mi,b.

• Eval′VHF(ek , X) (for X ∈ {0, 1}k), first computes X ′ = (x′i)
`AHF
i=1 = AHF(X) ∈ {0, 1}`AHF , and

then outputs an image [v] = [v`AHF ] and a proof

π = ([v1], . . . , [v`AHF−1])

where v>i = u> ·
∏i
j=1 Mj,x′j

.

• Vfy′VHF(vk , [v], π,X) computes X ′ = (x′i)
`AHF
i=1 = AHF(X) ∈ {0, 1}`AHF and outputs 1 if and

only if e([v>i ], [1]) = e([v>i−1], [Mi,x′i
]) holds for all i with 1 ≤ i ≤ `AHF, where [v0] := [u] and

[v`AHF ] := [v].

Theorem 4.9 (Adaptive programmabability of VHF’). VHF′ is adaptively programmable in the
sense of Definition 3.3.

The trapdoor algorithms. We proceed similarly to the selective case and start with a
description of the algorithms TrapGen′VHF and TrapEval′VHF.
• TrapGen′VHF(Π, [B]) proceeds like algorithm TrapGenVHF from Section 4.2, except that

– TrapGen′VHF initializes K
$← KGen(1k) and includes K in td .

– TrapGen′VHF chooses `AHF + 1 (and not k + 1) subspaces Ui (for 0 ≤ i ≤ `AHF). (The last
subspace U`AHF is chosen in a special way, exactly like Uk is chosen by TrapGenVHF.)

– TrapGen′VHF chooses 2`AHF (and not 2k) matrices Ri,b (for 1 ≤ i ≤ `AHF and b ∈ {0, 1}),
as follows:
∗ If Ki = b, then Ri,b is chosen uniformly of rank n− 1, subject to

U>i−1 ·Ri,1−x(0)i

= U>i

∗ If Ki 6= b, then Ri,b is chosen uniformly of rank n, subject to

U>i−1 ·Ri,x
(0)
i

= U>i

• TrapEval′VHF(td , X) proceeds like algorithm TrapEvalVHF on input a preimage AHF(X) ∈
{0, 1}`AHF . Specifically, TrapEval′VHF computes [v] = [vk], along with a corresponding proof
π = [v1, . . . ,vk−1] exactly like Eval′VHF. Finally, and analogously to TrapEvalVHF, TrapEval′VHF

outputs (β, π) for β> := u> ·
∏k
j=1 Rj,xj

Correctness and indistinguishability follow as for TrapGenVHF and TrapEvalVHF, so we state
without proof:

13



Lemma 4.10 (Correctness of Trap′VHF). The trapdoor algorithms TrapGen′VHF and TrapEval′VHF
above satisfy correctness in the sense of Definition 3.3.

Lemma 4.11 (Indistinguishability of Trap′VHF). If the n-rank assumption holds relative to
GrpGen, then the above algorithms TrapGen′VHF and TrapEval′VHF satisfy the indistinguishabil-
ity property from Definition 3.3. Specifically, for every adversary A, there exists an adversary
B (of roughly the same complexity) with

Advvhf-sel-indVHF′,Trap′VHF,A
(k) = `AHF · Advn-rankG,n,B (k) + O(`AHFn/p).

The (omitted) proof of Lemma 4.11 proceeds exactly like that Lemma 4.6, only adapted to
AHF-hashed inputs. Note that the additional oracle Ocheck an adversary gets in the adaptive
indistinguishability game can be readily implemented with the key K generated by TrapGen′VHF.
(The argument from the proof of Lemma 4.6 does not rely on a secret X(0), and so its straight-
forward adaptation could even expose the full key K to an adversary.)

Lemma 4.12 (Well-distributedness of Trap′VHF). The above trapdoor algorithms TrapGen′VHF

and TrapEval′VHF have well-distributed outputs in the sense of Definition 3.3.

Proof. First, we make an observation. Fix a matrix [B], and a corresponding keypair (td , vk)
$←

TrapGenVHF(Π, [B]). Like (6), we can show that for all X ′ = (x′i)
`AHF
i=1 , the corresponding vectors

v>i computed during evaluation satisfy

u> ·
i∏

j=1

Ri,xi ∈ U>i ⇐⇒ xj = Kj for some j ≤ i.

Hence, β ∈ U`AHF (and thus βn = 0) for the value β that is computed by TrapEval′VHF(td , X) if
and only if FK(X) = CO. By property (11) of AHF, the lemma follows.

5 VRFs from Verifiable PVHFs

Let (GenVRF,EvalVRF,VfyVRF) be the following algorithms.

• Algorithm (vk , sk)
$← GenVRF(1k) takes as input a security parameter k and outputs a key

pair (vk , sk). We say that sk is the secret key and vk is the verification key.

• Algorithm (Y, π)
$← EvalVRF(sk , X) takes as input secret key sk and X ∈ {0, 1}k, and outputs

a function value Y ∈ Y, where Y is a finite set, and a proof π. We write Vsk (X) to denote
the function value Y computed by EvalVRF on input (sk , X).
• Algorithm VfyVRF(vk , X, Y, π) ∈ {0, 1} takes as input verification key vk , X ∈ {0, 1}k, Y ∈ Y,

and proof π, and outputs a bit.

Definition 5.1. We say that a tuple of algorithms (GenVRF,EvalVRF,VfyVRF) is a verifiable
random function (VRF), if all the following properties hold.
Correctness. Algorithms GenVRF, EvalVRF, VfyVRF are polynomial-time algorithms, and for all

(vk , sk)
$← GenVRF(1k) and all X ∈ {0, 1}k holds: if (Y, π)

$← EvalVRF(sk , X), then we have
VfyVRF(vk , X, Y, π) = 1 .

Unique provability. For all strings (vk , sk) (not necessarily generated by GenVRF) and all X ∈
{0, 1}k, there does not exist any (Y0, π0, Y1, π1) such that Y0 6= Y1 and VfyVRF(vk , X, Y0, π0) =
VfyVRF(vk , X, Y1, π1) = 1.

Pseudorandomness. Let ExpVRFB be the security experiment defined in Figure 2, played with
adversary B. We require that the advantage function

AdvVRFB (k) := 2 · Pr
[
ExpVRFB (1k) = 1

]
− 1

is negligible for all PPT B that never query Evaluate on input X∗.
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Initialize(1k) :

b
$← {0, 1}

(vk , sk)
$← GenVRF(1k)

Return vk

Evaluate(X) :

(Y, π)
$← EvalVRF(sk , X)

Return (Y, π)

Challenge(X∗) :

(Y0, π)
$← EvalVRF(sk , X∗)

Y1
$← Y

Return Yb

ExpVRFA (1k) :

vk
$← Initialize(1k)

X∗
$← AEvaluate

Yb
$← Challenge(X∗)

B
$← AEvaluate

Return (B = b)

Figure 2: The VRF security experiment.

5.1 A Generic Construction from Verifiable PVHFs

Let (GenVHF,EvalVHF,VfyVHF) be a vector hash function according to Definition 3.1, and let
(GrpGen,GrpVfy) be a certified bilinear group generator according to Definitions 2.1 and 2.2.
Let (GenVRF,EvalVRF,VfyVRF) be the following algorithms.

Key generation. GenVRF(1k) runs Π
$← GrpGen(1k) to generate bilinear group parameters,

and then (ek , vk ′)
$← GenVHF(Π). Then it chooses a random vector w

$← (Z∗p)n, defines
sk := (Π, ek ,w) and vk := (Π, vk ′, [w]), and outputs (vk , sk).

Function evaluation. On input sk := (Π, ek ,w) with w = (w1, . . . , wn)> ∈ (Z∗p)n and X ∈
{0, 1}k, algorithm EvalVRF(sk , X) first runs

([v] , π′)← EvalVHF(ek , X).

Then it computes the function value Y and an additional proof [z] ∈ Gn as

Y :=

n∏
i=1

[
vi
wi

]
and [z] :=

[
(z1, . . . , zn)>

]
:=

[(
v1
w1
, . . . ,

vn
wn

)>]

Finally, it sets π := ([v] , π′, [z]) and outputs (Y, π).
Proof verification. On input (vk , X, Y, π), VfyVRF outputs 0 if any of the following properties

is not satisfied.
1. vk has the form vk = (Π, vk ′, [w]), such that [w] = ([w1] , . . . , [wn]) and the bilinear

group parameters and group elements contained in vk are valid. That is, it holds that
GrpVfy(Π) = 1 and GrpVfy(Π, [wi]) = 1 for all i ∈ {1, . . . , n}.

2. X ∈ {0, 1}k.
3. π has the form π = ([v] , π′, [z]) with VfyVHF(vk ′, [v] , π′, X) = 1 and both vectors [v] and

[z] contain only validly-encoded group elements, which can be checked by running GrpVfy.
4. It holds that and [zi] = [vi/wi] for all i ∈ {1, . . . , n} and Y = [

∑n
i=1 vi/wi]. This can be

checked by testing

e ([zi] , [wi])
?
= e([vi] , [1]) ∀i ∈ {1, . . . , n} and Y

?
=

n∏
i=1

[zi]

If all the above checks are passed, then VfyVRF outputs 1.
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5.2 Correctness, Unique Provability, and Pseudorandomness

Theorem 5.2 (Correctness and unique provability). The triplet of algorithms (GenVRF,EvalVRF,
VfyVRF) forms a correct verifiable random function, and it satisfies the unique provability re-
quirement in the sense of Definition 5.1.

Proof. Correctness is straightforward to verify, therefore we turn directly to unique provabil-
ity. We have to show that there does not exist any (Y0, π0, Y1, π1) such that Y0 6= Y1 and
VfyVRF(vk , X, Y0, π0) = VfyVRF(vk , X, Y1, π1) = 1. Let us first make the following observations.
• First of all, note that VfyVRF on input ((Π, vk ′, [w]), X, Y, ([v] , π′, (z)) checks whether Π

contains valid certified bilinear group parameters by running GrpVfy(Π). Moreover, it checks
whether all group elements contained in [w], [v], and [z] are valid group elements with respect
to Π. Thus, we may assume in the sequel that all these group elements are valid and have
a unique encoding. In particular, [w] is uniquely determined by vk .

• Furthermore, it is checked that X ∈ {0, 1}k. The unique provability property of the vector
hash function (GenVHF,EvalVHF,VfyVHF) guarantees that for all strings vk ′ ∈ {0, 1}∗ and all
X ∈ {0, 1}k there does not exist any tuple ([v0] , π0, [v1] , π1) with [v0] 6= [v1] and [v0] , [v1] ∈
Gn such that

VfyVHF(vk ′, [v0] , π0, X) = VfyVHF(vk ′, [v1] , π1, X) = 1

Thus, we may henceforth use that there is only one unique vector of group elements [v]
which passes the test VfyVHF(vk ′, [v] , π′, X) = 1 performed by VfyVRF. Thus, [v] is uniquely
determined by X and the values Π and vk ′ contained in vk .

• Finally, note that VfyVRF tests whether [zi] = [vi/wi] holds. Due to the fact that the bilinear
group is certified, which guarantees that each group element has a unique encoding and
that the bilinear map is non-degenerate, for each i ∈ {1, . . . , n} there exists only one unique
group element encoding [zi] such that the equality [zi] = [vi/wi] holds.

Therefore the value Y =
∏n
i=1 [zi] is uniquely determined by [v] and [w], which in turn are

uniquely determined by X and the verification key vk .

Assumption 5.3. The (n−1)-linear assumption states that [c,d,
∑n

i=1 di/ci]
c
≈ [c,d, r], where

c = (c1, . . . , cn)> ∈ (Z∗p)
n, d = (d1, . . . , dn)> ∈ Znp , and r ∈ Zp are uniformly random. That is,

we require that

Adv
(n−1)-lin
A (k) := Pr

[
A([c,d,

n∑
i=1

di/ci]) = 1

]
− Pr [A([c,d, r]) = 1]

is negligible for every PPT adversary A.

We remark that the above formulation is an equivalent formulation of the standard (n− 1)-
linear assumption, cf. [21, Page 9], for instance.

Theorem 5.4 (Pseudorandomness). If (GenVHF,EvalVHF,VfyVHF) is an adaptivly programmable
VHF in the sense of Definition 3.1 and the (n− 1)-linear assumption holds relative to GrpGen,
then algorithms (GenVRF,EvalVRF,VfyVRF) form a verifiable random function which satisfies the
pseudorandomness requirement in the sense of Definition 5.1.

Proof sketch. The proof is based on a reduction to the indistinguishability and well-distribu-
tedness of the programmable vector hash function. The well-distributedness yields a leverage
to embed the given instance of the (n − 1)-linear assumption in the view of the adversary,
following the approach sketched already in the introduction. Given the PVHF as a powerful
building block, the remaining main difficulty of the proof lies in dealing with the fact that the
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“partitioning” proof technique provided by PVHFs is incompatible with “decisional” complexity
assumptions. This is a well-known difficulty, which appeared in many previous works. It
stems from the fact that different sequences of queries of the VRF-adversary may lead to
different abort probabilities in the security proof. We can overcome this issue by employing the
standard artificial abort technique [44], which has also been used to prove security of Waters’
IBE scheme [44] and the VRF of Hohenberger and Waters [28], for example.

Proof. Let A be an adversary in the VRF security experiment from Definition 5.1. We will
construct an adversary B on the (n − 1)-linear assumption, which simulates the VRF pseu-
dorandomness security experiment for A. However, before we can construct this adversary,
we have to make some changes to the security experiment. Consider the following sequence
of games, where we let ExpiA(1k) denote the experiment executed in Game i and we write
AdviA(k) := Pr

[
ExpiA(1k) = 1

]
to denote the advantage of A in Game i.

Game 0. This is the original VRF security experiment, executed with algorithms (GenVRF,
EvalVRF,VfyVRF) as constructed above. Clearly, we have

Adv0A(k) = AdvVRFA (k)

In the sequel we write vk ′0 to denote the VHF-key generated by (vk ′0, ek)
$← GenVHF(Π) in the

experiment.

Game 1. This game proceeds exactly as before, except that it additionally samples a

uniformly random invertible matrix B
$← GLn(Zp) and generates an additional key for the

vector hash function as (vk ′1, td)
$← TrapGenVHF(Π, [B]), which is not given to the adversary.

That is, the adversary in Game 1 receives as input a VRF verification key vk = (Π, vk ′0, [w]),
where vk ′0 is generated by GenVHF, exactly as in Game 0.

WheneverA issues an Evaluate(X(i))-query on some input X(i), the experiment proceeds as

in Game 0, and additionally computes ((β1, . . . , βn), π)
$← TrapEvalVHF(td , X(i)). If βn 6= 0, then

the experiment aborts and outputs a random bit. Moreover, when A issues a Challenge(X(0))-

query, then the experiment computes ((β1, . . . , βn), π)
$← TrapEvalVHF(td , X(0)). If βn = 0, then

the experiment aborts and outputs a random bit.
The well-distributedness of the PVHF guarantees that there is a polynomial poly such that

for all possible queries X(0), X(1), . . . , X(q) the probability that the experiment is not aborted
is at least

Pr
[
β(0)n = 0 ∧ β(i)n 6= 0 ∀i ∈ {1, . . . , q}

]
≥ 1/poly(k) ≥ λ

where λ is a non-negligible lower bound on the probability of not aborting.

Artificial abort. Note that the probability that the experiment aborts depends on the particular
sequence of queries issued by A. This is problematic, because different sequences of queries
may have different abort probabilities (cf. Appendix A). Therefore the experiment in Game 1
performs an additional artificial abort step, which ensures that the experiment is aborted with
always the (almost) same probability 1 − λ, independent of the particular sequence of queries
issued by A. To this end, the experiment proceeds as follows.

After A terminates and outputs a bit B, the experiment estimates the concrete abort prob-
ability η(X) for the sequence of queries X := (X(0), . . . , X(q)) issued by A. To this end, the
experiment:

1. Computes an estimate η′ of η(X), by R-times repeatedly sampling trapdoors (vk ′j , td j)
$←

TrapGenVHF(Π, [B]) and checking whether β
(0)
n = 0 or β

(i)
n 6= 0, where

((β
(i)
1 , . . . , β(i)n ), π)← TrapEvalVHF(td j , X

(i)) for i ∈ {0, . . . , q}
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for sufficiently large R. Here ε is defined such that 2 · ε is a lower bound on the advantage
of A in the original security experiment.

2. If η′ ≥ λ, then the experiment aborts artificially with probability (η′− λ)/η′, and outputs a
random bit.

Note that if η′ was exact, that is, η′ = η(X), then the total probability of not aborting would
always be η(X) · (1− (η′ − λ)/η′) = λ, independent of the particular sequence of queries issued
by A. In this case we would have Adv1A(k) = λ · Adv0A(k). However, the estimate η′ of η(X) is
not necessarily exact. By applying the standard analysis technique from [44] (see also [17, 28]),
one can show that setting R := O(ε−2 ln(1/ε)λ−1 ln(1/λ)) is sufficient to obtain

Adv1A(k) ≥ O(ε · λ) · Adv0A(k)

Game 2. The experiment now provides the adversary with the trapdoor VHF verification
key vk ′1, by including it in the VRF verification key vk = (Π, vk ′1, [z]) in place of vk ′0. Moreover,

the experiment now evaluates the VHF on inputs X by running (β, π)
$← TrapEvalVHF(td , X)

and then computing [v] := [B] · β. The rest of the experiment proceeds exactly as before.
We claim that any adversary A distinguishing Game 2 from Game 1 implies an adver-

sary B breaking the indistinguishability of the VHF according to Definition 3.3. Adversary
BOb,Ocheck(vk ′b) receives as input a verification key vk ′b, which is either generated by GenVHF(Π)
or TrapGenVHF(Π, [B]) for a uniformly invertible random matrix B. It simulates the security
experiment from Game 2 for A as follows.
• The given VHF verification key vk ′b is embedded in the VRF verification key vk = (Π, vk ′b, [z]),

where b is the random bit chosen by the indistinguishability security experiment played by
B. All other values are computed exactly as before.
• In order to evaluate the VHF on input X, B is able to query its oracle Ob, which either

computes and returns ([v] , π) ← EvalVHF(ek , X) (in case b = 0), or it computes (β, π) ←
TrapEvalVHF(td , X) and returns [v] := [B] · β (in case b = 1).
• To test whether a given value X requires a (non-artificial) abort, B queries Ocheck(X), which

returns 1 if and only if ((β1, . . . , βn), π)← TrapEvalVHF(td) with βn 6= 0.
• The artificial abort step is performed by B exactly as in Game 1.

Note that if b = 0, then the view of A is identical to Game 1, while if b = 1 then it is identical
to Game 2. Thus, by the adaptive indistinguishability of the VHF, we have

Adv2A(k) ≥ Adv1A(k)− negl(k)

for some negligible function negl(k).

Game 3. Finally, we have to make one last technical modification before we are able to
describe our reduction to the (n − 1)-linear assumption. Game 3 proceeds exactly as before,

except that matrix [B] has a slightly different distribution. In Game 2, B
$← GL

(
nZp) is

chosen uniformly random (and invertible). In Game 3, we instead choose matrix B by sampling

b1, . . . ,bn−1
$← (Z∗p)n and bn

$← Znp , defining B := (b1, . . . ,bn), and then computing [B].
Thus, we ensure that the first n − 1 vectors do not have any component which equals the
identity element. This is done to adjust the distribution of [B] to the distribution chosen by
our reduction algorithm.

By applying the union bound, we have
∣∣Adv3A(k)− Adv2A(k)

∣∣ ≤ n2/p. Since n is polynomially
bounded and log(p) ∈ Ω(k), we have

Adv3A(k) ≥ Adv2A(k)− negl(k)

for some negligible function negl(k).
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The reduction to the (n − 1)-linear assumption. In this game, we describe our actual
reduction algorithm B. Adversary B receives as input a (n− 1)-linear challenge [c,d, t], where

c = (c1, . . . , cn)>
$← (Z∗p)n, d

$← Znp , and either t =
∑n

i=1 di/ci or t
$← Zp. It simulates the VRF

security experiment exactly as in Game 3, with the following differences.

Initialization and set-up of parameters. Matrix [B] is computed as follows. First, B
chooses n(n − 1) random integers αi,j

$← Z∗p for i ∈ {1, . . . , n − 1} and j ∈ {1, . . . , n}. Then it

sets [bi] := (αi,1c1, . . . , αi,n, cn)> and [bn] := [d], and finally [B] := [b1, . . . ,bn]. Vector [w] is
set to [w] := [c].

Note that matrix [B] and vector [w] are distributed exactly as in Game 3. Observe also
that the first n− 1 column vectors of [B] depend on c, while the last vector is equal to d.

Answering Evaluate-queries. Whenever A issues an Evaluate-query on input X(j), then
B computes β = (β1, . . . , βn)> ← TrapEvalVHF(td , X(j)). If βn 6= 0, then B aborts and outputs
a random bit. Otherwise it computes

[v] := [B · β] =
[
(b1, . . . ,bn−1) · (β1, . . . , βn−1)>

]
=
[
(γ1c1, . . . , γncn)>

]
for integers γ1, . . . , γn, which are efficiently computable from β and the αi,j-values chosen by B
above. Here we use that βn = 0 holds for all Evaluate-queries that do not cause an abort.

Next, B computes the proof elements in [z] by setting [zi] := [γi] for all i ∈ {1, . . . , n}. Note
that, due to our setup of [w], it holds that

[γi] =

[
γici
ci

]
=

[
vi
wi

]
thus all proof elements can be computed correctly by B. Finally, B sets

Y :=

n∏
i=1

[zi] =

[
n∑
i=1

zi

]

which yields the correct function value. Thus, all Evaluate-queries can be answered by B
exactly as in Game 3.

Answering the Challenge-query. When A issues a Challenge-query on input X(0), then
B computes β = (β1, . . . , βn)> ← TrapEvalVHF(td , X(0)). If βn = 0, then B aborts and outputs
a random bit. Otherwise again it computes the γi-values in

[v] := [B · β] =
[
(b1, . . . ,bn−1) · (β1, . . . , βn−1)> + bn · βn

]
=
[
(γ1c1, . . . , γncn)> + d · βn

]
Writing vi and di to denote the i-th component of v and d, respectively, it thus holds that
vi = γici + diβn. Observe that then the function value is

Y =

[
n∑
i=1

vi
ci

]
=

[
n∑
i=1

γici + diβn
ci

]

B computes and outputs [t · βn] · [
∑n

i=1 γi] = [t · βn +
∑n

i=1 γi]. Observe that if [t] =
[
∑n

i=1 di/ci], then it holds that[
t · βn +

n∑
i=1

γi

]
=

[
βn ·

n∑
i=1

di
ci

+

n∑
i=1

γici
ci

]
=

[
n∑
i=1

γici + diβn
ci

]
= Y
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Thus, if [t] = [
∑n

i=1 di/ci], then B outputs the correct function value Y . However, if [t] is
uniformly random, then B outputs a uniformly random group element.

Finally, B performs an artificial abort step exactly as in Game 2. Note that B provides a
perfect simulation of the experiment in Game 3, which implies that

Adv
(n−1)-lin
B (k) = Adv3A(k)

which is non-negligible, if AdvVRFA (k) is.
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A The need for an artificial abort

The “artificial abort” technique of Waters [44] has become standard for security proofs that
combine a “partitioning” proof technique with a “decisional” complexity assumption. For ex-
ample, it is also used to analyze Waters’ IBE scheme [44], the verifiable random function of
Hohenberger and Waters [28], and many other works.

Unfortunately, the artificial abort is necessary, because our (n−1)-linear reduction algorithm
B is not able to use the output of A directly in case the experiment it not aborted. This is
because the abort probability may depend on the particular sequence of queries issued by A.
For example, it may hold that Pr [B = b] = 1/2 + ε for some non-negligible ε, which means that
A has a non-trivial advantage in breaking the VRF-security, while Pr [B = b | ¬abort] = 1/2,
which means that B does not have any non-trivial advantage in breaking the (n − 1)-linear
assumption. Essentially, the artificial abort ensures that B aborts for all sequences of queries
made by A with approximately the same probability.

Alternatively, we could avoid the artificial abort by following the approach of Bellare and
Ristenpart [6], which yields a tighter (but more complex) reduction. To this end, we would have
to define and construct a PVHF which guarantees sufficiently close upper and lower bounds
on the abort probability. This is possible by adopting the idea of balanced admissible hash
functions (AHFs) from [29] to “balanced PVHFs”. Indeed, instantiating our adaptively-secure
PVHF with the balanced AHF from [29] yields such a balanced PVHF. However, this would have
made the definition of PVHFs much more complex. We preferred to keep this novel definition
as simple as possible, thus used the artificial abort approach of Waters [44].
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