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Abstract. Guess-and-determine attacks are based on guessing a subset
of internal state bits and subsequently using these guesses together with
the cipher’s output function to determine the value of the remaining
state. These attacks have been successfully employed to break NFSR-
based stream ciphers. The complexity of a guess-and-determine attack is
directly related to the number of state bits used in the output function.
Consequently, an opportunity exits for efficient cryptanalysis of NFSR-
based stream ciphers if NFSRs used can be transformed to derive an
equivalent stream cipher with a simplified output function.
In this paper, we present a new technique for transforming NFSRs. We
show how we can use this technique to transform NFSRs to equivalent
NFSRs with simplified output functions. We explain how such transfor-
mations can assist in cryptanalysis of NFSR-based ciphers and demon-
strate the application of the technique to successfully cryptanalyse the
lightweight cipher Sprout. Our attack on Sprout has a time complexity of
270.87, which is 23.64 times better than any published non-TMD attack,
and requires only 164 bits of plaintext-ciphertext pairs.
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1 Introduction

Stream ciphers generate a sequence of pseudorandom bits called a keystream
which is combined with plaintext to produce a stream of ciphertext. Stream
ciphers are attractive because, generally, they can achieve high throughput and
their simplicity makes them suitable for resource constrained devices such as
wireless sensors and Radio Frequency Identification tags. A typical stream cipher
for achievement of fast encryption of messages contains feedback functions and
an output function [28]. Linear feedback shift registers (LFSRs) are often used in
the design of stream ciphers because LFSRs are simple and easy to implement
in hardware. However, they are insecure against several attacks such as fast
correlation attack [24], and algebraic attack [10, 25]. Nonlinear feedback shift
registers (NFSRs) are introduced as a protection against these attacks.
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There are two ways to implement NFSRs. An n-bit NFSR in the Fibonacci
configuration (Figure 1), has one feedback function which updates the most
significant bit (bit n− 1) of the register. The values of other bits are determined
by shifting. That is, bit i is shifted to the bit i− 1 (i = n− 1, ..., 1).

n-2 n-3 ... 0n-1

Feedback function

Output

Fig. 1: The Fibonacci configuration of NFSRs

In the Galois configuration of NFSRs (Figure 2), each bit is updated using
its own feedback function. Therefore, there are up to n feedback functions.

n-2 ... 0n-1fn-1 Outputfn-2 f0

Fig. 2: The Galois configuration of NFSRs

Dubrova [11] has formulated a transformation of the Fibonacci configuration
to the Galois configuration for NFSRs with the aim of increasing the computation
speed. She later outlined a method for deriving the corresponding initial states
to generate identical output keystreams [12]. Dubrova [14] further elaborates
transformations for NFSRs. In [11, 14], Dubrova identifies several criteria that
should be satisfied in order to maintain an equivalent output keystream sequence
before and after the transformation of the stream cipher. Dubrova [14] notes the
potential for exploiting NFSR transformations for cryptanalysis, however no such
use is proposed and to the best of our knowledge this concept has, so far, not
been used for cryptanalysis.

The basic idea of guess-and-determine attack (GD attack) is to guess a part
of the internal state of the cipher, and use the guessed state to determine the
value of other unknown state. The attack was first introduced by Knudsen
et al. [21] and by Bleichenbacher and Patel [9] and was later named “guess-
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and-determine” [15, 19]. Since then, the guess-and-determine attack has been
used to target several stream ciphers [1, 17, 27, 29, 30].

We propose an improved guess-and-determine attack against NFSR-based
stream ciphers. The attack requires several rounds to guess and determine inter-
nal state bits involved in the output function of the stream cipher. At each round,
one bit of the keystream sequence is used to determine one bit of the internal
state. Meanwhile, the output functions used in other clocks feedback functions
of the stream ciphers are used to create Boolean functions system. More infor-
mation collected from the keystream sequence is able to reduce the complexity
of the attack and also increase the number of rounds we need. Consequently, to
reduce the cardinality of the dependence set of the output function of stream
ciphers, the techniques of transformation on NFSRs are adopted in this attack.
However, previous work on transformation on NFSRs contains several criteria on
transformation. We develop the theorem on transformation on NFSRs as well.

In FSE 2015, Armknecht and Mikhalev [3] proposed a lightweight stream
cipher called Sprout. The main inspiration of the design is to resist the time-
memory-data (TMD) tradeoff attacks [4, 6–8, 18], and break the rule of thumb
that the size of internal state should be at least twice the size of key. To achieve
these goals, the key bits are treated as implied internal state and are included
in the feedback function. This brings the total number of expressed and implied
internal state bits to twice the size of key. While only small part of key bits
involved in the feedback function of Sprout. In cryptanalytic perspective, by
guessing a small size of the key bits, the attackers are able to recover the whole
expressed internal states.

Lallemand and Naya-Plasencia [22] apply a rebound attack [26] with a time
complexity of 274.51, which is 210 times faster than a brute force attack. (The
attack requires the equivalent of 269.36 tries of a brute force attack, compared
with 280 required for the full brute force attack.) This attack, as well as other
attacks on Sprout, are summarised in Table 1.

Table 1: Summary of attacks on Sprout
Type of attack Data Time Memory

Rebound attack [22] 112 274.51 246

TMD tradeoff attack[16] 240 245 770 terabytes
Distinguishing attack[5] 275 O(n)

Guess-and-determine attack (this paper) 270.87 O(n)

The main contribution of this paper is showing how to exploit NFSR trans-
formations for cryptanalysis, in particular for reducing the time complexity of
guess-and-determine attacks. Firstly, we generalise the work of Dubrova [14] by
relaxing the limitations on NFSR transformations. We prove that our transfor-
mations result in equivalent NFSRs, producing the same output sequence. We
then show how to use these transformations to reduce the complexity of the
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NFSR output function, and with it the complexity of a guess-and-determine
attacks against the NFSR. Finally, we apply the transformation to the NFSR
used in the Sprout cipher and implement a guess-and-determine attack on the
transformed cipher. Our attack has a complexity of 270.87, which is 23.64 times
better than the best known non-TMD attack [22].

The paper is organised as follows: Section 2 provides background on NFSRs
and their transformations and introduces the notation used in this paper. Sec-
tion 3 presents our new transformations of NFSRs and proves that they preserve
the output sequence. Section 4 shows how to use the transformations to improve
guess-and-determine attacks against NFSR-based ciphers. In Section 5 we apply
the technique to the Sprout cipher.

2 Preliminaries

2.1 Boolean functions

We first introduce some definitions and notations we use throughout the paper.
These are, mostly, based on the notation of Dubrova [11].

Let GF (2) be the binary field with ⊕ denoting the addition operation and
juxtaposition denoting the field multiplication. For an arbitrary n, GFn(2) is
the n-dimensional vector space over GF (2). A Boolean function is a function
f : GFn(2) → GF (2). We sometimes use f(x) to replace the explicit notation
f(x0, . . . , xn−1) when the number of variables is clear from the context.

A product term of the variables x0, . . . , xn−1 is a term of the form xI =∏
i∈I xi for some I ⊆ {0, . . . , n− 1}.
Any Boolean function can be written as the sum of product terms of its input

variables—a format called the algebraic normal form (ANF). More formally,

f(x0, ..., xn−1) =
⊕

I⊆{0,...,n−1}

cIx
I

where cI ∈ {0, 1} is called the coefficient of the product term xI .
The dependence set of a Boolean function f is the set of those input variables

that affect the function’s value. That is, i ∈ dep(f) iff there exist x0, . . . , xi−1, xi+1, . . . , xn−1
such that f(x0, . . . , xi−1, 0, xi+1, . . . , xn−1) 6= f(x0, . . . , xi−1, 1, xi+1, . . . , xn−1)
We note that for a product term we always have dep(xI) = I.

Product terms for which the cardinality of the dependence set is one, such as
x0 or x15, are called linear product terms. Product terms with a larger cardinality
of the dependence set, for example x1x2, are non-linear product terms. The affine
product term x∅ = 1 is neither linear nor non-linear. We do not use the affine
product term in this work.

For a Boolean function f(x0, . . . , xn−1) we define the positive and negative
m-shifts of f , denoted by f |+m and f |−m, as the function obtained from f by
increasing and decreasing the indices of the input variables by m. That is,

f |+m(x0, . . . , xn−1) = f(xm, . . . , xn−1, x0, . . . , xm−1)

f |−m(x0, . . . , xn−1) = f(xn−m, . . . , xn−1, x0, . . . , xn−m−1)
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2.2 Feedback Shift Registers

A shift register is a storage element consisting of n bits, known as the state of
the register. We use the notation sti for the value of bit i of the state at time t,
and collectively denote the whole state at time t by st = (st0, . . . , s

t
n−1). At each

round, each of the state bits receives the value of the next bit, i.e. sti = st−1i+1 for
0 ≤ i < n − 1. At time t the register gets an input which is entered into stn−1.
The output of the register at time t is the value st0.

In a simple form of a feedback shift register, the input is calculated using
a Boolean feedback function fn−1 of the state. That is, stn−1 = fn−1(st−1) =

fn−1(st−10 , . . . , st−1n−1). This form of feedback shift registers is usually called the
Fibonacci configuration.

A more generalised form, known as the Galois configuration, has feedback
functions feeding into each bit. More formally, sti = fi(s

t−1). A feedback func-
tions of the type fi(s

t) = st−1i+1 ⊕ gi(s
t−1) such that i + 1 6∈ dep(gi) is called

singular. Note that index arithmetic is done modulo-n, i.e. stn is the same as st0
and n ∈ dep(gi) iff 0 ∈ dep(gi).

Further generalisations of feedback shift registers include combining external
inputs with the feedback functions or using a Boolean output function z(st)
to generate the output at time t. Two feedback shift registers are considered
equivalent if they produce the same output sequence when given the same input
sequence.

In a linear feedback shift register (LFSR) the feedback functions and the
output function are all linear. Otherwise the register is a non-linear feedback
shift register (NFSR).

2.3 Transformations of NFSRs

Several works have looked at conversions between Galois and Fibonacci NFSRs.
Dubrova [11] looks at converting Fibonacci NFSRs to the Galois configuration
with the aim of improving the performance by reducing the depth of the logical
circuit used for implementing the feedback function. Dubrova notices that under
certain conditions, an NFSR can be converted to an equivalent NFSR by shifting
product terms between the feedback functions of the bits of the NFSR. More
specifically, the shifts are possible if the NFSRs are uniform. That is, they are
split around a terminal bit τ , such that all of the non-trivial feedback functions
update bits above the terminal bit and take their input from state bits below
the terminal bit.

Dubrova [12] shows how to update the initial state of the NFSR to ensure
that the output sequence is the same after the shift of product terms when using
a trivial output function z(t) = st0.

Dubrova [14] specifies a set of constraints for shifting product terms be-
tween feedback functions. The constraints are the same as those we present in
Section 3.1. These constraints are more relaxed than the requirement of using
uniform NFSRs.
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Lin [23] examines the equivalence between the Galois and the Fibonacci
configurations of NFSRs demonstrating that Galois NFSRs of a specific con-
struction can be converted into equivalent Fibonacci NFSRs. The construction
requires that the feedback functions only take input from lower bits than the bits
they update. That is, st+1

i = sti+1 ⊕ gi(st), such that dep(gi) ⊂ {0, . . . , i − 1}1.
For these NFSRs, Lin [23] iteratively replaces occurrences of sti in the feedback
functions with the expanded form sti = st−1i+1 ⊕ gi(s

t−1
0 , . . . , st−1i−1). Each such re-

placement effectively shifts the non-trivial part of the feedback function of bit i,
creating an equivalent NFSR in which the feedback function of bit i is trivial,
i.e. st+1

i = sti−1. The resulting NFSR at the end of the process has only one
non-trivial feedback function and is, therefore, a Fibonacci NFSR.

3 A Generalised NFSR Transformation

In this section we present a generalisation of the transformations suggested in
previous works. For simplicity, we look at transformations that shift a single
product term one bit down the NFSR. Equivalent transformations that shift the
product term up one bit can be constructed in a similar manner. We note that by
repeatedly shifting multiple product terms we can achieve the shifts suggested
in the prior works.

3.1 The Basic Shift

We have an n-bit NFSR N , with feedback functions fi(x) = xi+1 ⊕ gi(x) and
an output function z(x). We want to shift a product term p = xI , for some
I ⊆ {0, . . . , n− 1}, from the feedback function fα to fα−1.

Intuitively, what we want is to create an equivalent NFSR N̄ with feed-
back functions f̄i(x) = xi+1 ⊕ ḡi(x) and an output function z̄(x) such that the
main difference between N and N̄ is that f̄α(x) = fα(x) ⊕ p(x) and f̄α−1(x) =
fα−1 ⊕ p|−1(x). In the general case, we expect to need to have more differences
between N̄ and N to achieve equivalence. However, as a warmup, we first look
at a restricted scenario, in which N̄ does not require any further changes. The
constraints we have are:

1. α+ 1 6∈ I.
2. fi−1(x) = xi for all i ∈ I.
3. α 6∈ dep(gi) for any i 6= α.
4. α 6∈ dep(z).

As mentioned above, these constraints are the same as the constraints of
Dubrova [14]. The main difference between the setting we present here and the
settings of Dubrova is that we only shift the product term to a neighbouring bit,
hence we require multiple shifts to achieve the results of Dubrova.

1 Lin [23] defines Galois NFSRs as those having this specific construction. This is a
subset of the Galois configuration as the term is used in Dubrova [11] and in this
paper.
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We now define a shift state transform that we will use for showing that N̄
and N are equivalent.

Definition 1. Let p = xI be a product term, and 0 ≤ α < n. The shift state
transform Tp,α : GFn(2)→ GFn(2) is defined as follows:

Tp,α(s0, . . . , sn−1) = (s0, . . . , sα−1, sα ⊕ p|−1(s0, . . . , sn−1), sα+1, . . . , sn−1)

Lemma 1. Let st and s̄t denote the states of N and N̄ , respectively, at time t.
If s̄t = Tp,α(st) then s̄t+1 = Tp,α(st+1).

Proof. We first note that due to Constraint 2 if i ∈ I, st+1
i = sti+1. Hence, we have

p(st) = p|−1(st+1). We also note that from Constraint 1 we have α+ 1 6∈ dep(p),
which implies α 6∈ dep(p|−1). Because the only difference between st and s̄t

is in bit α we have p|−1(st) = p|−1(s̄t) and also, by Constraint 3, we have
gi(s̄

t) = gi(s
t).

We now looks at the bits of state st+1. For i 6= α, i 6= α− 1 we have ḡi = gi.
Consequently

s̄t+1
i = s̄ti+1 ⊕ ḡi(s̄t) = sti+1 ⊕ gi(s̄t) = st+1

i

For state bit α− 1.

s̄t+1
α−1 = f̄α−1(s̄t)

= fα−1(s̄t)⊕ p|−1(s̄t)

= s̄tα ⊕ gα−1(s̄t)⊕ p|−1(s̄t)

= stα ⊕ p|−1(s̄t)⊕ gα−1(s̄t)⊕ p|−1(s̄t)

= stα ⊕ gα−1(s̄t)

= stα ⊕ gα−1(st)

= st+1
α−1

For bit α we have:

s̄t+1
α = f̄α(s̄t) = fα(s̄t)⊕ p(s̄t) = fα(st)⊕ p(s̄t)

= fα(st)⊕ p|−1(s̄t+1) = fα(st)⊕ p|−1(st+1)

Thus

s̄t+1 = (s̄t+1
0 , . . . , s̄t+1

n−1)

= (st+1
0 , . . . , st+1

α−1, s
t+1
α ⊕ p|−1(st+1), st+1

α+1, . . . , s
t+1
n−1)

= Tp,α(st+1)

ut

Theorem 1. If s̄0 = Tp,α(s0) then for all t, s̄t = Tp,α(st).

Proof. Follows from Lemma 1 by induction on t. ut
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Theorem 2. N and N̄ are equivalent.

Proof. By definition, z̄, the output function of N̄ is the same as the output
function of N . We need to show that for any initial state of N we can find an
initial state of N̄ such that the output sequences of the two NFSRs are the same.
Let s0 be the initial state of N . We show that if N̄ is initialised to Tp,α(s0) then
the output sequences are the same.

By Theorem 1 we know that for any t, s̄t = Tp,α(st). Hence, for any t, and
for any i 6= α, s̄ti = sti. From Constraint 4 we know that z(st) does not depend
on the value of stα. Hence, z̄(s̄t) = z(s̄t) = z(st). ut

We note that the operations we use in the transform are all reversible, hence
a similar construction can be used to shift p in the reverse direction, i.e. from
fα to fα+1

3.2 Relaxing the Constraints

In Section 3.1 we specified several constraints on the shifted product term and
used those to establish an invariant, based on the shift state transform of Defi-
nition 1. In this section we want to relax some of the constraints, namely Con-
straints 3 and 4, while preserving the invariant.

The idea is simple: if we assume that the invariant holds we can modify
the feedback and output functions of N̄ to account for the modified state value
s̄tα. That is, the feedback function we use is such that f̄(x) = f(T−1p,α(x)), and

because Tp,α = T−1p,α, we have f̄(x) = f(Tp,α(x)). The following theorem applies
this idea more formally.

Theorem 3. Let N be an n-bit NFSR, with feedback functions fi(x) = xi+1 ⊕
gi(x), and an output function z(x). Let p = xI be a product term such that
Constraints 1 and 2 above hold. If N̄ is an n-bit NFSR, with feedback functions
f̄i(x) and an output function z̄(x) defined as follows:

f̄i(x) =

xα ⊕ gα−1(Tp,α(x))⊕ p|−1(x) i = α− 1
fα(Tp,α(x))⊕ p(x) i = α
fi(Tp,α(x)) Otherwise

z̄(x) = z(Tp,α(x))

then N and N̄ are equivalent.

Proof. We first show that the invariant holds, i.e. that if s̄t = Tp,α(st) then
s̄t+1 = Tp,α(st+1). For i 6= α− 1, i 6= α we have:

s̄t+1
i = f̄i(s̄

t) = fi(Tp,α(s̄t)) = fi(s
t) = st+1

i
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For state bit α− 1 we have:

s̄t+1
α−1 = f̄α−1(s̄t)

= s̄tα ⊕ gα−1(Tp,α(s̄t))⊕ p|−1(s̄t)

= stα−1 ⊕ p|−1(st)⊕ gα−1(Tp,α(s̄t))⊕ p|−1(s̄t)

= stα−1 ⊕ gα−1(Tp,α(s̄t))

= stα−1 ⊕ gα−1(st)

= st+1
α−1

Finally, for state bit α:

s̄t+1
α = f̄α(s̄t) = fα(Tp,α(s̄t))⊕p(s̄t) = fα(st)⊕p(s̄t) = fα(st)⊕p|−1(s̄t+1) = fα(st)⊕p|−1(st+1)

Thus,

s̄t+1 = (s̄t+1
0 , . . . , s̄t+1

n−1)

= (st+1
0 , . . . , st+1

α−1, s
t+1
α ⊕ p|−1(st+1), st+1

α+1, . . . , s
t+1
n−1)

= Tp,α(st+1)

By induction on t we show that if s̄0 = Tp,α(s0) than for all t s̄t = Tp,α(st)
hence we have z̄(s̄t) = z(Tp,α(s̄t)) = z(st) and the output sequences of N and
N̄ are identical. ut

3.3 Generalised Transformation

We now want to remove Constraint 2. When we remove the constraint, we can
no longer claim that shifting the product term only introduces a one round
delay. That is, we no longer have p(st) = p|−1(st+1). Consequently, to preserve
the invariant we need to update f̄α. The fix, basically, reverses the feedback
functions of the inputs of p|−1. This fix is formalised in Theorem 4.

Theorem 4. Let N be an n-bit NFSR, with feedback functions fi(x) = xi+1 ⊕
gi(x), and an output function z(x). Let p = xI be a product term such that
α + 1 6∈ I. If N̄ is an n-bit NFSR, with feedback functions f̄i(x) and an output
function z̄(x) defined as follows:

f̄i(x) =

xα ⊕ gα−1(Tp,α(x))⊕ p|−1(x) i = α− 1
fα(Tp,α(x))⊕ p|−1(f̄0(x), . . . , f̄α−1(x), 0, f̄α+1(x), . . . , f̄n−1(x)) i = α
fi(Tp,α(x)) Otherwise

z̄(x) = z(Tp,α(x))

then N and N̄ are equivalent.

Proof. We note that the only difference from Theorem 3 is the definition of f̄α,
which only affects state bit α. For this bit we now have:

s̄t+1
α = f̄α(s̄t)

= fα(Tp,α(s̄t))⊕ p|−1(f̄0(s̄t), . . . , f̄α−1(s̄t), 0, f̄α+1(s̄t), . . . , f̄n−1(s̄t))

= fα(st)⊕ p|−1(st+1
0 , . . . , st+1

α−1, 0, s
t+1
α+1, . . . , s

t+1
n−1)
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and because α 6∈ dep(p|−1), we have s̄t+1
α = fα(st) ⊕ p|−1(st+1) = st+1

α ⊕
p|−1(st+1).

The rest of the proof is the same as the proof of Theorem 3 ut

3.4 Discussion

We can compare our work to previously suggested transformations based on two
different criteria: the allowed combinations of inputs and outputs of the product
terms that can be shifted and the other constraint on the shift. On the first
criterion, we see that the work of Dubrova [11] and its extension [12] are limited
to only move product terms that have inputs below τ and output above τ . The
space of possible shift is depicted in Figure 3. The diagram displays the possible
inputs in the X axis and possible outputs in the Y axis, with a rectangular area
corresponding to these shifts.

fn-1

fτ

τ0 n-1

f0

... ...

...

...

fτ-1

Dubrova [12]

Lin [24]

Our work and 

Dubrova [15]

Input

O
u

tp
u
t

Fig. 3: The conditions to apply different methods of transformation on NFSRs

In Lin [23] the feedback function of bit i depends only on state bits below i.
This set of combinations is a superset of the possible combinations in Dubrova
[11]. This set covers all the area above the main diagonal in Figure 3.

Dubrova [14] and our work increase the possible combinations. Both works
can shift product terms from bit α as long as the product terms do not depend on
bit α + 1. The reason we cannot shift product terms from bit α if they depend
on bit α + 1 is that such shifts are not generally invertible. As Dubrova [14]
notes, such product terms are not common in cryptography because the use of
non-invertible functions may result in a loss of entropy [20].
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On the second criterion, we have already mentioned that Dubrova [14] im-
poses the same constraint as our Theorem 2. These constraints also apply implic-
itly to uniform NFSRs [11, 12]. As discussed above, when all of the constraints
are imposed, the only changes required for equivalence are in the feedback func-
tions of the bit the product term is shifted from and the bit the product term
is shifted to. By adjusting the initial state, we can guarantee equivalence of the
output sequences.

The transformation of Lin [23] does not impose our Constraint 3. Conse-
quently, it results in changes in feedback functions that depend on the original
output of the shifted product term. The order of applying the transformations
implies our Constraint 2 and the implied use of the output function z(x) = x0
implies our Constraint 4. Thus, our work is the first to apply NFSR transforma-
tions without Constraints 2 and 4.

Another constraint implicit in all prior works is that they all shift product
terms that exist in the ANF of the feedback function. Our transformation does
not impose this constraint. Naturally, shifting a product term from a feedback
function it does not exist in will add the product term to that feedback func-
tion, increasing it complexity. However, as we show below the complexity of the
feedback function has little implications on the guess-and-determine attack we
use.

4 Transforming NFSRs to Improve Guess-and-Determine
Attacks

Dubrova [14] speculates that NFSR transformations may be useful for crypt-
analysis, however, this speculation is not substantiated and exploring this is left
for future work. In this section we show an example of how transforming an
NFSR can facilitate guess-and-determine attacks. We first introduce guess-and-
determine attacks, with focus on attacks in the context of NFSR-based stream
ciphers and show how to apply the attack to a toy NFSR. We then explain how
reducing the complexity of the output function facilitates guess-and-determine
attacks, and show how transforming the toy NFSR can be reduce the complexity
of the output function and with it the complexity of the attack.

4.1 The Guess-and-Determine Attack

A guess-and-determine attack is a type of known plaintext attack that has been
successfully employed against stream ciphers [9, 15, 17, 19, 21, 29, 30]. In a
known plaintext attack model the adversary has access to both the plaintext and
its encrypted ciphertext and, consequently, the adversary can recover the secret
keystream used for encrypting the known plaintext to the known ciphertext.
The central idea of a guess-and-determine attack is to part of the internal state
of a cipher and subsequently use the known keystream bits to determine the
remaining state.
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When applied to NFSR-based stream ciphers, the attack first guesses the
values of state bits in the dependence set of the output function. It then elimi-
nates guesses that are inconsistent with the (known) output bit. This guess and
elimination steps can be viewed as guessing some state bits and using the out-
put function to determine the value of others. If there are remaining guesses, the
attack uses the NFSR feedback functions to propagate the previously guessed
bits and repeats with a guess of the next round.

If there are no remaining guesses at a round, the attack backtracks to the
previous round and tries another guess. If, at some stage, all of the state bits are
guessed, the attack “runs” the NFSR for several rounds to ensure it is consistent
with the known output stream. This general attack methodology is illustrated
in algorithm 1.

Input : An n-bit keystream sequence, the output function and feedback
functions of the cipher

Output: Internal state

Initialise the system of Boolean functions based on the output functions and
feedback functions;
i← 0;
while System of boolean functions is not recovered do

Guess values of unknown variables in the dependent set of the output
function in the i-th round;
Use the i-th bit of the keystream to determine variable(s) in the dependence
set of the output function;
if the system of Boolean functions is solved then

return the information from the i-th round to determine the values of
key bits

end
else if the Boolean functions system is consistent then

i← i + 1;
Move to the next round;

end
else

Reject the wrong guess, and move to the next guess;
if all guesses are exhausted and there is no correct guess then

i← i− 1 Move to the previous round;
end

end

end
Algorithm 1: Guess-and-Determine Attack

Generally, as the attack progresses, information from some of the previously
guessed bits will propagate to state bits in the dependence set of the output
function, reducing the number of bits to be guessed in future rounds. For exam-
ple, if the output function depends on xi and xi+2, and assuming trivial feedback
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functions for state bits i and i+1, a guess of sti+2 would propagate in two rounds

to st+2
i , hence there would be no need to guess the latter.
When the output function is non-linear, the amount of reduction in the num-

ber of bits to guess may depend on the value of previously guessed bits. For
example, if the ANF of the output function contains the product term xixj , and
at round t the adversary has a guess for sti, the guessed value will determine
whether stj needs to be guessed. If sti = 0, the product term evaluates to 0 ir-
respective of the value of stj . There is, therefore, no need to guess the latter. If,
however, sti = 1, the value of the product term depends on stj , which needs to be
guessed. Similarly, when the a feedback function is not linear, it may sometimes
be possible to use it to propagate guesses even if not all of its inputs are known.

4.2 Attack Example

As an illustrative example we now consider a toy 6-bit NFSR N1 with the fol-
lowing feedback functions:

f5(x) = x0 ⊕ x1 ⊕ x2 ⊕ x1x2
f4(x) = x5

f3(x) = x4

f2(x) = x3

f1(x) = x2

f0(x) = x1

which has a period of 63 [13].
The output function we use is

z(x) = x0 ⊕ x1 ⊕ x2x3 ⊕ x4 ⊕ x5

A brute force attack on the cipher has to guess each possible combination of
the initial state of the cipher, resulting in a search space of size 26.

To perform a guess-and-determine attack on N1, we guess the initial state of
bits 0 to 4, i.e. s00, . . . , s

0
4. Using the output function and the first output bit, we

can now determine the value of s05 and recover the initial state with an attack
complexity of 25. Figure 4 illustrates this attack.

4.3 Improving the Guess-and-Determine Attack

When we examine the guess-and-determine attack above, we can see that we use
one bit of information from the output sequence. By using this bit we can reduce
the attack complexity by one bit. To do better we will need to use more bits
from the output sequence, and for that we need to be able to guess less than five
bits in the first round and still be able to use the first output bit to determine
parts of the state.
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Fig. 4: The guess-and-determine attack on NFSR N1

One way to achieve this is to rely on the non-linearity of the output function.
For the specific example of N1, we note that if we guess s02 = 0, there is no need
to guess s03. We can use s00, s01, s02, s04 and the output bit to determine s05.

Not guessing s03 means that we cannot propagate its value the second round,
hence we will not have the values s12, but we will have the values of all of the
other state bits. If s13 = 1, we can use the next output bit to determine the value
of s12 and complete the attack. Otherwise, we note that s11 = 0, hence s25 does
not depend on s12 and we can move to the next round. In the next round we still
miss the value of the last bit s21, which we can determine from the output bit.
These scenarios are illustrated in Figure 5.

In summary, in half of the cases, when we guess s02 = 1, we need to guess 5
bits and in the other half, when s02 = 0 we only need to guess 4 bits. This gives
a total of 24 cases to search and the attack complexity is 24.58.

4.4 Reducing the Complexity of the Output Function

Another way of reducing the number of state bits we need to guess in each round
is to reduce the cardinality of the dependence set of the output function. To be
able to use the output function to determine state bit values, we need to guess
the values of all but one of the inputs of the output function. Reducing the
cardinality of the output function reduces the number of bits we need to guess
each round and has the potential of increasing the number of output bits we can
use.

The main contribution of this paper is showing how transforming the NFSR
can reduce the attack complexity by reducing the cardinality of the dependence
set of the output function.

Suppose that the output function can be expressed as z(x) = xa⊕xa+i⊕z′(x),
such that a 6∈ dep(z′), a + i 6∈ dep(z′) and i > 1. We want to eliminate xa
from the output function. We note that if we shift the product term p = xa+1

from fa+i to fa+i−1, we get a new output function z̄(x) = z(Txa+1,a+i(x)) =
xa ⊕ (xa+i ⊕ xa)⊕ z′(x) = xa+i ⊕ z′(x). Note that because a+ i 6∈ dep(z′), the
transform does not modify z′.

While this approach reduces the cardinality of the output function, it may
complicate the feedback functions. In particular, for the case of Fibonacci NF-
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SRs, such a transformation introduces two non-trivial feedback functions at fa+i
and fa+i−1 that reduce the amount of state propagation we can use. Hence,
transforming the NFSR presents a balancing act between the complexity of the
feedback functions and the cardinality of the dependence set of the output func-
tion.

Depending on the structure of the original NFSR, we can use two heuristics to
reduce the effect of the transformation on the structure of the feedback functions.
Assuming a Fibonacci NFSR, when a+ i is close to n− 1, we use multiple shifts
to shift xn−i from fn−1 to fa+i−1. such a shift will only result in one non-trivial
feedback function at fa+i−1. Furthermore, if we have a < b < a+ i, such that

z(x) = xa ⊕ xb ⊕ xa+i ⊕ xb+i ⊕ z′(x) (1)

and a, b, a+ i, b+ i 6∈ dep(z′), shifting xn−i from fn−1 to fa+i−1 would eliminate
both xa and xb from the output function, while only introducing one non-trivial
feedback function at fa+i−1.

4.5 Attacking a Transformed NFSR

Observing N1 we note that there is a combination of four product terms in the
output function which satisfies the criteria outlined in Equation 1. Therefore,
we shift the product term x2 from the bit 5 to the bit 4, and then to the bit 3
to produce the following equivalent Galois NFSR N2:

f5(x) = x0 ⊕ x1 ⊕ x1x2
f4(x) = x5

f3(x) = x4 ⊕ x0
f2(x) = x3

f1(x) = x2

f0(x) = x1

with a transformed output function we use is

z(x) = x2x3 ⊕ x4 ⊕ x5

Now we perform the guess-and-determine attack on N2. In the first round
we guess bits s02, s03 and s04 and use the output function to determine s05. We
now propagate the known state we know the values of s11, s12 and s14. However,
because the feedback function f3 is not trivial we do not know s13, so we guess
it, and can use the second output bit to determine s15.

We now have guesses for s13 and s04 combining these with s13 = f3(s0) = s04⊕s00
allows us to determine s00.

If s02 = 0, we can use s00 with s15 = f5(s0) = s00 ⊕ s01 ⊕ s01s02 = s00 ⊕ s01 ⊕ s010 =
s00 ⊕ s01 to determine s01. This recovers the complete initial state s0. This case is
displayed in Figure 6 (A).
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If s02 = 1 (Figure 6 (B)), we can reduce f5(s0) = s00⊕s01⊕s01s02 = s00⊕s01⊕s011 =
s00. Because s00 is determined via f3, it is independent of s15. Hence there is a
50% chance that the system is inconsistent, with s00 6= s15. When the system is
consistent, we propagate the data we have to s2, guess s23 and determine s25 and
we have the complete state.
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Fig. 6: Guess-and-determine attack on NFSR N2. (A) s02 = 0, (B) s02 = 1

To sum up, we guess four bits for the first two rounds. In 3/4 of the cases we
can completely determine the internal state. For the other 1/4 we need an addi-
tional guess. Hence, the attack complexity is 3

424+ 1
425 = 20 = 24.32. Admittedly,

this is a very small improvement over the attack on the original NFSR. However,
this is a toy example. As we shall now see, for larger NFSRs the improvement
can be much more significant.
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5 A Guess-and-Determine Attack on the Sprout Stream
Cipher

So far we have demonstrated that NFSR transformations can improve guess-
and-determine attacks only in a very limited scenario. We now show that the
technique also works for real ciphers.

In this section we describe an attack on the Sprout cipher [3]. We start
with a description of the cipher, proceed with a description of a transformation
that reduces the cardinality of the output function and implement a guess-and-
determine attack on the cipher.

5.1 Description of Sprout Stream Cipher

k0 k1 ... k79

Round key function

Counterg

LFSRNFSR

Output Zt

f

kt

*

Fig. 7: Sprout cipher

Sprout [3] is a Grain-family stream cipher, which is inspired by Grain-128a [2].
Its internal state consists of a 40-bit LFSR l, a 40-bit Fibonacci NFSR n and a
7-bit counter c. The counter selects key bits that are fed together with counter
bit ct4 to the feedback function of the NFSR. Sprout uses an 80 bit key and a 70
bit initialisation vector (IV).

To describe the cipher We adopt a notations similar to that of Lallemand
and Naya-Plasencia [22]:

– t: clock-cycle number.
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– lti the ith state of the LFSR at clock t.

– nti the ith state of the NFSR at clock t.

– k = (k0, k1, ..., k79) the key bits.

– IV = (IV0, IV1, ..., IV69) initialisation vector.

– ktt round key bit generated at clock t.

– zt keystream bit generated at clock t.

– ct the value of the counter at clock t.

The LFSR uses the following feedback function:

lt+1
39 = lt0 ⊕ lt5 ⊕ lt15 ⊕ lt20 ⊕ lt25 ⊕ lt34

The NFSR uses the following feedback function:

nt+1
39 =k∗t ⊕ lt0 ⊕ ct ⊕ nt0 ⊕ nt13 ⊕ nt19 ⊕ nt35 ⊕ nt39 ⊕ nt2nt25 ⊕ nt3nt5 ⊕ nt7nt8 ⊕ nt14nt21

⊕ nt16nt18 ⊕ nt22nt24 ⊕ nt26nt32 ⊕ nt33nt36nt37nt38 ⊕ nt10nt11nt12 ⊕ nt27nt30nt31

where k∗t is defined as:

k∗t =

{
kt 0 ≤ t ≤ 79

(kt mod 80)(lt4 ⊕ lt21 ⊕ lt37 ⊕ nt9 ⊕ nt20 ⊕ nt29) t ≥ 80

The output function is:

zt = nt4l
t
6⊕lt8lt10⊕lt32lt17⊕lt19lt23⊕nt4nt38lt32⊕lt30⊕nt1⊕nt6⊕nt15⊕nt17⊕nt23⊕nt28⊕nt34

When the cipher starts, the NFSR and the LFSR are initialised from the IV
using the following formulas: n0i = IVi, 0 ≤ i ≤ 39, l0i = IVi+40, 0 ≤ i ≤ 29,
and l0i = 1, 30 ≤ i ≤ 38, l039 = 0. The cipher then executes 320 initialisation
rounds, in which rather than producing output, zt is fed back into the feedback
functions of the LFSR and the NFSR to update internal state.

5.2 Transformation of Sprout Cipher

We observe that the four linear product terms n17, n23, n28, n34 of the output
function meet the requirements of Equation 1, with a = 17, b = 23 and i = 11.
We, therefore apply the transformation suggested above by shifting p = xn−i =
x29 from f39 to f27.

We note that x29 is not in the ANF of the feedback function. Consequently,
moving it from the feedback function will add the product term, making the
function slightly more complex. Furthermore, for each shift we execute, we might
have to update the feedback function as described in Theorem 4. The resulting
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feedback function is:

nt+1
39 =k∗t ⊕ lt0 ⊕ ct ⊕ nt0 ⊕ nt13 ⊕ nt17 ⊕ nt18 ⊕ nt19 ⊕ nt24 ⊕ nt28 ⊕ nt29 ⊕ nt35 ⊕ nt39

⊕ nt2nt25 ⊕ nt3nt5 ⊕ nt7nt8 ⊕ nt14nt21 ⊕ nt16nt18 ⊕ nt22nt24 ⊕ nt26(nt32 ⊕ nt21)

⊕ (nt33 ⊕ nt22)(nt36 ⊕ nt25)(nt37 ⊕ nt26)(nt38 ⊕ nt27)⊕ nt10nt11nt12
⊕ nt27(nt30 ⊕ nt19)(nt31 ⊕ nt20)

nt+1
27 =nt28 ⊕ nt17

We also note that k∗t depends on some internal state that is modified by the
transform hence we need to update it to:

k∗t =

{
kt 0 ≤ t ≤ 79

(kt mod 80)(lt4 ⊕ lt21 ⊕ lt37 ⊕ nt9 ⊕ nt18 ⊕ nt20 ⊕ nt29) t ≥ 80

Finally, the output function depends on n38. Consequently, while the transfor-
mation removes n17 and n23 from the output function, it also adds a dependency
on n27. Thus the cardinality of the output function is only reduced by 1. The
new output function is:

zt = nt4l
t
6⊕ lt8lt10⊕ lt32lt17⊕ lt19lt23⊕nt4lt32(nt38⊕nt27)⊕ lt30⊕nt1⊕nt6⊕nt15⊕nt28⊕nt34

For initialisation, we apply the shift state transformation of Definition 1 to
initialise the 40-bit NFSR of the transformed Sprout by:

(IV0, IV1, ..., IV27, IV28 ⊕ IV16, IV29 ⊕ IV17, ..., IV39 ⊕ IV28)

5.3 Implementation of Guess-and-Determine Attack on the Sprout

In each of the first 8 rounds, we use one keystream bit to determine one bit in
the internal state. In the first round, we guess 15 bits (8 from the LFSR and 7
from the NFSR), and determine one bit by the output function (see Figure 8.
For simplicity, we do not present the status of the LFSR in the diagram.

In the second round, we again guess 15 bits and determine one (Figure 9).
Additionally, because we know both n127 and n028 we can use the feedback function
of n127 to determine n017 = n116.

From the third round forward, the state propagation provides us with some
guesses to the dependence set of the output function. Consequently, we only
need to guess 9 bits (4 LFSR and 5 NFSR) in the third round. (Figure 10.) The
number of bits we guess keeps decreasing—we only need to guess 8, 6, 6, 5 and
3 bits for the fourth, fifth, sixth, seventh and eighth rounds, respectively. These
are shown in Figures 11–15. During these round, we continue to use the feedback
function of n27 to determine n17.

For the ninth round we know all but four of the inputs of the output function,
so we need to guess three to determine the fourth. We guess two additional state
bits in the NFSR (see Figure 16) to increase the number of NFSR bits we know.
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Fig. 9: The 2nd round of guess-and-determine attack on Sprout
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Fig. 10: The 3rd round of guess-and-determine attack on Sprout
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Fig. 11: The 4th round of guess-and-determine attack on Sprout
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Fig. 12: The 5th round of guess-and-determine attack on Sprout
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Fig. 13: The 6th round of guess-and-determine attack on Sprout
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Fig. 14: The 7th round of guess-and-determine attack on Sprout
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Fig. 15: The 8th round of guess-and-determine attack on Sprout

At this stage most of the state has been guessed and we can start exploiting
the non-linear terms of the output function to determine some more bits and to
reject inconsistent states. (See Section 4.3.) If we are able to determine all of the
state bits, we are done. Otherwise we need to guess an additional bit and repeat
the attempt to complete the state.
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Fig. 16: The 9th round of guess-and-determine attack on Sprout

Once the internal state is recovered we follow the technique of Lallemand and
Naya-Plasencia [22] to recover the key. Each round there is a 50% probability
of having a key bit in the feedback function. Hence, by running the cipher for
160 rounds we expect to have 60 of the key bits affecting at least one of these
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160 rounds. We need to run the cipher for four more rounds for the key bit to
affect the output function. Hence after 164 rounds we can expect to recover 60
key bits. We can then brute force the remaining 20 bits.

To estimate the complexity of the attack, we ran 1,000,000 instances of the
last 3 rounds and counted the number of guesses in each. More specifically, for
each of the 1,000,000 instances we chose a random key, a random IV and a
random guess of 59 bits guessed in for first six rounds of the attack. We then
count the number of guesses we make for rounds 7 to 9. The average number of
guesses we make is 3775.10 = 211.87. For the first six rounds we need to guess a
total of 59 bits. Hence, the attack complexity is 259+11.87 = 270.87 This compares
favourably with the attacks of Lallemand and Naya-Plasencia [22] and Banik [5]
which require 274.51 and 275 guesses, respectively. The attack is significantly
slower than the TMD attack of Esgin and Kara [16], however, our attack has
modest memory requirements whereas their attack requires over 770 terabytes
of memory.

6 Conclusion

In this paper we show that transformations of NFSRs from the Fibonacci con-
figuration to the Galois configuration can assist cryptanalysis. To demonstrate
this, we generalise and extend past work on NFSR transformations. We discuss
the conditions under which such transformations can facilitate cryptanalytic
attacks and demonstrate the use of the technique to cryptanalyse the Sprout
cipher. Our guess-and-determine attack is faster than all previously published
non-TMD attacks on Sprout.

Our technique essentially shift complexity from the output function to the
feedback functions of the NFSR. While we are able to demonstrate improvement
in cryptanalysis, further work is required for better understanding the trade-offs
in NFSR transformations. Such understanding is also likely to help in designing
more secure NFSRs.
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