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Abstract. Cryptographic accumulators allow to accumulate a finite set of val-
ues into a single succinct accumulator. For every accumulated value, one can
efficiently compute a witness, which certifies its membership in the accumu-
lator. However, it is computationally infeasible to find a witness for any non-
accumulated value. Since their introduction, various accumulator schemes for
numerous practical applications and with different features have been proposed.
Unfortunately, to date there is no unifying model capturing all existing features.
Such a model can turn out to be valuable as it allows to use accumulators in a
black-box fashion.

To this end, we propose a unified formal model for (randomized) cryptographic
accumulators which covers static and dynamic accumulators, their universal fea-
tures and includes the notions of undeniability and indistinguishability. Addi-
tionally, we provide an exhaustive classification of all existing schemes. In doing
so, it turns out that most accumulators are distinguishable. Fortunately, a sim-
ple, light-weight generic transformation allows to make many existing dynamic
accumulator schemes indistinguishable. As this transformation, however, comes
at the cost of reduced collision freeness, we additionally propose the first indistin-
guishable scheme that does not suffer from this shortcoming. Finally, we employ
our unified model for presenting a black-box construction of commitments from
indistinguishable accumulators as well as a black-box construction of indistin-
guishable, undeniable universal accumulators from zero-knowledge sets. Latter
yields the first universal accumulator construction that provides indistinguisha-
bility.

1 Introduction

A (static) cryptographic accumulator scheme allows to accumulate a finite set X =
{x1, . . . , xn} into a succinct value accX , the so called accumulator. For every element
xi ∈ X , one can efficiently compute a so called witness witxi to certify the membership
of xi in accX . However, it should be computationally infeasible to find a witness for
any non-accumulated value y 6∈ X (collision freeness). Dynamic accumulators are an
extension that allows to dynamically add/delete values to/from a given accumulator
and to update existing witnesses accordingly (without the need to fully recompute
these values on each change of the accumulated set). Besides providing membership
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witnesses, universal accumulators also support non-membership witnesses for values
y 6∈ X . Here, collision freeness also covers that it is computationally infeasible to create
non-membership witnesses for values xi ∈ X . Over time, further security properties, that
is, undeniability and indistinguishability have been proposed. Undeniability is specific to
universal accumulators and says that it should be computationally infeasible to compute
two contradicting witnesses for z ∈ X and z 6∈ X . Indistinguishability says that neither
the accumulator nor the witnesses leak information about the accumulated set X and,
thus, requires randomized accumulator schemes.

Applications: Accumulators were originally proposed for timestamping purposes [5],
i.e., to record the existence of a value at a particular point in time. Over time, other
applications such as membership testing, distributed signatures, accountable certificate
management [8] and authenticated dictionaries [24] have been proposed. Accumulators
are also used as building block in redactable [35, 36], sanitizable [14], P -homomorphic
signatures [2], anonymous credentials [40], group signatures [41], privacy-preserving data
outsourcing [39] as well as for authenticated data structures [22]. Moreover, accumu-
lator schemes that allow to prove the knowledge of a (non-membership) witness for
an unrevealed value in zero-knowledge (introduced for off-line e-cash in [38]) are now
widely used for revocation of group signatures and anonymous credentials [13]. Quite
recently, accumulators were also used in Zerocoin [30], an anonymity extension to the
Bitcoin cryptocurrency.

Since their introduction, numerous accumulator schemes with somewhat different fea-
tures have been proposed. Basically, the major lines of work are schemes in hidden order
groups (RSA), known order groups (DL) and hash-based constructions (which may use,
but typically do not require number theoretic assumptions).

Hidden order groups: The original RSA-based scheme of Benaloh and de Mare [5] has
been refined by Baric and Pfitzmann [4], who strengthen the original security notion to
collision freeness. In [37], Sander proposed to use RSA moduli with unknown factoriza-
tion to construct trapdoor-free accumulators. Camenisch and Lysyanskaya [13] extended
the scheme in [4] with capabilities to dynamically add/delete values to/from the accu-
mulator, which constituted the first dynamic accumulator scheme. Their scheme also
supports public updates of existing witnesses, that is, updates without the knowledge of
any trapdoor. Later, Li et al. [26] added support for non-membership witnesses to [13]
and, therefore, obtained universal dynamic accumulators. They also proposed an opti-
mization for more efficient updates of non-membership witnesses, for which, however,
weaknesses have been identified later [28, 34]. Lipmaa [27] generalized RSA accumula-
tors to modules over Euclidean rings. In all aforementioned schemes, the accumulation
domain is restricted to primes in order to guarantee collision freeness. In [41], Tsudik
and Xu proposed a variation of [13], which allows to accumulate semiprimes. This yields
a collision-free accumulator under the assumption that the used semiprimes are hard
to factor and their factorization is not publicly known. Moreover, in [42] an accumula-
tor scheme that allows to accumulate arbitrary integers and supports batch updates of
witnesses has been proposed. Yet, this scheme was broken in [10].

Known order groups: In [31], Nguyen proposed a dynamic accumulator scheme which
works in pairing-friendly groups of prime order p. It is secure under the t-SDH assump-
tion and allows to accumulate up to t values from the domain Zp. Later, Damg̊ard and



Triandopoulos [17] as well as Au et al. [3] extended Nguyen’s scheme with universal fea-
tures. Quite recently, Acar and Nguyen [1] eliminated the upper bound t on the number
of accumulated elements of the t-SDH accumulator. To this end, they use a set of accu-
mulators, each containing a subset of the whole set to be accumulated. An alternative
accumulator scheme for pairing friendly groups of prime order has been introduced by
Camenisch et al. [12]. It supports public updates of witnesses and the accumulator and
its security relies on the t-DHE assumption.

Hash-based constructions: Buldas et al. [8, 9] presented the very first universal
dynamic accumulator that satisfies undeniability (termed as undeniable attester and
formalized in context of accumulators in [27]). Their construction is based on collision-
resistant hashing and the use of hash-trees. Another hash-tree based construction of a
universal accumulator that satisfies a notion similar to undeniability has been proposed
in [11] (the scheme is called a strong universal accumulator). Quite recently, another
accumulator based on hash-trees, which uses commitments based on bivariate polynomi-
als modulo RSA composites as a collision-resistant hash function, has been introduced
in [7].

For the sake of completeness, we also mention the construction of static accumulators
in the random oracle model based on Bloom filters, proposed by Nyberg [32,33].

Contribution: The contributions of this paper are as follows:

– While some papers [3–5, 13, 31] do not explicitly formalize accumulator schemes,
formal definitions are given in [1, 11, 12, 15, 21, 26, 27, 42]. However, these models
are typically tailored to the functionalities of the respective scheme. While they
widely match for the basic notion of (static) accumulators (with the exception of
considering randomized accumulators), they differ when it comes to dynamic and
universal accumulators. To overcome this issue, we propose a unified formal model
for accumulators, which is especially valuable when treating accumulators in a black-
box fashion. We, thereby, also include the notion of undeniability [8, 9, 27] and a
strengthened version of the recent indistinguishability notion [18]. Besides, we also
confirm the intuition and show that undeniability is a strictly stronger notion than
collision freeness.

– We provide an exhaustive classification of existing accumulator schemes and show
that most existing accumulator schemes are distinguishable in our model. To resolve
this issue, we propose a simple, light-weight generic transformation that allows to
add indistinguishability to existing dynamic accumulators and prove the security
of the so-obtained schemes. As this transformation, however, comes at the cost of
reduced collision freeness, we additionally propose the first indistinguishable scheme
that does not suffer from this shortcoming. Note that due to the lack of space, the
indistinguishable accumulator scheme is provided in the extended version of this
paper.

– Since accumulators are somehow related to commitments to sets [20, 25], commit-
ments to vectors [15] and to zero-knowledge sets [29], it is interesting to study their
relationship. Interestingly, we can formally show that indistinguishable accumula-
tors imply non-interactive commitment schemes. Furthermore, we formally show
that zero-knowledge sets imply indistinguishable, undeniable universal accumula-
tors, yielding the first construction of such accumulators.



2 Preliminaries

By acc we denote an accumulator and if we want to make the accumulated set X =
{x1, . . . , xn} explicit, we write accX . Given an accumulator accX , a membership witness
for an element xi ∈ X is denoted by witxi , whereas a non-membership witness for an
element yj /∈ X is denoted by wityj . The accumulator secret key (trapdoor) is denoted

by skacc, while the public key is denoted by pkacc. By a
R← A, we denote that a is chosen

uniformly at random from the set A.
A function ε : N → R+ is called negligible if for all c > 0 there is a k0 such that

ε(k) < 1/kc for all k > k0. In the remainder of this paper, we use ε to denote such a
negligible function.

Definition 1 (Bilinear map:). A bilinear map (pairing) is a map e : G1×G2 → GT ,
with G1,G2 and GT being cyclic groups of prime order p. Let g1 and g2 generate G1 and
G2. We require e to be efficiently computable and that the following conditions hold:

Bilinearity: e(ga1 , g
b
2) = e(g1, g2)ab = e(gb1, g

a
2 ) ∀a, b ∈ Zp

Non-degeneracy: e(g1, g2) 6= 1GT , i.e., e(g1, g2) generates GT .

If G1 = G2 we talk about symmetric pairings, whereas we talk about asymmetric
pairings otherwise.

Definition 2 (Strong RSA assumption (s-RSA) [4]). Given two appropriately
chosen primes p and q such that N = pq has bitlength κ and a random u ∈ Z∗N , then it
holds for all PPT adversaries A that

Pr [(v, w)← A(u,N) : vw ≡ u (mod N)] ≤ ε(κ).

Definition 3 (t-SDH assumption [6]). Let p be a prime of bitlength κ, G be a finite
cyclic group of order p, g be a generator of G, α ∈R Z∗p and t > 0. Then, for all PPT
adversaries A it holds that

Pr
[(
c, g

1
α+c

)
← A(g, gα, . . . , gα

t

)
]
≤ ε(κ) for some c ∈ Zp \ {−α}.

Definition 4 (t-DHE assumption [12,23]). Let p be a prime of bitlength κ, G be a
finite cyclic group of order p, g be a generator of G and γ ∈R Z∗p. Then, for all PPT
adversaries A it holds that

Pr
[
gγ

t+1

← A(g, gγ
1

, . . . , gγ
t

, gγ
t+2

, . . . , gγ
2t

)
]
≤ ε(κ).

3 A Unified Model for Cryptographic Accumulators

In the original sense, accumulator schemes were defined by the following properties (see,
e.g., [13, 26]). Thereby, ZI represents the domain of values to be accumulated and ZA
the accumulator domain.

Efficient generation: There is an efficient probabilistic algorithm that, on input
of a security parameter κ, defines a functionality f : ZA ×ZI → ZA, i.e., generates
the accumulator specific key pair (skacc, pkacc) (where skacc is a trapdoor for f).



Efficient evaluation: There is an efficient algorithm that computes f(acc, x).
Quasi-commutativity: It holds that f(f(acc, x1), x2) = f(f(acc, x2), x1) ∀x1,
x2 ∈ ZI , acc ∈ ZA.

Assuming that it is computationally infeasible to invert f without knowing skacc, the
quasi-commutativity directly yields a way to define witnesses. For instance, f(acc, x1)
can serve as witness for the accumulation of x2. Nonetheless, it is more meaningful to
provide a more abstract algorithmic definition of accumulators as done subsequently,
since there are several constructions that do not fit into this characterization (for in-
stance, hash-tree constructions do not require the quasi-commutativity property).

Trusted vs. Non-Trusted Setup: Known accumulators that rely on number theo-
retic assumptions require a trusted setup, i.e., a TTP runs the setup algorithm Gen and
discards the trapdoor skacc afterwards. Here, access to skacc allows to break collision
freeness (and its stronger form: undeniability). Consequently, correctness of the accu-
mulator scheme also needs to hold if skacc is omitted in all algorithms, which is the case
for all existing schemes. In contrast, in constructions relying on collision-resistant hash
functions (not based on number theoretic assumptions) there is no trapdoor at all and,
therefore, no trusted setup is required. In order to study number theoretic accumulators
without trusted setup, Lipmaa [27] proposed a modified model which divides the Gen
algorithm into a Setup and a Gen algorithm. In this model, the adversary can control
the randomness used inside Setup and, thus, knows the trapdoor. Nevertheless, it can
neither access nor influence the randomness of the Gen algorithm. This model, however,
still requires a partially trusted setup and also does not fit to the known order group
setting, which makes it not generally applicable.1 Consequently, when considering the
state of the art it seems most reasonable to define a security model with respect to a
trusted setup as we will do subsequently. We emphasize that this model is compatible
with all existing constructions. Nevertheless, it remains a challenging open issue to de-
sign accumulators based on standard assumptions which are secure without any trusted
setup.

3.1 Definitions

In the following, we provide a definition for (static) accumulators, which we adapt from
[21,42]. In contrast to previous models, we explicitly consider randomized accumulator
schemes. Then, we extend this model in order to formalize dynamic accumulators. It is
similar to [12, 15], but avoids shortcomings such as missing private updates. Based on
this, we define universal and universal dynamic accumulators and propose a suitable
security model. Furthermore, we discuss undeniable and indistinguishable accumulators,
give formalizations for these properties, and, investigate relationships between security
properties.

We call accumulators that have an upper bound t on the number of accumulated
values t-bounded accumulators and unbounded otherwise. In order to model this, our

1 This model is tailored to the hidden order group setting, where Setup produces a composite
modulusN . Gen chooses a random generator g of a large subgroup of Z∗N . Then, the adversary
knows the factorization of N but does not control the choice of g. RSA accumulators are
obviously insecure in this setting, but Lipmaa provides secure solutions based on modules
over an Euclidean ring, which, however, rely on rather unstudied assumptions.



Gen algorithm takes an additional parameter t, where t =∞ is used to indicate that the
accumulator is unbounded. For the sake of completeness, we model the algorithms such
that they support an optional input of the trapdoor (denoted as sk∼acc) since this often
allows to make the algorithms more efficient. However, we stress that we consider the
trusted setup model and, hence, adversaries are not given access to the trapdoor skacc.
Consequently, if sk∼acc is set, the party running the algorithm needs to be fully trusted.

Definition 5 (Static Accumulator). A static accumulator is a tuple of efficient al-
gorithms (Gen, Eval, WitCreate, Verify) which are defined as follows:

Gen(1κ, t): This algorithm takes a security parameter κ and a parameter t. If t 6= ∞,
then t is an upper bound on the number of elements to be accumulated. It returns a
key pair (skacc, pkacc), where skacc = ∅ if no trapdoor exists.

Eval((sk∼acc, pkacc), X ): This (probabilistic)2 algorithm takes a key pair (sk∼acc, pkacc)
and a set X to be accumulated and returns an accumulator accX together with some
auxiliary information aux.

WitCreate((sk∼acc, pkacc), accX , aux, xi): This algorithm takes a key pair (sk∼acc, pkacc),
an accumulator accX , auxiliary information aux and a value xi. It returns ⊥, if
xi /∈ X , and a witness witxi for xi otherwise.

Verify(pkacc, accX , witxi , xi): This algorithm takes a public key pkacc, an accumulator
accX , a witness witxi and a value xi. It returns true if witxi is a witness for xi ∈ X
and false otherwise.

Henceforth, we call an accumulator randomized if the Eval algorithm is probabilistic.
Based on Definition 5, we can now formalize dynamic accumulators. We widely align our
definitions with [21,42], but, in addition, we need to consider that the various dynamic
accumulator schemes proposed so far differ regarding the public updatability of witnesses
and the accumulator.

Definition 6 (Dynamic Accumulator). A dynamic accumulator is a static accu-
mulator that additionally provides efficient algorithms (Add, Delete, WitUpdate) which
are defined as follows:

Add((sk∼acc, pkacc), accX , aux, xi): This algorithm takes a key pair (sk∼acc, pkacc), an ac-
cumulator accX , auxiliary information aux, as well as a value xi to be added. If
xi ∈ X , it returns ⊥. Otherwise, it returns the updated accumulator accX ′ with
X ′ ← X ∪ {xi} and updated auxiliary information aux′.

Delete((sk∼acc, pkacc), accX , aux, xi): This algorithm takes a key pair (sk∼acc, pkacc), an
accumulator accX , auxiliary information aux, as well as a value xi to be removed.
If xi /∈ X , it returns ⊥. Otherwise, it returns the updated accumulator accX ′ with
X ′ ← X \ {xi} and auxiliary information aux′.

WitUpdate((sk∼acc, pkacc), witxi , aux, xj): This algorithm takes a key pair (sk∼acc, pkacc),
a witness witxi to be updated, auxiliary information aux and a value xj which was
added/deleted to/from the accumulator, where aux indicates addition or deletion. It
returns an updated witness wit′xi on success and ⊥ otherwise.

2 If Eval is probabilistic, the internally used randomness is denoted as r. If we want to make
the randomness used by the Eval algorithm explicit, we will write Evalr.



Below, we define universal accumulators and emphasize that features provided by uni-
versal accumulators can be seen as supplementary features to both static and dynamic
accumulators.

Definition 7 (Universal Accumulator). A universal accumulator is a static or a
dynamic accumulator with the following properties. For static accumulator schemes the
algorithms WitCreate and Verify take an additional boolean parameter type, indicating
whether the given witness is a membership (type = 0) or non-membership (type = 1)
witness. For dynamic accumulator schemes this additionally applies to WitUpdate.

3.2 Security Model

Now, we introduce a security model for accumulators, which we adapt from [26] and
further extend by undeniability and indistinguishability.

Classic notion: A secure accumulator scheme is required to be correct and collision-
free. Correctness says that for all honestly generated keys, all honestly computed ac-
cumulators and witnesses, the Verify algorithm will always return true. We stress that
correctness also needs to hold when all algorithms are executed without skacc. Since the
correctness property is straightforward, we omit its formal definition. Collision freeness
informally states that it is neither feasible to find a witness for a non-accumulated value
nor feasible to find a non-membership witness for an accumulated value. More formally:

Definition 8 (Collision Freeness). A cryptographic accumulator of type t ∈ {static,
dynamic} and u ∈ {universal, non-universal} is collision-free, if for all PPT adversaries
A there is a negligible function ε(·) such that:

Pr


(skacc, pkacc)← Gen(1κ, t), O ← {Ot,Ou},

(wit∗xi/wit
∗
xi , x

∗
i ,X ∗, r∗)← AO(pkacc) :

(Verify(pkacc, acc
∗,wit∗xi , x

∗
i , 0) = true ∧ x∗i /∈ X ∗) ∨

(Verify(pkacc, acc
∗,wit∗xi , x

∗
i , 1) = true ∧ x∗i ∈ X ∗)

 ≤ ε(κ),

where acc∗ ← Evalr∗((skacc , pkacc),X ∗) and A has oracle access to Ot and Ou which are
defined as follows:

Ot :=

{
{OE(·,·,·)} if t = static,
{OE(·,·,·),OA(·,·,·,·),OD(·,·,·,·)} otherwise.

Ou :=

{
{OW(·,·,·,·),OW(·,·,·,·)} if u = universal,
{OW(·,·,·,·)} otherwise.

Thereby, OE,OA and OD represent the oracles for the algorithms Eval,Add, and Delete,
respectively. An adversary is allowed to query them an arbitrary number of times. In
case of randomized accumulators the adversary outputs randomness r∗, whereas r∗ is
omitted for deterministic accumulators. Likewise, the adversary can control the ran-
domness r used by OE for randomized accumulators. Therefore, OE takes an additional
parameter for r (which is missing for deterministic accumulators). The oracles OW



and OW allow the adversary to obtain membership witnesses for members and non-
membership witnesses for non-members, respectively. Thereby, the environment keeps
track of all oracle queries (and answers) and lets the respective oracle return ⊥ if calls
to it are not consistent with respect to previous queries. Furthermore, we assume that
the adversary outputs either a membership witness wit∗xi or a non-membership witness
wit∗xi (denoted by wit∗xi/wit

∗
xi

). If the accumulator is non-universal, one simply omits
the non-membership related parts.

One distinction to previous models is that we model (non-)membership witness gen-
eration via oracles. This way, we can ensure that security proofs take the simulation of
(non-)membership witnesses into account, which is vital and could be overseen other-
wise.

Definition 9 (Secure Accumulator). A cryptographic accumulator is secure if it is
correct and collision-free.

Undeniable accumulators: In [27], Lipmaa formalized undeniability for accumula-
tors. A universal accumulator is undeniable if it is computationally infeasible to find a
membership as well as a non-membership witness for the same value – independently of
whether it is contained in an accumulator or not. More formally undeniability is defined
as:

Definition 10 (Undeniability). A universal cryptographic accumulator of type t ∈
{static, dynamic} is undeniable, if for all PPT adversaries A there is a negligible func-
tion ε(·) such that:

Pr

 (skacc, pkacc)← Gen(1κ, t), (wit∗xi ,wit
∗
xi
, x∗i , acc

∗)← AOt

(pkacc) :
Verify(pkacc, acc

∗,wit∗xi , x
∗
i , 0) = true ∧

Verify(pkacc, acc
∗,wit∗xi , x

∗
i , 1) = true

 ≤ ε(κ),

where, A has oracle access to Ot which is defined as follows:

Ot :=

{
{OE(·,·,·),OW(·,·,·,·),OW(·,·,·,·)} if t = static,
{OE(·,·,·),OA(·,·,·,·),OD(·,·,·,·),OW(·,·,·,·),OW(·,·,·,·)} otherwise.

Notice that the definition of the oracles is as in the definition of collision freeness for
universal accumulators.

Definition 11. A universal accumulator is undeniable if it is a secure accumulator
satisfying the undeniability property.

Indistinguishable accumulators: Li et al. [26] pointed out informally (without giv-
ing any formalizations) that the accumulation of an additional random value from the
accumulation domain renders guessing the accumulated set infeasible. Later, de Meer
et al. [18] tried to formalize this intuition via an additional indistinguishability prop-
erty. Unfortunately, there are some issues with their notion. Firstly, it only covers static
accumulators and, secondly, indistinguishability in the vein of [26] weakens collision re-
sistance. Basically, one can easily generate a membership witness for the random value.
Secondly, the security game in [18] allows to prove indistinguishability of deterministic
accumulators, which are clearly not indistinguishable. In particular, the random value



is chosen and accumulated within the security game. However, this non-determinism is
not required to be part of the accumulator construction itself. Consequently, a deter-
ministic accumulator can satisfy this notion while being trivially distinguishable. From
this, we conclude that the non-determinism must be intrinsic to the Eval algorithm.3

There are several ways to turn a deterministic scheme into a randomized one. As
already discussed, indistinguishability can be achieved by adding a random value from
the accumulation domain. Aside from this, it can also be obtained by randomizing the
Eval algorithm without modifying the set X (as, for instance, done in Section 5.1).
Apparently, the latter option depends on the specific accumulator scheme, whereas the
shortcomings in [18] can be addressed by introducing a generic transformation for the
former approach (cf. Transformation 1).

Definition 12 (Indistinguishability). A cryptographic accumulator of type t ∈ {sta-
tic, dynamic} and u ∈ {universal, non-universal} is indistinguishable, if for all PPT
adversaries A there is a negligible function ε(·) such that:

Pr

 (skacc, pkacc)← Gen(1κ, t), b
R← {0, 1},

(X0,X1, state)← A(pkacc), (accXb , aux)← Eval((sk∼acc, pkacc),
Xb),O ← {Ot,Ou}, b∗ ← AO(pkacc, accXb , state) : b = b∗

 ≤ 1

2
+ ε(κ),

where X0 and X1 are two distinct subsets of the accumulation domain and Ot as well
as Ou are defined as follows:

Ot :=

{
{OE(·,·,·)} if t = static,
{OE(·,·,·),OA6∪(·,·,aux,·),OD∩(·,·,aux,·)} otherwise.

Ou :=

{
{OW(·,·,aux,·),OW(·,·,aux,·)} if u = universal,
{OW(·,·,aux,·)} otherwise.

If the probability above is exactly 1/2 we have unconditional indistinguishability, whereas
we have computational indistinguishability if the probability is negligibly different from
1/2.

Here, OE is defined as before and all other oracles can only be called for the challenge
accumulator. We require that the input parameter aux for the oracles is kept up to
date and is provided by the environment, since the knowledge of aux would allow the
adversary to trivially win the game. Furthermore, note that this game does not allow
the adversary to control the randomness used for the evaluation of accXb (while it can
be controlled when calling OE). For the definitions of the remaining oracles, we use
X∪ := X0 ∪ X1 and X∩ := X0 ∩ X1 to restrict the adversary from oracle queries which
would trivially allow to win the game. OA 6∪ as well as OD∩ allow the adversary to execute
the Add and Delete algorithms. Thereby, OA6∪ allows only queries for values xi /∈ X∪,
whereas OD∩ allows only queries for values xi ∈ X∩. Furthermore, upon every Add and
Delete the sets X∪ and X∩ are updated consistently. Oracles OW and OW are as above,
with the difference that OW allows only queries for values xi ∈ X∩, while OW allows
only queries for values yj /∈ X∪.

3 Independently from our work, this observation was quite recently also made in [19] by the
authors of [18]: The insertion of the random value has been removed from the game and the
Eval algorithm is now required to be non-deterministic.



Transformation 1. On input a set X , the Eval algorithm samples an element xr /∈ X
uniformly at random from the accumulation domain. Next, it computes and returns
(accX ′ , aux

′) for X ′ ← X ∪ {xr} and aux′ ← (aux, xr).

Note that aux needs to be kept consistent for all other algorithms that require this
input parameter. As already noted above, collision freeness no longer holds for X but
with respect to X ∪ {xr}. To draw a line between inherently randomized constructions
and such relying on Transformation 1, we differentiate between indistinguishability and
collision-freeness-weakening (cfw) indistinguishability:

Definition 13 (Indistinguishability). Let X be the set in accXb . A cryptographic
accumulator is called indistinguishable if it is a secure, indistinguishable accumulator
and X = Xb.

Definition 14 (cfw-Indistinguishability). Let X be the set in accXb . A cryptographic
accumulator is called collision-freeness-weakening (cfw) indistinguishable if it is a se-
cure, indistinguishable accumulator and X 6= Xb.

3.3 Relation Between Security Properties

Intuitively, undeniability seems to be a strictly stronger security requirement than col-
lision freeness. We confirm this intuition below:

Lemma 1. Every undeniable universal accumulator is collision-free.

We prove the lemma above in Appendix C.1.
As mentioned in [27], a black-box reduction in the other direction is impossible. [9]

provides a collision-free universal accumulator that is not undeniable. Therefore, this
proves the following lemma by counterexample:

Lemma 2. Not every collision-free universal accumulator is undeniable.

4 State of the Art and Categorization

In this section we discuss the basic principles of existing constructions grouped by their
underlying security assumptions. Subsequently, we provide a compact overview and
exhaustive classification of existing approaches.

4.1 Strong RSA Setting

All schemes in this setting are extensions of [4,5]. Here, the accumulator accX is defined
to be accX ← g

∏
x∈X x mod N , where N is an RSA modulus consisting of two large

safe primes p, q and g is randomly drawn from the cyclic group of quadratic residues
modulo N . Thus, we have (skacc, pkacc) = ((p, q), N) and a witness for a value xi is given

by witxi ← acc
x−1
i

X mod N . Clearly, if we were able to forge a witness witxi ≡ acc
x−1
i

X
(mod N) for a value xi not contained in acc, then we would also be able to break
the strong RSA assumption. Due to the multiplicative relationship of the accumulated
values in the exponent, the domain of accumulated values is restricted to prime numbers
(or products of primes with unknown factorization [41]). Note that accumulating a



composite number a = b · c would allow to derive witnesses for each of its factors, when
given a witness wita for a (i.e., witb ≡ (wita)c (mod N)). Hence, to accumulate sets
from more general domains, one needs a suitable mapping from these domains to prime
numbers (e.g., [38]).

Some accumulator schemes in this setting [13, 26] also provide dynamic features.
Adding a value to the accumulator can be done without any secret by a simple expo-
nentiation of the accumulator and its witnesses. In contrast, if one wants to delete a
value xj , then one has to compute the xj-th root of the accumulator, which is intractable
without skacc under the strong RSA assumption. Yet, one can still use an arithmetic
trick to publicly update membership witnesses upon the deletion of a value. To update
the witness for a value xi in accX\{xj}, one finds a, b ∈ Z such that axi + bxj = 1 and

computes the new witness as wit′xi ← witxi
b · accX\{xj}a mod N from the old witness

witxi [13].

Furthermore, the accumulator scheme in [26] also provides universal features as it
supports non-membership witnesses: Let accX be an accumulator to the set X and let
yj /∈ X . Now, it holds that gcd(

∏
x∈X x, yj) = 1 or, equivalently, a

∏
x∈X x + byj = 1

for a, b ∈ Z. Consequently, we compute d ← g−b mod N , where g is the initial value
of the empty accumulator, and form a non-membership witness wityj ← (a, d). The
verification of non-membership witnesses is, then, done by checking whether accX

a ≡
dyj · g (mod N) holds. In a similar way as it is done for membership witnesses, also
non-membership witnesses can be updated publicly (cf. [26]).

4.2 t-SDH Setting

All schemes in this settings are based on the t-bounded accumulator proposed by Nguyen
[31], which uses a group G of prime order p generated by g with a bilinear map e :

G×G→ GT . Here, we have pkacc = (g, gs, gs
2

, . . . , gs
t

, u) and skacc = s. An accumulator
accX to a set X = {x1, . . . , xn} ⊆ Zp with n ≤ t is defined to be accX ← gu

∏
x∈X (x+s)

and a membership witness for a value xi ∈ X is computed as witxi ← gu
∏
x∈X\{xi}

(x+s),

where u
R← Z∗p. Then, one checks whether a value xi is contained in accX by verifying

whether e(accX , g) = e(gxigs,witxi) holds. This scheme allows to evaluate accumulators
publicly, that is, by expanding the polynomial h(X) =

∏
x∈X (x + X) ∈ Zp[X] and

evaluating it in G via pkacc, which results in gh(s). The public computation of a witness
for xi works likewise with regard to the set X \ {xi}. Furthermore, these witnesses can
also be updated in constant time and without knowing the secret key (cf. [31]).

In [3, 17], Nguyen’s scheme is extended by non-membership witnesses and the ran-
dom value u is eliminated. The former work also shows how public updates of non-
membership witnesses can be done in constant time. Note that these tweaks can also
be applied to the latter. The computation of a non-membership witness for a value
yj /∈ X in [3] exploits the fact that the polynomial division of h(X) =

∏
x∈X (x+X) by

(yj + X) leaves a remainder d ∈ Z∗p. Such a witness has the form (a, d) = (g
h(s)−d
yj+s , d)

and can be verified via e(accX , g)
?
= e(a, gyjgs)e(g, gd). In [17], d is set to h(−yj), which

also yields suitable non-membership witnesses.



4.3 t-DHE Setting

In [12], Camenisch et. al give a t-bounded accumulator scheme based on the t-DHE as-
sumption. Like the accumulators in the t-SDH setting, it uses a group G of prime order
p generated by g with a bilinear map e : G×G→ GT . In addition, it requires a signature
scheme with a corresponding keypair (sksig, pksig). Here, we have skacc = sksig and the

public key is pkacc = (g1, . . . , gt, gt+2, . . . , g2t, z, pksig) = (gγ
1

, . . . , gγ
t

, gγ
t+2

, . . . , gγ
2t

,

e(g, g)γ
t+1

, pksig) with γ
R← Z∗p. We can accumulate a set X = {x1, . . . , xm} with

m ≤ t by computing accX ←
∏m
i=1 gt+1−i and signing gi together with xi using

sksig, which assigns the value of xi to gi. A witness witxj for xj ∈ X is given as
witxj ←

∏m
i=1,i6=j gt+1−i+j . The membership of xj can be verified by checking whether

e(gj , accX ) = z · e(g,witxj ) holds and by verifying the signature on gj and xj under
pksig.

This scheme enables public updates of the witnesses and the accumulator upon
delete, since this requires only pkacc. If we, however, want to add a value xi to the
accumulator, then we need the secret signing key skacc to create a signature on gi and
xi in order to link value xi with parameter gi. Consequently, public additions to the
accumulator require to include a signature for every potential value to be accumulated
into the public parameters. Obviously, with the exception of very small accumulation
domains this seems impractical.

4.4 Collision-Resistant Hash Setting

In this setting, accumulators are built from collision-resistant hash functions and (sorted)
Merkle hash-trees. Here, each leaf node represents an accumulated value and is labeled
with the corresponding hash value. Every inner node is labeled with a hash value formed
from its children’s labels (and potentially some additional information). The accumu-
lator acc itself is the root node label (root hash) and a membership witness for an
accumulated value xi is its authentication path, i.e., all the labels of siblings on the
path of the leaf to the root node. Verification of witnesses is done the obvious way, i.e.,
by recomputing the hash tree and comparing the root hashes. To prove non-membership,
such schemes exploit the order on the leaf nodes [8, 9, 11] (alternatively, an order can
also be enforced by a suitable encoding on the accumulated values [11]). Proving non-
membership of a value yj boils down to demonstrating membership witnesses for two
values xi, xi+1 corresponding to two consecutive leaves such that xi < yj < xi+1 holds.

4.5 Accumulators from Vector Commitments

Catalano and Fiore [15] proposed a black-box construction of accumulators from vector
commitments. A vector commitment allows to form a succinct commitment C to a vector
X = (x1, . . . , xn). Here, it should be computationally infeasible to open position i of C
to a value x′i different from xi. The accumulation domain in the black-box construction
in [15] is the set D = {1, . . . , t}. The accumulator is modeled as a commitment to a
binary vector of length t, that is, each bit i indicates the presence or absence of element
i ∈ D in the accumulator. Then, the (non-)membership of a value i can be proven by
opening position i of a commitment to 1 or 0, respectively.



4.6 Categorizing Cryptographic Accumulators

Now, we give a comprehensive overview of existing accumulator schemes in Table 1.
We categorize them regarding their static or dynamic nature and universal features and
provide a characterization of their public updating capabilities (of witnesses and of ac-
cumulators, respectively). In particular, we tag an accumulator as dynamic, if witness
and accumulator value updates can be performed in constant time, i.e., independent of
the size of X . If the same is possible without having access to the accumulator trapdoor,
then we tag the accumulator as publicly updatable. Furthermore, the properties undeni-
ability and indistinguishability have not been considered for most existing accumulator
schemes so far. Therefore, we provide a classification regarding their indistinguishability
(when using Transformation 1) and provide the respective proofs in Appendix B. Like-
wise, we prove the undeniability of [3,17] in Appendix B. For the sake of completeness,
our comparison also includes static accumulator schemes [4, 5, 32,33].

5 Commitments from Indistinguishable Accumulators

In [15], it has been shown that universal dynamic accumulators can be black-box con-
structed from vector commitments. The question arises whether it is also possible to
provide black-box constructions for certain types of commitments from indistinguish-
able accumulators. It is apparent that it is not possible to build vector commitments
solely from accumulators in a black-box fashion, since their position binding would at
least require some additional encoding. Nevertheless, we will show how to construct non-
interactive commitments from indistinguishable 1-bounded accumulators. We start by
proposing the first indistinguishable t-bounded accumulator construction (for arbitrary
t) and, then, provide the black-box construction based on any such scheme.

5.1 An Indistinguishable t-Bounded Dynamic Accumulator

Here, we will build an indistinguishable t-bounded accumulator from the t-SDH based
dynamic accumulator in [31]. This construction already uses a randomizer (denoted as
u) that is chosen by Gen and added to pkacc. As a consequence, the Eval algorithm is
still deterministic. In order to obtain indistinguishability, we modify the way u is used
and observe that randomly choosing it on each call to Eval yields an indistinguishable
accumulator. In Appendix A, we present a modified version of [31] incorporating the
aforementioned functionality and prove the following theorem.

Theorem 1. Under the t-SDH assumption, Scheme 3 (cf. Appendix A) is an indistin-
guishable t-bounded dynamic accumulator.

5.2 Black-Box Construction of Non-Interactive Commitments

Before we can start, we present a standard formal definition of non-interactive commit-
ment schemes.

Definition 15 (Non-Interactive Commitment Scheme). A non-interactive com-
mitment scheme is a triple of efficient algorithms (Gen,Commit,Open), which are de-
fined as follows:
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Gen(1κ): This (probabilistic) algorithm takes input a security parameter κ and outputs
the public parameters pp.

Commit(pp,m): This (probabilistic) algorithm takes input pp and a message m and
outputs a commitment C together with a corresponding opening information O.

Open(pp, C,O): This deterministic algorithm takes input pp, a commitment C with cor-
responding opening information O and outputs ⊥ if C is not a valid commitment
to any message and message m otherwise.

For security, a non-interactive commitment scheme is required to provide correctness,
binding and hiding. We omit a formal definition of correctness as it is straightforward.
The remaining properties are defined as follows.

Definition 16 (Binding). A non-interactive commitment scheme is binding, if for
all PPT adversaries A there is a negligible function ε(·) such that

Pr

[
pp← Gen(1κ), (C∗, O∗, O′∗)← A(pp),m← Open(pp, C∗, O∗),
m′ ← Open(pp, C∗, O′∗) : m 6= m′ ∧ m 6= ⊥ ∧ m′ 6= ⊥

]
≤ ε(κ).

Definition 17 (Hiding). A non-interactive commitment scheme is hiding, if for all
PPT adversaries A there is a negligible function ε(·) such that

Pr

pp← Gen(1κ), (m0,m1, state)← A(pp), b
R← {0, 1},

(C,O)← Commit(pp,mb), b
∗ ← A(pp, C, state) :

b = b∗

 ≤ 1

2
+ ε(κ).

In Scheme 1, we present a black-box construction of commitments from indistinguish-
able accumulators and prove the so obtained construction secure (Theorem 2). Before
we continue, we want to recall that in the trusted setup model all algorithms can be
correctly executed without skacc.

Gen(1κ): This algorithm runs (sk∼acc, pkacc) ← Acc.Gen(1κ, 1), discards skacc and returns pp ←
pkacc.

Commit(pp,m): This algorithm chooses randomness r, runs (C, aux) ← Evalr((∅, pkacc), m),
computes witm ← WitCreate((∅, pkacc), C, aux,m), sets O ← (r,m,witm, aux) and returns
(C,O).

Open(pp, C,O): This algorithm checks whether Evalr((∅, pkacc),m)
?
= C and whether

Verify(pkacc, C,witm,m)
?
= true and returns m on success and ⊥ otherwise.

Scheme 1: Commitment Scheme from Indistinguishable Accumulators

Theorem 2. If indistinguishable 1-bounded accumulators exist, then non-interactive
commitments exist as well.

We prove Theorem 2 in Appendix C.2.
The black-box construction from Scheme 1 can easily be extended to support com-

mitments to sets (where the opening is always with respect to the entire set) by setting
the bound t of the bounded accumulator to the desired set size. Furthermore, using
skacc as trapdoor, one can also construct trapdoor commitments.



We finally note that cfw-indistinguishable accumulators (and hence also Trans-
formation 1) are not useful for constructing commitments. The reason for this is that the
accumulation of the additional random value immediately breaks the binding property.

6 Zero-Knowledge Sets Imply Indistinguishable Undeniable
Accumulators

Zero-knowledge sets (ZK-sets) [29] allow to commit to a set X and then prove predi-
cates of the form xi ∈ X or xi /∈ X without revealing anything else about the set. We
observe that ZK-sets can be used to model indistinguishable, unbounded, undeniable ac-
cumulators. Unfortunately, there is no formal security definition for zero-knowledge sets
(in [25] only the algorithms are formalized, while security is stated informally). How-
ever, zero-knowledge sets are a special instance of zero-knowledge elementary databases
(ZK-EDB) [29]. ZK-EDBs store key-value pairs and when querying the database with a
key, the respective value is returned (or ⊥ if the given key is not contained in the EDB).
Thereby, no further information about the remaining EDB leaks. Therefore, ZK-sets are
ZK-EDBs where the values for all contained keys are set to 1 (or the values are omitted
at all). We can, thus, define the security on the basis of the models in [16,29] as follows.

Definition 18 (ZK-set). A ZK-set is a tuple of efficient algorithms (Gen,Commit,Qu-
ery,Verify), which are defined as follows:

Gen(1κ): This (probabilistic) algorithm takes input a security parameter κ and outputs
a public key pk.

Commit(pk,X ): This algorithm takes input the public key pk and a set X and outputs
a commitment C to X .

Query(pk,X , C, x): This algorithm takes input the public key pk, a set X , a correspond-
ing commitment C and and value x. It outputs a proof πx if x ∈ X and a proof πx
if x /∈ X .

Verify(pk, C, x, πx/πx): This algorithm takes input the public key pk, a commitment
C and a value x. Furthermore, it either takes a membership proof πx or a non-
membership proof πx (denoted by πx/πx). It outputs true if the proof can be correctly
verified and false otherwise.

For security, ZK-sets require perfect completeness, soundness and zero-knowledge. Per-
fect completeness requires that for every honestly generated key, every honestly com-
puted commitment C, value x and corresponding proof πx/πx, the Verify algorithm
always returns true. Since this property is straightforward, we do not formally state it
here. We formally define the remaining properties:

Definition 19 (Soundness). A ZK-set is sound, if for all PPT adversaries A there
is a negligible function ε(·) such that

Pr

[
pk ← Gen(1κ), (C∗, x∗, π∗x, π

∗
x)← A(pk) :

Verify(pk, C∗, π∗x, x
∗) = true ∧ Verify(pk, C∗, π∗x, x

∗) = true

]
≤ ε(κ).



Definition 20 (Zero Knowledge). A ZK-set is zero-knowledge, if for all PPT ad-
versaries A there is a negligible function ε(·) such that∣∣∣∣∣∣∣∣∣∣

Pr


pk ← Gen(1κ),

(X , stateA)← A(pk),
C ← Commit(pk,X ),

AOQ(·,X ,·,·)(stateA,
pk, C) = true

− Pr


(pk, stateS)← SG(1κ),
(X , stateA)← A(pk),

(C, state′S)← SE(pk, stateS),

ASQ(state′S ,·,X ,·,·)(stateA,
pk, C) = true


∣∣∣∣∣∣∣∣∣∣
≤ ε(κ).

Here,OQ allows the adversary to execute the Query algorithm, whereas S = (SG,SE,SQ)
denotes a PPT simulator, which allows to execute the simulated Gen, Eval and Query
algorithms, respectively. We note that the definition above is tailored to cover compu-
tational zero-knowledge. It could, however, easily be modified to also cover statistical
or perfect zero knowledge.

In Scheme 2 we present a black-box construction of indistinguishable unbounded
undeniable accumulators from ZK-sets.

Gen(1κ): This algorithm runs pk ← ZKS.Gen(1κ) and returns (skacc, pkacc)← (∅, pk).
Eval((∅, pkacc),X ): This algorithm runs accX ← ZKS.Commit(pkacc,X ) and returns accX to-

gether with aux← X .
WitCreate((∅, pkacc), accX , aux, xi, type): This algorithm obtains X from aux and runs

πxi/πxi ← ZKS.Query(pk,X , accX , xi). If πxi/πxi conflicts with the requested witness
type, it returns ⊥. Otherwise it returns witxi ← πxi or witxi ← πxi , respectively.

Verify(pkacc, acc, witxi , xi, type): This algorithm checks whether type conflicts with the
type of the supplied witness and returns ⊥ if so. Otherwise it returns the result of
ZKS.Verify(pk, acc, xi,witxi).

Scheme 2: Indistinguishable Unbounded Undeniable Accumulator from ZK-Sets

Theorem 3. If ZK-sets exist, then indistinguishable, unbounded, undeniable accumu-
lators exist as well.

We prove Theorem 3 in Appendix C.3.
The above black-box construction yields the first construction of indistinguishable

undeniable accumulators. We note that it is, however, questionable whether the two
notions of ZK-sets and indistinguishable undeniable accumulators are equivalent (as
the simulation based model of zero-knowledge appears to be stronger than the game
based indistinguishability model).

In [25], Kate et al. introduced nearly ZK-sets. The difference to ordinary ZK-sets is
that nearly ZK-sets have a public upper bound on the cardinality of set X . It is apparent
that these constructions imply indistinguishable t-bounded undeniable accumulators.
In further consequence, this means that nearly ZK-sets can also be used to construct
commitments (cf. Section 5).
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35. Henrich C. Pöhls, Stefan Peters, Kai Samelin, Joachim Posegga, and Hermann de Meer.
Malleable Signatures for Resource Constrained Platforms. In WISTP, volume 7886 of
LNCS, pages 18–33. Springer, 2013.
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A An Indistinguishable t-Bounded Dynamic Accumulator

Scheme 3 presents a modified version of [31]. Subsequently, we prove it to be a secure
indistinguishable t-bounded dynamic accumulator. For sake of consistency, the value u
used in [31] will be denoted by r.

Gen(1κ, t): On input security parameter κ, this algorithm chooses two groups G and GT of
prime order p such that log2 p = κ having a pairing e : G×G→ GT . Additionally, it chooses

a generator g of G, as well as s
R← Z∗p. Finally, it returns (skacc, pkacc)← (s, (gs

i

)ti=0).
Evalr((sk

∼
acc, pkacc),X ): On input a key pair (sk∼acc, pkacc) and X = {x1, . . . , xn}, this algorithm

chooses r
R← Z∗p. If skacc 6= ∅, it computes accX ← gr

∏n
i=1(xi+s). Otherwise, it expands the

polynomial
∏
x∈X (x+X) to

∑n
i=0 ai ·X

i and computes accX ← (
∏n
i=0(gs

i

)ai)r. Finally,
it returns accX and aux← (r,X ).

WitCreate((sk∼acc, pkacc), accX , aux, xi): On input a key pair (sk∼acc, pkacc), accX , aux = (r,X )
and xi, this algorithm checks whether xi ∈ X and returns ⊥ otherwise. If skacc 6= ∅,
it computes and returns witxi ← acc

(xi+s)
−1

X . Otherwise, it expands the polynomial∏
x∈X\{xi}(x + X) to

∑n−1
i=0 ai · X

i where X = {x1, . . . , xn} and returns witxi ←(∏n−1
i=0 (gs

i

)ai
)r

.
Verify(pkacc, accX , witxi , xi): This algorithm checks whether e(accX , g) = e(witxi , g

xigs)
holds. If so, it returns true and false otherwise.

Add((sk∼acc, pkacc), accX , aux, xi): On input a key pair (sk∼acc, pkacc), accX , aux = (r,X ) and
xi, this algorithm checks whether xi /∈ X and returns ⊥ otherwise. If skacc 6= ∅ it com-
putes acc′ ← acc

(xi+s)
X . Otherwise, with X = {x1, . . . , xn}, it expands the polynomial∏

x∈X∪{xi}(x + X) to
∑n+1
i=0 ai · X

i and computes acc′ ←
(∏n+1

i=0 (gs
i

)ai
)r

. Finally, it

returns acc′ and aux′ ← X ∪ {xi}.
Delete((sk∼acc, pkacc), accX , aux, xi): On input a key pair (sk∼acc, pkacc), accX , aux = (r,X )

and xi, this algorithm checks whether xi ∈ X or X 6= ∅ and returns ⊥ otherwise.

If skacc 6= ∅ this algorithm computes acc′ ← acc
(xi+s)

−1

X . Otherwise, it expands the
polynomial

∏
x∈X\{xi}(x + X) to

∑n−1
i=0 ai · X

i where X = {x1, . . . , xn} and computes

acc′ ←
(∏n−1

i=0 (gs
i

)ai
)r

. Finally, it returns acc′ and aux′ ← X \ {xi}.
WitUpdate(pkacc, witxi , aux, xj): This algorithm obtains as input a public key pkacc, witxi ,

aux = (acc′, acc, xi, op) and xj . Here, acc′ represents the already updated accumulator and
acc the accumulator before the update. Information op determines whether xj was deleted

or added to the accumulator acc′. It returns the updated witness wit′xi ← acc · witxj−xixi if

op = 0 or wit′xi ← (acc′−1 · witxi)
1

xj−xi if op = 1.

Scheme 3: Indistinguishable t-Bounded Dynamic Accumulator Scheme

A.1 Security Proofs of the Modified Scheme

The correctness proofs in [3,31] also apply to our scheme, and, hence, we do not prove
it explicitly here.

Proof (Collision freeness). Similar to [3], we prove the collision freeness for membership
witnesses by showing that an efficient adversary A against the collision freeness can be



turned into an efficient adversary B against the t-SDH assumption. B gets a t-SDH
instance (g, gs, . . . , gs

t

) as input and starts the game by setting pkacc = (g, gs, . . . , gs
t

)
and handing pkacc over to A. Moreover, B keeps a mapping M of accumulators accX to
their accumulated sets with corresponding randomizers, which is consistently updated
with respect to the oracle queries. B simulates the oracles for A as follows:

OE: For a given pkacc, set X = {x1, . . . , xn} and randomizer r, call (accX , aux) ←
Evalr((∅, pkacc),X ), add (accX ,X , r) to M and return (accX , aux).
OA: For a given pkacc, accumulator accX and element xi to be added, lookup the
set U = {u1, . . . , un} and randomizer r corresponding to accX in M and return ⊥
if xi ∈ U . We assume that U = ∅ and r

R← Zp when accX is not contained in M .
Compute (acc′X , aux

′) ← Add((∅, pkacc), accX , (r, U), xi), add (accX , U ∪ {xi}, r) to
M and return acc′X and aux′.
OD: For a given pkacc, accumulator accX and element xi to be deleted, lookup
the set U = {u1, . . . , un} and randomizer r corresponding to accX in M and
return ⊥ if xi /∈ U or accX is not contained in M . Compute (acc′X , aux

′) ←
Delete((∅, pkacc), accX , (r, U), xi), add (accX , U \ {xi}, r) to M and return acc′X and
aux′.
OW: For a given pkacc, accumulator accX , and element xi, lookup the set U =
{u1, . . . , un} and randomizer r corresponding to accX in M and return ⊥ if xi /∈ U .
Otherwise, return witxi ←WitCreate((∅, pkacc), (r, U), xi).

Eventually, A outputs a membership witness wit∗xj for some value x∗j /∈ X ∗, a set X ∗ and

a randomizer r∗ such that the verification relation e(wit∗xj , g
x∗j gs) = e(accX∗ , g) holds,

where (accX∗ , aux) ← Evalr((∅, pkacc),X ∗). Then, B knows the polynomial h(X) =∏
x∈X∗(x+X) , the polynomial φ(X) and d such that h(X) = φ(X)(xj +X) + d holds

(because x∗j /∈ X ∗). Then, B can compute gr
∗·φ(s) by expanding the polynomial φ(X)

to
∑|X∗|−1
i=0 ai ·Xi and computing gr

∗·φ(s) ← (
∏|X∗|−1
i=0 (gs

i

)ai)r
∗
. Thus, B can output(

wit∗xj ·
(
gr
∗·φ(s))−1) 1

r∗·d ←
(
g
r∗·h(s)
x∗
j
+s g

− r
∗·(h(s)−d)
x∗
j
+s

) 1
r∗·d

=
(
g
r∗·d
x∗
j
+s

) 1
r∗·d

= g
1

x∗
j
+s

together with x∗j as solution to the t-SDH problem. ut

Proof (Indistinguishability). We recall that the indistinguishability game is defined such
that it is not possible to obtain gr as X0 6= X1 and only values from x ∈ X0 ∩X1 can be
deleted via OD. This means that it is impossible to extract the randomizer r used upon

Eval. The adversary sees accXb = g
r
∏
x∈Xb

(x+s)
, and for values xj ∈ X0∩X1 it is possible

to obtain witnesses witxj = g
r
∏
x∈Xb\{xj}

(x+s)
. Furthermore, it is possible to add values

x /∈ X0 ∪X1 to and to delete values x ∈ X0 ∩X1 from the challenge accumulator accXb .
There exist randomizers r0 and r1 for both candidate sets X0 and X1, respectively,

such that accXb = gr0
∏
x∈X0

(x+s) = gr1
∏
x∈X1

(x+s). Since it is not possible to obtain
the randomness r used in Eval, even an unbounded adversary can not decide whether
r = r0 or r = r1, meaning that it is not possible to distinguish whether X0 or X1 was
accumulated.

Likewise, for all witnesses witxj , where xj ∈ X0∩X1, there are representations consis-

tent with the values r0 and r1 such that witxj = g
r0

∏
x∈X0\{xj}

(x+s)
= g

r1
∏
x∈X1\{xj}

(x+s)
,

which means that witnesses do not give an additional advantage. The same argumen-
tation also holds when adding/deleting values. ut



B Security of Existing Schemes in our Model

In the following, we will analyze the undeniability and (in)distinguishability of several
constructions. We will not reconsider the collision freeness of these constructions in our
model, as it is compatible with previous models.

B.1 Undeniability of Universal Accumulators

We will now prove the subsequent lemma:

Lemma 3. The universal accumulators in [3, 17] are undeniable.

Proof. We prove the undeniability of [3, 17] by showing that an efficient adversary A
against the undeniability can be turned into an efficient adversary B against t-SDH
assumption. Note that B can simulate all oracles, since, due to the model, the accumu-
lator and the witnesses can be generated without knowing the trapdoor skacc. B gets a
t-SDH instance (g, gs, . . . , gs

t

) as input, sets pkacc = (g, gs, . . . , gs
t

) and starts A with
pkacc .

Eventually, A outputs (wit∗xi ,wit
∗
xi
, x∗i , acc

∗), with wit∗xi = (a, d) such that e(acc∗,

g) = e(gx
∗
i gs,wit∗xi) and e(acc∗, g) = e(gx

∗
i gs, a)e(gd, g) holds. Then it holds that

e(gx
∗
i gs,wit∗xi) = e(gx

∗
i gs, a)e(gd, g). With, witxi = gX

′
and a = ga

′
for some unknown

X ′, a′, we know that the relation of the exponents is X ′ = a′ + d
x∗i+s

. Thus, B can

compute g
1

x∗
i
+s ← (wit∗xi ·a

−1)d
−1

and output it as a solution to the t-SDH problem. ut

B.2 Indistinguishability of (Dynamic) Accumulators

We investigate the indistinguishability of [3–5, 8, 9, 11, 13, 15, 17, 26, 31]. As we will see,
most existing dynamic accumulator schemes can be turned into cfw-indistinguishable
accumulators under Transformation 1, whereas this does not work for existing universal
accumulators.

Lemma 4. Under Transformation 1, the schemes in [4], [5] and [13] are cfw-indist-
inguishable.

Proof. De Meer et al. [18] proved a version of [4], where Eval randomly chooses a pri-
vate starting value g, to be indistinguishable in their model.4 The random choice of
g is a way to apply Transformation 1. Thus, we can reuse the proof in [18] for cfw-
indistinguishability.

The schemes in [4] and [5] are identical, with the only difference that the accumula-
tion domain in [4] is restricted to prime numbers. Since the proof in [18] does not require
this restriction, indistinguishability also holds for [5]. The difference from [13] to [4, 5]
is that [13] supports dynamic updates. We, thus, need to show that access to OA and
OD does not give the adversary any advantage. The proof in [18] shows that the value
of the challenge accumulator is random, when x is randomly sampled from the accumu-
lation domain, i.e., it cannot be distinguished from a randomly sampled starting value
of an empty accumulator. Taking this, together with the restriction that only elements

4 We note that in their security game an additional random value x is inserted into the
accumulator. This value is, however, not required for their indistinguishability proof.



a /∈ X∪ can be added and only elements a ∈ X∩ can be deleted, the adversary does not
learn more than when dealing with an empty accumulator. Consequently, it can not win
the indistinguishability game with a probability being non-negligibly greater than 1/2.
The same argumentation also holds for [26] under the assumption that the universal
features, i.e., the non-membership witnesses/proofs, are not being used. ut

Lemma 5. Under Transformation 1, the scheme in [31] is cfw-indistinguishable.

When applying Transformation 1, the accumulator in [31] is computed as accX ←
gu(x+s)

∏n
i=1(xi+s), where X = {x1, . . . , xn}, u is a random value in Z∗p (chosen during

Gen) and x is a random value from the accumulation domain (freshly chosen upon each
call to Eval). As discussed in Section 5.1, slight changes to the accumulator scheme
in [31] make it indistinguishable. In the following, we show the cfw-indistinguishability
under Transformation 1.

Proof. It is easy to see that for a given accumulator accX to set X = {x1, . . . , xn},
that is, accX = gu(x+s)

∏n
i=1(xi+s) (after applying Transformation 1), another value x′

exists such that for an arbitrarily chosen set W = {wi, . . . wm} it holds that accX =
gu(x

′+s)
∏m
i=1(wi+s). More precisely, this means that the accumulated set is uncondi-

tionally hidden within accX . Moreover, since the witnesses have the same form as the
accumulator, they also do not reveal anything beyond the fact that an element has
indeed been accumulated. ut

Note that it is crucial that the random elements, which are inserted into the ac-
cumulator, are not reused to reach this unconditional indistinguishability. Similarly,
the schemes in [3, 17, 26], which extend [13] and [31] by universal features, are cfw-
indistinguishable when solely used with membership witnesses. This is due to the fact
that in these schemes non-membership witnesses leak information about the accumu-
lated values (cf. Appendix B.3).

Lemma 6. Under Transformation 1, the scheme in [12] is distinguishable.

Proof. Here the accumulator acc is a product of generators contained in pkacc. Thus,
the size of pkacc is linear in the maximum number of accumulated elements. This means
that one can efficiently brute force the generators contained in accXb and win the game
if X0 and X1 are chosen such that ||X0| − |X1|| ≥ 1. ut

Lemma 7. Under Transformation 1, the scheme in [7] is distinguishable.

Here, the accumulator is the root of a perfect Merkle hash-tree, where a statistically
hiding commitment is used as hash function. This implies that the accumulated values
are statistically hidden in the accumulator. A witness for an accumulated value x is the
opening of the corresponding commitment together with its authentication path (the
authentication path only contains commitments).

Proof. Transformation 1 inserts a random value x from the accumulation domain into
the accumulator. To win the game, the adversary chooses two arbitrary sets X0,X1 such
that 1 ≤ |X0|+ 1 ≤ 2t and 2t < |X1|+ 1 for arbitrary integers t > 0. According to the
game, the adversary can now obtain a membership witness for an element x′ ∈ X0 ∪X1

and decide which set was accumulated by using the length l of the authentication path
of the witness, i.e., if l > t the set X1 was accumulated and X0 otherwise. ut



Since the used commitments are statistically hiding, indistinguishability holds for sets
X0,X1 of size 2t ≤ |X0|, |X1| < 2t+1 with t ∈ N, where the hash-tree is filled up with
dummy elements if the set size is not a power of two. Thus, for sets of size |X0| = |X1| =
2t we have indistinguishability, whereas cfw-indistinguishability holds for arbitrary sets
meeting the aforementioned constraints.

B.3 Indistinguishability of Universal Dynamic Accumulators

Subsequently, we prove the following lemmas by providing adversaries that succeed with
non-negligible probability better than 1/2.

Lemma 8. Under Transformation 1, the universal accumulator from [26] is distin-
guishable.

Proof. Here, a non-membership witness for a value yj not contained in accX with X =
{x1, . . . , xn} is a tuple (a, d), where a

∏n
i=1 xi + byj = 1 and d ≡ g−b (mod N). From

this, an adversary can compute a−1 mod yj , i.e., a−1 ≡
∏n
i=1 xi (mod yj). When yj >∏n

i=1 xi holds, then obviously also a−1 mod yj =
∏n
i=1 xi.

Transformation 1 inserts a random value x from the accumulation domain into the
accumulator. Suppose that the adversary chooses two arbitrary sets X0 = {x1, . . . , xn}
and X1 = {w1, . . . , wm} with X0 6= X1 and generates k distinct non-membership wit-
nesses (yji)

k
i=1 = ((aji , dji))

k
i=1. The adversary can then compute a−1ji mod yji for i =

1, . . . , k such that, depending on whether X0 or X1 was accumulated, either x
∏n
l=1 xl ≡

a−1ji (mod yji) or x
∏m
l=1 wl ≡ a−1ji (mod yji) holds for i = 1, . . . , k. In the attack, the

adversary can compute a−1CRT (mod
∏k
i=1 yji) using (a−1ji mod yji)

k
i=1 and the Chinese

remainder theorem. Now, if
∏k
i=1 yji > x

∏n
i=1 xi and

∏k
i=1 yji > x

∏m
i=1 wi, it ei-

ther holds that a−1CRT = x
∏n
i=1 xi or a−1CRT = x

∏m
i=1 wi. These conditions can always

be ensured, since the adversary can generate an arbitrary number of non-membership
witnesses yji . Next, the adversary can divide a−1CRT by an element being exclusively con-
tained in X0. If this division leaves a remainder, X1 was accumulated, and X0 otherwise.
This attack succeeds with overwhelming probability, since only primes are accumulated
and the probability that the randomly chosen x is also exclusively contained in one of
the sets X0 or X1 is negligible. ut

Lemma 9. Under Transformation 1, the universal accumulator from [17] is distin-
guishable.

Proof. Again, we show that the proposed non-membership witnesses leak information
about the accumulated set. Here, non-membership witnesses are of the form (a, d) with

a = g
h(s)−d
yj+s = g

∏n
i=1(xi+s)−d

yj+s and d = h(−yj) =
∏n
i=1 (xi − yj).

Transformation 1 inserts a random value x from the accumulation domain into
the accumulator. Suppose w.l.o.g. that the adversary chooses X0 = {x1, . . . , xn} and
X1 = {w1, . . . , wm} for m > n and obtains accXb ← gh(s), where h(s) is either equal to
(x+s)

∏n
i=1(xi+s) or equal to (x+s)

∏m
i=1(wi+s). The adversary is allowed to generate

n+2 distinct non-membership witnesses ((ai, di))
n+2
i=1 corresponding to the non-members

(yi)
n+2
i=1 . Now, since di = h(−yi), one can simply recover a suspected polynomial of

degree n + 1 by its evaluations (di)
n+2
i=1 at (−yi)n+2

i=1 using polynomial interpolation.
This interpolation yields the polynomial corresponding to the accumulated set in case



X0 was accumulated, and some arbitrary polynomial with the evaluations (di)
n+2
i=1 at

(−yi)n+2
i=1 in case X1 was accumulated. Given this polynomial and (g, gs, . . . , gs

t

), one

can reevaluate the accumulator, i.e.,
∏n+1
i=0 (gs

i

)ai , where ai is the i-th coefficient of the

expanded polynomial. If accXb =
∏n+1
i=0 (gs

i

)ai holds, then we know with overwhelming
probability that accXb accumulates X0 and X1 otherwise. Note that this attack succeeds
with overwhelming probability, since the probability that the wrong polynomial has the
same evaluation at a random unknown s is negligible. ut

We further note that, due to the structure of the values d in the non-membership
witnesses, also other attacks could apply.

Lemma 10. Under Transformation 1, the universal accumulators from [3] is distin-
guishable.

Proof. We show that the proposed non-membership witnesses leak information about
the accumulated set. Here, non-membership witnesses are of the form (a, d) such that

a = g

∏n
i=1(xi+s)−d

yj+s and d is the remainder of the polynomial division
∏n
i=1(xi+s)

yj+s
.

Transformation 1 inserts a random value x from the accumulation domain into the
accumulator. Similar to the attack against [26], we can w.l.o.g. assume that the ad-
versary chooses an arbitrary set X and two arbitrary distinct elements x1, x2 ∈ Zp
such that x1, x2 /∈ X . Then, we have X0 = X ∪ {x1} and X1 = X ∪ {x2}, respec-
tively. According to the game, all values of X can be deleted. Then, the value of the
challenge accumulator is g(x+s)(xi+s) for an i ∈ {1, 2}. Furthermore, the polynomial

division (x+s)(xi+s)
yj+s

yields a remainder of the form xxi − (x + xi − yj)yj = d mod p.

Now, the adversary obtains a non-membership witness for some value yj , yielding the
remainder dj . Given that, the adversary can compute two candidate values x′, x′′ for x
from the equation above – simply by trying both x1 and x2. Thus, the adversary knows
two potentially accumulated polynomials (x′ + s)(x1 + s) and (x′′ + s)(x2 + s), which
can be used to reevaluate the accumulator with respect to these two polynomials in the
same way as in the proof for Lemma 9. Thus, the adversary can decide which set has
been accumulated by comparing the resulting accumulators to the challenge accumula-
tor. This attack succeeds with overwhelming probability, since the probability that the
wrong polynomial has the same evaluation at s is negligible for a random, unknown
s. ut

We note that in [3] a second method for generating non-membership witnesses (where
the knowledge of s is required) is proposed. Here, d is reduced modulo yj + s, which,
in turn, means that the attack above only succeeds when d mod p = d mod yj + s.
However, since d leaks information about the set, also other, more efficient attacks
might be possible.

Lemma 11. Under Transformation 1, the universal accumulators from vector commit-
ments [15] are distinguishable.

Proof. We show that the proposed accumulator schemes from vector commitments in
the RSA and CDH setting are distinguishable by presenting an adversary that wins the
indistinguishability game with a probability of 1.

In accumulators from vector commitments, the accumulation domain is the set
D = {1, . . . , t}. In both, the RSA and the CDH instantiation, the accumulator (vector



commitment) for a set X ⊆ D is computed as accX ←
∏t
i=1 g

χX (i)
i , where χX (·) is the

characteristic function. The values gi are contained in the public parameters.
The adversary can choose two arbitrary sets X0,X1, such that |X0 ∩ X1| ≤ |X0| −

2 and |X0 ∩ X1| ≤ |X1| − 2, i.e., X0 and X1 are different in at least two elements.
Transformation 1 inserts an additional random value from the accumulation domain into
the accumulator. Then, the value of accXb is either equal to gr

∏
i∈X0

gi with r /∈ X0, or
equal to gr′

∏
i∈X1

gi with r′ /∈ X1. Note that due to the choice of the sets X0 and X1 we
can guarantee that adding a single element cannot make the sets collide. Consequently,
the adversary can w.l.o.g. try if an element from the set D \X0 was used as randomizer
for evaluating accXb with respect to X0. If such an element is found, X0 was accumulated
and X1 otherwise. Note that the size of the public parameters is linear in the size of D.
Thus, this brute-force strategy can be realized efficiently. ut

We note that the same argumentation can be applied if the accumulation domain is an
arbitrary set of size n (as proposed in Remark 16 in [15]).

Lemma 12. Under Transformation 1, the universal accumulators in [8], [9] and [11]
are distinguishable.

Proof. We show that the accumulators from collision-resistant hashing are distinguish-
able by presenting an adversary that wins the indistinguishability game with probability
1. Here, one can use the fact that the sets are sorted and that non-membership wit-
nesses contain two elements of the respective sets. Again, Transformation 1 inserts an
additional random element into the set upon Eval.

To break indistinguishability, the adversary chooses two disjoint sets X0,X1. It is
allowed to obtain a non-membership witness for a value yi /∈ X0 ∪ X1, which contains
two consecutive values x1, x2 out of the accumulated set such that x1 < yi < x2 holds.

Then we distinguish three cases. In the first case x1 and x2 are contained in Xi
for an i ∈ {0, 1}, meaning that the adversary knows that Xi has been accumulated
(neither x1 nor x2 is the random element). In the second case, we can w.l.o.g. assume
that x2 /∈ X0 ∪ X1 (is the random element which is contained in none of the initially
chosen sets). This means that x1 ∈ Xi for an i ∈ {0, 1} and the adversary knows that
Xi was accumulated. In the remaining case, we can w.l.o.g. assume that x1 ∈ X0 and
x2 ∈ X1, and, thus, either x1 is the random element added to X1 upon Eval or vice
versa. Then, the adversary can request another non-membership witness for y′i < x1
and y′i /∈ X0 ∪ X1 and obtains x3 and x4 such that x3 < y′i < x4. It could be the case
that x1 = x4, but still x3 is either an element of X0 or X1 and, thus, the adversary can
decide which set was accumulated.

Finally, we note that the adversary can always choose yi and y′i such that obtaining
witnesses fulfilling the requirements above is possible, since X0 and X1 are also chosen
by the adversary. ut

C Proofs

C.1 Undeniability Implies Collision-Freeness

We prove that every undeniable accumulator is also collision-free by showing that an
efficient adversary A against the collision freeness of an accumulator scheme can be
used to construct an efficient adversary B against its undeniability. Note that B can
simulate all required oracles.



Proof. B gets input pkacc and runs A(pkacc). There are two cases if A wins the collision
freeness game: A outputs either (wit∗xi , x

∗
i ,X ∗, r∗) or (wit∗xi , x

∗
i ,X ∗, r∗).

If A outputs (wit∗xi , x
∗
i ,X ∗, r∗) such that x∗i /∈ X ∗, B evaluates the accumulator

with respect to X ∗ and r∗. Hence, it obtains accX∗ . Next, it computes witxi using the
witness generation algorithm (which can always be done since xi /∈ X ) and outputs
(wit∗xi ,witxi , x

∗
i , accX∗).

If A outputs (wit∗xi , x
∗
i ,X ∗, r∗) such that x∗i ∈ X ∗, B evaluates the accumulator

with respect to X ∗ and r∗. Hence, it obtains accX∗ . Next, it computes witxi using the
witness generation algorithm (which can always be done since x∗i ∈ X ∗) and outputs
(witxi ,wit

∗
xi
, x∗i , accX∗). Hence, whenever A wins the collision freeness game, B wins the

undeniability game with exactly the same probability ut

C.2 Commitments from Indistinguishable 1-bounded Accumulators

Proof. We show that an efficient adversary A against the binding (hiding) property of
Scheme 1 can be turned into an adversary B against the collision freeness (indistin-
guishability) of the indistinguishable 1-bounded accumulator. To do so, we construct
a reduction B, which interacts with a challenger C from the respective accumulator
game (and internally simulates the challenger C′ of the respective commitment game
for adversary A).

(Binding): Let us assume that there exists an efficient adversary A against the
binding property of Scheme 1. C runs pkacc ← Acc.Gen(1κ, 1) and starts B on pkacc.
That is, C′ sets pp← pkacc and starts A on input pp. Eventually, A outputs C∗, O∗ ←
(r,m,witm, aux), O

′∗ ← (r′,m′,witm′ , aux
′) such that m← Open(pp, C∗, O∗) and m′ ←

Open(pp, C∗, O′∗) and m 6= m′ ∧ m 6= ⊥ ∧ m′ 6= ⊥. Note that this means that
Evalr((∅, pkacc), {m}) = C∗, Evalr′((∅, pkacc), {m′}) = C∗, Verify(pkacc, C

∗,witm,m) =
true and Verify(pkacc, C

∗,witm′ , m
′) = true. Thus, B returns (witm,m, {m′}, r′) as a

collision for the accumulator.
(Hiding): Let us assume that there exists an efficient adversary A against the hiding

property of Scheme 1. C runs pkacc ← Acc.Gen(1κ, 1) and starts B on pkacc, meaning
that C′ sets pp ← pkacc, runs (m0,m1, state) ← A(pp) and returns (X0,X1, state) ←
({m0}, {m1}, state). C then computes the challenge accumulator accXb and hands it to
B. Given that, C′ starts A(pp, accXb , state) and obtains and outputs b∗. Thus, B breaks
the indistinguishability of the accumulator. ut

C.3 Indistinguishable Undeniable Accumulators from Zero-Knowledge
Sets

Proof. It is easy to see that the notions perfect completeness and soundness are equiv-
alent to the correctness and undeniability notions of accumulators. However, the zero-
knowledge property of ZK-sets is defined in a simulation-based way, whereas the in-
distinguishability is defined in a game-based way. To show that the zero-knowledge
property of ZK-sets implies indistinguishability, we use the following sequence of games.

As a ZK-set is zero-knowledge, there is a simulator S whose output cannot be
distinguished from an honest output with non-negligible probability ε(κ). We will now
use S to replace the oracle answers in the indistinguishability game.

Game 0: The original accumulator indistinguishability game.



Game 1: We change the game such that all relevant steps are executed by the simula-
tor. That is, the setup (Gen) is performed using SG and the computation of accXb
is performed by the simulator using SE. Furthermore, the output of oracle OE is
replaced by the output of SE. Likewise, the outputs of the oracles OW and OW are
replaced by the output of SQ. More precisely, if OW has been called and SQ returns
a membership proof then OW returns π and ⊥ otherwise. The oracle OW works in
the same way.

Henceforth, we denote the winning condition of Game i by Si. In Game 1, the adversary
only gets to see simulated values, which contain no information about the respective
set. Therefore, the advantage for the adversary to win this game is equal to 0, i.e.,
Pr[S1] = 1

2 . We further know that the adversary can only recognize the transition from
Game 0 to Game 1 with probability ε(κ). Hence, we know that |Pr[S0]−Pr[S1]| = ε(κ).
Taking everything together, we derive that |Pr[S0]− 1

2 | = ε(κ) which shows that every
ZK-set fulfilling the zero knowledge property is also an indistinguishable accumulator.

ut


