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Abstract. A main contribution of this paper is an improved analysis against HMAC instantiating with
reduced Whirlpool. It recovers equivalent keys, which are often denoted as Kin and Kout, of HMAC with
7-round Whirlpool, while the previous best attack can work only for 6 rounds. Our approach is applying
the meet-in-the-middle (MITM) attack on AES to recover MAC keys of Whirlpool. Several techniques are
proposed to bypass different attack scenarios between a block cipher and a MAC, e.g., the chosen plaintext
model of the MITM attacks on AES cannot be used for HMAC-Whirlpool. Besides, a larger state size
and different key schedule designs of Whirlpool leave us a lot of room to study. As a result, equivalent
keys of HMAC with 7-round Whirlpool are recovered with a complexity of (Data,Time,Memory) =
(2481.7, 2482.3 , 2481).
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1 Introduction

A cryptographic hash function is a public algorithm that compresses arbitrary long messages into short
and random digests. An important application is a Message Authentication Code (MAC). A MAC is a keyed
algorithm that takes a secret key and an arbitrary long message as input, and produces a short random
string as the tag. The tag provides the authenticity and the integrity for the original messages. In this paper,
we mainly study the security of one dedicated hash-based MAC, HMAC based on the hash function Whirlpool.

Whirlpool was proposed by Barreto and Rijmen in 2000 [1]. Its security was evaluated and approved
by NESSIE [2]. Moreover, Whirlpool has been internationally standardized by ISO/IEC, and practically
implemented in various cryptographic software libraries such as Crypto++ [3]. Many cryptanalysis results
have been published on Whirlpool [4–9]. Particularly, collision attack and preimage attacks on Whirlpool

hash function reach 5 and 6 rounds out of 10 rounds respectively [5, 9]. Moreover, a distinguisher on full-
round Whirlpool compression function was found in [5]. Although it is an interesting and beautiful attack,
the security impact of such a distinguisher seems limited. Thus Whirlpool still stands secure after receiving
more than 10 years consecutive analysis from worldwide cryptanalysts.

The HMAC scheme was designed by Bellare et al. in 1996 [10], and becomes the most well-known hash-
based MAC scheme. HMAC has been standardized by many international standardization organizations including
ANSI, IETF, ISO and NIST. Also it has been widely deployed in various practical protocols including SSL,
TLS and IPSec. Cryptanalysts have been continuously evaluating the security of both HMAC and HMAC based
on dedicated hash functions. Generic attacks on HMAC include [11–14]. The attacks on HMAC with popular
dedicated hash functions can be found in [15–21].

⋆ This work has been partially supported by 973 Program (No. 2013CB834205), NSFC Project (No. 61133013),
Program for New Century Excellent Talents in University of China (NCET-13-0350), as well as Interdisciplinary
Research Foundation of Shandong University (No. 2012JC018).
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Table 1. Summarization of key-recovery results on HMAC-Whirlpool

Key type #Rounds
Complexity

Reference
Time Memory Data

Original Key
5 2402 2384 2384 [23]

6 2496 2448 2384 [23]

Equivalent Keys

5 2448 2377 2321 [23]

6 2451 2448 2384 [23]

7 2482.3 2481 2481.7 Ours

Due to the important roles of Whirlpool and HMAC in current cryptography as briefly described above, the
security evaluation of HMAC-Whirlpool is important and interesting. Very recently in October 2013, ENISA
(The European Union Agency for Network and Information Security) published a report for recommending
cryptographic algorithms [22]. In particular, the report recommends (for future applications in industry)
three dedicated hash functions with Whirlpool included, and two hash-based MAC with HMAC included. So it
can be expected that HMAC-Whirlpool is going to have more applications in industry in the coming years,
Thus HMAC-Whirlpool should receive a careful security evaluation from the cryptographic community in
advance.

The first cryptanalysis of HMAC-Whirlpool was published by Guo et al. [23], which is also the only
algorithmic security evaluation on HMAC-Whirlpool so far to our best knowledge. They proposed key recovery
attacks on HMAC with Whirlpool reduced to 5 and 6 rounds out of 10 rounds.

Our contributions. This paper presents improved analysis on HMAC-Whirlpool. HMAC, from the original
key K, derives two keys Kin and Kout which are usually referred to as equivalent keys. If both Kin and Kout

are recovered, an adversary can perform the universal forgery attack. In this paper, we present an equivalent
key recovery attack on HMAC with 7-round Whirlpool, which extends the number of attacked rounds by one
round compared with previous work [23].

The design of Whirlpool is based on the AES block cipher. Our idea is applying the recent meet-in-the-
middle (MITM) attack on 7-round AES [24, 25] to recover MAC keys of 7-round Whirlpool. The analysis seems
quite simple at a short glance, however, such an extension is not trivial at all due to differences of attack
scenarios between a block cipher and a MAC. For example, MITM attacks on AES work under the chosen
plaintext model, while the input message for the outer function of HMAC is a hash digest of the inner function,
which cannot be chosen by the attacker. The output of AES block cipher, i.e. ciphertext, can be observed by
the attacker, while the output of the intermediate compression function in HMAC cannot be observed. Besides,
a larger state size and different key schedule designs of Whirlpool leave us a lot of room to study.

A summary of our results and previous key recovery attacks is given in Table 1. Our attack can also
be applied to NMAC-Whirlpool. It is interesting to recall that the current best collision and preimage at-
tacks on Whirlpool hash function reach only 6 rounds. Such a phenomenon is not common particularly
for key recovery attacks. For example, key recovery attack on HMAC-SHA-1 reaches only 34 rounds out of
80 rounds [18], while collision attack on SHA-1 hash function reaches full rounds [26] and preimage attack
reaches 57 rounds [27].

Throughout this paper, we target HMAC-Whirlpool that uses a 512-bit key and produces full size, i.e.,
512-bit, tags. Targeting this case has theoretical interests since HMAC is defined to use a key of any bit
size. Moreover, HMAC instantiating with a key size of one block of an underlying hash function (512 bits
for Whirlpool) and with full size tags is utilized in cryptographic protocols. One example is HMAC-based
Extract-and-Expand Key Derivation Function [28].

Besides HMAC, we briefly discuss other MACs. For Prefix-MAC with 7-round Whirlpool, we can also recover
the equivalent key. On the other hand, for LPMAC with 7-round Whirlpool, we cannot recover the equivalent
key. Nevertheless, we modify the attack procedure and manage to launch universal forgery attack.
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Organization of the rest paper. Section 2 describes previous related works. Section 3 presents an overview
of our attack on HMAC with 7-round Whirlpool. Section 4 describes the details of our attacks and shows the
application to other MAC. Finally we conclude the paper in Section 5.

2 Related Work

2.1 Whirlpool Hash Function

Whirlpool [1] takes any message with less than 2256 bits as input, and outputs a 512-bit hash value. It
adopts the Merkle-Damg̊ard structure. The input message M is padded into a multiple of 512 bits. The 256-
bit binary expression of the bit length ℓ is padded according to the MD-strengthening, i.e. M‖1‖0∗‖ℓ. The
padded message is divided into 512-bit blocks M0‖M1‖ · · · ‖MN−1. Let Hn be a 512-bit chaining variable.
First, an initial value IV is assigned to H0. Then, Hn+1 ← CF(Hn,Mn) is computed for n = 0, 1, . . . , N − 1,
where CF is a compression function. HN is produced as the hash value of M .

The compression function CF consists of an AES-based block-cipher Ek with the Miyaguchi-Preneel
mode, which takes a 512-bit chaining variable Hi as a key and a 512-bit message block Mi as a plaintext.
The output of CF is computed by Hn+1 ← EHi(Mi)⊕Mi⊕Hi. Inside the block cipher Ek, an internal state
is represented by an 8 ∗ 8 byte array. At first, Hi is assigned to the key value k−1, and Mi is assigned to the
plaintext s−1. Then, the whitening operation with the master key k−1 is performed and the result is stored
into a variable s0, i.e. s0 ← k−1 ⊕ s−1. The cipher generates ten 512-bit subkeys k0, k1, . . . , k9 from k−1 by
the key schedule function, and updates s0 through ten rounds with generated subkeys. The computation of
the block cipher output s10 is as follows:

Key Schedule: kn ← AC ◦MR ◦ SC ◦ SB(kn−1), for n = 0, 1, . . . , 9,

Data Processing: sn ← AK ◦MR ◦ SC ◦ SB(sn−1), for n = 0, 1, . . . , 9,

where the details of each operation are as follows.

- SubBytes (SB): apply the AES S-Box to each byte.

- ShiftColumns (SC): cyclically shift the j-th column downwards by j bytes.

- MixRows (MR): multiply each row of the state matrix by an MDS matrix.

- AddRoundConstant (AC): XOR a 512-bit pre-specified constant.

- AddRoundKey (AK): XOR a 512-bit subkey kn.

We sometimes swap the order of MR and AC for the key schedule and MR and AK for the data processing.
In this case, the AK operation XORs MR−1(kn). Hereafter, we denote MR−1(kn) by un.

Notations. The byte position in the i-th row and the j-th column of state S is denoted by two-dimensional
integers S[i][j], where 0 ≤ i, j ≤ 7. We denote the initial state for round n by xn. Internal states immediately
after SB, SC and MR in round n are denoted by yn, zn and wn, respectively. We often denote several byte
positions by using comma, e.g., 8 bytes in the top row of state S are denoted by S[0][0, 1, . . . , 7]. We also
use the following notations:

- S[row(i)]: 8 byte-positions in the i-th row of state S,

- S[SC(row(i))]: 8 byte-positions which SC is applied to S[row(i)],

- S[SC−1(row(i))]: 8 byte-positions which SC−1 is applied to S[row(i)].

We use H to denote a hash function, and CF(ch,M) to denote a compression function. For the ease of
notation, M may be of multiple blocks, then CF acts the same as hash function H except no padding.
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2.2 Hash Based MACs

HMAC and NMAC. HMAC and NMAC [29] are hash-based MACs proposed by Bellare et al. [30, 10]. NMAC requires
two keys Kin and Kout while HMAC requires only a single key K, and generates two equivalent keys by
processing K ⊕ ipad and K ⊕ opad, where opad and ipad are two public constants. Let H be a hash
function. Also, let H(IV, ·) represent that the initial value of H is IV. On an input message M , NMAC and
HMAC computes the tag value as

NMAC-HKin,Kout(M) = H
(

Kout,H(Kin,M)
)

,

HMAC-HK(M) = H(K ⊕ opad‖H(K ⊕ ipad‖M)).

Prefix-MAC and LPMAC. Prefix-MAC is a classical MAC construction [31], which computes a tag of message
M by H(K‖M). It is known to be vulnerable against the length extension attack, i.e., from a given pair
of message and tag (M, t), the attacker can forge the tag for M‖x for any x. However, no generic attack is
known in terms of the key recovery. We suppose that the prefix K is processed independently of M , i.e.,
the tag is computed by H(K‖pad‖M) in which pad is a padding string and the size of K‖pad is a multiple
of the block size. LPMAC is a strengthened version of Prefix-MAC [31] so that the length-extension attack is
prevented. Let ℓ be the input message size. A tag is computed by H(K‖ℓ‖pad‖M), where the size ofK‖ℓ‖pad
is a multiple of the block size.

2.3 Generic Internal State Recovery Attack on HMAC

Leurent et al. [14] provide a generic inner state recovery attack against HMAC/NMAC with time complexity

23n/4. The result is that, hin = CF(IV,K‖M2n/4

p ) can be recovered, with M2n/4

p satisfying the padding rule,

and of about 2n/4 blocks. We can then recover inner state CF(IV,K‖M1
p ), with M1

p of one block. This can

be done through detecting colliding tags, i.e., we randomly choose 2n/2 messages x, x′ independently so

that the two messages M2n/4

p ‖x and x′ follow the padding rules, and query their tags, denoted as t and t′,
respectively. When t and t′ collide, the chance that they collide at inner hash, i.e., h′

in = CF(IV,K‖x′) =

CF(IV,K‖M2n/4

p ‖x) = CF(hin, x) is roughly 1/3.

2.4 6-Round Key Recovery Attack on HMAC-Whirlpool

The first cryptanalysis of HMAC-Whirlpool was published by Guo et al. [23], which showed a key recovery
attack on HMAC reduced to 6 rounds. They first apply the generic internal state recovery in Sect. 2.3, and
then find a message pair satisfying a particular differential characteristic. The fact that the pair satisfies the
characteristic reduces a possible differential patterns of internal states. This allows an attacker to exhaustively
guess internal state values and differences, and the correct guess is identified by the MITM attack. On one
hand, the MITM attack in [23] is a classic type which divides the computation into two independent sub-
functions, e.g., [32–35]. On the other hand, the MITM attacks on AES later explained in Sect. 2.5 are based
on a different framework,

2.5 Meet-In-The-Middle Attack on AES

The unified view of a series of MITM attacks on AES [36, 24, 25, 37] is well-summarized in [24]. The concept
of δ-set takes an important role of the attack.

Definition 1 (δ-set [38]). Let a δ-set be a set of 256 states that are all different in one state bytes (the
active byte) and all equal in the other state bytes (the inactive bytes).

The number of active bytes in the δ-set is often increased, e.g., [39]. It is easy to extend the concept of the
δ-set to deal with multi-active bytes.
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z1 x2 z2 x3 z3 x4 z4 x5

u1 u2 k3 k4

Fig. 1. 4-round differential characteristic for MITM attacks on AES [25]. Grey bytes are active. Subkey bytes repre-
sented by bold square are the ones used as parameters.

Definition 2 (n-δ-set). Let an n-δ-set be a set of (256)n states that are all different in n state bytes and
all equal in the other state bytes.

The MITM attack divides the cipher into three parts:

s0 −→ (sn1
−→ sn2

) −→ slast,

so that the middle part can satisfy a certain property, which is later verified with the partial encryption for
the first part and the partial decryption for the last part. The general attack consists of the following five
successive steps:

Precomputation phase
1. A lookup table T is built which contains all the possible sequences constructed from a δ-set such that

one message verifies the property for the middle part.
Online phase
2. Through the oracle query, candidates of the plaintext-ciphertext pair that satisfies the target property

for the middle part are searched.
3. For each candidate pair, subkeys for the first part that achieves the property for the middle part are

guessed, and then the internal state value at the beginning of the middle part, sn1
, is modified so that

a δ-set containing a state value verifying the desired property is constructed.
4. With the guessed subkeys for the first part, the δ-set at sn1

is decrypted to obtain the corresponding
plaintexts. Those plaintexts are queried to the encryption oracle, and the corresponding ciphertexts are
obtained.

5. Finally, subkeys for the last part are guessed, and the obtained ciphertexts associated by the δ-set at sn1

are partially decrypted through the last part and tested whether it belongs to T .

If the analyzed pair is the right one and the guessed subkeys are right ones, the result of Step 5 belongs to
T with probability 1, and the key is recovered. Because of Step 4, the attack is a chosen plaintext attack.

Previous work consider a function f : {0, 1}8 → {0, 1}8 that maps the active byte value of a δ-set to
another byte of the state after four rounds, sn2

. Gilbert and Minier [37] found that an ordered sequence
(f(0), . . . , f(255)) for AES four rounds are parameterized only by 25 bytes, which takes significantly smaller

space, i.e., 225·8 = 2200, than the theoretically possible space, 28·2
8

= 22048. Considering the difference
(f(0) − f(0), f(1) − f(0), . . . , f(255)− f(0)), the attack is improved so that the function is parameterized
only by 24 bytes. Also note that the effect of the filtering with T is strong enough even with a fraction of
(f(0), . . . , f(255)). On average, storing (f(0), . . . , f(31)) is enough to make the key space sufficiently small.
Such optimization was discussed in [40].

Dunkelman et al. introduced the four-round truncated differential characteristic in the middle part [25],
which is shown in Fig. 1. The characteristic is parameterized only by 16 bytes, i.e., the states x3 and z3 can
only take 232 differences each so that the number of solutions for these two states is 264. Then, at most 4
bytes in u2 and 4 bytes in k3 can affect the characteristic. Hence, the number of paired state values (z1, z

′

1)
satisfying the characteristic is at most 2128. For each of such (z1, z

′

1), the attacker constructs the δ-set at x1

and can compute the 1-byte difference at x5. They also introduced the concept of the multiset rather than
the ordered sequence. This enables the attacker to avoid guessing 1 subkey byte at the online phase, i.e., the
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Conversion Table:

t
2z different 

choices of v

Mp m1||pad1

M1

CF

CFKout
CF

Pout

CF

ℎ��
�

Mout

Fig. 2. Overall strategy

x

- When 2�� different x are chosen (32 ≤ z0 ≤	56), 2�����

inactive bits are fixed to a constant. 

- For any pair of (in,out) and (in’,out’) s.t. in,in’	 ∈ temp2

and out,out’	 ∈ x, MR-1(in ⨁ out ⨁ in’	⨁ out’	) has 1 

active byte with pr = 2-32, which is bigger than 2-56.

MR 240 linear combinations

temp1

temp2

inactive bits 

are fixed

28 values are 

generated

2������ inactive bits are fixed

232 values are generated

Fig. 3. Optimized choice for table inputs

partial decryption at the online phase becomes from x1 to plaintext instead of from z1 to plaintext, which
avoids guessing 1 subkey byte to bypass the SB operation between x1 and z1. Because the theoretically
possible numbers of multisets with 256 elements is 2467.6, the 2128 possible patterns for AES is significantly
small, which is enough to filter out all the noise.

The latest attack by Derbez et al. [24] is an improvement of the attack in [25]. They found that the
four-round characteristic in Fig. 1 is parameterized only by 10 bytes, i.e., the number of solutions for
the characteristic is at most 280. They also consider the multi-active bytes at z1 and multi-differential
characteristics for the middle four-round characteristic so that the active byte positions of z1 and x5 can
take any of

(

4
2

)

patterns and
(

4
1

)

patterns respectively.

3 Overview of Our Attacks

This section gives a high level overview of our attacks on HMAC with 7-round Whirlpool. The HMAC compu-
tation structure in our attack is shown in the upper half of Fig. 2. Our goal is to recover the two equivalent
keys Kin and Kout.

In the mode-of-operation level, we follow the approach of the previous work [23]. Namely, with the generic
attack [14], we first find a single-block message Mp whose compression function output h′

in is recovered. The
knowledge of h′

in, for any message of the form Mp‖x, allows the attacker to compute the input value for the
outer hash function, Mout. We then recover the output value of the first compression function in the outer
hash function, v, from the observed tag value, t. By iterating this procedure, the attacker collects many
pairs of (Mout, v). We then recover EKout by using our compression function analysis approach which will
be explained in the next paragraph. Once EKout is recovered, Kin can be recovered by the same analysis as
Kout.

In the compression function level, to recover Kout or Kin, we plan to extend the recent 7-round MITM
attack on AES [24] to attack HMAC-Whirlpool. More precisely, the first message block in the inner and the
outer hash functions are computed as EKin(M)⊕M ⊕Kin and EKout(M)⊕M ⊕Kout respectively, where
EKin and EKout are two AES-like block ciphers. The target values Kin and Kout are used as the key for
the AES-like block ciphers. Therefore, by regarding the input value of the inner/outer hash functions as the
plaintext and by regarding the output value as the ciphertext, Kin and Kout should be recovered by applying
the MITM attack on AES. However, immediately we find that such an extension is not trivial at all because
of the following differences in the attack scenarios.

• The control ability of the attacker on choosing plaintexts is different. Particularly for the outer hash
function in HMAC-Whirlpool, the input message is the inner hash digest, and thus cannot be chosen by
the attacker.
• The knowledge of the ciphertext is different. In HMAC Whirlpool, the output is the intermediate hash
values, which are confidential to the attacker.
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• The state size is different. Whirlpool has a larger state size then AES. This yields both advantages and
disadvantages for the attack.
• The key schedule function is different. Several research, in the context of hash function, show that the
similar diffusions between the key schedule and the data processing of Whirlpool is easier to analyze
than AES [23, 5, 9].

3.1 On Recovering Ciphertexts: Generating Conversion Table

Recall Fig. 2. To recover Kout, the corresponding value of v is necessary. However, due to the additional
padding block Pout, the attacker cannot observe v.

We solve this problem by generating a conversion table denoted by Tc. Note that Pout is a fixed value
because the input message length to the outer hash function is always the same (512 bits). We then pre-
compute t ← CF(v, Pout) for many choices of v, and store pairs of (v, t) as a look-up table. Later at online
phase, v can be recovered by matching the observed t and the elements in Tc.

Suppose 2z pairs of (v, t) are generated to construct Tc. Then, for any Mout, we can recover the v from t
with probability about 2z−512.

3.2 On Choosing Plaintexts

Mout can be computed but cannot be chosen by the attacker. Therefore, the chosen plaintext attack cannot
be used to recover Kout by analyzing CF(Kout,Mout). This is crucial to apply the previous MITM attack
on AES [24].

We solve this problem by converting the attack into the known plaintext attack. In the previous procedure
in Sect. 2.5, queries are made in Step 2 and Step 4. Regarding Step 2, the previous work used the structure,
while we generate more plaintexts at random so that the difference is satisfied probabilistically.

Converting Step 4 to the known plaintext attack is much harder. The previous attack on AES uses 256
plaintexts for the δ-set, and the corresponding multiset is queried. Without the chosen plaintext model, we
cannot guarantee that all 256 plaintexts for the δ-set are known. To solve this problem, we use an n-δ-set
with a relatively big n instead of a δ-set. Because n is big, we can obtain sufficient information even only
with a fraction of the 28n plaintexts.

3.3 On Large State Size

A large state size is easier to analyze than a small state size. For example, guessing one row of a subkey
requires only 1/8 of the entire key space for Whirlpool while it is 1/4 for AES. Then, we have more choices
of attack parameters e.g., the number of active bytes in the n-δ-set, the number of active rows in the input
and output, etc. As a side-effect, identifying the best parameters becomes harder. We optimize the attack
with exhaustively trying all parameters by programming.

The theoretical number of multisets for 256 elements is 2467.6, which is unlikely to occur on AES-128 where
the attack complexity is below 2128. However, the key space of HMAC-Whirlpool is 2512, hence we sometimes
cannot filter out all the noise. This problem can be solved by the weak key schedule of Whirlpool.

3.4 On Key Schedule

Recall the attack on AES in Fig. 1. For AES, 4-byte values in u2 and k3 do not reveal any other subkey byte in
u1 and k4, respectively. However, for Whirlpool, 8 bytes for each inverse diagonal in u2[SR(row(i))] and 8
bytes for each diagonal in k3[SR

−1(row(i))] reveal 8 bytes of u1[row(i)] and 8 bytes of k4[row(i)], respectively.
This means, we do not need previous smart ideas of [36, 25], i.e., when we generate a look-up table for the
middle 4-round characteristic for each parameter, we can compute rows of x5 and rows of x1. Hence, each
element in the look-up table Tδ can be an ordered sequence of values instead of a multiset of differences. This
also gives us another advantage that the theoretically possible numbers of ordered sequences is much larger
than the multisets. As explained before, 2467.6 possibilities of multisets are not enough to analyze Whirlpool
with a 512-bit key. By using the ordered sequence, this problem can be avoided.
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3.5 Overview of the Attack

We detect that using the 4-round differential characteristic 12→ 24→ 64→ 8→ 1 for the middle 4 rounds
optimizes the attack on Whirlpool. The entire differential characteristic is constructed by extending this
middle 4-round characteristic by 1 round in backwards and 2 rounds in forwards. The number of solutions
to satisfy the characteristic is 2370. We then construct a 12-δ-set for each of all possible 2370 pairs, and store
them as a look-up table Tδ.

Precomputation phase
0. A conversion table Tc, containing 2z pairs of (v, t) is generated. Hereafter, for any Mout, we can recover

the v from t with probability 2z−512.
1. A lookup table Tδ is built which contains all possible 2370 pairs satisfying the middle 4-round charac-

teristic. For each of 2370 pairs, a 12-δ-set is constructed at sn1
, and an ordered sequence of 296 values

f(0), . . . , f(296 − 1) that map 12 bytes values at sn−1 to 1 byte value at sn−2 is stored.
Online phase
2. 2Q random messages of the form Mp‖M1 are queried, and only the ones whose t belongs to Tc are

picked. The number of expected (Mout, v) is 2Q+(z−512). To find candidate pairs satisfying the middle
4-round differential characteristic, we make about 22(Q+(z−512))−1 pairs of (Mout, v), and only pick the
ones satisfying the input and output differential forms.

3. For each candidate pair, subkeys for the first part and also for the last part that satisfy the middle
4-round characteristic are exhaustively guessed.

4. The internal state value at the beginning of the middle part, sn1
, is modified so that a 12-δ-set is

constructed. With the guessed subkeys for the first part, the 12-δ-set at sn1
is decrypted to the plaintext

Mout. If Mout belongs to the ones generated at Step 2, the corresponding v is recovered and (Mout, v) is
stored as data associated with a fraction of the 12-δ-set.

5. Finally, with the guessed subkeys for the last part, each of the obtained v is partially decrypted and
tested whether it belongs to Tδ. Note that the obtained (p, v) at online is the data associated with only
a fraction of the 12-δ-set. Which of f(0), . . . , f(296 − 1) is used for the match cannot be fixed, and thus
we cannot properly sort the elements in Tδ so that the match can be done only with 1 computation. We
later solve this problem in Sect 4.

4 Recovering Kin and Kout of HMAC/NMAC-Whirlpool

We first apply the generic internal state recovery attack by Leurent et al. [14] to find a single-block message
Mp and its compression function output h′

in.
As described in Section 3.1, in order to invert the last compression function call of the outer layer and

recover the output of the attacked compression function, we build a conversion table of size 2512−z, for some
z ≥ 0 to be decided later. It is important to note that, the attacker is not able to choose the Mout, the output
of the inner layer, and Mout plays the role similar to “plaintext” for block ciphers in our attack. Hence, our
attack setting for the key recovery is similar to the “known-plaintext” attack for block ciphers. Also, due to
collisions of the compression function, the chance that a lookup gives the right v is of probability 1− 1/e. At
the moment, the input values v of the conversion table are randomly chosen, later we show how the choices
of v can be used to optimize the overall attack.

4.1 The 4-Round Differential Characteristic

Our attack follows the previous MITM attacks on AES, which relies on a 4-round differential characteristic,
from state y1 of round 2 to x5 of round 6 of the Whirlpool compression function, as depicted in Fig. 4.
The number of active bytes, in gray color, follows 12 → 24 → 64 → 8 → 1. Let us denote the set of bytes
at positions [0][0, 1, 2], [1][0, 1, 7], [2][0, 6, 7], [3][5, 6, 7] as Bin, and byte at position [0][0] as Bout, then the
input/output differences of the middle 4-round characteristic can be simply denoted as y1[Bin] and x5[Bout].
With this characteristic, one round and two rounds are added before and after it, to form the 7-round
Whirlpool as the attack target.
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Fig. 4. Differential characteristic used in our 7-round attack

4.2 Computing the δ-set Table

Based on the 4-round differential characteristic above, we build the δ-set table, denoted as Tδ. Given a
difference ∆y1[Bin], and a state value of first three rows of x2, denoted as x2[row(0, 1, 2)], both value and
difference in active bytes of z2 can be derived, followed by difference in active bytes of w2 and x3. Similarly,
given a difference ∆x5[Bout] and state value of z4[row(0)], ∆x4[SC

−1(row(0))] can be obtained, followed by
∆y3. For each pair of (∆x3, ∆y3), one solution of state value x3 and y3 is expected on average. With actual
values in the active bytes of z2 and w2, u2[SC(row(0, 1, 2))] can be derived. Due to the diffusion property of
the key schedule, we can further derive other key bytes, i.e., k1[row(0, 1, 2)]. Similarly k3[SC

−1(row(0))] is
derived and we can further derive k4[row(0)]. We denote all the subkey bytes obtained as kob. Due to the
newly recovered kob, we can further compute more bytes in the data processing part. Finally, both value and
difference in all active bytes of the 4-round characteristic can be determined. All the recovered state and key
bytes can be found in Fig. 5.

These state information at every round of the differential characteristic allows to derive the value of
x5[Bout] from any ∆′y1[Bin], even if ∆′y1[Bin] does not follow the characteristic. We briefly illustrate it here.
Given ∆′y1[Bin] and x2[row(0, 1, 2)], both difference and actual values of x2[row(0, 1, 2)] can be obtained,
followed by difference in active bytes of y2, z2, w2 and x3. Together with actual value of x3, we derive
difference in y3, z3, w3 and x4. Note, for an arbitrary given ∆′y1[Bin], the difference in w3 and x4 may
not follow the characteristic any more. However, since we only care about the difference in those active
bytes in gray, i.e., ∆x4[SC

−1(row(0))], those unwanted bytes values can be discarded. Together with actual
value of x4[SC

−1(row(0))], derive the differences in the first row of z4, w4 and x5. Together with actual
value of x5[Bout], one can get the value of x′

5[Bout]. The details of the δ-set table computation are shown in
Algorithm 1.

4.3 The Online Phase

For Step 2 of the procedure in Section 3.5, we search for paired message candidates satisfying the middle
4-round characteristic. To ensure at least one pair follows the entire 7-round characteristic as in Fig. 4, we
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Fig. 5. Derived state and key bytes from the differential characteristic

count the number of conditions of the 7-round characteristic, there are 32 bytes conditions in the input state,
20 bytes for z0 → w0, 56 bytes for z3 → w3, 7 bytes for z4 → w4, and the rest is almost for free. In total 115
bytes = 920 bits, hence we need 2(920+1)/2 ≃ 2461 random inputs to generate enough pairs. The overall data
complexity will be 2461 × 2512−z.

With the provided data (p, v) with p as input and v as output of the attacked compression function,
we filter the pairs according to the input/output differences, i.e., ∆p[SC−1(row(4, 5, 6, 7))] = 0, and output
difference follows the pattern in w6 as in Fig. 4, i.e., ∆MR−1(p+v)[SC(row(1, 2, . . . , 7))] = 0. We sort all the
data according to the value of these non-active bytes, and find the right pairs, as done in the first for loop in
Algorithm 2. A randomly generated pair satisfies both the input and output differences with a probability
of 2−256−448 = 2−704. Hence, 2920−704 = 2216 candidate pairs will remain.

For Step 3 of the online phase as in Section 3.5, with any pair (p, v) and (p′, v′), we partially en-
crypt the p, p′ by 1 round, and decrypt v, v′ by 2 rounds. To do that, we guess the whitening key bytes
k−1[SC

−1(row(0, 1, 2, 3))] in a linear space of size 212∗8 = 296 so that w0 fulfills the desired difference pat-
tern. Note that the guess can be done diagonal wise independently. For example, one can guess 3 bytes
([0][0], [7][1], [6][2]) of the first diagonal in k−1 first, compute both difference and value of these three bytes in
x0, followed by the difference in w0[row(0)], backwards compute the other 5 byte differences in the first diago-
nal of x0, from which the other 5 byte value in the first diagonal of k−1 can be derived. Repeat the same proce-
dure for the other diagonals, hence each key guess can be done in computation 1. Due to the similarity of the
round function and key schedule, k0[row(0, 1, 2, 3)] can be derived from k−1[SC

−1(row(0, 1, 2, 3))], then both
state value and difference of y1[row(0, 1, 2, 3)] can be obtained. Similarly, one can guess u6⊕u−1[SC(row(0))]
and u5[0][0], and compute the ∆x5[0][0]. For each given (p, v), (p′, v′) pair, there will be 28 guessed keys
u6⊕u−1[SC(row(0))] on average making it follow the characteristic. Overall, with each data pair, we guessed
14-byte key values. The total number of candidates so far is 2216+112 = 2328 pairs.

For Step 4 as in Section 3.5, with each candidate pair, the 12-δ-set is constructed with respect to y1[Bin].
With the guessed subkeys k−1[SC

−1(row(0, 1, 2, 3))] and k0[row(0, 1, 2, 3)], 2
96 state values in the set are

decrypted to the plaintext. Each of 296 plaintexts are tested if the corresponding v is stored in Step 2.
Because 2461 (p, v) relations are generated, the probability of having the corresponding v is 2461−512 = 2−51.
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Algorithm 1 Construction of the δ-set table

1: Empty a lookup table Tδ.
2: for all 12 bytes differences in ∆y1[Bin] and 24 bytes values of x2[row(0, 1, 2)] do
3: Deduce differences in x3.
4: for all 1 byte differences in ∆x5[Bout] and 8 bytes values of z4[row(0)] do
5: Deduce differences in y3.
6: Use the differential property of SBox to deduce the values in x3, x

′

3, y3, y
′

3.
7: Deduce kob and all state values of the active bytes of the characteristic.
8: Empty an ordered sequence M .
9: for all 12 bytes values in y1[Bin] do // construct 12-δ-set at y1
10: Compute the corresponding x5[Bout] and add it to M .
11: end for

12: Add M to the lookup table Tδ, indexed by (∆y1[Bin], ∆x5[Bout], x2[row(0, 1, 2)], z4[row(0)]), M and kob
as entry values.

13: end for

14: end for

15: Output: Tδ of 2456 entries. //2360 indices each containing 296 relations of M

Therefore, 296−51 = 245 plaintexts can have the corresponding v and stored as Df that is associated with a
fraction of the 12-δ-set. Note that we do not need to use all these 245 elements in the 12-δ-set. Instead, we
will select 28 elements from them for the attack steps later.

For Step 5 as in Section 3.5, together with the guessed subkeys u6⊕u−1[SC(row(0))] and u5[0][0], x5[Bout]

is computed from the output values of 28 selected texts in Df . Denote them as M = {(x1
1, x

1
5), . . . , (x

28

1 , x28

5 )}.
Finally, we can check if 28 elements of y1[Bin] and x5[Bout] match with one of elements in the precomputed
look-up table Tδ. However, because Tδ is not sorted with respect to the 28 elements, the match cannot be
done with 1 computation.

The precomputation table Tδ is ordered by the index (∆y1, x2[row(0, 1, 2)], z4[row(0)], ∆x5). For each
pair analyzed in the online phase, we have the knowledge of ∆y1 and ∆x5. Moreover, we have the knowledge
of y1[row(0, 1, 2, 3)] and k0[row(0, 1, 2, 3)]. If we switch the computation order of MR and AC in round 2 and
let w′

1 = z1⊕u1, then we have x2 = MR(w′

1). From y1[row(0, 1, 2, 3)] and k0[row(0, 1, 2, 3)], we can compute
12 bytes of w′

1[row(0, 1, 2)]. Then we exhaustively guess all the remaining 12 bytes of w′

1[row(0, 1, 2)], which
gives us the value of x2[row(0, 1, 2)]. We also exhaustively guess all the values of z4[row(0)]. Actually we
need to guess the values of z4[0][1, 2, · · · , 7] only, since we guessed u5[0][0] and computed z5[0][0], z4[0][0]
can be derived from these two values. This gives us in total 2152 index of Tδ. Then we look up Tδ to get the
corresponding 12-δ-set for each index. After that, we look up xi

5 for xi
1 in the 12-δ-set, and match it to the

value of xi
1 in previously computed M for all 1 ≤ i ≤ 28. We adopt early aborting technique when we look

up the 12-δ-set. Namely if the xi
1 in the 12-δ-set is not equal to xi

1 in M , we immediately abort and will not
match for the remaining elements. By using aborting technique, the number of table looking up for matching
M to each 12-δ-set can be counted as one on average. Overall, it needs 2152 table lookups to match one M
to the table Tδ.

The probability of the false positive, i.e., the probability of two random 28 ordered byte relations happen
to match is 2−8·28 , which is negligible. Hence, only the right pair and the right subkey guesses can be detected.
The details of the online phase attack is shown in Algorithm 2.

4.4 Complexities and Optimization

Optimizing the conversion table. We note that the conversion table is of size 2z, and the inputs were
randomly chosen from the overall 2512 choices. We found that, by carefully choosing the inputs, i.e., the
output v of the attacked compression function, we are able to reduce the conditions of the 7-round differential
characteristic, by forcing v, then the w6 as in Fig. 4, into a subspace. We know w6 = MR−1(v⊕p⊕k−1). Since
our trick is row wise, we will take the first row as an example. We need ∆w6[0][1, 2, 3, 4, 5, 6, 7] = 0, and we
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Algorithm 2 Online phase: attack on 7-round Whirlpool compression function

1: Input 1: Tδ obtained from Algorithm 1.
2: Input 2: Conversion table Tc of size 2z.
3: Input 3: 2d (p, t) pairs, with p input message block, and t the corresponding tag.
4: Look up the table Tc for all t, and obtain 2z+d−512 (p, v) pairs.
5: Empty a temporary table T .
6: for obtained (p, v) do
7: index ← MR−1(p⊕ v)[SC(row(1, 2, 3, 4, 5, 6, 7))] and p[SC−1(row(4, 5, 6, 7))].
8: Add (p, t) to T [index].
9: end for

10: for all collisions in T, i.e., pair (p, v) and (p′, v′) do
11: for all k−1[SC

−1(row(0, 1, 2, 3))] s.t. ∆w0[SC
−1(row(4, 5, 6, 7))] = 0 do

12: Construct a 12-δ-set D at y1 by modifying 12 active bytes in y1[Bin].
13: Decrypt 296 elements in D to the plaintext p, and check if p is stored in Tc.
14: If stored, add (p, v) to Df , which is associated to a fraction of 12-δ-set.
15: for all (u6 ⊕ u−1)[SC(row(0))] s.t. ∆z5[0][1, . . . , 7] = 0 do

16: Decrypt each element in Df to obtain w5[row(0)].
17: for all values of u5[0][0] do
18: Decrypt each element in Df to obtain w5[0][0].
19: Construct the ordered sequence M for Df .
20: Compute 12 bytes of w′

1 = z1 ⊕ u1: [0][0, 5, 6, 7], [1][0, 1, 6, 7], [2][0, 1, 2, 7].
21: for all values of the 12 bytes of w′

1: [0][1, 2, 3, 4], [1][2, 3, 4, 5], [2][3, 4, 5, 6],
22: and z4[row(0)]
23: compute x2[row(0, 1, 2)] and construct the index of Tδ:
24: (∆y1[Bin], x2[row(0, 1, 2)], ∆5[0][0], z4[row(0)]).
25: Get 12-δ-set with the index in Tδ.
26: Match M to 12-δ-set.
27: if M ∈ Tδ, then
28: Exhaustively search the right key, Output: K if found.
29: end if

30: end for

31: end for

32: end for

33: end for

34: end for

know there is no difference in k−1 and ∆p[row(0)] only takes 232 values when it follows the characteristic. We
force ∆v[row(0)] to be MR(∆w6[0][0])⊕∆p[0][0, 1, 2, 3], so that when we do MR−1(∆p⊕v), the ∆w6[row(0)]
is forced into a space of 240 v.s. 264, this increases the chance ∆w6[row(0)] to be the right pattern by a factor
of 224. Note this forces the choices of v[0] into a space of 240 out of 264, we can apply the same trick to other
rows, in the meanwhile, we need to ensure at least 2z candidates of v are left for the conversion table.

By choosing balanced parameters z = 481, and d = 481, the overall complexity for data, and memory
are 2481, and time 2481. Due to the false-positive of the conversion table, the data complexity increases by a
factor of (1 − 1/e)−1 = 20.7 to 2481.7, and time complexity by a factor of (1− 1/e)−2 = 21.3 to 2482.3.

Computer search. There are several parameters, which affect the overall attack complexities, including:

1. r1, c1, for number of active rows and columns in state z1, respectively.
2. r2, c2, for number of active rows and columns in state x5, respectively.
3. size of conversion table, denoted as ct = log2(Tc).

We can derive the attack complexities from these parameters in different phases:

1. The conversion table costs Memory = Time = 2ct
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2. The number of conditions for the entire 7-round characteristic are: (8− c1)× 64 for the input messages,
c1 × (8 − r1) × 8 for z0 → w0 transition, (8 − r2) × 64 for z3 → w3 transition, (8 − c2) × 8 for z4 → w4

transition. The trick with the conversion table saves ccon = 512− ct−⌈(512− ct)/(64− 8× c1)⌉× c2× 8
bits conditions. Denote the overall number of conditions in bits as cdiff , we then need 2cdiff pairs to
have at least one pair following the differential characteristic, due to the loss in the conversion table,
overall the data complexity is Time = Data = 2(cdiff+1)/2+512−ct .

3. The size of δ-set table Tδ is computed as follows. There are r1× c1× 8+ r2× c2× 8 bits in input/output
differences, for each of them, we need to guess r1× 64+ r2× 64 state bits, and r1× c1× 8 bits state value
in y1 for the full δ-set. The overall number of bits is log2(Tδ) = r1×c1×16+r2×c2×8+r1×64+r2×64.

4. At online phase, we filter (8− c1)× 64 conditions in message, and (8− c2)× 64− ccon in ciphertext, and
number of pairs left for online phase is cpair = cd− (8− c1)× 64− (8− c2)× 64+ ccon. For each pair, we
guessed ckey = r1 × c1 × 8 + r2 × c2 × 8 number of key bits. For each of the considered combination, we
guessed cmat = r1× 64− r1× c1× 8× 2+ r2× 64 bits in the matching stage, the overall time complexity
is 2cpair+ckey+cmat .

By a bruteforce search over all possible choices of the r1, c1, r2, c2 and ct, we find the best parameters,
r1 = 3, c1 = 4, r2 = 1, c2 = 1, ct = 481 as presented already, give the best complexity 2481.7 and 2481 for
Data,Memory and 2482.3 for Time.

4.5 Recovering Kin and Application to Prefix MAC

The attack setting for recoveringKin is different from Kout. The NMAC computation H
(

Kout,H(Kin,M)) can
be derived to CF(IV,Kout‖CF(Kin,M‖Pin)‖Pout), with M of full blocks, Pin and Pout for padding blocks for
inner and outer layer, respectively. When M be of a fixed length, the Pin and Pout are fixed. With knowledge
of Kout, the computation after processing M contains no secret, let us denote it as g, i.e., the expression
is simplified to g ◦ CF(Kin,M). To recover Kin, the setting is a little bit different from that for recovering
Kout. Here, we are able to choose the message M , the setting is similar to “chosen plaintext” attack to block
ciphers. As done in previous attacks against AES, we choose the M in structures, where in each structure,
the non-active bytes are fixed to a constant, and all possibilities in active bytes are taken. Refer to Fig. 4,
one fixes bytes in M [SR−1(row(4, 5, 6, 7))] to a constant and the rest of the bytes take all 2256 possibilities.
In this way, the pairs from the same structure will have difference pattern in message automatically fulfilled.
With help of this, the overall complexities of the attack can be reduced to 2465 for time, data and memory
with 27 differential characteristics.

It is interesting to note that the equivalent key for Prefix MAC can be recovered in exactly the same
way. For LPMAC, K ′

eq = CF(IV,K‖ℓ‖pad) can also be recovered in the same way too. However, recovering
Keq = CF(IV,K) requires inverting the compression function CF since K ′

eq = CF(Keq, ℓ‖pad), which is
currently unknown for Whirlpool reduced to 7 rounds. Hence, in case of LPMAC, we are able to launch
universal forgery attack only.

5 Conclusion

Based on very recent advances in generic state recovery attacks on HMAC/NMAC, and meet-in-the-middle
attacks against AES, we present equivalent key recovery attacks against HMAC/NMAC with Whirlpool reduced
to 7 rounds. We also showed the application to Prefix-MAC, including LPMAC. This improves one round over
the existing work on HMAC/NMAC-Whirlpool, and interestingly, the number attacked already exceeds that
for collision and preimage attack against the Whirlpool hash function itself. One reason is that, collision
attacks with complexity at or beyond the birthday bound 2n/2 did not attract much attention in history, and
these collisions were found to reveal information about the internal state, and also the key material in MAC

applications. Due to the full block key size, the security level is expected to be higher than that of collision
resistance, these collisions become essentially helpful to carry out our attacks.
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Future work. It is interesting to note that length of the message plays an important role in our attacks.
The current generic attacks rely on queries of long message, from 2n/4 to 2n/2 blocks, or the complexities
approach 2n when the message length tends to 1 block. Some of the hash function such as current NIST
standard SHA-256, supports messages with length up to 264 bits, shorter than 2n/4 blocks. This simple
restriction may stop the attack or bring the attack complexity close to 2n for many other hash functions as
well. The second restriction is the length of the given message to be forged, in settings of forgery attacks.
In many protocols using hash function based MAC, the message used can be very short, e.g., one or two
blocks. This won’t stop our attacks since we focus on attacks against the compression function, which is a
key advantage of our attack over the recent generic attacks. Progress in state recovery with low complexity
and short messages will remove the dependency of our attack from the need of long message.

Our attacks do not apply to Sandwich MAC [41], i.e., H(K‖p‖M‖p′‖K ′) with p, p′ paddings, and En-
velope MAC [42], i.e., H(K‖p‖M‖p′‖K). One can still carry out the internal state recovery attack for long
message between the two keys, however it is then not possible to convert it to a state recovery attack for
short message, since the padding p′ will be different. In our attacks, the recovered Kin and Kout play a role
similar to key, while in Sandwich MAC, K ′ (or the second K in Envelope MAC) appears in message block,
and could not be recovered since it plays a role as “plaintext”, which is currently not explored in attacks
against AES-like ciphers. For the same reason, we did not recover the master key of HMAC. It will be interesting
to see any progress in this direction.
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