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Abstract. A common countermeasure to thwart side-channel analysis
attacks is algorithmic masking. For this, algorithms that mix Boolean
and arithmetic operations need to either apply two different masking
schemes with secure conversions or use dedicated arithmetic units that
can process Boolean masked values. Several proposals have been pub-
lished that can realize these approaches securely and efficiently in soft-
ware. But to the best of our knowledge, no hardware design exists that
fulfills relevant properties such as efficiency and security at the same
time.
In this paper, we present two design strategies to realize a secure and
efficient arithmetic adder for Boolean-masked values. First, we introduce
an architecture based on the ripple-carry adder that targets low-cost
applications. The second architecture is based on a pipelined Kogge-
Stone adder and targets high-performance applications. In particular,
all our implementations adopt the threshold implementation approach
to improve their resistance against SCA attacks even in the presence
of glitches. We evaluated the security of our designs practically against
SCA using a non-specific statistical t-test. Based on our analysis, we
show that our constructions not only achieve resistance against first-
and (univariate) second-order attacks but also require fewer random bits
per operation compared to any existing software-based approach.

Keywords: Side-channel analysis, threshold implementation, Boolean
masking, arithmetic modular addition

1 Introduction

Side-channel analysis (SCA) poses a serious threat to any cryptographic imple-
mentation. If no dedicated countermeasure is applied, the secret of the underlying
device can be easily extracted by SCA. A popular approach to increase the se-
curity of a cryptographic implementation is the use of masking. It is achieved by
blinding the processed values by means of random masks [21] so that it should
become impossible for an attacker to predict intermediate values.

To date there exist several types of masking schemes that differ in the level
of abstraction and the target operation. In this work we focus on the tech-
niques developed to be applied at algorithmic level, e.g., Boolean and arithmetic
masking, which need to be adjusted according to the underlying cryptographic
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algorithm [21]. Note that nearly all proposed ciphers employ both logical and
arithmetic operations.

As an example, ARX-based designs consist of three operations: integer addi-
tion, rotation, and XOR. Such constructions are the foundation for block ciphers
(like FEAL [23] or Threefish [13]), stream ciphers (Salsa20 [5], ChaCha [4], HC-
128 [35]) and hash functions (BLAKE [2], Skein [13]). There are further examples
that also include a mixture of Boolean and arithmetic operations like the TEA
family of block ciphers [34] and SHA-2 [30]. To realize a masked implementation
of these constructions, one option is to employ both Boolean and arithmetic
masking schemes. Rotation and XOR operations can be protected by Boolean
masking, while arithmetic masking is advantageous for the addition operations.
However, the required conversions between both operations can also be the tar-
get of an SCA attacker and hence need to be implemented in a secure way. In
particular, many existing results discussing this method identified the conversion
between arithmetic and Boolean masking as a major hurdle [3, 9, 14].

Related Works
We now briefly highlight several works on the conversion between Boolean and
arithmetic masking. The conversion techniques can be categorized into those
which use precomputation [12] and those without precomputation [17]; however
most of them were designed specifically for software platforms. Unfortunately,
these constructions cannot be easily mapped to a dedicated hardware module
without violating their claims on security. Roughly speaking, this is mainly due
to critical glitches that occur inside masked circuits [22]. To avoid this prob-
lem, every step would need to be separated by a register stage which would be
detrimental to the performance.

We like to remark that a hardware design for such conversions has been
proposed in [15], but since both the mask and masked data are involved in
the processes of the proposed techniques, such constructions are expected to
still have first-order leakages (see [25]). Another problem is the transformation
of conversion algorithms to higher orders. It has been shown in [10] how to
secure the conversions against higher-order attacks, but this feature comes with
a prohibitive overhead for any cryptographic implementation.

Along the same lines, in order to avoid the conversions a technique to se-
curely perform modular arithmetic addition on Boolean masked operands has
been introduced in [18]. However, this scheme has been developed to be used
in software applications and cannot be easily applied on a hardware platform
where performance is a key factor.

Recently, an approach was developed in [11] which uses the Kogge-Stone
adder as a basis. But the conversion and masked addition requires more random
bits compared to the solutions from [17] and [18] and are only faster for larger
bit sizes (i.e., 64 bits). Still their focus lies on software applications which makes
them inefficient in hardware.
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Contributions
The target of this work is to design efficient hardware modules for modular
addition of Boolean masked operands. More precisely, our goal is to develop a
similar technique such as [18] for a hardware platform.

Since masked hardware designs face severe challenges due to glitches, we
apply the concept of threshold implementations (TI) [29] that can satisfy the
security requirements even in the presence of glitches. TI combines the ideas
of Boolean secret sharing and multiparty computation. It has previously been
applied to realize the secure hardware design of symmetric ciphers [6, 26, 31].
Although it has initially been developed with respect to first-order security, its
extension to higher orders has been recently introduced [7].

In this paper we consider two factors to design the aforementioned module:
(a) throughput and (b) SCA security order. With respect to performance (i.e.,
throughput) we consider two designs to implement a 32-bit arithmetic adder
that is required by many cryptographic algorithms:

1. Ripple-Carry Adder (RCA) that requires 32 clock cycles to perform a com-
plete addition, and

2. Kogge-Stone Adder (KSA) with 6 clock cycles latency and a fully pipelined
architecture.

We present the first-order and (univariate) second-order secure threshold imple-
mentation of the two above mentioned designs. We show that our designs not
only outperform the inefficient approaches of [10] but also reduce the number
of fresh random mask bits required for each addition. We also present practical
SCA evaluations performed on a Spartan-6 FPGA to confirm the claimed se-
curity levels. To the best of our knowledge, our four proposed architectures are
the only available hardware-dedicated solutions that are supported by security
proofs as well as by practical investigations.

2 Background

In this section, we introduce the used notations and present the basic ideas
behind our designs.

2.1 Notations

In the following all equations are bit-level operations. An n-bit integer operand a
is represented as (an−1an−2 · · · a1a0) where a0 is the least significant bit. These
integers are split up into shares of which the j-th share of a bit ai∈{0,...,n−1} is

denoted by aji . Inside the equations two Boolean operators are used: ⊕ denotes
the logical XOR and ∧ the logical AND. AND operators are always evaluated
before any XOR operators.
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2.2 Ripple-Carry Adder

In [18] the authors presented a way to securely add two Boolean masked values.
Instead of three conventional steps (conversion, addition, reconversion), the addi-
tion can be implemented in just one step. Depending on the application, this can
signficantly increase the performance over the classical approach. The algorithm
introduced in [18] is based on a ripple-carry adder (RCA). This adder has been
rewritten into a sequence of Boolean operations that take the Boolean masks
into consideration. The algorithm is word-oriented for efficiency in software but
not in hardware.

Similarly, our design is based on the basic algorithm described in [18]. The
underlying algorithm builds on the fact that one bit of sum s can be computed
as

si = ai ⊕ bi ⊕ ci . (1)

Therefore, the addition is replaced by a simple XOR of the two operands a and
b and the carry c. The only unknown part in such an equation is the carry bit
which can be computed using a recursive formula

ci+1 = ai ∧ bi ⊕ ai ∧ ci ⊕ bi ∧ ci, (2)

where c0 = 0. The costly part of the RCA is the recursive carry computation.
Its function has to be evaluated iteratively which leads to a high circuit depth
in case of a fully combinatorial design.

2.3 Kogge-Stone Adder

Another addition circuit with a lower depth is given by the Kogge-Stone adder
(KSA) [19] that splits the carry generation into generate (g) and propagate (p)
functions. Instead of evaluating the carry function recursively, the KSA benefits
from a tree-like structure and achieves a logarithmic complexity. For a hardware
design, a KSA can significantly increase the overall performance.

The basic structure of KSA for n = 4-bit operands is shown in Figure 1. For
operands a and b it computes the carry bits in three steps. During preprocessing
the initial gi and pi values are generated as

gi = ai ∧ bi , pi = ai ⊕ bi . (3)

In the following stages a function is used to combine the g and p values of different
bit positions. This function receives 4 bits as input and returns 2 output bits.
For i > j the output values are computed as

gi:j = gi ⊕ gj ∧ pi , pi:j = pi ∧ pj . (4)

After log2(n = 4) = 2 stages, the computation is finished and all carry bits can
be derived as

ci∈{2...n} = gi−1:0 , c1 = g0 , c0 = 0.

Finally the sum s can be obtained according to Equation (1).
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Fig. 1. The structure of the carry generation for 4-bit operands using the KSA

2.4 Threshold Implementations

In order to realize secure masked implementations and avoid the leakage caused
by glitches (e.g., [22, 25]), the threshold implementation (TI) scheme has been
introduced and developed in [7, 27–29]. Based on the algebraic degree t of the
targeted non-linear function (Sbox) as well as the desired order1 of security d,
the minimum number of input shares sin and the minimum number of output
shares sout are defined as

sin = t × d + 1 , sout =

(
sin
t

)
.

The input x of the e.g., Sbox is represented by (x1, . . . , xsin) in such a way

that x =
sin⊕
i=1

xi. The output of the TI of the corresponding Sbox (y1, . . . , ysout)

should be also a shared representation of y = S(x) =
sout⊕
j=1

yj while each yj

is provided by a component function f j(. . .) over a subset of input shares
(x1, . . . , xsin). This property is known as correctness while non-completeness
is referred to the fact that any d (security order) selection of component func-
tions f1(. . .), . . . , fsout(. . .) is independent of at least one input share. These two
properties are relatively easy to achieve, but the third property uniformity is
challenging. As the security of masking schemes is based on the uniform distri-
bution of the masks, the output of a TI Sbox must be uniform as it is used as
input in further parts of the implementation.

Suppose that for a certain input x all possible sharings
{

( 1x 1, . . . , 1x sin),

( 2x 1, . . . , 2x sin), . . . , ( px 1, . . . , px sin)
}

are given to the TI Sbox. The tuple

1 With respect to [32] only univariate security at order d > 1 can be achieved.
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(
f1(. . .), . . . , fsout(. . .)

)
should be drawn uniformly from the set

{
( 1y1, . . . , 1ysout),

( 2y1, . . . , 2ysout), . . . , ( qy
1, . . . , qy

sout)
}

as all possible sharings of y = S(x).

An important point is that the output of the component functions must be
stored in dedicated registers to avoid the propagation of glitches. Another issue
is related to the uniformity of the TI functions of security order d > 1. In such
a case, the number of output shares sout is usually higher than the number of
input shares sin; hence uniformity cannot be achieved. Therefore, some of the
registered output shares should be combined to reduce the number of output
shares to sin at most. After such a combination the uniformity can be examined.
For more detailed information, the interested reader is referred to the original
works [7, 29].

3 Implementation

We present two designs of a modulo 232 adder that provides resistance against
first- and second-order SCA. This is a quite common type of addition used in
many cryptographic algorithms (e.g., Salsa20, HC-128, SHA-2), but our archi-
tectures can be also easily adapted to other bit lengths.

3.1 Ripple-Carry Adder (First-Order SCA-Resistant)

Based on the scheme presented in Section 2.2 we build a first-order SCA-resistant
adder. To achieve this, Equations (1) and (2) should be transformed to meet the
three required TI properties.

Given that Equation (2) is of degree 2, at least 3 shares (for input as well as
for output) are necessary. It is supposed that each processed value, e.g., ai, is
split into 3 shares as (a1i , a

2
i , a

3
i ). In case of Equation (1), due to its linearity the

shares are easily combined via XOR as

s1i = a1i ⊕ b1i ⊕ c1i , s2i = a2i ⊕ b2i ⊕ c2i , s3i = a3i ⊕ b3i ⊕ c3i . (5)

As mentioned before, Equation (2) is non-linear and has algebraic degree
of 2. Following direct sharing approach represented in [8], we can construct a
correct and uniform shared implementation of such a function. The shares of the
carry bit can be computed as

c1i+1 = a2i∧b2i⊕a2i∧b3i⊕a3i∧b2i⊕a2i∧c2i⊕a2i∧c3i⊕a3i∧c2i⊕b2i∧c2i⊕b2i∧c3i⊕b3i∧c2i (6)

c2i+1 = a3i∧b3i⊕a3i∧b1i⊕a1i∧b3i⊕a3i∧c3i⊕a3i∧c1i⊕a1i∧c3i⊕b3i∧c3i⊕b3i∧c1i⊕b1i∧c3i (7)

c3i+1 = a1i∧b1i⊕a1i∧b2i⊕a2i∧b1i⊕a1i∧c1i⊕a1i∧c2i⊕a2i∧c1i⊕b1i∧c1i⊕b1i∧c2i⊕b2i∧c1i (8)

Here we should note that Equations (1) and (2) can be seen as a function
f : (ai, bi, ci) 7→ (si, ci+1). At a first glance one may think of examining the
uniformity of the (si, ci+1) tuple2. However, such a tuple is never supplied to

2 If sharing of x and y are uniform, the tuple of sharing of (x, y) is not necessarily
uniform if x and y are not independent.
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Fig. 2. Structure of the first-order secure adder based on RCA

any function within the RCA algorithm. Note that si is an output bit and is not
propagated while ci+1 is given to the next stage where it is combined with ai+1

and bi+1 which are independent of ci+1. Hence the uniformity of ci+1 suffices to
fulfill the corresponding property.

During the implementation of such a design we encountered an issue that
has never been reported before. The output of the shared carry computation
function (Equation (6) to (8)) cannot be directly used as feedback signal since
the output of a function from a previous cycle is used as input in the next clock
cycle.

As a remedy we constructed a two-stage design as depicted in Figure 2. The
three shares of the two operands a and b are stored in shift registers. The RCA
algorithm and the deployment of shift registers supports an efficient scanning
of operand bits. Two instances of the shared carry computation function are
implemented whose outputs are stored in carry registers c0 and c1. The carry
registers are enabled alternately while the other intermediate registers (c′0, a

′
0,

a′1, b
′
0 and b′1) are enabled every second clock cycle synchronized with that of c1.

The operand registers are also shifted two bits every other second clock cycle.
The additional registers, i.e., c′0, a

′
0, a
′
1, b
′
0, and b′1 synchronize the computation

of the sum bits, which need to be performed one clock cycle after that of the
carry bits. Note that we use the shift register of operand a to save the result of
the addition.

Another issue is related to the first stage, i.e., when i = 0. In our designs
we suppose that input carry c0 = 0 so that (c10, c

2
0, c

3
0) should be a shared

representation of 0. Therefore, both carry registers have to be initialized with a
random set representing 0. In other words, our design requires four fresh mask
bits fm1, . . ., fm4 only at the start of the addition to initialize c0 and c1 with
(fm1, fm2, fm1⊕ fm2) and (fm3, fm4, fm3⊕ fm4) respectively. Note that all
other stages of our design do not require fresh random bits leading to an efficient
design with respect to the number of required fresh mask bits. For instance, our
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design is considerably more efficient than the solutions proposed in [18], [10]
and [11].

3.2 Ripple-Carry Adder (Second-Order SCA-Resistant)

The design described above can be simply transformed to support resistance
against higher-order attacks. We now present a solution for the second-order
resistant design. We increase the number of input shares sin to 5 and all corre-
sponding functions have to be chosen according to the principles of higher-order
TI [7].

Equation (5) just needs to be adapted to the increased number of shares.
The computation of the carry has to be split up into two steps. In the first step,
sout = 10 component functions generate 10 output shares. Following the same
concept presented in [7], these intermediate shares are then again reduced to 5
shares in the second step.

No major changes to the basic structure depicted in Figure 2 are necessary for
implementation. Just the registers have to be adjusted to the increased number
of shares and the F block is split by an additional register stage. All uniform
equations for the F function, obtained by direct sharing, are described in detail
in the appendix of this work.

As a consequence, the amount of utilized resources increases and the number
of clock cycles needed for the carry computation doubles. Just as before, the
carry registers need fresh randomness during the initialization. Therefore, the
number of required fresh random masks increases to 8 bits.

3.3 Kogge-Stone Adder (First-Order SCA-Resistant)

The design based on the RCA has low requirements for space and randomness.
However, the number of clock cycles for one addition grows linearly with the bit
length of the operands. For increased performance we therefore implemented a
design that uses a KSA as foundation and which is still secure against first-order
attacks.

Equations (3) and (4) need to be split into shares. Since all the corresponding
formulas are of degree two, similar to that of the RCA, at least 3 shares are
required to realize a functional TI.

The two outputs of the preprocessing step are both given to the next stages;
thus, the uniformity of each tuple (gi, pi) must be taken into account. One part
of Equation (3) needs to be implemented by the AND of the two operands for
which no uniform TI with 3 shares exists [29]. For this, fresh mask bits have to
be used to make it uniform (see remasking in [8,26]). In our design, we adopted
the solution from [8] with only a single virtual share. One fresh random bit mi

is required for every invocation of the function in the preprocessing step:

g1i = a2i ∧ b2i ⊕ a2i ∧ b3i ⊕ a3i ∧ b2i ⊕mi (9)

g2i = a3i ∧ b3i ⊕ a1i ∧ b3i ⊕ a3i ∧ b1i ⊕ a1i ∧mi ⊕ b1i ∧mi (10)
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g3i = a1i ∧ b1i ⊕ a1i ∧ b2i ⊕ a2i ∧ b1i ⊕ a1i ∧mi ⊕ b1i ∧mi ⊕mi . (11)

Further, preprocessing involves another linear XOR-function. We implement this
part similar to Equation (5). Both functions as well as their joint output (gi, pi)
fulfill the three TI properties.

The preprocessing step is followed by stages in which the g and p values are
updated according to Equation (4). These two functions can be considered as a
4-bit to 2-bit mapping. Similar to the preprocessing step, the tuple of the 2-bit
output has to be considered for the uniformity check. For the computation of
the g part of Equation (4) (as an AND/XOR operation), we followed the direct
sharing approach [8] and achieved:

g1i:j = g2i ⊕ g2j ∧ p2i ⊕ g2j ∧ p3i ⊕ g3j ∧ p2i (12)

g2i:j = g3i ⊕ g3j ∧ p3i ⊕ g1j ∧ p3i ⊕ g3j ∧ p1i (13)

g3i:j = g1i ⊕ g1j ∧ p1i ⊕ g1j ∧ p2i ⊕ g2j ∧ p1i . (14)

The other part (computation of p) of Equation (4) can be implemented similar to
Equation (9). To reduce the amount of required fresh random bits, we replaced
mi with g1j . This bit is not used in this equation and can take the role of a
mask. Although our construction does not closely follow the assumptions in [8]
considering the construction of virtual shares, we can demonstrate that this has
no impact on security. Our simulation results show not only the uniformity of
shared pi:j but also the uniformity of the shared tuple (pi:j , gi:j). We need to
emphasize that due to the specific architecture of the KSA algorithm, g1j is only
used once as a mask to introduce uniformity into the computation of a p. In other
words, the mask bit g1j is never reused again what could potentially violate the
uniformity in later stages.

Our design is optimized for maximum throughput by using a fully pipelined
architecture. Figure 3 depicts the basic structure of our design. Since only the
preprocessing step requires fresh random bits and – as stated above – all other
stages are computed without additional mask, the total number of required fresh
mask bits is n = 32. Compared to the other solutions like [18], [10] and [11] this
is still reasonable.

3.4 Kogge-Stone Adder (Second-Order SCA-Resistant)

Similar as for the RCA, the design based on the KSA is also easily extensible to
higher orders. We outline the exemplary procedure for second-order security. In
this case, the number of input shares is again set to 5. The four aforementioned
equations are adjusted to meet the requirements of the second-order TI.

The XOR part of Equation (3) is implemented as before but adapted to
the higher number of shares. The AND part to compute gi of Equation (3) is
split into two steps. As before, the first step results in 10 output shares and
the second step merges the last 6 shares into a total number of 5 shares again.
Furthermore, we have to use fresh masks to assure the uniformity. In this case,
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Fig. 3. Block diagram of the first-order secure adder based on KSA

four fresh random bits are necessary. The two functions of the following stages
are also split into two steps. For the computation of gi:j of Equation (4) we
use the second-order TI representation of the AND/XOR function given in [7].
For the pi:j part (the AND operation) we use the same construction of gi of
the preprocessing step. Instead of four fresh mask bits, we used 4 shares of gj
as fresh masks to reduce the required randomness. Details of the underlying
uniform equations can be found in the appendix.

The basic structure as shown in Figure 3 is also the template for the archi-
tecture of most other parts. It has mainly to be adapted to 5 shares and the
functions need to be split into two steps with a register in between. Hence the
number of clock cycles for one addition is doubled. In terms of randomness the
demand of our implementation quadruples, because each invocation of the AND
operation in the preprocessing step requires 4 random bits.

3.5 Comparison

We now compare our designs in terms of size and performance that are imple-
mented on a Spartan-6 FPGA with other solutions. All our findings are summa-
rized in Table 1. In terms of size, the RCA-based variant is clearly superior to
other solutions due to the iterative structure. On the contrary, the designs based
on the KSA provide low latency and high-performance applications.

Due to the different implementation platforms, we cannot fairly compare our
hardware designs with software-based solutions [18], [10] and [11]. Therefore,
Table 1 restricts the comparison to the number of required fresh random bits.

We can conclude that the RCA-based design is most efficient regarding the
number of required random bits. The requirement of 4·d random bits outperforms
all other proposals and is also independent of the operands bit length n. The
approach based on KSA requires a higher number of random bits which also
depends on n. Nevertheless, the first-order secure design uses the same amount
of fresh masks as the solution of [18] and less than [11]. For higher orders it
even outperforms the design of [10]. It is noteworthy that the number of fresh
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Table 1. Results and comparison of our hardware architectures

Design LUTs FFs Latency Frequency Throughput Randomness
(CLK) (MHz) (Mbit/s) (bit)

RCA 1st order 227 223 32 101 101 4
RCA 2nd order 388 387 65 107 52 8=4 · d
KSA 1st order 937 1330 6 62 330 32
KSA 2nd order 4223 5509 12 63 168 128=2 · d · n
[18] (1st order) - - - - - n
[10] (d order) - - - - - (2 · d2 + d) · n
[11] (1st order) - - - - - 3 · n

masks for d-order KSA with d ≥ 2 can be decreased even further. For d = 1 we
can use the trick presented in [8] that requires only one fresh mask bit for an
AND operation. Such a construction – with one virtual variable – might be also
found for higher-order TI of the AND operation thereby reducing the number
of required fresh mask bits.

4 Analysis

For the practical SCA evaluations we employed a SAKURA-G platform [1] pop-
ulated with a Spartan-6 FPGA as target. All SCA traces have been collected
by a digital oscilloscope while measuring the voltage drop over a 1 Ω resistor in
Vdd path. In order to obtain clean signals and reduce the electrical noise, we
used the embedded amplifier of the SAKURA-G and restricted the bandwidth
of the oscilloscope to 20 MHz.

As evaluation metric we applied a non-specific statistical t-test [16]. The
feature of this test is to indicate the existence of any leakage at a defined order
in the power traces. Following the concept of non-specific t-test, power traces
corresponding to fixed and randomly selected inputs are collected. Hence this
scheme is also denoted as fixed vs. random t-test. During the measurements the
fixed and random inputs need to be randomly interleaved. Then, the traces T
are categorized into two groups G1 and G2 with respect to the fixed and random
inputs, respectively. In the following explanation, we consider only one point of
the collected traces for the sake of simplicity:

Recall that Welch’s (two-tailed) t-test is computed as

t =
µ(T ∈ G1)− µ(T ∈ G2)√

δ2(T∈G1)
|G1| + δ2(T∈G2)

|G2|

,

where µ and δ2 denote the sample mean and sample variance respectively, and
|.| represents the cardinality. The t-test indeed examines the validity of the null
hypothesis as the samples in both groups were drawn from the same population.
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If the null hypothesis is correct, it can be concluded with a high level of confi-
dence that the device under test does not have any first-order leakage, given the
recorded traces.

For such a conclusion the Student’s t-distribution function (in addition to the
degree of freedom) is applied to determine the probability of rejecting the afore-
mentioned hypothesis (cf. [16] and [7]). For typical evaluations, a threshold for
|t| as > 4.5 is defined to reject the null hypothesis and indicate that a first-order
attack is feasible. This process is repeated at each sample point independently
to obtain a curve of t value.

The aforementioned scheme can be easily extended to higher orders by pre-
processing the traces as, for example, centered square (for the second-order),
standardized cube (for the third order), etc. It is noteworthy that the same eval-
uation scheme has been applied in [7] and [20] to investigate the existence of
first- and higher-order leakages. For detailed information on how to conduct the
tests at higher orders the interested reader is referred to [33].

4.1 Ripple-Carry Adder

Now we analyze the security of our first-order SCA-resistant RCA design. A
sample trace of such a design is shown in Figure 4(a). In order to have a reference
for the existing leakage in our platform as well as an evidence for the suitability
of the applied evaluation scheme, we first turned the PRNG off that provides the
randomness for initial sharing and fresh masks. Hence all outputs of the PRNG
are set to zero and the underlying design receives unshared inputs as (a, 0, 0)
and (b, 0, 0). With such a setting we collected 100 000 traces corresponding to a
mixture of fixed and random inputs. Therefore, we expect the t-test to report
clearly exploitable first-order leakages, which is confirmed by the corresponding
result shown in Figure 4(b). It can be seen that the t value exceeds 400 during
the cryptographic operation exceeding the defined threshold by far.

As the next step we activated the PRNG so that the adder circuit receives
randomly shared inputs and fresh random masks. Hence the design is expected
to provide first-order security. In order to examine this we collected 100 000 000
traces and performed the t-test up to third order. The corresponding results
shown in Figure 4 indicate the resistance of the design to first-order attacks and
– as expected – its vulnerability to second- and third-order attacks.

We continued our evaluation with the second-order-SCA-resistant RCA de-
sign with an active PRNG. Due to the high amount of randomness, i.e., fourth-
order Boolean masking (five shares), exploiting a leakage from such a design
needs a large number of traces. Therefore, following the above-explained proce-
dure we collected 300 000 000 traces and ran the t-test evaluations. The results
shown in Figure 5 confirm the resistance of our design to first- and second-order
attacks. Similar to the results of [7], the third-order leakage still cannot be de-
tected, but we observe fourth- and fifth-order leakages as the design with five
shares is expected to be vulnerable to a fifth-order attack.
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Fig. 4. RCA 1st order, t-test results using 100 000 000 traces

4.2 Kogge-Stone Adder

Both analyses on the first- and second-order RCA were repeated on the first- and
second-order SCA-resistant KSA designs. We even collected the same number
of traces, i.e., 100 000 000 traces to evaluate the 1st-order KSA and 300 000 000
traces for the second-order KSA. The results which confirm the resistance of our
constructions are shown in Figure 6 and Figure 7, respectively.

4.3 Higher-Order Security

Recently, Reparaz published a note [32] on the security of higher-order threshold
implementations. It states that when different intermediates values, i.e., shares,
from different clock cycles are combined, a second-order TI might be vulnerable
to the corresponding second-order attack. Although confirming this statement in
general, we like to emphasize that this is not addressed in [7]. The idea behind
higher-order TI is to resist against univariate higher-order attacks where the
leakage of different points (of different clock cycles) are not combined. Hence,
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Fig. 5. RCA 2nd order, t-test results using 300 000 000 traces
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Fig. 6. KSA 1st order, t-test results using 100 000 000 traces
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Fig. 7. KSA 2nd order, t-test results using 300 000 000 traces

in the model of univariate higher-order attacks, all lemmas and proofs as given
in [7] remain valid. Furthermore, this is backed by our practical investigations
as shown above. Still we need to highlight that the second-order TI designs we
presented in this work are designed to resist against univariate second-order
attacks.

In this context, it has been previously shown in [24] that multivariate leakages
can be easily summed up and be represented in a univariate form. The suggested
approaches for such a combination include (a) running the target device at a
relatively high frequency, e.g., 24 MHz - 48 MHz, and (b) making use of a DC
blocker and/or certain amplifiers in the measurement setup. Both techniques
cause overlapping the power peaks of adjacent clock cycles, and hence the leakage
associated to consecutive clock cycles are somehow added together. In [24] it has
been shown that employing any of the aforementioned techniques causes an
implementation of a univariate second-order resistant design to be vulnerable to
a univariate second-order attack.

In order to examine the effect of such an issue on our second-order TI designs,
we considered the second aforementioned technique. In other words, we em-
ployed a DC blocker (BLK-89-S+ from Mini-Circuits) and two serially conected
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Fig. 8. (modified measurement setup) KSA 2nd order, t-test results using 300 000 000
traces

AC amplifiers (ZFL-1000LN+ from Mini-Circuits) in the measurement setup.
By means of this setup we repeated the same measurements and evaluations
of our developed second-order Kogge-Stone Adder using the same number of
300 000 000 traces. We kept the measurement settings, e.g., sampling rate, band-
width, and the target frequency of operation, the same as the last experiments.
The results shown in Figure 8 indeed practically confirm the note given in [32].
The second-order TI design demonstrates second-order leakages when the power
peak of consecutive clock cycles are combined (by the measurement setup). In-
terestingly, by such a measurement setup the 4th-order and 5th-order analyses
(in contrary to the previous experiment of Figure 7) do not show a detectable
leakage. We believe that it is due to the noise introduced by the measurement
setup, i.e., overlapping the adjacent power peaks, which can certainly affect the
feasibility of higher-order attacks.
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5 Conclusion

In this paper, we presented two ways of performing addition on Boolean masked
values that are secure against SCA attacks on a hardware platform. Compared
to the KSA-based approach, the RCA-based solution is slower but requires less
space and the least amount of random bits. In terms of performance, the design
based on the KSA provides a suitable choice due to its pipelined architecture.
In comparison to other already published algorithms, our approaches are able
to match and even reduce the randomness requirements especially for higher
orders. The resistance of both approaches has been verified by practical evalu-
ations showing the security of our constructions. Our proposed designs enable
an efficient and secure implementation of ARX-based designs in hardware which
have not been fully investigated yet.
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3. O. Benôıt and T. Peyrin. Side-Channel Analysis of Six SHA-3 Candidates. In

CHES 2010, volume 6225 of LNCS, pages 140–157. Springer, 2010.
4. D. J. Bernstein. ChaCha, a variant of Salsa20. In Workshop Record of SASC,

volume 8, 2008.
5. D. J. Bernstein. The Salsa20 Family of Stream Ciphers. In New Stream Cipher

Designs - The eSTREAM Finalists, volume 4986 of LNCS, pages 84–97. Springer,
2008.

6. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. A More Efficient
AES Threshold Implementation. In AFRICACRYPT 2014, volume 8469 of LNCS,
pages 267–284. Springer, 2014.

7. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Higher-Order Thresh-
old Implementations. In ASIACRYPT 2014, LNCS. Springer, 2014. to appear.

8. B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. Stütz. Threshold Implementa-
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11. J. Coron, J. Großschädl, P. K. Vadnala, and M. Tibouchi. Conversion from
Arithmetic to Boolean Masking with Logarithmic Complexity. Cryptology ePrint
Archive, Report 2014/891, 2014. http://eprint.iacr.org/.

12. B. Debraize. Efficient and Provably Secure Methods for Switching from Arith-
metic to Boolean Masking. In CHES 2012, volume 7428 of LNCS, pages 107–121.
Springer, 2012.

13. N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, and J. Walker. The Skein Hash Function Family. http://www.skein-
hash.info/sites/default/files/skein1.3.pdf, 2010.

14. B. Gierlichs, L. Batina, C. Clavier, T. Eisenbarth, A. Gouget, H. Handschuh,
T. Kasper, K. Lemke-Rust, S. Mangard, A. Moradi, and E. Oswald. Suscepti-
bility of eSTREAM Candidates Towards Side-Channel Analysis. Proceedings of
SASC, pages 123–150, 2008.

15. J. D. Golic. Techniques for Random Masking in Hardware. IEEE Trans. on Circuits
and Systems, 54-I(2):291–300, 2007.

16. G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing method-
ology for side channel resistance validation. In NIST non-invasive
attack testing workshop, 2011. http://csrc.nist.gov/news_events/

non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf.
17. L. Goubin. A Sound Method for Switching between Boolean and Arithmetic Mask-

ing. In CHES 2001, volume 2162 of LNCS, pages 3–15. Springer, 2001.
18. M. Karroumi, B. Richard, and M. Joye. Addition with Blinded Operands. In

COSADE 2014, volume 8622 of LNCS, pages 41–55. Springer, 2014.
19. P. M. Kogge and H. S. Stone. A Parallel Algorithm for the Efficient Solution of

a General Class of Recurrence Equations. IEEE Trans. Comput., 22(8):786–793,
1973.

20. A. J. Leiserson, M. E. Marson, and M. A. Wachs. Gate-Level Masking under a
Path-Based Leakage Metric. In CHES 2014, volume 8731 of LNCS, pages 580–597.
Springer, 2014.

21. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks - Revealing the
Secrets of Smart Cards. Springer, 2007.

22. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES
Hardware Implementations. In CHES 2005, volume 3659 of LNCS, pages 157–171.
Springer, 2005.

23. S. Miyaguchi. The FEAL Cipher Family. In CRYPTO 90, volume 537 of LNCS,
pages 627–638. Springer, 1991.

24. A. Moradi and O. Mischke. On the Simplicity of Converting Leakages from Mul-
tivariate to Univariate - (Case Study of a Glitch-Resistant Masking Scheme). In
CHES 2013, volume 8086 of LNCS, pages 1–20. Springer, 2013.

25. A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-Enhanced Power Analysis
Collision Attack. In CHES 2010, volume 6225 of LNCS, pages 125–139. Springer,
2010.

26. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In EUROCRYPT 2011,
volume 6632 of LNCS, pages 69–88. Springer, 2011.

27. S. Nikova, C. Rechberger, and V. Rijmen. Threshold Implementations Against
Side-Channel Attacks and Glitches. In ICICS 2006, volume 4307 of LNCS, pages
529–545. Springer, 2006.
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A Second-Order RCA

A.1 Carry (1. Step)

c̃1i+1 = a2i∧b2i⊕a1i∧b2i⊕a2i∧b1i⊕a2i∧c2i⊕a1i∧c2i⊕a2i∧c1i⊕c2i∧b2i⊕c1i∧b2i⊕c2i∧b1i (15)

c̃2i+1 = a3i∧b3i⊕a1i∧b3i⊕a3i∧b1i⊕a3i∧c3i⊕a1i∧c3i⊕a3i∧c1i⊕c3i∧b3i⊕c1i∧b3i⊕c3i∧b1i (16)

c̃3i+1 = a4i∧b4i⊕a1i∧b4i⊕a4i∧b1i⊕a4i∧c4i⊕a1i∧c4i⊕a4i∧c1i⊕c4i∧b4i⊕c1i∧b4i⊕c4i∧b1i (17)

c̃4i+1 = a1i∧b1i⊕a1i∧b5i⊕a5i∧b1i⊕a1i∧c1i⊕a1i∧c5i⊕a5i∧c1i⊕c1i∧b1i⊕c1i∧b5i⊕c5i∧b1i (18)

c̃5i+1 = a2i ∧ b3i ⊕ a3i ∧ b2i ⊕ a2i ∧ c3i ⊕ a3i ∧ c2i ⊕ c2i ∧ b3i ⊕ c3i ∧ b2i (19)

c̃6i+1 = a2i ∧ b4i ⊕ a4i ∧ b2i ⊕ a2i ∧ c4i ⊕ a4i ∧ c2i ⊕ c2i ∧ b4i ⊕ c4i ∧ b2i (20)

c̃7i+1 = a5i∧b5i⊕a2i∧b5i⊕a5i∧b2i⊕a5i∧c5i⊕a2i∧c5i⊕a5i∧c2i⊕c5i∧b5i⊕c2i∧b5i⊕c5i∧b2i (21)

c̃8i+1 = a3i ∧ b4i ⊕ a4i ∧ b3i ⊕ a3i ∧ c4i ⊕ a4i ∧ c3i ⊕ c3i ∧ b4i ⊕ c4i ∧ b3i (22)

c̃9i+1 = a3i ∧ b5i ⊕ a5i ∧ b3i ⊕ a3i ∧ c5i ⊕ a5i ∧ c3i ⊕ c3i ∧ b5i ⊕ c5i ∧ b3i (23)

c̃10i+1 = a4i ∧ b5i ⊕ a5i ∧ b4i ⊕ a4i ∧ c5i ⊕ a5i ∧ c4i ⊕ c4i ∧ b5i ⊕ c5i ∧ b4i (24)

A.2 Carry (2. Step)

c1i+1 = c̃1i+1 (25)

c2i+1 = c̃2i+1 (26)

c3i+1 = c̃3i+1 (27)

c4i+1 = c̃4i+1 (28)

c5i+1 = c̃5i+1 ⊕ c̃6i+1 ⊕ c̃7i+1 ⊕ c̃8i+1 ⊕ c̃9i+1 ⊕ c̃10i+1 (29)
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B Second-Order KSA

B.1 AND (1. Step)

g̃1i = a2i ∧ b2i ⊕ a1i ∧ b2i ⊕ a2i ∧ b1i ⊕m1
i (30)

g̃2i = a3i ∧ b3i ⊕ a1i ∧ b3i ⊕ a3i ∧ b1i ⊕m2
i (31)

g̃3i = a4i ∧ b4i ⊕ a1i ∧ b4i ⊕ a4i ∧ b1i ⊕m3
i (32)

g̃4i = a1i ∧ b1i ⊕ a1i ∧ b5i ⊕ a5i ∧ b1i ⊕m4
i (33)

g̃5i = a2i ∧ b3i ⊕ a3i ∧ b2i (34)

g̃6i = a2i ∧ b4i ⊕ a4i ∧ b2i ⊕m1
i (35)

g̃7i = a5i ∧ b5i ⊕ a2i ∧ b5i ⊕ a5i ∧ b2i (36)

g̃8i = a3i ∧ b4i ⊕ a4i ∧ b3i ⊕m2
i (37)

g̃9i = a3i ∧ b5i ⊕ a5i ∧ b3i ⊕m3
i (38)

g̃10i = a4i ∧ b5i ⊕ a5i ∧ b4i ⊕m4
i (39)

B.2 AND/XOR (1. Step)

g̃1i:j = g2i ⊕ g2j ∧ p2i ⊕ g1j ∧ p2i ⊕ g2j ∧ p1i (40)

g̃2i:j = g3i ⊕ g3j ∧ p3i ⊕ g1j ∧ p3i ⊕ g3j ∧ p1i (41)

g̃3i:j = g4i ⊕ g4j ∧ p4i ⊕ g1j ∧ p4i ⊕ g4j ∧ p1i (42)

g̃4i:j = g1i ⊕ g1j ∧ p1i ⊕ g1j ∧ p5i ⊕ g5j ∧ p1i (43)

g̃5i:j = g2j ∧ p3i ⊕ g3j ∧ p2i (44)

g̃6i:j = g2j ∧ p4i ⊕ g4j ∧ p2i (45)

g̃7i:j = g5i ⊕ g5j ∧ p5i ⊕ g2j ∧ p5i ⊕ g5j ∧ p2i (46)

g̃8i:j = g3j ∧ p4i ⊕ g4j ∧ p3i (47)

g̃9i:j = g3j ∧ p5i ⊕ g5j ∧ p3i (48)

g̃10i:j = g4j ∧ p5i ⊕ g5j ∧ p4i (49)


