
Reversed Genetic Algorithms for Generation of Bijective
S-boxes with Good Cryptographic Properties

Georgi Ivanov1, Nikolay Nikolov2, and Svetla Nikova3

1 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
2 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

3 KU Leuven, Dept. ESAT/COSIC and iMinds, Belgium

Abstract. Often S-boxes are the only nonlinear component in a block cipher and as such
play an important role in ensuring its resistance to cryptanalysis. Cryptographic properties
and constructions of S-boxes have been studied for many years. The most common techniques
for constructing S-boxes are: algebraic constructions, pseudo-random generation and a variety
of heuristic approaches. Among the latter are the genetic algorithms. In this paper, a genetic
algorithm working in a reversed way is proposed. Using the algorithm we can rapidly and
repeatedly generate a large number of strong bijective S-boxes of each dimension from (8 × 8)
to (16× 16), which have sub-optimal properties close to the ones of S-boxes based on finite field
inversion, but have more complex algebraic structure and possess no linear redundancy.

Keywords: Genetic Algorithms, S-boxes, Nonlinearity

1 Introduction

Most of the modern block ciphers have one or more non-linear components providing the
effect of confusion [31], which is of vital importance for the strength of the cipher. The most
often used non-linear components are n to m Boolean mappings, called S-boxes. Among
them, the bijective S-boxes are particularly interesting. Block ciphers have to be resistant to
linear and differential cryptanalysis [3,4,17]. It is well known that the weight of a differential
trail is equal to or larger than the product of the number of active S-boxes and the mini-
mum (differential) weight per S-box (analogous for the linear trails). There are two known
approaches for eliminating the low-weight trails - either by increasing the number of active
S-boxes or by choosing stronger S-boxes. The number of active S-boxes can be increased by
designing stronger linear layer, e.g., by using the wide trail strategy [10]. Larger S-boxes can
be stronger since the minimum differential weight of an S-box is limited by its size. In this
paper we focus only on the second approach. In order to be suitable for use in cryptographic
applications S-boxes should possess high nonlinearity and low differential uniformity. In ad-
dition, cryptographically strong S-boxes should also satisfy cryptographic criteria such as:
regularity (balancedness) and high algebraic degree, as well as they should possess as few fixed
points and linear redundancy as possible.

1.1 Motivation

Large S-boxes can fast improve the security (in the black box model) of a block cipher. In
addition, the results in [16] indicate that the resistance to side-channel analysis could also be
improved by increasing the size of the S-box. However, finding or constructing such big and
cryptographically strong S-boxes is still an open problem.

The approaches for S-box generation available in the literature could be divided into
three main streams: algebraic constructions, pseudo-random generation and heuristic tech-
niques. The first approach is based on S-box generation according to mathematical princi-
ples. For example the S-box of AES [10] is constructed with inverse mapping followed by an
affine transformation in the finite field. S-boxes based on inversion in the finite field GF (2n)
are known to achieve the best values found for the nonlinearity and differential uniformity
(Ninv = 2n−1−2

n
2 and δinv = 4 respectively, [24]). Although these values are not the optimal

values theoretically possible (Nopt = 2n−1 − 2
n
2
−1 and δopt = 2, [23]) and filling up the gap

between them and their known theoretical bounds is an open problem in cryptography, it
is believed that the finite field inversion-based S-boxes are the optimal ones that exist with
respect to the simultaneous satisfaction of all targeted cryptographic criteria. A new method
for constructing 4-uniform permutations has recently been proposed in [26,27].

The second approach is based on using some pseudo-random generation to generate S-
boxes. However, to find good S-boxes quickly becomes infeasible as the size of the input space
increases. Also, the probability of finding really strong S-boxes is very small. For example, in
the case of (8×8) S-boxes, the highest value for nonlinearity found is 98−100 [20,21], which
is rather low compared to the value of 112 for the finite field inversion-based case.

The third approach uses heuristic algorithms in a process of iteratively improving given S-
box or S-boxes with respect to one or more properties. Because these algorithms use directed
search methods, unlike the algebraic constructions they are able to produce a large number of
S-boxes, which are not optimal but sub-optimal. Specific heuristic techniques include the hill
climbing method, the simulated annealing method, the genetic algorithm or a combination
of these. For example the highest nonlinearity achieved by: the hill climbing method is 100
[20], the simulated annealing method is 102 [8], and by a special genetic algorithm is 104
[32]. Recently in [15], values of 104 have been achieved for the nonlinearity by a method,
referred as the modified gradient descent, which is based on swapping a number of values in
a permutation.

The construction of a large number of good bijective S-boxes quickly becomes a hard job
as their size increases. As the number of input variables n increases by one, the number of
Boolean functions in the space increases by a factor of 22

n
. That is why, except for the algebraic

construction method, the other two methods fail short already when n = 8. Therefore, it is
a challenge to improve the results for size 8, and even more, to go for larger S-boxes.

1.2 Contribution

Often it is desired (e.g. for efficient implementations) to find a large set of strong bijective
S-boxes possessing the same cryptographic properties and to allow the designer to freely
choose the S-box within this set to be used in a cryptographic algorithm. This cannot be
achieved using algebraic constructions and pseudo-random generation methods, since either
it will not be possible to find many S-boxes or they will not be strong enough. What concerns
the known heuristic techniques, the conventional approach from bottom to the top, where
usually one starts with some initial set of random S-boxes and tries iteratively to improve
them, is not quite suitable. The obtained in this way set of values corresponding to the set of
targeting criteria is not close enough to the set of values of finite field inversion-based S-boxes.
Furthermore, when one searches for a set of good S-boxes which in addition have to be big
- from (8 × 8) to (16 × 16), all generation methods known are quite impractical, due to the
huge time and memory resources needed for the computations. Therefore, in this paper we
propose a new method based on a genetic algorithm which is working in a “reversed” way.

More precisely, the algorithm starts from an initial pool of S-boxes based on inversion in the
finite field and searches for S-boxes which are close to them with respect to the targeted set
of cryptographic criteria. The detailed description is provided in Section 4. Applying the new
algorithm we repeatedly and rapidly obtain a large set of S-boxes which are:

1. of dimensions from (8× 8) to (16× 16);

2. have properties close to the best properties found of S-boxes based on finite field inversion;

3. have more complex algebraic structure;

4. possess little or no linear redundancy.

For the case of (8× 8) bijective S-boxes the algorithm outputs thousands of S-boxes with
nonlinearities 106, 108, 110 and 112 (= Ninv) after 2 days work on a cluster with 32 cores.
S-boxes with nonlinearity 110 and possessing zero (i.e. no linear) redundancy as well as S-
boxes with nonlinearity 112 which have incomplete redundancy are not reported till now in
the literature.

For the case of (16× 16) bijective S-boxes 50 S-boxes with values of nonlinearity 32400 =
Ninv − 112 are obtained (Ninv = 2n−1 − 2

n
2 = 32512) after 3 months work on the same

computer. With nonlinearities closer to Ninv, for example NS = Ninv − 36 = 32476, 50 S-
boxes are obtained for less than a month. In fact, thanks to the “reversed” way the algorithm
works, it can output S-boxes with each possible value of nonlinearity up to Ninv. Furthermore,
the closer to Ninv the values of the nonlinearity are, the faster the algorithm works. We are
not aware of any constructions of S-boxes with size bigger than 8, obtained with either pseudo-
random generation or heuristic techniques. Thus, it is the first time when such large S-boxes
with good cryptographic properties are generated. In Table 1 we compare our results with
the state of the art results for the case n = 8.

Table 1: A comparison between the cryptographic properties of (8 × 8) bijective S-boxes
obtained by various generation methods (NR stands for “not reported”)
Methods/Properties NS deg(S) AC(S)max δ-uniformity Fixed points Linear Redundancy

Pseudo-random S-BOX [20], [21] 98 NR NR NR NR NR (usually zero)

Finite Field Inversion [24] 112 7 32 4 2 complete

Hill Climbing [20] 100 NR NR NR NR NR

GA/HC [21] 100 NR NR NR NR NR

Simulated Annealing [8] 102 NR 80 NR NR NR

GaT [32] 104 NR NR NR NR NR

Tweaking [12] 106 7 56 6 NR zero

Gradient descent method [15] 104 7 80 8 0 NR

4-uniform permutations method [26,27] 98 NR NR 4 NR NR

GA1 [this paper] 106 6 56 6 2 zero
GA1 [this paper] 108 6 48 6 0 zero

GA2 [this paper] 110 7 40 6 0 zero
GA2 [this paper] 112 7 32 6 0 some (147 of 255)

Note that algebraic immunity is also included in the target set of criteria for the Gradient
descent method. The reported value for algebraic immunity is 3 [15]. We do not include
algebraic immunity in our target set of criteria.

2 Preliminaries

In this section we will briefly recall some of the basic definitions and properties of Boolean
functions. For a comprehensive survey on Boolean functions we refer to [5, 6].

Let the substitution table (S-box) of an n-binary input into m-binary output mapping
is denoted by S. Then S : Bn → Bm and to each x = (x1, x2, . . . , xn) ∈ Bn some y =
(y1, y2, . . . , ym) ∈ Bm is assigned by S(x) = y, where B = {0, 1} is the 1-dimensional Boolean
space. Clearly, S can be considered as a vectorial Boolean function consisting of m individual
Boolean functions f1, f2, . . . , fm, where fi : Bn → B and fi(x) = yi for i = 1, 2, . . . ,m.
These functions are called coordinate Boolean functions of the S-box S and it is well known
that most of the desirable cryptographic properties of S can be defined in terms of their
linear combinations. S-box coordinate Boolean functions and all their linear combinations are
referred as the S-box component Boolean functions.

2.1 Boolean functions

A Boolean function can be represented by a truth table, which is the binary output vector of
the function containing 2n elements. We obtain the polarity truth table when instead of f(x),
the signed function f̂(x) = (−1)f(x) is considered. Another way of representing a Boolean
function is by means of its algebraic normal form (ANF):

f(x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ . . .⊕ anxn ⊕ a1,2x1x2 ⊕ . . .⊕ a1,2,...,nx1x2 . . . xn,

where the coefficients aI ∈ B, I ⊆ {1, 2, . . . , n}. The algebraic degree of an n-variable Boolean
function f(x), denoted by deg(f), is the number of variables of the largest product term of
the function’s ANF having a non-zero coefficient.

Two n-variable Boolean functions f(x) and g(x) belong to the same equivalence class (or
are affine equivalent) if and only if there exist some invertible (n×n) binary matrix A, vectors
b, c ∈ Bn and a scalar d ∈ B, such that g(x) = f(Ax⊕ b) ⊕ < c, x > ⊕ d.

The Walsh-Hadamard transform (WHT) of an n-variable Boolean function f̂(x), denoted
by F̂f (w), is defined by:

F̂f (w) =
∑
x∈Bn

f̂(x)(−1)<w,x> =
∑
x∈Bn

(−1)f(x)⊕<w,x> =
∑
x∈Bn

f̂(x)l̂w(x),

where l̂w(x) is the signed function of the linear function lw(x) =< w, x >.

Thus, ∀w ∈ Bn, F̂f (w) ∈ [−2n, 2n]. F̂f (w) is called a spectral Walsh coefficient and the
real-valued vector of all 2n Walsh coefficients is referred to as the WHT Spectrum. We denote
the maximum absolute value taken by the WHT by WHTmax(f) = max(w∈Bn) |F̂f (w)|.

Some of the most important cryptographic properties that a Boolean function should
possess are defined below. An n-variable Boolean function f(x) is called balanced if wH(f) =
2n−1, where by wH(f) is denoted the Hamming weight of f . The nonlinearity of an n-variable
Boolean function f(x), denoted by Nf , is the minimum distance to the set of all n-variable
affine Boolean functions A(n). It is given by Nf = [2n−WHTmax(f)]/2. The autocorrelation

transform (ACT) of f̂(x), denoted by r̂f (α), taken with respect to a vector α ∈ Bn is defined
by:

r̂f (α) =
∑
x∈Bn

(−1)f(x)⊕f(x⊕α) =
∑
x∈Bn

f̂(x)f̂(x⊕ α)

Thus, ∀α ∈ Bn, r̂f (α) ∈ [−2n, 2n] and r̂f (0) = 2n. The r̂f (α) is called spectral autocorre-
lation coefficient and the real-valued vector of all 2n autocorrelation coefficients representing
the ACT of the function is referred to as its ACT Spectrum.

The maximum ACT value or absolute indicator of an n-variable Boolean function in
polarity form f̂(x), denoted by ACmax(f), is defined by: ACmax = max(α∈Bn\{0})|r̂f (α)|.

The results of Meier and Staffelbach [19] and of Preneel [25] show that some of the most
important cryptographic characteristics of Boolean functions as algebraic degree, nonlinearity
and absolute indicator are invariant under affine transformations, while in other, like WHT
and ACT, the effect produced by applying affine transformations is permutation in the values
of the spectral coefficients, and some change in their signs. Anyway, their magnitudes are not
affected by affine transformations. In other words, for any two affine equivalent n-variable
Boolean functions f and g, is true that deg(g) = deg(f), WHTmax(g) = WHTmax(f), Ng =
Nf and ACmax(g) = ACmax(f).

2.2 Vectorial Boolean functions

The properties of Boolean functions discussed in the previous section can be extended to the
case of vectorial Boolean functions (S-boxes). There are some conceptual similarities in the
transition from the single-output to the multi-output case but there are also some essential
differences in the manner by which the S-boxes properties are derived. It is important to
note that it is not sufficient only to consider the coordinate Boolean function properties when
considering S-box cryptographic properties but also their linear combinations.

To avoid trivial statistical attacks, a good S-box should be a regular (balanced) mapping.
An (n×m) S-box S with n ≥ m is said to be regular if for each its output y ∈ Bm there are
exactly 2n−m inputs that are mapped to y. If the S-box is not regular, some outputs appear
more often than others when the input to the S-box is randomly chosen and the bias can
be exploited by the cryptanalyst. An (n×m) S-box with n ≥ m is regular if and only if all
non-zero its component Boolean functions are balanced [30].

Linear cryptanalysis [17], is a known-plaintext attack which is trying to approximate the
relationship between plaintext, ciphertext and the key bits by constructing a linear expres-
sion and then evaluating the probability P attached to this expression. Among all possible
expressions, those which achieve highest/lowest probabilities to be the correct are the best
linear/affine approximations. Thus, if all the probabilities P are approximately equal to 1

2 ,
the cipher will be resistant to linear and affine approximation.

An (n × m) S-box improves the immunity against linear cryptanalysis if in its linear
approximation table (LAT) all the entries magnitudes are as small as possible. In [29] it is
shown that the latter is equivalent to the statement that the nonlinearity of each non-zero
S-box component Boolean function should be as high as possible. The nonlinearity of an
(n × m) S-box S, denoted by NS , is defined as the minimum nonlinearity of each of the
component Boolean functions excluding the zero one. It can be expressed as:
NS = min(c=(c1,c2,...,cm)∈Bm\{0})Nc1f1⊕c2f2⊕...⊕cmfm .

In order to resist low order approximation attacks each S-box must have an algebraic
degree as high as possible ([14, 22]). The (minimal) algebraic degree of an (n × m) S-box
S, denoted by deg(S), is defined as the minimum algebraic degree of each of its non-trivial
component Boolean functions. It can be expressed as follows:

deg(S) = min
c=(c1,c2,...,cm)∈Bm\{0}

deg(c1f1 ⊕ c2f2 ⊕ . . .⊕ cmfm).

Differential cryptanalysis, introduced by Biham and Shamir [3] is applied to block ciphers
as a chosen-plaintext attack, which consists in finding relationships between plaintext differ-
ences and their corresponding ciphertext differences in order to gain knowledge of the key
bits. The differential uniformity of an (n×m) S-box S with n ≥ m, denoted by δ, is defined
as the largest value present in its difference distribution table (DDT) not counting the first
entry in the first row. That is, δ = maxα∈Bn\{0}maxβ∈Bm |{x ∈ Bn|S(x) ⊕ S(x ⊕ α) = β}|.
Then, S is said to be differentially δ-uniform.

Thus, a necessary condition for an S-box to improve the resistance against differential
cryptanalysis is its DDT not to contain entries with large values (DDT to be flat) or equiv-
alently the differential uniformity δ to be as small as possible [1, 7, 11]. In [34] the relation
AC(S) = DDT.Hm has been shown, where Hm is the (2m × 2m) Sylvester-Hadamard ma-
trix [18] and AC(S) is the (2n × 2m) autocorrelation matrix of S which columns represent
the autocorrelation functions of all component Boolean functions of S. Also, in [34] a lower
bound on the differential uniformity δ of S is given, involving the maximum absolute value in
AC(S): δ ≥ 2n−m+ 2−mAC(S)max, where by AC(S)max it is denoted the maximum absolute
indicator among the absolute indicators of all non-trivial component Boolean functions of S.
That is, AC(S)max = maxc=(c1,c2,...,cm)∈Bm\{0} |r̂c1f1⊕c2f2⊕...⊕c1fm(α)|.

Clearly δ ∈ [2n−m, 2n]. If AC(S)max is 0, which is known to be achieved by the perfect
nonlinear (bent) functions [19,28], then δ will have the minimum value possible. Thus, small
value of δ implies a small value for AC(S)max and hence, minimizing the overall autocorrela-
tion of S-boxes, in terms of their AC(S)max, will help in providing resistance to differential
cryptanalysis. Considering that δ is always even, then in the case of bijective S-boxes (n = m)
can be concluded that the smallest possible value of δ is 2. However, in [3,4] it is pointed out
that the condition of the DDT of an S-box being flat is not sufficient for the S-box to resist
differential cryptanalysis. In addition, the DDT should also contain as less non-zero entries
as possible in its first column. In the case of bijective S-boxes this additional requirement is
always fulfilled as the first column of the DDT contains only zeros except for the first entry.

Taking into consideration the mentioned cryptographic properties of S-boxes and the
properties of the coordinate Boolean functions and their linear combinations, we decided to
target the following set of cryptographic criteria for a good bijective S-box S:

1. Minimization of the largest non-trivial value in the LAT of S or ⇐⇒
Maximization of the nonlinearity of S, NS

2. Maximization of the algebraic degree of S, deg(S).

3. Minimization of the largest non-trivial value δ in the DDT of S.

4. Minimization of the maximum absolute autocorrelation of S, AC(S)max.

5. Non-existence of fixed points.

6. Non-possession of linear redundancy.

We add Criterion 5 to the targeting set of cryptographic criteria as pointed out in [10],
although we are not aware of any cryptanalytic attacks in the literature which takes advantage
of the existence of fixed points in S-boxes.

In [12], Fuller and Millan proposed a new criterion to be added to the above set, the
“non-possession of linear redundancy”, which is defined bellow. We add it to the targeted set
as the Criterion 6.

Definition 1. An (n×m) S-box S will possess linear redundancy if there are at least two
Boolean functions g(x) = a1f1⊕ a2f2⊕ . . .⊕ amfm and h(x) = b1f1⊕ b2f2⊕ . . .⊕ bmfm with
a = (a1, a2, . . . , am) and b = (b1, b2, . . . , bm) ∈ Bm \ {0}, which are affine equivalent.

When all component Boolean functions of S (not counting the zero linear combination)
are affine equivalent, S will possess complete linear redundancy. On the contrary, when no
two affine equivalent non-zero linear combinations of the coordinate Boolean functions exists,
S will possess zero linear redundancy. Small S-boxes will always have linear redundancy be-
cause of the few available equivalence classes for smaller n. However, for larger S-boxes, as
the number of equivalence classes becomes quickly infeasible, the presence of linear redun-
dancy is claimed to be an indicator for non-randomness and thus a potential source of new
cryptanalysis [12].

When optimizing Boolean functions for several cryptographic criteria simultaneously it
is known that trade-offs exist. For example, the perfect nonlinear (bent) functions, which

are known to achieve the highest possible value of nonlinearity 2n−1 − 2
n−2
2 and the lowest

δ-uniformity of 2, exist only for even n, but they are never balanced and always have small
algebraic degree (≤ n

2). Such trade-offs effect the combined properties of an S-box.

3 Generation Methods

The available in the literature techniques for S-box generation could be divided into three
main classes: algebraic constructions, pseudo-random generation and heuristic techniques.

3.1 Algebraic constructions

This approach is based on S-box generation according to certain mathematical principles.
The used algebraic constructions rely either on proven mathematical relations or on the
construction of bigger S-boxes from smaller ones [13]. Among the first are the finite field
inversion mappings, the power mappings, etc. This is the most popular approach, because
S-boxes generated in such a way are known to optimize all the desired criteria. The finite
field operation of inversion has been shown to achieve the best known combination of high
algebraic degree, high nonlinearity and low autocorrelation [24]. For example, an (8 × 8)
S-box constructed in such a way will possess algebraic degree of 7, nonlinearity of 112, δ-
uniformity of 4, and maximum non-zero autocorrelation of 32. The S-box of AES [10] is
constructed with an inverse mapping followed by an affine transformation in the finite field.
It is shown that certain algorithmic S-boxes possess complete linear redundancy and as such
all component Boolean functions, except the zero one, are of the same equivalence class [2,33].
The equivalence class of the finite field inversion for the (8× 8) case is described in Table 2.

Table 2: Finite Field Inversion Equivalence Class Properties
Algebraic degree: deg(S) 7

Nonlinearity: NS 112

Maximum absolute non-zero autocorrelation: AC(S)max 32

Absolute ACT Spectrum Distribution {(0, 32), (8, 84), (16, 74), (24, 52), (32, 13), (256, 1)}
Absolute WHT Spectrum Distribution {(0, 17), (4, 48), (8, 36), (12, 40),

(16, 34), (20, 24), (24, 36), (28, 16), (32, 5)}

Besides the simple algebraic structure of S-boxes obtained by algebraic constructions and
the potential vulnerability to the algebraic attack [9], these techniques are not typically
designed to produce a large set of S-boxes.

3.2 Pseudo-random generation

The second approach is based on using of some pseudo-random generation or a table of
random numbers to generate the entries in the S-box and then test the S-box whether is
good or not. Using of this approach will take a great effort to find a good S-box because of
the contradiction of the desired criteria and the small number of good S-boxes among all in
the whole space, which quickly becomes infeasible as the size of the input space increases. For
example, in the case of (8× 8) S-boxes, the highest value for nonlinearity found is 98− 100
[20, 21], and these with nonlinearity 100 found were only four out of 50 million S-boxes
generated.

3.3 Heuristic techniques

The heuristic techniques involve a process of iteratively improving given S-box or S-boxes
with respect to one or more properties. Because they use directed search methods, unlike the
algebraic constructions they are able of producing a large number of S-boxes, which are not
optimal but semi-optimal, often ensure better resistance against algebraic attack and not the
least make people believe in the absence of trapdoors. Specific heuristic techniques include the
hill climbing method, the simulated annealing method, the genetic algorithm or a combination
of these. The hill climbing method involves the application of small modifications of one or
more distinct elements in order iteratively to improve one or more cryptographic properties.
The highest nonlinearity achieved by this method is 100 [20]. Simulated annealing method
provides an extension to the hill climbing technique in which the search process is able to
move out of a local optimum in order to continue. For the case of (8×8) S-boxes by using this
method S-boxes possessing nonlinearity 102 are generated [8]. The genetic algorithms work
with a population of candidate solutions. Aiming to produce future populations of S-boxes
possessing desired properties, they apply three operations inspired by natural evolution -
selection, crossover and mutation. During the selection process parental pairs, selected from
an initial solution pool, interbreed to produce children. The breeding scheme is based on the
mechanism of crossover like in sexual reproduction. Genetic variation is result of breaking and
recombining of parent genes, thus producing offspring with combined parents attributes. The
crossover mechanism operates on parent genes selected by a crossover point which is chosen
randomly. Everything before this point is copied from the first parent and then everything
after this point is copied from the other. After the breeding of all parental pairs when all the
children are born, a mutation is applied on them with the intention of producing random
changes in the offspring and thus preventing from falling into a local optimum. Then a fitness
function to each of the children is applied. Based on the fitness values obtained and the
solutions in the current pool a decision which of the children and which of the solutions in
the current pool will replace the candidate solutions in the parent pool is made. After that
a new evolutionary process begins and so on until reaching of some threshold number of
iterations chosen in advance. At the end, the fittest solution of the final generation is the
best solution. In [32], (8 × 8) S-boxes having nonlinearity 104 are produced by combining a
special genetic algorithm and total tree searching.

4 New Method

The proposed new method is based on a genetic algorithm working in a reversed way. The
basic idea is to start from an initial pool of S-boxes based on a finite field inversion with
respect to a polynomial basis and go down from their cryptographic characteristics optimal

values until reaching some close to the optimal and chosen in advance threshold values, which
are still satisfactory. The main goal of the algorithm is a rapid construction of a variety of big
(from (8× 8) up to (16× 16)) bijective S-boxes which possess cryptographic properties close
to optimal ones, but which have more complex algebraic structure and possess zero linear
redundancy. A check-up, whether the S-box nonlinearity is greater than the nonlinearity Ninv

of S-boxes based on inversion in the finite field, is done and if so, the S-box is saved in a file.

4.1 Genetic Algorithm 1

Genetic algorithm 1 (GA1) works in a reverse way, hence we start from S-boxes achieving
the optimal known values for nonlinearity, algebraic degree and δ-uniformity. The input of
the algorithm is an initial parent pool which contains a number of T S-boxes of dimensions
(n×n). Some of the S-boxes in the initial pool are based on finite field inversion with respect
to a polynomial basis and the others are results from applying affine transformations to the
finite field inversion S-boxes. The algorithm makes use of three main functions:

1. The breeding function, denoted by breeding(Pi, Pj , CoP1, CoP2, cnt), has five input ar-
guments - two distinct parents from the parent pool Pi and Pj , two distinct crossover
points CoP1 and CoP2, which are randomly generated integers ∈ (1, 2n), and a five-valued
counter cnt. The two distinct crossover points CoP1 and CoP2 point out the positions
where the breaking of the genes of Pi and Pj respectively is done. The five different values
of the counter cnt specify the order (straight or reversed) in which the two parts with
parents genes divided by the crossover point are copied into the children. Using this ap-
proach helps an additional element of randomness to be provided in the computational
process by changing the direction of convergence which in turn enables the genetic pro-
cess to deviate away from a point of local optimum. As an output the breeding function
returns two children Ch1 and Ch2. The children are obtained by the following crossover
scheme: All T S-boxes P1, P2, . . . , PT in the parental pool are represented by their look-up
tables, each containing all 2n S-box outputs respective to all 2n possible lexicographically
ordered inputs. Thus, as a result of the breeding of the parental pair (Pi, Pj), one of all

possible T (T−1)
2 pairs, (Ch1, Ch2) is obtained. According to the values of the counter cnt,

the way Ch1 and Ch2 are obtained is different. In the case when cnt = 1, the rule is:

Ch1(xk) = P1(xk), where xk ∈ B and k = 1, 2, . . . , CoP1

Ch1(xk) = P2(xk), where xk ∈ B and k = CoP1 + 1, CoP1 + 2, . . . , 2n

Ch2(xp) = P2(xp), where xp ∈ B and p = 1, 2, . . . , CoP2

Ch2(xp) = P1(xp), where xp ∈ B and p = CoP2 + 1, CoP2 + 2, . . . , 2n.

When cnt = 2, 3, 4 and 5, one of the two parts of one of the parents is used reversely (a
kind of permutation is applied). An example for the case (8× 8), cnt = 1, CoP1 = k and
CoP2 = m, where k,m ∈ (1, 256), is given in Table 3.

Table 3: The Crossover Mechanism Example for cnt = 1
Parent P1 y1 y2 . . . yk−1 yk yk+1 yk+2 . . . y255 y256
Parent P2 v1 v2 . . . vm−1 vm vm+1 vm+2 . . . v255 v256
Child Ch1 y1 y2 . . . yk−1 yk vk+1 vk+2 . . . v255 v256
Child Ch2 v1 v2 . . . vm−1 vm ym+1 ym+2 . . . y255 y256

2. The mutation function, denoted by modeling(Ch), has as an input argument any child
born in result of the breeding of any of the parental pairs. The function is applied with
two main purposes. The first one comes in response to the unwanted mutation which
may have occurred in the children after the crossover, namely the loss of their bijection
property. So, the bijection must be repaired. And the second purpose is some additional
randomness to the computational process to be added which will help in providing a
chance for deviation from a local optimum similarly to the usage of the counter cnt. The
output of the mutation function is a child which is a permutation. The modeling process
is described bellow:
Let (Ch1, Ch2) = breeding(Pi, Pj , CoP1, CoP2, cnt) and let their Look-up tables are:

Ch1 = [y1, y2, . . . , yCoP1−1, yCoP1 , yCoP1+1, . . . , y2n]

Ch2 = [v1, v2, . . . , vCoP2−1, vCoP2 , vCoP2+1, . . . , v2n].

Clearly, each of the two parts {y1, y2, . . . , yCoP1} and {yCoP1+1, yCoP1+2, . . . , y2n} of Ch1,
and each of the two parts {v1, v2, . . . , vCoP2} and {vCoP2+1, vCoP2+2, . . . , v2n} of Ch2, di-
vided respectively by CoP1 and CoP2, consist of distinct elements because of the bijective
property of the parents. So, as accurately to the order, {y1, y2, . . . , yCoP1} is part of Pi
and {yCoP1+1, yCoP1+2, . . . , y2n} is part of Pj , some of the elements of {y1, y2, . . . , yCoP1}
can be repeated in {yCoP1+1, yCoP1+2, . . . , y2n}. The modeling of the child consists in one
by one consequently checking for repetition the elements of {yCoP1+1, yCoP1+2, . . . , y2n}
in {y1, y2, . . . , yCoP1}. If so, a new element is repeatedly randomly generated, and if it is
not met yet, it replaces the duplicate. The procedure is applied for both of the children.
At the end, they are permutations.

3. The fitness function, denoted by fitness(Ch), has as an input argument any child, which
has already been modeled, and returns a value playing the role of a measure taken to
ascertain whether the child will survive to the new generation or not. The fitness value
is the nonlinearity value of the child Nch. The fitness test is passed by the child Ch
if NCh ≥ Nthr, where Nthr is the threshold nonlinearity value chosen in advance. If
NCh > Nthr, then the child takes its place in the offspring pool. If NCh = Nthr, then
besides the child takes its place in the offspring pool, it is also saved in a file. IfNCh > Ninv,
then the child is saved in a file. Otherwise, the child does not survive to the next generation
and it is left off. If after the breeding of all pairs from the parent pool the offspring pool
is not totally full, the breeding process starts all over again with the pair (P1, P2). This
makes sense, because the crossover points CoP1 and CoP2 are randomly chosen which
ensures that the next pair of children of P1 and P2 will be different from the previous one.
When the offspring pool gets full of children, if all of them have nonlinearities equal to the
threshold value Nthr, the algorithm stops. Otherwise the children replace their parents in
the parent pool and so on to the next generation.

4.2 Genetic Algorithm 2

The Genetic algorithm 2 (GA2) provided in this section is a slight modification of GA1 in
which an additional cost function is applied together with the fitness function in order to
help deciding whether the respective child will survive to the next generation or not. The
cost function is based on the WHT spectrum and is taken from the family of functions in [8]:

cost(S) =
∑

c=(c1,c2,...,cm)∈Bm\{0}

∑
ω∈Bn

|F̂c1f1⊕c2f2⊕...⊕cmfm(ω)−X|R,

where X and R are real-valued parameters and F̂c1f1⊕c2f2⊕...⊕cmfm(ω) is the WHT of the
component Boolean function c1f1⊕ c2f2⊕ . . .⊕ cmfm of the S-box given by c. More precisely,
GA2 uses the specific cost function for m = n with (X,R) = (21, 7), as proposed in [32].

The main difference between the two genetic algorithms proposed is that in addition to
GA1 in GA2 a child, which has already been modeled, passes the fitness test not only in the
case when its fitness value is good enough, i.e. NCh ≥ Nthr, but also when in addition its
cost value is smaller than the one of its parent, i.e. cost(Ch1) < cost(P1). The pseudo-codes
of both algorithms are presented in Appendix A.

5 Experimental Results

In this section the results of generating a set of T (n × n) bijective S-boxes using the two
variants of genetic algorithms are provided.

5.1 Results Obtained with GA1

1) The case n = 8 The results obtained by GA1 are closely related to the linear redundancy
property. If it is considered as a vital one, the output of the GA1 are S-boxes which possess
zero linear redundancy, but their nonlinearities are at most 108. Otherwise, S-boxes with
nonlinearity 110 and 112 are achieved, but they possess some linear redundancy.

The properties of representatives obtained with GA1 for the case n = 8 with an initial
pool full of 200 S-boxes and Nthr equal to 104, 106 and 108 are provided in Table 4.

Table 4: S-boxes generated with GA1 in the case n = 8 and Nthr = 104, 106 and 108
S-BOX Nthr NS deg(S) AC(S)max δ-uniformity Fixed points Linear Redundancy

AES S-BOX − 112 7 32 4 2 complete

GA1 S-BOX 1 104 104 7 64 6 2 zero

GA1 S-BOX 2 106 106 6 56 6 2 zero

GA1 S-BOX 3 108 108 6 48 6 0 zero

The respective cryptographic properties distributions of the S-box component Boolean
functions are provided in Table 5, where the pair (value1, value2) means that the respective
cryptographic value1 has occurred exactly a value2 number of times among all 255 non-trivial
S-box component Boolean functions.

Table 5: Distributions of the component Boolean functions of GA1 S-boxes in the case n = 8
LCBFs distributions NLCBFs deg(LCBFs) ACmax(LCBFs) Equivalence classes

AES S-BOX (112, 255) (7, 255) (32, 255) 1

GA1 S-BOX 1 (112, 14) (110, 116) (7, 255) (64, 6) (56, 54) 255
(108, 92) (106, 29) (48, 141) (40, 54)

(104, 4)

GA1 S-BOX 2 (112, 60) (110, 160) (7, 254) (56, 2) (48, 63) 255
(108, 33) (106, 2) (6, 1) (40, 180) (32, 10)

GA1 S-BOX 3 (112, 99) (110, 149) (7, 254) (48, 14) (40, 202) 255
(108, 7) (6, 1) (32, 39)

As it can be seen from Tables 4 and 5, the obtained S-boxes possess zero linear redundancy,
that is all non-trivial 255 component Boolean functions belong to distinct equivalence classes.
This is an improvement in terms of linear redundancy compared to the inversion S-boxes
where all 255 component Boolean functions are from the same equivalence class (Table 2)
and hence a complete linear redundancy is available. The particular S-boxes are presented in
Appendix B in hexadecimal notation.

2) The case n = 16 The properties of representatives for n = 16 with an initial pool full
of 50 S-boxes and Nthr equal to 32400, 32428 and 32476 are provided in Table 6.

Table 6: S-boxes generated with GA1 in the case n = 16 and Nthr = 32400, 32428 and 32476
S-BOX Nthr NS deg(S) AC(S)max

Inversion S-BOX − 32512 15 512

GA1 S-BOX 1 32400 32400 15 976

GA1 S-BOX 2 32428 32428 15 864

GA1 S-BOX 3 32476 32476 14 616

5.2 Results Obtained with GA2

GA2 is a little slower than GA1. Furthermore, it should be noted that its results are better
only in terms of linear redundancy. S-boxes with nonlinearity 110 and zero linear redundancy
were obtained. One reason could be the additional cost function in the fitness which slows up
the offspring obtaining and thus inserts more randomness in the process. The other one could
be that in all tests with GA2, different paths have been selected because of the randomness
inserted in the breeding and the mutation step. The properties of representatives obtained
with GA2 for n = 8 with an initial pool of 200 S-boxes and Nthr equal to 106, 110 and 112
are provided in Table 7. The distributions of the S-box component functions are provided
in Table 8. Similar to GA1, the improvement in terms of zero linear redundancy can also
be observed, excluding the case Ntrh = 112, where only 147 out of 255 distinct equivalence
classes were achieved. The particular S-boxes can be viewed in Appendix C.

We should note that with GA1 and GA2 we found no S-boxes satisfying NCh > Ninv.

Table 7: S-boxes generated with GA2 in the case n = 8 and Nthr = 106, 110 and 112
S-BOX Nthr NS deg(S) AC(S)max δ-uniformity Fixed points Linear Redundancy

AES S-BOX − 112 7 32 4 2 complete

GA2 S-BOX 1 106 106 6 48 6 0 zero

GA2 S-BOX 2 110 110 7 40 6 0 zero

GA2 S-BOX 3 112 112 7 32 6 0 some (147 of 255)

The proposed method is fast enough in repeatedly producing of thousands of (8 × 8) S-
boxes with nonlinearity up to 112. Together with the high nonlinearity, most of the S-boxes
possess properties which are close to the finite filed inversion-based ones. At a reasonable price
of small deviations from the best known values, more complex algebraic structure and zero
linear redundancy is achieved except for Nthr = 112, where the maximum number of different
equivalence classes for all component Boolean functions found was 147. Even for n = 16 the

Table 8: Distributions of the component Boolean functions of GA2 S-boxes in the case n = 8
LCBFs distributions NLCBFs deg(LCBFs) ACmax(LCBFs) Equivalence classes

AES S-BOX (112, 255) (7, 255) (32, 255 1

GA2 S-BOX 1 (112, 85) (110, 150) (7, 254) (48, 46) (40, 160) 255
(108, 18) (106, 102) (6, 1) (32, 49)

GA2 S-BOX 2 (114, 1) (112, 162) (7, 255) (40, 122) (32, 133) 255
(110, 92)

GA2 S-BOX 3 (112, 255) (7, 255) (32, 255) 147

algorithm is relatively fast if Nthr is chosen to be close to Ninv = 32512. It has found 50
S-boxes in 3 and a half months. We can obtain S-boxes of each possible nonlinearity and
the closer to Ninv the faster the algorithm is. Considering the huge time and space resources
needed for the computations when generating (16×16) S-boxes, the proposed method proves
to be more applicable than any of the known pseudo-random and heuristic techniques.

References

1. E. Biham. On Matsui’s linear cryptanalysis. In Eurocrypt’94, volume 950 of LNCS, pages 341–355.
Springer, 1994.

2. E. Biham. Observations on the relations between bit-functions of many s-boxes. In The 3rd NESSIE
conference, November 2002.

3. E. Biham and A. Shamir. Differential cryptanalysis of des-like cryptosystems. In Advances in Cryptology
CRYPTO’90, volume 537 of LNCS, pages 2–21. Springer Verlag, 1991.

4. E. Biham and A. Shamir. Differential cryptanalysis of des-like cryptosystems. Journal of Cryptology,
4:3–72, 1991.

5. C. Carlet. Boolean Models and Methods in Mathematics, Computer Science, and Engineering, chapter
Boolean Functions for Cryptography and Error Correcting Codes, pages 257–397. Cambridge University
Press, 2010.

6. C. Carlet. Boolean Models and Methods in Mathematics, Computer Science, and Engineering, chapter
Vectorial Boolean Functions for Cryptography, pages 257–397. Cambridge University Press, 2010.

7. F. Chabaud and S. Vaudenay. Links between differential and linear cryptanalysis. In Advances in Cryp-
tology EUROCRYPT’94, volume 950 of LNCS, pages 356–365. Springer Verlag, 1995.

8. J.A. Clark, J.L. Jacob, and S. Stepney. The design of s-boxes by simulated annealing. New Generation
Computing Archive, 23(3), September 2005.

9. N. T. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined systems of equations. In
Advances in Cryptology - ASIACRYPT’02, volume 2501 of LNCS, pages 267–287. Springer Verlag, 2002.

10. J. Daeman and V. Rijmen. The design of Rijndael: AES The advanced Encryption Standard. Springer
Verlag, 2002.

11. J. Daemen, R. Govaerts, and J. Vandewalle. Correlation matrices. In FSE’94, volume 1008 of LNCS,
pages 275–285. Springer, 1995.

12. J. Fuller and W. Millan. Linear redundancy in s-boxes. In FSE’03, volume 2887 of LNCS, pages 74–86.
Springer, 2003.

13. B. Gerard, V. Grosso, M. Naya-Plasencia, and F.-X. Standaert. Block ciphers that are easier to mask:
How far can we go? In CHES’03, volume 8086 of LNCS, pages 383–399. Springer, 2003.

14. J. Dj. Golić. Fast low order approximation of cryptographic functions. In Advances in Cryptology EURO-
CRYPT’96, volume 1070 of LNCS, pages 268–282. Springer Verlag, 1996.

15. O. Kazymyrov, V. Kazymyrova, and R. Oliynykov. A method for generation of high-nonlinear s-boxes
based on gradient descent. IACR Cryptology ePrint Archive (2013), http://eprint.iacr.org/2013/578.

16. L.Goubin, A.Martinelli, and M.Walle. Impact of s-boxes size upon side channel resistance and block cipher
design. In AFRICACRYPT’13, volume 7918 of LNCS, pages 240–259. Springer, 2013.

17. M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology EUROCRYPT’93,
volume 765 of LNCS, pages 386–397. Springer Verlag, 1994.

18. F. J. McWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-Holland, 1978.
19. W. Meier and O. Staffelbach. Nonlinearity criteria for cryptographic functions. In Advances in Cryptology

EUROCRYPT’89, volume 434 of LNCS, pages 549–562. Springer Verlag, 1990.
20. W. Millan. How to improve the nonlinearity of bijective s-boxes. In Australian Conference on Information

Security and Privacy 1998, volume 1438, pages 181–192. Springer Verlag, 1998.
21. W. Millan, L. Burnett, G. Carter, A. Clark, and E. Dawson. Evolutionary heuristics for finding crypto-

graphically strong s-boxes. In ICICS’99, volume 1726 of LNCS, pages 263–274. Springer, 1999.
22. W. L. Millan. Low order approximation of cipher functions. In Cryptography: Policy and Algorithms

Conference, Proceedings, volume 1029 of LNCS, pages 144–155. Springer Verlag, 1996.
23. K. Nyberg. Perfect nonlinear s-boxes. In Advances in Cryptology EUROCRYPT’91, volume 547 of LNCS,

pages 378–386. Springer Verlag, 1992.
24. K. Nyberg. Differentially uniform mappings for cryptography. In Advances in Cryptology EURO-

CRYPT’93, volume 765 of LNCS, pages 55–64. Springer Verlag, 1994.
25. B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis, KU Leuven, 1994.
26. L. Qu, Y. Tan, C. Li, and G. Gong. More constructions of differentially 4-uniform permutations on F22k .

In arxiv.org/pdf/1309.7423, 2013.
27. L. Qu, Y. Tan, C. Tan, and C. Li. Constructing differentially 4-uniform permutations over F22k via the

switching method. IEEE Transactions on Inform. Theory, 59(7):4675–4686, 2013.
28. O. S. Rothaus. On bent functions. Journal of Combinatorial Theory, 20(3):300–305, May 1976.
29. J. Seberry, X. M. Zhang, and Y. Zheng. Systematic generation of cryptographically robust s-boxes. In

Proceedings of the first ACM Conference on Computer and Communications Security, pages 171–182. The
Association for Computing Machinery, Fairfax, VA, 1993.

30. J. Seberry, X. M. Zhang, and Y. Zheng. Relationships among nonlinearity criteria. In Advances in
Cryptology – EUROCRYPT’94, volume 950 of LNCS, pages 376–388. Springer Verlag, 1995.

31. C. E. Shannon. Communication theory of secrecy systems. Bell System Technical Journal, 28:656–715,
1949.

32. P. Tesař. A new method for generating high non-linearity s-boxes. Radioengineering, 19(1):23–26, 2010.
33. A.M. Youssef and S.E. Tavares. On some algebraic structures in the aes round function. Technical Report

2002/144, Cryptology ePrint Archive, 2002.
34. X. Zhang, Y. Zheng, and H. Imai. Relating differential distribution tables to other properties of substitu-

tion boxes. Designs, Codes and Cryptography, 19:45–63, 2000.

A Appendix A

A.1 Genetic Algorithm 1 pseudo code

1. Step 1 (Initializing step)
In this step the parameters of the algorithm are defined:
– Define an integer n representing the dimension of the (n× n) S-box.
– Define an integer T representing the number of the S-boxes in the parent pool (PP).
– Define an even integer Nthr ≤ Ninv representing the nonlinearity threshold value.
– Generate a number of T (n × n) S-boxes and put them in the (PP). Some based on

inversion in the finite field GF [2n] and some obtained in result of application of affine
transformations to the generated algorithmic S-boxes.

– Create an empty offspring pool (OP) of size T .
– Set the counter cnt value to be 0.
– Set the parents indexes t and r to be 1.

2. Step 2 (Breeding step)

if (cnt = 6) then
cnt = 0
r = r + 1

if (r ≤ T) then
cnt = cnt+ 1
(Ch1, Ch2) = breeding(Pt, Pr, CoP1, CoP2, cnt)

else
if (t < T) then
t = t+ 1
r = t+ 1
cnt = cnt+ 1
(Ch1, Ch2) = breeding(Pt, Pr, CoP1, CoP2, cnt)

else
if (|OP | = T)

if (NChj = Nthr) for each child Chj in the OP (j = 1 to T) then

STOP the algorithm
go to Step 5

else
move and replace OP into PP
cnt = 0
t = 1
r = 1
go to Step 2

else
cnt = 0
t = 1
r = 1
go to Step 2

go to Step 3

3. Step 3 (Mutation step)
Ch1 = modeling(Ch1) and Ch2 = modeling(Ch2)
go to Step 4

4. Step 4 (Fitness step)

NCh1 = fitness(Ch1) and NCh2 = fitness(Ch2)
if (NCh1 > Ninv) then

save Ch1 in a file
if (NCh1 < Nthr) then

delete Ch1
if (NCh1 ≥ Nthr and |OP | < T) then

save Ch1 in the OP
|OP | = |OP |+ 1
if (NCh1 = Nthr) then

save Ch1 in a file
if (NCh2 > Ninv) then

save Ch2 in a file
if (NCh2 < Nthr) then

delete Ch2
if (NCh2 ≥ Nthr and |OP | < T) then

save Ch2 in the OP
|OP | = |OP |+ 1
if (NCh2 = Nthr) then

save Ch2 in a file
if (|OP | < T) then

go to Step 2
else

if (NChj = Nthr) for each child Chj in the OP (j = 1 to T) then

STOP the algorithm
go to Step 5

else
move and replace OP into PP
cnt = 0
t = 1
r = 1
go to Step 2

5. Step 5 (Solution pool)
In the offspring pool OP are the all desired T S-boxes with N = Nthr.

A.2 Genetic Algorithm 2 pseudo code

The pseudo code of GA2 is exactly the same as the pseudo code of GA1 with a few exceptions.
Only lines 6 and 15 of GA1 fitness step, namely
”if (NCh1 ≥ Nthr and |OP | < T) then” and
”if (NCh2 ≥ Nthr and |OP | < T) then”,
are replaced with
”if (NCh1 ≥ Nthr and CCh1 < CP1 and |OP | < T) then” and
”if (NCh2 ≥ Nthr and CCh2 < CP2 and |OP | < T) then” respectively,
where CP1 = cost(P1), CP2 = cost(P2), CCh1 = cost(Ch1) and CCh2 = cost(Ch2).

B S-boxes generated with GA1

B.1 S-box No 1 (NS = 104, deg(S) = 7, AC(S)max = 64, δ = 6)

{0x52 0x53 0xDF 0xA4 0x99 0x00 0x29 0x83 0xBA 0x1D 0x7B 0x92 0xE2 0xB3 0xB7 0x95
0x26 0xE6 0xF8 0x19 0xCB 0x79 0x32 0x0D 0x0A 0x6D 0xAF 0x9E 0xAD 0x12 0xBC 0xE0
0x68 0x3C 0x08 0xA3 0x07 0x1F 0xFA 0x9B 0x93 0x58 0xCA 0x47 0x62 0x16 0xF0 0x90
0x7E 0x17 0xC0 0x3E 0xA1 0x6B 0x34 0x10 0xA0 0x67 0x72 0x3D 0x25 0xE9 0x0B 0x4B
0x4F 0xAC 0x65 0x35 0x7F 0x63 0xA7 0x3B 0xF5 0x36 0xF9 0x41 0x06 0x77 0xBB 0x5B
0xBF 0x0E 0x57 0x98 0x1E 0x76 0xD5 0xED 0x4A 0x6C 0x70 0xA2 0x03 0xBE 0x33 0x45
0x44 0x0C 0xFD 0x81 0x1B 0xF4 0x64 0x11 0xA6 0x15 0xC3 0x8D 0x61 0xC1 0x73 0x69
0x2B 0xE5 0xC5 0xD7 0x42 0xE7 0xE8 0x6E 0xE4 0x22 0x82 0x54 0xF3 0xA8 0xD3 0xD0
0xD1 0x2C 0x2D 0xD2 0xC4 0x21 0xEC 0x04 0xC9 0xCC 0xC7 0x8B 0xA5 0x50 0xEB 0xF6
0x8C 0x38 0x60 0x3F 0x8A 0xD8 0xD6 0x20 0x78 0x46 0xCD 0xDA 0xAB 0x8E 0xDB 0xC8
0xA9 0x2E 0x7C 0x91 0xDD 0xEA 0x37 0x1A 0x74 0x9A 0x40 0x18 0x9C 0xB5 0x80 0x30
0x5E 0xB2 0x4D 0xBD 0x43 0x27 0x2A 0x23 0xF7 0xDC 0x24 0x6F 0xEF 0xEE 0xD4 0x05
0x59 0x7A 0x7D 0xF1 0x88 0x86 0xB6 0x5D 0xFB 0x75 0x01 0x56 0x49 0xAE 0xFE 0xB4
0x28 0x55 0xFC 0x31 0x97 0x89 0xB0 0xB8 0xC6 0xD9 0x96 0x87 0xCF 0xAA 0xC2 0x39
0xE3 0x5F 0x84 0xB9 0x94 0x5C 0x9D 0xFF 0x5A 0x1C 0x85 0xB1 0x0F 0x02 0x4C 0xF2
0x4E 0x71 0x48 0x9F 0x14 0xCE 0x09 0x51 0x66 0xE1 0x6A 0x3A 0xDE 0x13 0x8F 0x2F}

B.2 S-box No 2 (NS = 106, deg(S) = 6, AC(S)max = 56, δ = 6)

{0x50 0x51 0x93 0xD2 0xF2 0x2E 0x11 0x0A 0x01 0x66 0x6F 0xFC 0xB3 0x38 0x7D 0x7A
0xBB 0xCB 0x4B 0x65 0x8C 0x4E 0x06 0xF5 0xE2 0x24 0x64 0x42 0x85 0x34 0x45 0x8D
0xE6 0x1B 0xDE 0xAB 0x9E 0xB9 0x89 0xF1 0x3E 0x8B 0x5F 0x7C 0x7B 0x5E 0xC1 0xA1
0x09 0x87 0x6A 0xA4 0x4A 0x43 0x59 0x00 0xF9 0x33 0x62 0xA5 0x99 0x9C 0xFD 0x5A
0x0B 0x56 0xB6 0xA7 0x17 0xEF 0xEE 0x14 0x37 0x2B 0xE7 0x71 0xFF 0x03 0xC3 0xAF
0x67 0x58 0xFE 0x1D 0x94 0x81 0x46 0xF4 0x86 0x60 0x57 0x10 0xDB 0xCD 0xEB 0xDC
0xBF 0xD1 0xF8 0x69 0x4D 0x84 0x2A 0x18 0x5D 0xB2 0x9A 0xE0 0x97 0x8E 0x78 0x8A
0xC7 0x82 0xA2 0xD4 0x49 0xE3 0xE9 0xD7 0xF7 0xB4 0x36 0x19 0xC5 0xC9 0x55 0xF3
0xBE 0x31 0x53 0x92 0x23 0xA3 0xE8 0x27 0xB0 0xA8 0xCC 0x0C 0x0F 0xEA 0x72 0xAA
0xA0 0x7E 0xAE 0x1E 0xC8 0x2C 0x83 0x20 0xC4 0x2D 0xBA 0x41 0xDA 0x0D 0xEC 0xBC
0x88 0x77 0x54 0x2F 0x07 0x47 0xB5 0x28 0x32 0x68 0xFB 0xFA 0x5B 0x6E 0x02 0x1C
0x3B 0x9B 0x48 0x25 0x90 0xAD 0x70 0x1A 0xD6 0x26 0xDD 0x0E 0xCE 0xBD 0x16 0x15
0xE4 0xAC 0xD3 0x52 0x04 0x80 0x8F 0x3C 0x9D 0x6C 0x3A 0xE1 0x6D 0x98 0x74 0xB8
0x95 0x05 0x21 0xC6 0x35 0x4C 0x08 0x61 0xF0 0x76 0x3F 0x79 0x44 0x4F 0x3D 0x96
0xD8 0xA9 0x39 0x5C 0x29 0xF6 0x12 0xA6 0x9F 0x75 0xCA 0x40 0xCF 0xED 0xD0 0x30
0xC0 0x7F 0x22 0xD5 0x63 0x6B 0xB7 0x13 0xC2 0xDF 0xE5 0x73 0xB1 0x91 0x1F 0xD9}

B.3 S-box No 3 (NS = 108, deg(S) = 6, AC(S)max = 48, δ = 6)

{0x97 0x96 0x1A 0x26 0x1B 0x82 0xAB 0x01 0x38 0x9F 0xF9 0x10 0x60 0x31 0x35 0x17
0xA4 0x64 0x7A 0x9B 0x49 0xFB 0xB0 0x8F 0x88 0xEF 0x2D 0x1C 0x2F 0x90 0x3E 0x62
0xEA 0xBE 0x8A 0x21 0x85 0x9D 0x78 0x19 0x11 0xDA 0x48 0xC5 0xE0 0x94 0x72 0x12
0xFC 0x95 0x42 0xBC 0x23 0xE9 0xB6 0x92 0x22 0xE5 0xF0 0xBF 0xA7 0x6B 0x89 0xC9
0xCD 0x2E 0xE7 0xB7 0xFD 0xE1 0x25 0xB9 0x77 0xB4 0x7B 0xC3 0x84 0xF5 0x39 0xD9
0x3D 0x8C 0xD5 0xD1 0x9C 0xF4 0x57 0x6F 0xC8 0xEE 0xF2 0x20 0x81 0x3C 0xB1 0xC7
0xC6 0x8E 0x7F 0x03 0x99 0x76 0xE6 0x93 0x24 0x5D 0x41 0x0F 0xE3 0x43 0xF1 0xEB
0xA9 0x67 0x47 0x55 0xC0 0x65 0x6A 0xEC 0x66 0xA0 0x00 0xD6 0x71 0x2A 0x51 0x52
0x53 0xAE 0xAF 0x50 0x46 0xA3 0x6E 0x86 0x4B 0x4E 0x45 0x09 0x27 0xD2 0x69 0x74
0x0E 0xBA 0xE2 0xBD 0x08 0x5A 0x54 0xA2 0xFA 0xC4 0x4F 0x58 0x29 0x0C 0x59 0x4A
0x2B 0xAC 0xFE 0x13 0x5F 0x68 0xB5 0x98 0xF6 0x18 0xC2 0x9A 0x1E 0x37 0x02 0xB2
0xDC 0x30 0xCF 0x3F 0xC1 0xA5 0xA8 0xA1 0x75 0x5E 0xA6 0xED 0x6D 0x6C 0x56 0x87
0xDB 0xF8 0xFF 0x73 0x0A 0x04 0x34 0xDF 0x79 0xF7 0x83 0xD4 0xCB 0x2C 0x7C 0x36
0xAA 0xD7 0x7E 0xB3 0x15 0x0B 0x32 0x3A 0x44 0x5B 0x14 0x05 0x4D 0x28 0x40 0xBB
0x61 0xDD 0x06 0x3B 0x16 0xDE 0x1F 0x7D 0xD8 0x9E 0x07 0x33 0x8D 0x80 0xCE 0x63
0x8B 0xF3 0xE8 0xE4 0xB8 0xD0 0xD3 0x5C 0x0D 0x4C 0xAD 0x70 0x1D 0xCA 0x91 0xCC}

C S-boxes generated with GA2

C.1 S-box No 1 (NS = 106, deg(S) = 6, AC(S)max = 48, δ = 6)

{0x82 0xD3 0x21 0x1F 0x95 0xDC 0x4E 0x86 0x5A 0x68 0x8D 0x47 0xC4 0x31 0xA0 0x5E
0xCE 0x20 0xD7 0xB6 0x56 0x2C 0x33 0x05 0x81 0x8F 0x08 0x32 0xB3 0x8A 0xCC 0x58
0x84 0x22 0xF3 0x5C 0x7B 0x1E 0xB8 0x6C 0xC8 0x71 0xF5 0x6F 0x09 0x04 0x12 0xC5
0x50 0xD4 0x57 0x0A 0xE7 0x78 0xFA 0x4D 0x49 0xB4 0xA6 0x97 0x85 0x3E 0xCF 0x0E
0xA1 0x10 0xF2 0x3C 0x69 0x17 0xCD 0x00 0x2D 0x0B 0xA2 0xDB 0xBF 0x67 0xD5 0x2F
0x87 0x19 0x28 0xFB 0x6A 0xB1 0x27 0xB5 0x14 0x8C 0xE1 0xD9 0xEA 0x9C 0x72 0x9F
0xCB 0xEE 0x89 0xA9 0x3B 0x83 0xE6 0x2A 0x63 0x93 0xDF 0xC1 0x9E 0x41 0x36 0xC9
0x34 0xF4 0xB9 0x38 0xB0 0x4B 0x5B 0x16 0x52 0xBE 0xFC 0x98 0x77 0x92 0xE4 0xAB
0x40 0x73 0xEB 0x42 0x9A 0x9B 0xFD 0x64 0x24 0xA7 0x1B 0xDD 0x76 0x62 0xE3 0xEC
0x06 0x80 0x15 0x46 0xB2 0x02 0x7D 0xA8 0x4F 0x18 0x23 0x3F 0x7A 0x3A 0x07 0x8E
0x53 0x66 0x1C 0xED 0xF7 0xD0 0x6D 0x39 0xD6 0x0C 0x48 0x26 0x03 0x8B 0x4A 0x6B
0xE9 0xF0 0xA5 0xC7 0x60 0xE5 0x7C 0x88 0x96 0x25 0xAD 0xC6 0xDA 0x55 0x5F 0x11
0x75 0xC0 0x94 0x1A 0x54 0xA3 0x44 0xE0 0x0D 0xB7 0x51 0x2E 0x90 0xE2 0xF6 0xBA
0xBD 0x0F 0x59 0x01 0x7F 0xEF 0x70 0x37 0xAC 0xA4 0x30 0x13 0xF8 0xFE 0x74 0xDE
0xF9 0xC2 0x99 0x65 0x4C 0x29 0xFF 0xC3 0xBB 0xD1 0x35 0x6E 0x3D 0x5D 0xE8 0xAE
0xCA 0x7E 0xBC 0x1D 0x9D 0x43 0xAF 0xF1 0x2B 0x79 0xAA 0x61 0x91 0xD2 0x45 0xD8}

C.2 S-box No 2 (NS = 110, deg(S) = 7, AC(S)max = 40, δ = 6)

{0x1D 0x2B 0xD9 0x88 0xA0 0xE9 0x7B 0xB3 0x6F 0x5D 0xB8 0x72 0xF1 0x04 0x95 0x6B
0xFB 0x15 0xE2 0x83 0x63 0x19 0x06 0x30 0xB4 0xBA 0x3D 0x07 0x86 0xBF 0xF9 0x6D
0xB1 0x17 0xC6 0x69 0x4E 0xB7 0x8D 0x59 0xFD 0x44 0xC0 0x5A 0x3C 0x31 0x27 0xF0
0x65 0xE1 0x62 0x3F 0xD2 0x4D 0xCF 0x78 0x7C 0x81 0x93 0xA2 0xB0 0x0B 0xFA 0x3B
0x94 0x25 0xC7 0x09 0x5C 0x22 0xF8 0x35 0x18 0x3E 0x97 0xEE 0x8A 0x52 0xE0 0x1A
0xB2 0x2C 0xD5 0xCE 0x5F 0x84 0x12 0x80 0x21 0xB9 0xD4 0xEC 0xDF 0xA9 0x47 0xAA
0xFE 0xDB 0xBC 0x9C 0x0E 0xB6 0xD3 0x1F 0x56 0xA6 0xEA 0xF4 0x2A 0x74 0x03 0xFC
0x01 0xC1 0x8C 0x0D 0x85 0x7E 0x6E 0x23 0x67 0x8B 0xC9 0xAD 0x42 0xA7 0xD1 0x9E
0x75 0x46 0xDE 0x77 0xAF 0xAE 0xC8 0x51 0x11 0x92 0x2E 0xE8 0x43 0x57 0xD6 0xE6
0x33 0xB5 0x20 0x73 0x87 0x37 0x48 0x9D 0x7A 0x2D 0x16 0x0A 0x4F 0x0F 0x32 0xBB
0x66 0x53 0x29 0xD8 0xC2 0xE5 0x58 0x0C 0xE3 0x39 0x7D 0x13 0x36 0xBE 0x7F 0x5E
0xDC 0xC5 0x90 0xF2 0x55 0xD0 0x49 0xBD 0xA3 0x10 0x98 0xF3 0xEF 0x60 0x6A 0x24
0x40 0xF5 0xA1 0x2F 0x61 0x96 0x71 0xAB 0x38 0x82 0x64 0x1B 0xA5 0xD7 0xC3 0x8F
0x14 0x3A 0x6C 0x34 0x4A 0xDA 0x45 0x02 0x99 0x91 0x05 0x26 0xCD 0xCB 0x41 0xEB
0xCC 0xF7 0xAC 0x50 0x79 0x1C 0xCA 0xF6 0x8E 0xE4 0x00 0x5B 0x08 0x68 0xDD 0x9B
0xFF 0x4B 0x89 0x28 0xA8 0x76 0x9A 0xC4 0x1E 0x4C 0x9F 0x54 0xA4 0xE7 0x70 0xED}

C.3 S-box No 3 (NS = 112, deg(S) = 7, AC(S)max = 32, δ = 6)

{0x1E 0x2B 0xD9 0x88 0xA0 0xE9 0x7B 0xB3 0x6F 0x5D 0xB8 0x72 0xF1 0x04 0x95 0x6B
0xFB 0x15 0xE2 0x83 0x63 0x19 0x06 0x30 0xB4 0xBA 0x3D 0x07 0x86 0xBF 0xF9 0x6D
0xB1 0x17 0xC6 0x69 0x4E 0xB7 0x8D 0x59 0xFD 0x44 0xC0 0x5A 0x3C 0x31 0x27 0xF0
0x65 0xE1 0x62 0x3F 0xD2 0x4D 0xCF 0x78 0x7C 0x81 0x93 0xA2 0xB0 0x0B 0xFA 0x3B
0x94 0x25 0xC7 0x09 0x5C 0x22 0xF8 0x35 0x18 0x3E 0x97 0xEE 0x8A 0x52 0xE0 0x1A
0xB2 0x2C 0x1D 0xCE 0x5F 0x84 0x12 0x80 0x21 0xB9 0xD4 0xEC 0xDF 0xA9 0x47 0xAA
0xFE 0xDB 0xBC 0x9C 0x0E 0xB6 0xD3 0x1F 0x56 0xA6 0xEA 0xF4 0xAB 0x74 0x03 0xFC
0x01 0xC1 0x8C 0x0D 0x85 0x7E 0x6E 0x23 0x67 0x8B 0xC9 0xAD 0x42 0xA7 0xD1 0x9E
0x75 0x46 0xDE 0x77 0xAF 0xAE 0xC8 0x51 0x11 0x92 0x2E 0xE8 0x43 0x57 0xD6 0xE6
0x33 0xB5 0x20 0x73 0x87 0x37 0x48 0x9D 0x7A 0x2D 0x16 0x0A 0x4F 0x0F 0x32 0xBB
0x66 0x53 0x29 0xD8 0xC2 0xE5 0x58 0x0C 0xE3 0x39 0x7D 0x13 0x36 0xBE 0x7F 0x5E
0xDC 0xC5 0x90 0xF2 0x55 0xD0 0x49 0xBD 0xA3 0x10 0x98 0xF3 0xEF 0x60 0x6A 0x24
0x40 0xF5 0xA1 0x2F 0x61 0x96 0x71 0xD5 0x38 0x82 0x64 0x1B 0xA5 0xD7 0xC3 0x8F
0x14 0x3A 0x6C 0x34 0x4A 0xDA 0x45 0x02 0x99 0x91 0x05 0x26 0xCD 0xCB 0x41 0xEB
0xCC 0xF7 0xAC 0x50 0x79 0x1C 0xCA 0xF6 0x8E 0xE4 0x00 0x5B 0x08 0x68 0xDD 0x9B
0xFF 0x4B 0x89 0x28 0xA8 0x76 0x9A 0xC4 0x2A 0x4C 0x9F 0x54 0xA4 0xE7 0x70 0xED}

