
Access Control in Publicly Verifiable Outsourced Computation

James Alderman, Christian Janson, Carlos Cid, and Jason Crampton

Information Security Group, Royal Holloway, University of London
Egham, Surrey, TW20 0EX, United Kingdom

{James.Alderman.2011, Christian.Janson.2012}@live.rhul.ac.uk
{Carlos.Cid, Jason.Crampton}@rhul.ac.uk

Abstract

Publicly Verifiable Outsourced Computation (PVC) allows devices with restricted re-
sources to delegate expensive computations to more powerful external servers, and to verify
the correctness of results. Whilst highlybeneficial in many situations, this increases the visi-
bility and availability of potentially sensitive data, so we may wish to limit the sets of entities
that can view input data and results. Additionally, it is highly unlikely that all users have
identical and uncontrolled access to all functionality within an organization. Thus there is
a need for access control mechanisms in PVC environments.

In this work, we define a new framework for Publicly Verifiable Outsourced Computation
with Access Control (PVC-AC). We formally define algorithms to provide different PVC
functionality for each entity within a large outsourced computation environment, and discuss
the forms of access control policies that are applicable, and necessary, in such environments,
as well as formally modelling the resulting security properties. Finally, we give an example
instantiation that (in a black-box and generic fashion) combines existing PVC schemes with
symmetric Key Assignment Schemes to cryptographically enforce the policies of interest.

1 Introduction

The increasing use of mobile devices as general computing devices, “big data” and cloud com-
puting results in a growing discrepancy between the resources of end-users and those required
for computational tasks. As a result, client devices need to be able to efficiently delegate
computations to a server and verify the correctness of results. Consider, for example, a com-
pany operating a “bring your own device” policy for smartphones and tablets that may be
unable to perform complex computations locally. Instead, the company subscribes to an ex-
ternal (untrusted) company providing software-as-a-service (SaaS), but needs to ensure that
results remain correct. Alternatively, in the context of battlefield communications, a squadron
of soldiers may be deployed with light-weight devices to gather data from their surroundings
and send it to regional servers for analysis before receiving tactical commands. Those servers
may not be fully trusted, e.g. if part of a coalition network, so soldiers must be assured that
the command has been computed correctly. This setting is known as Verifiable Outsourced
Computation (VC) [16, 20, 10].

Recent work has proposed extensions to VC where there exist large pools of delegators,
known as Publicly Verifiable Outsourced Computation (PVC) [20], and servers [2]. As with
any multi-user setting, we may wish to control access to resources. In this paper, we show that
not only is this setting of multi-user VC well-suited to the cryptographic enforcement of access
control policies, but that such policies fulfil a natural and vital role in protecting outsourced
computations. Specifically in the setting of multi-user VC, we may wish to (i) restrict the

1

computations that may be outsourced by delegators; and (ii) restrict the computations a server
may perform. The first need stems from separation of duties and the observation that, within
an organization, it is extremely unlikely that all users have equal, uncontrolled access to all
functionality. We may restrict the set of delegators that may outsource a computation to
those that are authorized internally to compute it (if given sufficient resources). The second
requirement arises, for example, from servers being selected from the pool for a particular job
without the delegator necessarily having prior knowledge. Thus delegators may not authenticate
the server beforehand (in contrast with prior schemes where a single server was chosen with
which to set up a VC system) and have less control over which servers may operate on their data.
The sensitivity of the data or other requirements, such as the physical location or resources of
the server, may limit the servers that should be permitted to perform the computation.

Some VC settings distinguish between delegators and verifiers [2]. Delegators (or distin-
guished verifiers) may learn the result of the computation, whereas standard verifiers may only
confirm that the result was computed correctly. Again, in a multi-user VC setting, we may
wish to restrict the users that: (i) verify the result; and (ii) learn the result. When operating
on sensitive data, this second restriction ensures that read access to the generated results is
limited to those that satisfy the access control policy e.g. only entities that may read the input
data may read the output.

A third motivation for access control in the VC setting is that computational services may
be charged for (e.g. in subscription-based utility computing [17, 21]) and that service providers
may offer different levels of service to different clients (e.g. different levels may provide access
to different functions or computational resources). We must ensure that only valid subscribers
may access each tier of service.

In many multi-user settings for access control to stored data [7, 22], servers enforce access
control policies by authenticating users and granting or denying access based on access control
lists or capability lists. This reference monitor is not appropriate in the multi-user VC setting
since the servers are assumed to be untrusted and may have a vested interest in violating the
policies. We instead use a cryptographic enforcement mechanism for access control policies
where cryptographic keys are used to protect objects and restrict access — the access control
mechanism reduces to the appropriate distribution of keys to authorized entities. We use the
trusted Key Distribution Center (KDC) introduced in the Revocable Publicly Verifiable Out-
sourced Computation model (RPVC) [2] and extend its duties to instantiate the access control
mechanism. In RPVC, the KDC issued keys that enable the delegation and evaluation of par-
ticular functions; we additionally require it to issue keys appropriate to the access control policy
that enables read and write access to certain components of the PVC system. For example,
input data for particular functions may be protected such that only authorized servers may read
the data and hence perform the computation.

Note that in an RPVC scheme, the KDC implicitly provides some access control in that
servers are certified to perform specific functions through the generation of evaluation keys.
However, no access control is applied to delegators – any entity can outsource an evaluation of
any function for which the KDC has published delegation information (essentially due to the use
of asymmetric cryptographic primitives). In particular, a delegator may request a computation
that the delegator itself is not authorized to perform.

Cryptographic enforcement mechanisms are particularly appropriate when the objects and
policies are relatively static (such that additional keys need not be generated and objects need
not be re-encrypted). In the context of VC, we may assume that the set of functions that may
be evaluated is fixed (a given VC construction can implement a specified family of functions)
and that the input data to each function is also static (limited to the set of ‘valid’ inputs to
that function). Thus, the set of objects (function evaluations in VC) is static, and policies will

2

primarily be specified in terms of these computations. Thus multi-user VC is a very natural
setting in which to use cryptographic access control. However, VC leads to a somewhat novel
application of these mechanisms as we will see in Section 3.

Related work Clear et al. [11] considered policies over delegators only and in a non-verifiable,
multi-input outsourced computation setting using homomorphic Ciphertext-Policy ABE and
fully homomorphic encryption. In independent and concurrent work, Xu et al.[23] also addressed
the necessity for access control in the setting of verifiable computation, but limited their scope to
non-public verifiable computation (i.e. not the full multi-user setting) enforcing access control on
delegators only. We believe that the PVC setting also necessitates that delegators may specify
access control requirements on those servers that may be selected for a given computation and,
especially, limits must be placed on verifiers that may learn the output. Xu et al. discuss their
notion purely in terms of using CP-ABE as the enforcement mechanism and did not discuss the
form of the policies; in contrast, we discuss in detail the types of policies that may be of interest
in these settings and present these in terms of generic graph-based access control policies. These
may be enforced by a variety of enforcement mechanisms, including symmetric KASs as used
here (which may well be more efficient that the pairing-based CP-ABE approach). We believe
that we present a more generic treatment which, importantly, extends to the multi-user PVC
setting and incorporates a more natural view of hierarchical access control, as well as additional
security notions.

Structure of the paper We begin with some preliminary background material before, in Sec-
tion 3, discussing example access control policies that are relevant to the setting of multi-user
VC. We formulate policies in a generic fashion (irrespective of the cryptographic enforcement
mechanism employed) in terms of authorization labels and graph-based policies over entities
and computations. Then, in Section 4, we extend prior literature [16, 20, 2] to formally define
a framework for PVC-AC. This results in novel security notions that we introduce in Section
5. Finally, in Section 6, we provide an example construction that provably meets the stated
security goals. Our construction generically extends any RPVC scheme to use a symmetric
Key Assignment Scheme (KAS). When instantiated with a PVC scheme built from Key-policy
Attribute-based Encryption [2, 20], this provides a pragmatic blend of symmetric and asym-
metric primitives – the symmetric KAS enables the efficient derivation of keys, each associated
to a security label, while policies are specified in terms of these labels. A trusted authority
on entities, the KDC, issues keys to each entity corresponding to the highest security label for
which they are authorized, and they may derive “lower” keys as required. These keys may
cryptographically protect input values and verification keys such that only entities satisfying
the associated policies may operate on them. Unauthorised servers or eavesdroppers may not
even learn the input values, thus exposure of data is limited to explicitly authorised (trusted)
entities. Moreover, this restriction enforces access control policies on the part of the delegator
device. To encrypt the inputs with a symmetric key associated with the policy, the delegator
must be able to derive this key in the first place. Thus, the delegator’s security clearance must
be at least the classification of the function in order to derive this keyfrom that issued by the
KDC.

We use the following notation.We write y ← A(·) to denote running a probabilistic algorithm
A and assigning the result to y. We use PPT to denote probabilistic polynomial-time and say
that negl(·) is a negligible function of its input. AO is used to denote the adversary A being
provided with oracle access.

3

KDCS1 S2 S3

PublicC1 C2

EKF,S1 EKF,S2

EKG,S3

σo1 θo1

σo2 θo2

σo3

θo3

V Ko1

V Ko2

V Ko3

Revoke PKF , PKG

Verify

Verify

(a) The operation of RPVC

KDCS

PublicC1 C2

EKF,S

PP
σo

θo

V Ko

Revoke SKC2

SKS

SKC1

V Ko

PKF

Retrieve BVerify

τθo

(b) The operation of PVC-AC

Figure 1: The operation of RPVC and PVC-AC

2 Background

2.1 Revocable PVC

Non-interactive verifiable computation (VC), introduced by Gennaro et al. [16],is a protocol
between two PPT parties: a client C and a server S. A successful protocol run results in the
provably correct computation of F (x) by the server for an input x given by the client. More
specifically [16]:

1. C computes evaluation information EKF given to S to enable the computation of F
(pre-processing)

2. C sends the encoded input σo to S (input preparation)

3. S computes y = F (x) using EKF and σo and returns an encoded output θo (output
computation)

4. C checks whether θo encodes F (x) (verification)

KeyGen may be computationally expensive but the remaining operations should be efficient for
the client. The cost of setup is amortized over multiple computations of F .

Parno et al. [20] introduced Publicly Verifiable Outsourced Computation (PVC) to allow
multiple clients to delegate computations. Alderman et al. [2] extended PVC to consider a wider
framework, Revocable PVC (RPVC). Here large pools of clients and servers exist and jobs may
be submitted to the pool; an appropriate server is selected by a system-dependent mechanism.
This model introduces a trusted entity known as a Key Distribution Center (KDC) that performs
costly set-up operations and issues appropriate keys. RPVC comprises the algorithms Setup,
FnInit, Register, Certify, ProbGen, Compute, BVerif, Retrieve and Revoke illustrated in Figure 1a
and corresponding to the following:

1. The KDC generates public parameters, issues personalised secret keys, and evaluation
keys to servers and publishes function delegation information.

2. To outsource the evaluation of F (x), a delegator C, sends an encoded input σo to a server
S, and publishes a verification token and output retrieval key for the computation.

3. S uses σo and an evaluation key for F to produce an encoded output (sent to C, a manager,
or published depending on the system architecture).

4. Any entity can use the verification token to verify correctness without learning the value
of F (x) unless in possession of a retrieval key (blind verification). If S cheated they may
report S to the KDC for revocation.

4

5. If blind verification was successful, a party possessing the output retrieval key can recover
F (x).

6. The KDC may revoke a cheating server to prevent it from performing computations (and
hence from receiving any reward for future work).

2.2 Cryptographic Enforcement of Access Control Policies

2.2.1 Graph-based Access Control

A partially ordered set (poset) is a set L equipped with a reflexive, anti-symmetric and transitive
binary relation 6. We may write x < y if x 6 y and x 6= y, and write y > x if x 6 y. We say
that x covers y, written y l x, if y < x and no z exists in L such that y < z < x. The Hasse
Diagram of a poset (L,6) is the directed acyclic graph H = (L,l) where vertices are labelled
by the elements of L and an edge connects vertex v to w if and only if w l v. Let U be a set
of entities, O be a set of resources to be protected, and (L,6) be a poset of security labels.
Let λ : U ∪ O → L be a labelling function assigning a security label to each entity and object.
The tuple (L,6, U,O, λ) then denotes an information flow policy which can be represented by
the H. Henceforth we refer to such policies as graph-based access control policies. The policy
requires that information flow from objects to entities preserves the partial ordering relation —
an entity u ∈ U may read an object o ∈ O if and only if λ(u) > λ(o) i.e. there exists a directed
path from λ(u) to λ(o) in H. Note that this statement is the simple security property of the
Bell-LaPadula security model [4]. Thus an entity assigned clearance label x is prevented from
accessing objects classified with label y if y > x.

2.2.2 Key Assignment Schemes

A Key Assignment Scheme (KAS) [1] provides a generic, cryptographic enforcement mechanism
for such policies where a unique cryptographic key is associated to each node (representing a
security label) in H. A KAS eases the problem of key distribution by allowing a trusted center
to distribute a single key to each entity, who may combine this key with public information to
derive any additional keys for which the user is authorized. More formally, for an information
flow policy (L,6) [13]:

• MakeKeys(1κ, (L,6)) → κL : returns a labelled set of encryption keys {κx : x ∈ L},
denoted κL.

• MakeSecrets(1κ, (L,6)) → ωL : returns a labelled set of secret values {ωx : x ∈ L},
denoted ωL.

• MakePublicData(1κ, (L,6)) → Pub(L,6) : returns a set of data Pub(L,6) published by the
trusted authority

• GetKey(x, y, ωx, Pub(L,6)) → κy: takes two nodes, x, y ∈ L, the secret information for x,
ωx, and the public information, Pub(L,6) and returns κy if y 6 x.

A well-known KAS construction (known as an iterative key encrypting (IKE) KAS [13])
publishes encrypted keys. In particular, for each y < x, such that no z exists with y < z < x,
Encryptκx(κy) is published. Then for any x > y, the key for each node on a path from x to y can
be derived (in an iterative fashion) if κx is known. Key indistinguishability (KI) [3] is a crucial
security property if derived keys are used in other protocols: given a set of keys κx1 , . . . , κxn ,
an adversary should not be able to distinguish between the key for a challenge node x? (not a
descendent of any xi) and a randomly chosen key. Recently, Freire et al. [15] suggested a new

5

Game 1 ExpS-KIA [1κ, (L,6)]:

1: b
$← {0, 1}

2: κL ← MakeKeys(1κ, (L,6))
3: ωL ← MakeSecrets(1κ, (L,6))
4: Pub(L,6) ← MakePublicData(1κ, (L,6))
5: Q = ε
6: v? ← AOCorrupt(·,⊥)(Pub(L,6))
7: for all vi ∈ Q do
8: if v? 6 vi then return 0
9: if b = 0 then k? = kv?

10: else k?
$← K

11: b′ ← AOCorrupt(·,v?)(k?)
12: if b′ = b then return 1
13: else return 0

Oracle Query 1 OCorrupt(vi, v
?):

1: if v? 6≤ vi then
2: Q = Q ∪ vi
3: return (κvi , ωvi)
4: else if vi > v? then
5: return κvi
6: else
7: return ⊥

KI security definition for hierarchial KASs called Strong Key Indistinguishability (S-KI) which
strengthens the definition in [3] to capture a wider range of realistic attacks. S-KI requires that
the adversary A is not able to gain any information about a key which it should not have access
to even if A has access to keys associated to all other classes which are predecessors of the
target class in the hierachy. In Game 1 we formally capture the notion of S-KI for an adaptive
adversary.

Definition 1. The advantage of an adversary A running in probabilistic polynomial time (PPT)
is defined as:

AdvS-KI
A,KAS(1κ, (L,6)) = Pr[S-KIAKAS(1κ, (L,6))]− 1

2 .

A KAS is secure in the sense of strong key indistinguishability against adaptive adversaries
(S-KI) if for all PPT adversaries A, AdvS-KI

A,KAS(1κ, (L,6)) ≤ negl(κ).

2.3 Authenticated Encryption

In this paper, we use two forms of encryption scheme: a public-key Key-Policy Attribute-based
Encryption (KP-ABE) [18, 19] scheme is used as the foundation of the Publicly Verifiable
Outsourced Computation functionality, as introduced by Parno et al. [20] – decryption of a
ciphertext succeeds only if a function is satisfied by an input; the second form is a symmet-
ric authenticated encryption scheme to preserve confidentiality of messages from unauthorized
readers and to achieve data origin authentication. We refer the reader to the cited literature
for an introduction to KP-ABE as we use this only in a black-box manner as a component of
an existing RPVC scheme. In this section, we give some brief background on authenticated
encryption in the symmetric setting and introduce the security notions we shall require.

6

Game 2 ExpIND-CPA
A [1κ]:

1: b
$← {0, 1}

2: SK? ← KeyGen(1κ)

3: b′ ← AOLoR(·,·,SK?)(1κ)
4: return b′ = b

Oracle Query 2 OLoR(m0,m1, SK
?):

1: return Encrypt(mb, SK
?)

Game 3 ExpIND-CCA
A [1κ]:

1: b
$← {0, 1}

2: L = ε
3: SK? ← KeyGen(1κ)

4: b′ ← AOLoR(·,·,SK?),Decrypt(·,SK?)(1κ)
5: return b′ = b

Oracle Query 3 OLoR(m0,m1, SK
?):

1: CT ← Encrypt(mb, SK
?)

2: L = L ∪ CT
3: return CT

2.3.1 Symmetric Encryption

A symmetric encryption scheme [5] SE comprises three algorithms: KeyGen, Encrypt and
Decrypt. KeyGen is a randomized algorithm that takes a security parameter κ and returns
a secret key SK; Encrypt is a randomized1 algorithm taking as input a message m and the
secret key, and returning a ciphertext CT ; finally, the Decrypt algorithm is deterministic and
takes a ciphertext and the secret key and returns the corresponding plaintext m or a failure
symbol ⊥. For correctness, we require that, for all SK ← KeyGen(1κ) and messages m in
the messagespace, m← Decrypt(Encrypt(m,SK), SK). A symmetric authenticated encryption
scheme is syntactically identical but considers integrity as well as privacy of messages, and ⊥
is returned if the ciphertext is deemed ‘inauthentic’.

Two standard notions of privacy for symmetric encryption schemes are Indistinguishability
under Chosen Plaintext Attack (IND-CPA) and Indistinguishability under Chosen Ciphertext
Attack (IND-CCA). These are given in Games 2 and 3 respectively. In each, the challenger
chooses a random bit b and generates a key SK?. The adversary is given the security parameter
(so can generate other keys itself) and oracle access to LoR which takes two messages of equal
length and returns the encryption of message mb. The adversary must guess the value of b. In
the IND-CCA notion, the adversary is also given a decryption oracle for the challenge key but
may not query a ciphertext that was output from the LoR oracle to avoid a trivial win.

Definition 2. The advantage of an adversary A running in probabilistic polynomial time (PPT)
for X ∈ {IND-CPA, IND-CCA} is defined as:

AdvXA,SE(1
κ) = Pr[XASE(1

κ)]− 1
2 .

A symmetric encryption scheme is secure in the sense of X if for all PPT adversaries A,
AdvXA,SE(1

κ) ≤ negl(κ).

Bellare and Namprempre [5] considered two notions of integrity for symmetric encryption
schemes: Integrity of Plaintexts (INT-PTXT) and Integrity of Ciphertexts (INT-CTXT) un-
der chosen message attacks. INT-PTXT requires it to be hard to create a ciphertext which

1Encrypt could also be a stateful algorithm that updates and maintains a state between calls.

7

Oracle Query 4 ODecrypt(CT,SK?) :

1: if CT ∈ L then return ⊥
2: return Decrypt(CT, SK?)

Game 4 ExpINT-PTXT
A [1κ]:

1: L = ε
2: SK? ← KeyGen(1κ)

3: CT ? ← AOEncrypt(·,SK?),Ver(·)(1κ)
4: return ((Ver(CT ?) = 1) ∧ (Decrypt(CT ?, SK?) /∈ L))

Oracle Query 5 OEncrypt(m,SK?):

1: CT ← Encrypt(m,SK?)
2: L = L ∪m
3: return CT

Oracle Query 6 OVer(CT) :

1: if ⊥6← Decrypt(CT, SK?) then return 1
2: else return 0

decrypts to a message never encrypted by a legitimate sender, while INT-CTXT requires it
to be hard to create a ciphertext that was not previously generated by a legitimate sender
(regardless of the underlying plaintext). We will only require the first notion here, which is
given in Game 4. The adversary is given both an encryption oracle and a verification oracle
which returns 1 if the queried ciphertext is not deemed inauthentic. The adversary wins if it can
produce a ciphertext that is deemed authentic and that decrypts to a message not previously
queried to the encryption oracle.

Definition 3. The advantage of an adversary A running in probabilistic polynomial time (PPT)
is defined as:

AdvINT-PTXT
A,SE (1κ) = Pr[INT-PTXTASE(1

κ)].

A symmetric encryption scheme is secure in the sense of integrity of plaintexts if for all PPT
adversaries A, AdvINT-PTXT

A,SE (1κ) ≤ negl(κ).

In this work, we will require an authenticated symmetric encryption scheme that is secure
in the sense of IND-CPA ∧ INT-PTXT. As noted by Bellare and Namprempre [5], such a
scheme can be constructed from an IND-CPA symmetric encryption scheme and a weakly or
strongly unforgeable MAC using the generic composition techniques of MAC-then-Encrypt or
Encrypt-then-MAC. As this latter composition is shown to be secure for all security choices of
the encryption and MAC schemes and is more standard, we will adopt this notion in this paper.
Thus, let SE = (KeyGen,Encrypt,Decrypt) be a symmetric authenticated encryption scheme
constructed from a symmetric encryption scheme SE ′ = (KeyGen′,Encrypt′,Decrypt′) and a
MACMAC = (KeyGen′′,Tag,Verify). KeyGen outputs two keys: SKE corresponding to KeyGen′

and SKM relating to KeyGen′′2. The encryption operation is defined as Encrypt(m,SK) =
C‖Tag(C, SKM) for C ← Encrypt′(m,SKE).

3 Policies

We now discuss the type of access control policies that are relevant in a multi-user verifiable
outsourced computation environment. We consider graph-based policies where “objects” to be

2Note that in our setting where keys are derived from a KAS, the KAS could simply output strings that can
be split into SKE and SKM .

8

protected are not data files, as in traditional access control policies, but outsourced computations
and their results. The “user” population comprises the sets of delegators C, computational
servers S, and verifiers V. We are interested in specifying and enforcing policies that restrict:
(i) which functions a delegator may delegate; (ii) which functions a server may evaluate; (iii)
which outputs a verifier may read. As noted in the introduction, we distinguish between entities
that may learn a computational result and those that may only verify correctness (blind verify).
In this work, we assume that any entity may perform the blind verification step but that only
a restricted subset of verifiers should be able to retrieve the actual output value3.

There has been considerable research in recent years on the cryptographic enforcement
of access control policies [13, 14, 1]. Informally, access is regulated in a distributed fashion
by issuing appropriate cryptographic keys to authorized subjects, rather than a centralized
reference monitor mediating all attempts to access protected resources. Cryptographic access
control generally focuses on read access and is regarded as being particularly appropriate when
the protected content is read often but written rarely (since this would require re-encryption). In
the context of VC, we will use cryptographic access control in somewhat unusual ways. Rather
than storing static encrypted data and ensuring that only authorized users hold the relevant
decryption key, we will encrypt dynamic messages within a protocol execution. In particular, to
enforce policies restricting the computations that may be outsourced, a delegator must use an
appropriate key to encrypt input data. Without the appropriate encryption, the input will be
discarded by the server. The enforcement of policies for performing computations is achieved by
distributing keys to servers that can be used to decrypt encrypted inputs. Without decryption,
the server will be unable to read the input data and evaluate the function. The enforcement
of (read) policies on outputs uses cryptographic access control in a more conventional fashion;
results are published and protected via encryption with an appropriate key.

Cryptographic access control has been particularly widely studied in the context of infor-
mation flow and graph-based access control policies (see Section 2.2). We restrict our focus
to graph-based policies as these have been shown to encompass many notions of access con-
trol that are desirable in practice including information flow policies, role-based access con-
trol and attribute-based access control [12]. Recall that we define “user” population as the
sets of delegators C, computational servers S, and verifiers V. We define a security function
λ : C∪S ∪V ∪O → L where O is the family of computations that may be outsourced and (L,6)
is a poset of security labels. This function assigns a label from L, representing the security
classification, to each delegator, server and computation in the PVC-AC system.

We first consider, in Section 3.1, the form of polices that restrict the computations a delegator
may outsource and that a server may compute. We begin by examining simple policies over the
choice of functions, before considering more fine-grained policies over sets of input values and
other security posets. Then, in Section 3.2, we discuss policies that restrict the computation
results a verifier may learn. Although we consider a variety of policies capturing a range of
conditions on entities and other contextual information, this amounts to altering the policy
poset and the labels assigned to each entity and computation; the definition in Section 4 and
the instantiation in Section 6 is generic and encompasses any of the following forms of policy.
We differentiate between computation policies over delegators and servers, denoted λC(·), and
verification policies over delegators and verifiers, denoted λV (·). For ease of notation, we use λ
to denote λC in Section 3.1, and to denote λV in Section 3.2.

3The same techniques that we present could also be applied to protect the (blind) verification keys to restrict
the entities that may validate correctness of a computation.

9

{F, G}

{F, H}

{G, H}

{F, G, H}

{G}

{F}

{H}

(a) L = 2{F,G,H}

({F, G}, 11)

({F}, 11) ({G}, 11)

({F, G}, 01)

({F}, 01) ({G}, 01)

({F, G}, 10)

({F}, 10) ({G}, 10)

({F, G}, 00)

({F}, 00) ({G}, 00)

(b) L = 2{F,G} × {0, 1}2

(1GB, 1core) (1GB, 2core)

(2GB, 1core) (2GB, 2core)

(1GB, 32core)

(16GB, 16core)

(32GB, 32core)(32GB, 1core)

GoldSilverBronze

(c) Subscription based computation: L =
({1GB, . . . , 32GB} × {1core, . . . , 32core}) ∪
{Gold, Silver, Bronze}

Figure 2: Example Posets of Security Labels

3.1 Delegation and Computation Policies

3.1.1 Policies over Functions

We begin by considering a simple case where policies are formulated purely in terms of the
functions being computed. In simple terms, we associate each delegator C and server S with a
set of functions λ(C) ⊆ F and λ(S) ⊆ F respectively. We define a correctness criterion that
states that C should be able to prepare inputs for all functions F ∈ λ(C) (and similarly for S)
i.e. entities should be able to perform all operations that they are authorized for. The security
criterion requires λ(C), λ(S) > λ(F) in order to delegate or compute for F respectively, and
that a set of unauthorized entities cannot collude to perform an operation that any of them
couldn’t perform alone.

More formally, we define the set of security labels L to be 2F (the power set of all considered
functions). Then, λ(C) ⊆ F defines the set of functions that a delegator C may outsource an
evaluation of, λ(S) ⊆ F denotes the functions a server S may compute, and λ(o) = {F} labels
the computation of F ∈ F . Then, for any x, y ∈ L we define an order relation< such that x < y
if and only if x ∈ F , y ⊆ F and x ∈ y. The corresponding Hasse diagram with F = {F,G,H}
is shown in Figure 2a.4 Any entity E authorized for λ(E) is, by the correctness criterion,
authorized to operate on all computations such that λ(o) < λ(E). For example, in Figure 2a,
an entity authorised for the set λ(E) = {F,G} is authorized for the functions F and G as
expected. Each label l ∈ L will be associated with a key κl. To outsource a computation o of
F (x), C prepares the encoding of x using the key κo = {F} which, by the security criterion, C
knows if and only if λ(C) > λ(o) i.e. if and only if {F} ∈ λ(C). To compute F (x), S uses the
corresponding key κo. As before, S may do this if and only if {F} ∈ λ(S).

3.1.2 Policies over Function Inputs

As well as limiting the functions that may be outsourced, we may wish to implement a more
fine-grained access control policy determined by input values to functions. For ease of exposition
let us assume that all functions have the same domain – for all F ∈ F , Dom(F) = {0, 1}n for a
positive, non-zero integer n.5 We then redefine the security function such that “objects” are now
considered to be pairs (F, x) where F ∈ F and x ∈ Dom(F) – that is, λ : C∪S∪(F×{0, 1}n)→ L.

We could, for example, let L be 2F × {0, 1}n. To define the order relation on L we must
first define an ordering on the input data. One choice is to define a co-ordinatewise ordering

4Nodes for empty sets are excluded from these figures.
5If this is not the case then we can define n = maxF∈F |Dom(F)| and then redefine all functions F with

Dom(F) < n to satisfy the required property by, for example, adding fixed points F (x) = x for all x ∈ {0, 1}n \
Dom(F).

10

on {0, 1}n: that is (x1, . . . , xn) 6 (y1, . . . , yn) if and only if xi 6 yi for all i. Then for two
labels (G, x) and (G′, x′) in L, (G, x) 6 (G′, x′) if and only if G = {F} for some F ∈ F , F ∈ G′
and x 6 x′. This poset could be used to ensure delegators and servers operate over a limited
range of data values. Specifically, for an entity E, we define λ(E) = (G, x), where G ⊆ F and
x ∈ {0, 1}n, and λ(o) = ({F}, 0n). Then E is authorized to operate on G(y) for all G ∈ G and
all y 6 x. The Hasse diagram for this poset with F = {F,G} and n = 2 is shown in Figure 2b.
Different choice of orderings over inputs lead to different restrictions e.g. one could consider bit
strings as integers and use the natural ordering over integers for x ≤ y.

An alternative would be to let L be the power set 2F×{0,1}
n
. Then each function may be asso-

ciated with a different range of permissible inputs. An entity E, is labelled by a set of pairs, each
comprising a function label and an associated input label – λ(E) = {(F1, x1), . . . , (Fm, xm)}. A
computation of F (x) is labelled λ(o) = ({F}, x). Then, for any two labels,

{(F1, x1), . . . , (Fm, xm)} 6 {(F ′1, x′1), . . . , (F ′m′ , x′m′)}

if and only if m = 1 (the first label is a single pair), F1 = F ′i for some i ∈ {1, . . . ,m′} and
x1 6 x′i.

We remark that the first choice of poset presented in this section corresponds to the idea
of assigning a possible data range to each delegator and then authorizing them to outsource a
set of functions on that data. For example, a chinese wall policy may result in employees being
provided with separate portions of a database. Then, depending on the employee’s role, they
are permitted to evaluate a specific set of functions on that data partition. The second choice of
poset is more akin to authorizing delegators to outsource a single, specified computation – that
is, permitting the entity to evaluate F (x) for only this choice of function and input data. For
example, one could imagine an employee being given restricted access to some sensitive data to
perform only a particular task, and they should not be able to use the data for other purposes.
Finally, we observe that the choice of L = 2F × 2{0,1}

n
extends this second case to a situation

where each function can be associated with an arbitrary sets of input values.

3.1.3 Enforcing General Graph-based Policies

We have seen how sets of functions and inputs can be mapped to a graph-based access control
policy to restrict the functions a delegator may outsource and a server may compute. However,
in practical applications, outsourced computation functionality will be required to integrate
with existing workflows and existing access control policies. As an example, a company that
operates Role-based Access Control (RBAC) on their local network and wishes to provide access
to an external VC system must ensure that the same access control requirements are adhered to
within this new environment. Additionally, it may not always be the case that a computation my
be considered purely in terms of the function and input data. Indeed, although the evaluation
will be uniquely determined by such factors, the level of protection required may depend on
other contextual information. As a motivating example, consider a summation function over
the integers. The semantic meaning of the integers in question may determine the overall
classification of this computation – if the integers are city populations then this may not be
classified at all, but troop deployments in different regions may be much more sensitive. We
now briefly discuss how to formulate access control policies for multi-user VC settings that
incorporate additional security labels relying on the environment or external access control
policies.

We can use any poset of security labels L to classify each outsourced computation. For
example, consider the total order M = {Top-Secret, Secret, Classified, Unclassified} rep-
resenting the Bell-LaPadula clearance levels [4] and let K to be a set of need-to-know categories.

11

Then we can enforce the security function λ : C ∪ S ∪ O → L = M × 2K where K specifies the
nature, and M specifies the sensitivity, of the computation o ∈ O. To delegate or compute F (x),
we require that the entity E’s clearance level is at least the classification of the computation:
λ(E) > λ(o).

Similarly, it has been shown [12] that the set of roles for a Role-based Access Control Policy
can be encoded as a poset. Thus, we could define L to be this role poset to integrate with
existing RBAC policies within an organization.

We could also add additional criteria in the mapping to security labels. For example, we
could formulate policies dependent on time by setting λ : C ∪ S ∪ (F × T) → L, where T
is a set of time periods. We could then set L = 2F×T as in the previous section to allow
entities to operate on specific functions only during specified time periods. On the other hand,
by defining L = M as above, certain functions can be more highly protected during certain
times of the day. In place of a temporal poset T we could also apply a geo-spatial poset to
classify function evaluations differently depending on location data e.g. a function may be more
sensitive if being outsourced from a battlefield as opposed to within a secured building. Finally,
policies over function inputs can be extended to include characteristics of the input data (as
in the averaging example above, contextual information often changes the level of protection
required). Let Z be a set of labels describing data types that functions may be computed over,
and define L = 2F×({0,1}

n×Z) for example. This enables the same input to the same function to
be classified differently and hence to require different authorization from the delegator and the
server.

As mentioned in the introduction, one interesting setting for multi-user VC is when users
pay for computation-as-a-service [17, 21]. Users may pay a price per computation, in which case
they could be issued a relevant key such as those discussed in Section 3.1.2, perhaps with a short
time window in which they may perform the computation. Then, when outsourcing the compu-
tation, it is protected by this key to prove that the user has paid for this particular computation.
An alternative model [17] would be for a server to allow subscriptions to different tiers of service.
A user may pay more to subscribe to a higher tier, and then may submit multiple computations
relating to this tier or lower. For example, consider a set T = {Gold, Silver, Bronze} com-
prising tiers that users may subscribe to; Gold service may allow access to more computational
resources, or access during busier periods, than Silver, and so on. For simplicity, suppose the
resources to be considered are just RAM capacity and the number of processor cores available,
and let R and C be sets comprising the available quantities of each. Then, the set of security
labels L is set to be L = (R×C)∪T — that is, the cartesian product of the available resources,
with the addition of labels for each service tier. A user that pays for Gold membership can
be assigned the label λ(C) = {Gold}. Each computation is labelled by the resources that it
requires. The poset ordering over L allows each tier to access different subsets of resources (e.g.
if a computation is particularly memory intensive then it may require a higher subscription fee
to compute), as illustrated in Figure 2c.

3.2 Verification Policies

Thus far, we have discussed policies restricting the entities that may delegate and evaluate given
computations. In the multi-user VC setting, it is equally important to apply access control to
the act of verifying the results of a computation and, in particular, learning the output. Clearly,
when considering computations over confidential data, it is not always appropriate to publish
the results. As a trivial example, outsourcing the identity function could “legitimately” leak
confidential data. The scheme of Alderman et al. [2] distinguished between blind verification
(to ensure correctness) and output retrieval (to learn results). Here, we assume that all entities

12

are able to blind verify a result, but the set of entities that may learn the actual output should
be restricted6. Thus, the set of verifiers we refer to in the following are just those distinguished
verifiers that are able to retrieve computation results, and we wish to restrict the results that
each may read.

The notion of “no write down” is an important property in many traditional access control
policies. In the VC setting, this amounts to ensuring that any verifier should at least have the
access rights of the delegating or computing entity, that is λ(C), λ(S) 6 λ(V) e.g. a verifier
may not read a result arising from input data that he is not also authorized to read. In
some cases, however, the KDC may decide that the results of some computations are not as
highly classified as the input data, or indeed the act of computing it. For example, statistics
of company spending across all departments may be less sensitive than the spending of the
research department alone. Alternatively, the results of a computation over classified data may
be included in a public document, despite the input data remaining classified The encoded
output from the computation may be published with the verification key such that recipients
can verify the legitimacy of the published values. It may also be reasonable to expect that only
authorised and trusted reviewers of the document should be able to verify, or that some (lower)
form of clearance is still required to access the result.

3.2.1 Published Verification Token

In this second case, where verification tokens are published according to some policy, we can
use similar posets and security functions to those in Section 3.1. The user population is the
set of delegators C and verifiers V, and objects are encoded outputs. The security function is
defined to be λV : V ∪ C ∪ O → L, where O is the set of outsourced computations and (L,6)
is a poset of security labels. As part of the VC functionality, when encoding an input, C also
generates an output retrieval key RKo that enables the result of a computation to be retrieved
given the encoded output and the verification key. We will protect this retrieval key and require
the verifier to satisfy the verification policy in order to use it – that is λ(V) > λ(o) for o ∈ O.
Since the delegator generates the retrieval key, and hence may also use it to retrieve the output,
we also assume λ(C) > λ(o). This is reasonable given that the delegator must have the right
to compute any function that he outsources and hence (resources permitting) could certainly
learn the result. As before we can extend the definition of λ and of L to accommodate more
fine-grained policies over outputs.

3.2.2 Enforcement of No Write Down Policies

As mentioned, “No Write Down” is an important requirement of many access control policies.
It ensures that an entity C may not write (encrypt) an object to a lower classification level
λ(o) < λ(C) as this could constitute a leak of classified data. It is, of course, possible for a
delegator to write the result at his (maximal) clearance level and then any verifiers with higher
access rights, by the correctness criterion of the poset, will be able to read the result. However,
we may want to protect a result at a higher classification level (write up) e.g. when preparing
a report that should only be read by management.

To do so, we define two posets: a computation poset PC = (L,6) (as per Section 3.1)
and a verification poset PV . PV is constructed by inverting the order relation on PC where
PV = (L,>) i.e. x 6 y in PV if and only if y 6 x in PC . Then, delegation and computation
of o ∈ O are performed using a key associated to λC(o) ∈ PC . Retrieving the result of a

6Note, we could use the same techniques to restrict blind verification if desired.

13

computation requires a key related to λV (o) ∈ PV . A verifier V may then retrieve the output
if and only if λV (V) > λV (o).

4 PVC with Access Control

We now formally define the notion of PVC-AC to enforce graph-based access control policies over
delegators, servers and verifiers. Generally, as discussed above, we wish to impose restrictions
on three activities: first, we wish to specify a (write) policy determining the computations
a client is authorized to delegate – this means restricting the inputs a client may correctly
prepare; second, we specify a (read) policy that determines the computations a server may
compute – that is, encoded inputs he may access; lastly, we specify a (read) policy dictating the
outputs a verifier may read. We differentiate between computation policies over delegators and
servers, denoted λC(·), and verification policies over delegators and verifiers, denoted λV (·). We
may also use λ(·) to denote both labels where appropriate. Finally, PC and PV denote posets
encoding the computation and verification policies respectively. Recall that the set of outsourced
computations is denoted by O. A specific element o ∈ O consists of the function F , some input
x as well as some auxiliary input (such as a label or additional contextual information).

We extend the functionality of the KDC from [2] to grant access control credentials to delega-
tors, servers and verifiers. We may split the responsibilities between two KDCs: a computation
KDC (CKDC) that generates function keys for the VC functionality, and an authorization KDC
(AKDC) that manages access control policies. The AKDC could be a trusted authority on en-
tities to grant relevant permissions, and may be used by multiple systems. For clarity, here we
use only one KDC that performs both duties.

Definition 4. A Publicly Verifiable Outsourced Computation Scheme with Access Control
(PVC-AC) comprises the following algorithms:

• (PP,MK) ← Setup(1κ,PC ,PV): Run by the KDC to generate public parameters for the
PVC-AC system as well as secret information used to generate keys.

• PKF ← FnInit(F,MK,PP): Run by the KDC to generate a delegation key, PKF , for a
function F .

• SKID ← Register(ID, λ(ID),MK,PP): Run by the KDC to create a personalised key SKID

for an entity with identifier ID,7 which grants rights for the label λ(ID) according to the
computation or verification policy.

• EKF,S ← Certify(S, F,MK,PP): The KDC creates an evaluation key EKF,S for a function
F and server S.

• (σo, V Ko, RKo)← ProbGen(x, SKC , PKF , λ(C), λ(o),PP): Run by a delegator C to out-
source the computation of F (x). C may do so only if it satisfies the computation policy
– that is λC(C) > λC(o). It outputs an encoded input σo, a public verification key
V Ko to verify correctness, and an output retrieval key RKo which verifiers satisfying
λV (V) > λV (o) may use to read F (x).

• θo ← Compute(σo, EKF,S , SKS , λ
C(S), λC(o), PP): Run by a server S holding an evalua-

tion key EKF,S , SKS and an encoded input σo to evaluate F (x) and output an encoding,
θo, of the result. This succeeds if and only if λC(S) > λC(o), that is S satisfies the
computation policy for this evaluation.

7In future algorithms this will be S, C or V to denote a server, delegator or verifier respectively.

14

• (ỹ, τθo)← Verify(θo, SKV , V Ko, λ
V (V), λV (o),PP):

Verification comprises two steps:

– (RTo, τθo) ← BVerif(PP, θo, V Ko): Run by any verifier to produce a retrieval token RTo
and a token τθo = (accept, S) for a correct result, or τθo = (reject, S) to signify a cheating
server S.

– ỹ ← Retrieve(SKV , RTo, τθo , V Ko, RKo, λ
V (V), λV (o),PP): Run by verifiers V in pos-

session of the output retrieval key RKo and the retrieval token RTo from BVerif. If
λV (V) > λV (o) then V should be able to read the actual result ỹ = F (x) or ⊥.

• {EKF,S′} or ⊥← Revoke(τθo , F,MK,PP): If a verifier reports a misbehaving server (i.e.
Verify returned τθo = (reject, S)), the KDC issues updated evaluation keys EKF,S′ to all
servers, preventing S from performing further computations. If τθo = (accept, S) then this
algorithm should output ⊥.

We say that a PVC-AC scheme is correct if for all functions F ∈ F , inputs x, honestly
generated parameters, and honestly registered entities C, S and V (delegator, certified server
and verifier respectively)such that λC(C), λC(S) > λC(o) and λV (C), λV (V) > λV (o), if S
honestly runs Compute for F on an encoding of x generated by C, then V running Verify on the
output from S will almost certainly output accept and F (x). That is, if all algorithms are run
honestly by authorised parties then the verifier should almost certainly accept. More formally
we can write

Definition 5 (Correctness). A Publicly Verifiable Outsourced Computation Scheme with Access
Control (PVC-AC) is correct for a family of functions F if for all functions F ∈ F and inputs
x, where negl(·) is a negligible function of its input:

Pr[(PP,MK)← Setup(1λ), PKF ← FnInit(F,MK,PP),

SKC ← Register(C, λ(C),MK,PP), SKS ← Register(S, λ(S),MK,PP),

SKV ← Register(V, λ(V),MK,PP), EKF,S ← Certify(S, F,MK,PP),

(σo, V Ko, RKo)← ProbGen(x, SKC , PKF , λ(C), λ(o),PP),

(F (x), (accept, S))← Verify(Compute(σo, EKF,S , SKS , λ
C(S), λC(o), PP), SKV ,

V Ko, λ
V (V), λV (o),PP)]

= 1− negl(λ),

where λC(C) > λC(o), λV (C) > λV (o), λC(S) > λC(o) and λV (V) > λV (o) holds.

5 Security Definitions

We now introduce several security models capturing requirements of PVC-AC. These are im-
portant both to ensure that the enforcement mechanism for the access control policies cor-
rectly captures the required properties, and that the access control mechanism and the PVC
implementation (if built from separate primitives) interact securely. As noted by Ferrara et
al. [14], it is not always immediate that (probabilistic) cryptographic enforcement mechanisms
can safely implement policies that are generally specified in absolute terms; hence formally
defining and proving the required security goals is necessary. Notions of Public Verifiabil-
ity, Revocation and Vindictive Servers follow naturally from [2] with additional inputs for
policy declarations. As these do not rely on the access control properties, the proofs fol-
low naturally. We let o denote an outsourced computation (including descriptors such as the

15

function, input and environmental factors) such that λ(o) encompasses the required clearance
to operate on this computation. AO denotes A having oracle access to the following func-
tions: FnInit(·,MK,PP), Register(·, ·,MK,PP), Certify(·, ·,MK,PP), ProbGen(·, SK(·), ·, ·, ·,PP),
Compute(·, ·, SK(·), ·, ·, PP) and Revoke(·, ·, ,MK,PP). Each oracle, aside from Register, simply
runs the relevant algorithm, with any restrictions on permissible queries stated below. The
Register oracle specified in Oracle Query 7 is used in all games except Authorized Verification
which instead uses Oracle Query 8 which uses the verification policy instead of the computation
policy. We define the advantage and security of A in each of the following gamesas:

Definition 6. The advantage of a PPT adversary A making a polynomial number of queries
q is defined as follows:

• For X ∈ {AO,AC}:

AdvXA (PVCAC, F, 1
κ, q) = Pr[ExpX

A [PVCAC, F, 1
κ] = 1]

• For X ∈ {AV,wIP}:

AdvXA (PVCAC, F, 1
κ, q) = |Pr[ExpX

A [PVCAC, F, 1
κ] = 1]− 1

2
|

A PVC-AC is secure against Game X for a function F , if for all PPT adversaries A, AdvXA(PVCAC,
F , 1κ,q) 6 negl(κ).

5.1 Authorized Outsourcing

In Game 5 we formalize the notion that a delegator may not outsource any computation for
which he is not authorized – that is, any computation o where λC(o) 66 λC(C). Clearly,
within our framework we cannot make any guarantees about what an entity may do externally.
For instance, we cannot enforce that a client does not circumvent the access control policies
using an external server not subject to these controls, however we do enforce that to use the
provided functionality (i.e. to contract an available server registered in this system) they must
prove authorization. This assumption seems reasonable, taking into consideration organizational
boundaries – external control should perhaps be enforced by limiting external communication
channels (e.g. using a strict firewall). Similarly, we cannot enforce that an entity does not share
key content, but we do ensure that such collusion does not enable access that either entity alone
could not access. Additionally, due to the revocation functionality, it may be undesirable for a
server to share key material as he must trust the additional server not to cheat.

The game proceeds as follows. First the challenger runs the setup procedures for the scheme
and registers the adversary for the adversary’s choice of security label. The adversary is given
the public information, his secret key and oracle access, and outputs a choice of outsourced
computation o to attack, including the function and input, F and x. We require that no
security label that A has queried to the Register oracle may allow the derivation of a key for
λC(o) as this would be a trivial win, and we return 0 since the adversary has not found a valid
attack target. We also require that any ID that A queries to its oracle must previously have
been queried to the Register oracle (which is in keeping with realistic operation). The ProbGen
oracle may not be queried on the challenge computation o. Note that A may register entities of
his choice for any security label that is not an ancestor of the challenge label, and hence does not
need oracle access for these labels. BVerif relies only on public information and A may Register
any verifier he likes to learn κλV (·) to run Retrieve, so these oracles are not required. C sets up
keys for F and simulates registering two entities that are authorized to perform the computation

16

Game 5 ExpAOA [PVCAC, F, 1
κ]:

1: L = ε, o =⊥
2: (PP,MK)← Setup(1κ,PC ,PV);

3: λC(A)← AO(PP);
4: SKA ← Register(A, λC(A),MK,PP);

5: L = L ∪ λC(A);
6: o = (F, x, aux)← AO(λC(A), SKA,PP);
7: for all λC(vi) ∈ L do

8: if λC(o) 6 λC(vi) then

9: return 0

10: SKS ← Register(S, λC(S),MK,PP) s.t. λC(S) > λC(o);

11: SKV ← Register(V, λV (V),MK,PP) s.t. λV (V) > λV (o);

12: PKF ← FnInit(F,MK,PP);

13: EKF,S ← Certify(S, F,MK,PP);

14: (σo, V Ko, RKo)← AO(o, λ(o), λ(A), PKF ,PP);
15: θo ← Compute(σo, EKF,S , SKS , λ

C(S), λC(o),PP);

16: (ỹ, τθo)← Verify(θo, SKV , V Ko, λ
V (V), λV (o),PP);

17: if ((ỹ, τθo) 6= (⊥, (reject,A))) then return 1

18: else return 0

Oracle Query 7 ORegister(ID, λ(ID),MK,PP):

1: if (o 6=⊥) ∧ λ(ID) > λC(o) then
2: return ⊥
3: L = L ∪ λ(ID);
4: return SKID ← Register(ID, λ(ID),MK,PP)

and verification for o respectively. The adversary is then challenged, given all information that
a real attacker may learn and oracle access, to output an encoded input that the Compute and
Verify algorithms will accept – that is, an unauthorized adversary must produce an input that
is accepted and computed on by honest entities.

5.2 Authorized Computation

Authorized Computation, in Game 6, proceeds similarly to Game 5 and captures the notion
that a computational result should only be considered valid if generated by an authorized party.
The challenger sets up the system and registers the adversary for its choice of security label. A
then chooses a target computation that it is not authorized to compute by any of the keys it
holds. The challenger simulates two entities: a delegator and a verifier that are authorized for
this computation and certifies A as a server for F . The challenger creates an encoded input by
running ProbGen on the adversary’s target computation and gives this to A who must output
an encoded output that is accepted by the verifier. Note that although the adversary chooses
the input to the computation, and therefore can certainly compute F (x), it still should not be
able to convince the verifier to accept. The oracle queries are the same as in the previous section
except that ProbGen may be queried for any input (even the challenge computation) and the
Compute oracle cannot be run on the challenge input.

5.3 Authorized Verification

In Game 7 we capture the notion that an unauthorized verifier should not be able to learn
the output of a computation. This is formulated in an indistinguishability game, where the
adversary chooses two computations to give to the challenger. To avoid a trivial win, we require
that neither of the associated labels in the verification poset are less than or equal to a label
queried to the Register oracle. The challenger chooses one of these at random and simulates
outsourcing and computing this computation. The adversary is provided with the encoded

17

Game 6 ExpACA [PVCAC, F, 1
κ]:

1: L = ε, o =⊥
2: (PP,MK)← Setup(1κ,PC ,PV);

3: λC(A)← AO(PP);
4: SKA ← Register(A, λC(A),MK,PP);

5: L = L ∪ λC(A);
6: o = (F, x, aux)← AO(λC(A), SKA,PP);
7: for all λC(vi) ∈ L do

8: if λC(o) 6 λC(vi) then

9: return 0

10: SKC ← Register(C, λC(C),MK,PP) s.t. λC(C) > λC(o);

11: SKV ← Register(V, λV (V),MK,PP) s.t. λV (V) > λV (o);

12: PKF ← FnInit(F,MK,PP);

13: EKF,A ← Certify(A, F,MK,PP);

14: (σo, V Ko, RKo)← ProbGen(x, SKC , PKF , λ(C), λ(o),PP);

15: θo ← AO(σo, V Ko, o, λC(o), EKF,A, PKF , RKo,PP);
16: (ỹ, τθo)← Verify(θo, SKV , V Ko, λ

V (V), λV (o), RKo,PP);

17: if ((ỹ, τθo) 6= (⊥, (reject,A))) then return 1

18: else return 0

Game 7 ExpAVA [PVCAC, F, 1
κ]:

1: L = ε, o0 = o1 =⊥
2: (PP,MK)← Setup(1κ,PC ,PV);

3: λV (A)← AO(PP);
4: SKA ← Register(A, λV (A),MK,PP);

5: L = L ∪ λV (A);
6: (o0, o1)

$← AO(SKA,PP) s.t. λV (o0), λV (o1) > λV (vi) ∀λV (vi) ∈ L;
7: b

$← {0, 1};
8: SKC ← Register(C, λC(C),MK,PP) s.t. λC(C) > λC(ob);

9: SKS ← Register(V, λC(S),MK,PP) s.t. λC(S) > λC(ob);

10: PKF ← FnInit(F,MK,PP);

11: EKF,S ← Certify(S, F,MK,PP);

12: (σob , V Kob , RKob)← ProbGen(x, SKC , PKF , λ(C), λ(ob),PP);

13: θob ← Compute(σob , EKF,S , SKS , λ
C(S), λC(ob),PP);

14: b′ ← AO(θob , V Kob , RKob , λ(o0), λ(o1), SKA, PKF ,PP);
15: if b′ = b then return 1

16: else return 0

Oracle Query 8 ORegister(ID, λ(ID),MK,PP):

1: if (ob 6=⊥) ∧ λ(ID) > λV (ob) then
2: return ⊥
3: L = L ∪ λ(ID);
4: return SKID ← Register(ID, λ(ID),MK,PP)

output from this computation, along with the verification keys and other public information,
and must guess which computation was chosen. As the adversary chose the computations, it
can work out the results; however, no information about the result should leak from the encoded
output unless the verifier is authorized, and hence the adversary should be unable to tell which
result the output corresponds to. The oracle queries are the same as in the previous section
except that ProbGen and Compute may be queried for any input. The adversary is also given
access to a Retrieve oracle (which cannot be queried for the challenge computation) in order to
observe outputs for the challenge label.

5.4 Weak Input Privacy

The notion of weak input privacy, captured in Game 8, is not as strong as the input privacy
often considered in PVC settings where computational servers learn nothing about the data

18

they are working on. Instead, we are interested in ensuring that servers (or other entities) that
are not authorized to access (compute on) the input data may not learn x. If full input privacy
is required then the underlying PVC scheme, such as the KP-ABE based one used as a black
box in the construction, could be replaced by one built from a predicate encryption scheme for
the same class of functions.

The game begins like the Authorized Verification game with the adversary selecting two
computations that he is not authorized for by any key that he has queried to the Register oracle.
The Compute oracle can be queried for any input except the challenge inputs. The challenger
then simulates the outsourcing of one of these computations and gives the adversary the resulting
encoded input. The adversary must guess which computation the input corresponds to i.e. which
input data is encoded in the input.

Game 8 ExpwIPA [PVCAC, F, 1
κ]:

1: L = ε, o =⊥
2: (PP,MK)← Setup(1κ,PC ,PV);

3: λC(A)← AO(PP);
4: SKA ← Register(A, λC(A),MK,PP);

5: L = L ∪ λC(A);
6: (o0, o1)

$← AO(SKA,PP) s.t. λC(o0), λC(o1) > λC(vi) ∀λC(vi) ∈ L;
7: b

$← {0, 1};
8: o = ob;

9: SKC ← Register(C, λC(C),MK,PP) s.t. λC(C) > λC(ob);

10: PKF ← FnInit(F,MK,PP);

11: EKF,A ← Certify(A, F,MK,PP);

12: (σob , V Kob , RKob)← ProbGen(x, SKC , PKF , λ(C), λ(ob),PP);

13: b′ ← AO(σob , V Kob , λ(o0), λ(o1), EKF,A, SKA, PKF ,PP);
14: if b′ = b then return 1

15: else return 0

6 Instantiation

We now provide an example provably secure instantiation of PVC-AC. The approach we take
makes generic, black-box use of existing RPVC schemes such as the Key-policy Attribute-based
Encryption approaches [2, 20], and introduces the use of a symmetric Key Assignment Scheme
(KAS) to restrict the behaviour of entities.

6.1 Informal Overview

The graph-based policies discussed in Section 3 assign labels to each entity and outsourced
computation. The ordering relation and the correctness criterion ensures that entities are au-
thorized for all appropriate computations (those that are descendants of their label in the Hasse
diagram of the poset). A KAS is designed to enforce such policies, and assigns a key to each
label. Each entity is provided with a key corresponding to their label, and they may derive
keys for all descendants. As per the security criterion, users may not collude to derive keys for
which they are not authorized.

In our setting, we restrict the computations a delegator may outsource, the computations
a server may perform, and the results a verifier may learn. We use two independent KASs
instantiated over the computation and verification posets, PC and PV respectively. Delegators
and servers are issued a key according to their label in the computation poset, while delegators
and verifiers are given a key from the verification KAS. Appropriate keys from the computation
KAS are used to encrypt the encoded input for a computation. To encode an input in a
manner that will be accepted by a server, delegators must encrypt the encoded input using

19

the key, κλC(o), associated to the computation within the computation poset. To do so, the
delegator must be able to derive κλC(o) and hence must hold a key at that level or higher
i.e. λ(C) > λ(o) – delegators must be authorized by the KDC to outsource the computation.
Similarly, only authorized servers can derive the decryption key to access the encoded input
and perform the computation. By the IND-CPA security of the symmetric encryption scheme
used, no information about the encoded input is learnt by an unauthorized entity. To enforce
verification policies, delegators generate a retrieval key during delegation, and encrypt this using
an appropriate key from the verification KAS. Then, only verifiers that can derive this key may
decrypt the ciphertext to recover the retrieval key and learn the output.

6.2 Formal Details

Let RPVC = (RPVC.Setup, RPVC.FnInit, RPVC.Register, RPVC.Certify, RPVC.ProbGen,
RPVC.Compute, RPVC.BVerif, RPVC.Retrieve, RPVC.Revoke) be an RPVC scheme, as defined by
Alderman et al. [2], for a class of functions F . Let SE= (SE.KeyGen, SE.Encrypt, SE.Decrypt) be
an authenticated symmetric encryption scheme secure in the sense of IND-CPA∧INT-PTXT,
and let KAS = (KAS.MakeKeys, KAS.MakeSecrets, KAS.MakePublicData, KAS.GetKey) be
a Key Assignment Scheme secure against Strong-Key Indistinguishability8 whose keys are
compatible with SE . Finally, let PC denote the poset encoding computation policies (e.g.
(L,6)), and similarly let PV denote the poset encoding verification policies (e.g. (L,>))9.
Then, for the same class of functions F , there is a PVC-AC scheme PVCAC = (PVCAC.Setup,
PVCAC.FnInit, PVCAC.Register, PVCAC.Certify, PVCAC.ProbGen, PVCAC.Compute, PVCAC.Verify,
PVCAC.Revoke) defined in Algorithms 1-9.
Alg. 1 Setup(1κ,PC ,PV)→ (PP,MK)

1: (PP′,MK′)← RPVC.Setup(1κ)

2: κPC
← KAS.MakeKeys(1κ,PC)

3: ωPC
← KAS.MakeSecrets(1κ,PC)

4: PubPC
← KAS.MakePublicData(1κ,PC)

5: κPV
← KAS.MakeKeys(1κ,PV)

6: ωPV
← KAS.MakeSecrets(1κ,PV)

7: PubPV
← KAS.MakePublicData(1κ,PV)

8: Set PP = (PP′, PubPC
, PubPV

)

9: Set MK = (MK′, κPC
, ωPC

, κPV
, ωPV

)

Alg. 2 FnInit(F,MK,PP)→ PKF

1: PKF ← RPVC.FnInit(F,MK′,PP′)

Alg. 3 Register(ID, λ(ID),MK,PP)→ SKID

1: if ID is a server then

2: SK′ID ← RPVC.Register(ID,MK′,PP′)

3: SKID = (SK′ID, κλC(ID), ωλC(ID))

4: else if ID is a delegator then

5: SKID = (κλC(ID), ωλC(ID), κλV (ID), ωλV (ID))

6: else

7: SKID = (κλV (ID), ωλV (ID))

Alg. 4 Certify(S, F,MK,PP)→ EKF,S

1: EKF,S ← RPVC.Certify(S, F,MK′,PP′)

8It has been shown that S-KI is equivalent to KI [9]. We make use of the additional queries in the S-KI game,
but due to the equivalence this is not a strengthening of the assumptions. It in interesting to note that the form
of the S-KI game is useful as a proof technique besides the original motivation to reflect realistic attacks.

9We use κPC to denote the set of all keys generated by the KAS for the computation poset PC and, for a
label λC(ID) ∈ PC, the associated key is κλC(ID) ∈ κPC .

20

Alg. 5 ProbGen(x, SKC , PKF , λ(C), λ(o),PP)→ (σo, V Ko, RKo)

1: (σ′o, V Ko, RK
′
o)← RPVC.ProbGen(x, PKF ,PP

′)

2: κλC(o) ← KAS.GetKey(λC(C), λC(o), ωλC(C),PP)

3: κλV (o) ← KAS.GetKey(λV (C), λV (o), ωλV (C),PP)

4: if (κλC(o) 6=⊥) and (κλV (o) 6=⊥) then

5: σo = (λC(o), SE.Encrypt(σ′o, κλC(o)))

6: RKo = (λV (o), SE.Encrypt(RK′o, κλV (o)))

Alg. 6 Compute(σo, EKF,S , SKS , λ
C(S), λC(o),PP)→ θo

1: Parse σo as (λC(o), c)

2: κλC(o) ← KAS.GetKey(λC(S), λC(o), ωλC(S),PP)

3: if κλC(o) =⊥ then

4: return ⊥
5: else

6: σ′o ← SE.Decrypt(c, κλC(o))

7: if σ′o =⊥ then return ⊥
8: else θo ← RPVC.Compute(σ′o, EKF,S , SKS , PP

′)

Alg. 7 BVerif(θo, V Ko,PP)→ (RTo, τθo):

1: (RTo, τθo)← RPVC.BVerif(θo, V Ko,PP′)

Alg. 8 Retrieve(RTo, τθo , V Ko, RKo, λ
V (V), λV (o),PP)→ ỹ:

1: Parse RKo as (λV (o), e)

2: κλV (o) ← KAS.GetKey(λV (V), λV (o), ωλV (V),PP)

3: if κλV (o) =⊥ then

4: return ⊥
5: else

6: RK′o ← SE.Decrypt(e, κλV (o))

7: ỹ ← RPVC.Retrieve(RTo, τθo , V Ko, RK
′
o,PP

′)

Alg. 9 Revoke(τθo , F,MK,PP)→ {EKF,S′} or ⊥
1: return RPVC.Revoke(τθo , F,MK,PP′)

We now give a theorem and proof that the construction presented above is secure against
the games presented in Section 5.

Theorem 1. Given any Strong-Key-Indistinguishability secure KAS, any RPVC scheme secure
in the sense of Public Verifiability, Revocation, and Blind Verification, and an authenticated
symmetric encryption scheme secure in the sense of IND-CPA ∧ INT-PTXT, let PVCAC be
the PVC-AC scheme defined in Algorithms 1-9. Then PVCAC is secure in the sense of Public
Verifiability, Revocation, Blind Verification, Authorized Outsourcing, Authorized Computation,
Weak Input Privacy, and Authorized Verification.

Informally, the security proofs follow from the security of the underlying RPVC scheme and
the S-KI and IND-CPA security properties. The proofs for Public Verifiability, Revocation and
Blind Verification are similar to the proofs given by Alderman et al. [2] up to some syntactical
changes. We now present a formal proof for Theorem 1.

6.3 Security Proofs

Lemma 1. Given a secure RPVC scheme, a symmetric authenticated encryption scheme secure
in the sense of IND-CPA∧ INT-PTXT and a KAS secure against Strong-Key Indistinguisha-
bility, let PVCAC be the PVC-AC scheme defined in Algorithms 1–9. Then PVCAC is secure in
the sense of Authorized Outsourcing (Game 5).

Proof. Let AV C be an adversary with non-negligible advantage δ in the Authorized Outsourcing
game and let ASE be an adversary playing the IND-CPA game with a challenger C against SE .
We first transition to a slightly modified version of the Authorized Outsourcing game, showing

21

a negligible difference between the two. We can then use an adversary against this modified
game to break the IND-CPA security of the symmetric encryption scheme.

• Game 0. This is the Authorized Outsourcing game as defined in Section 5.1.

• Game 1. This is identical to Game 0, except that we replace the key κλC(o) for the
challenge computation o with a random key κ? drawn uniformly from the keyspace.

Game 0 to Game 1 This game hop relies on the Strong Key Indistinguishability (S-KI) of
the KAS. Suppose an adversary AV C exists that can distinguish Game 0 from Game 1 with
non-negligible advantage δ. Then there exists an adversary ASE that breaks the S-KI of the
KAS also with advantage δ. AV C will play either Game 0 or Game 1 with ASE acting as the
challenger, and must guess correctly which game he is playing. ASE in turn will play the S-KI
game with a challenger C. This reduction is important to ensure that no additional information
about the encryption key is leaked through the construction.

1. C begins by selecting a bit b
$← {0, 1} which will determine whether the challenge key

is real or random, and hence whether AV C plays Game 0 or Game 1. C continues by
instantiating the KAS in lines 1 to 5 and giving the public information to ASE .

2. ASE runs lines 1 and 2 of the Authorized Outsourcing game, and sends AV C the generated
public parameters. During the Setup algorithm in line 2, ASE will not run lines 2 to 4 of
Algorithm 1. Instead, it will set PubPC to be the challenge public information from the
S-KI challenger C and will make use of oracle queries to C for the remaining parameters.

3. AV C is then given oracle access. Queries to the FnInit, Certify and Revoke functions can
be answered simply by running the corresponding algorithm. Queries to the remaining
algorithms may need to make use of KAS derived keys. ASE can use its knowledge of
the verification poset and the corresponding KAS which it owns where appropriate but it
does not know anything other than the public information for the computational poset,
because this is the challenge poset for the S-KI game. Thus, ASE will issue Corrupt oracle
queries to retrieve the necessary keys and secret information for the queried identity label.
Since AV C has not yet chosen a challenge computation o, and ASE has not yet chosen a
challenge node v?, the Corrupt oracle will always return a valid key and secret pair, which
ASE can use to form a full, valid response for AV C .

4. AV C will select a challenge security label λC(A) for itself, which ASE will register it for
using another Corrupt oracle query to C – that is, it will query OCorrupt(λC(A),⊥) in the
S-KI game. C will add λC(A) to the list Q and return (κλC(A), ωλC(A)). Additionally,
ASE may run RPVC.Register(A,MK′,PP′) to create SK ′A. Finally, ASE sets SKA =
(SK ′A, κλC(A), ωλC(A)) as well as updating the list to L = L ∪ λC(A).

5. AV C is again given oracle access which ASE can respond to as above. Eventually, AV C
will output a challenge computation o. ASE will send λC(o) to C as the challenge node
v? for the S-KI game. Note that this is a valid challenge in the S-KI game since, in the
Authorized Outsourcing game, AV C may not choose a challenge computation o for which
he is authorized – that is, any o such that λC(o) 6 λC(vi) for any λC(vi) queried to the
Register oracle. This corresponds precisely to the condition on the choice of v? in the S-KI
game. C will return a key κ? which corresponds either to the real key κλC(o) or a random
key from the keyspace chosen according to the bit b chosen at the beginning of the game.

22

6. ASE must now simulate a server and a verifier. It does this by first registering two such
entities, S and V respectively, that are authorized to compute and verify o respectively.
It sets λC(S) = λC(o) and hence κλC(S) = κ?. Note that this is the only part of SKS that
is required, and in particular ωλC(S) is not required (as this is only needed for deriving
keys, and S will only need to use κ?). To register S, ASE runs Register and sets SKS =
(SK ′S , κ

?,⊥). Furthermore, to register V , ASE sets SKV = (κλV (V), ωλV (V)).

7. ASE then runs lines 12 and 13 as written in the Authorized Outsourcing game. It can
also run the Compute algorithm as it knows κλC(o) from κλC(C), and Verify as it owns the
verification KAS. ASE can therefore return the result of the game to AV C as expected.

Now, AV C has been provided all information that an adversary against the Authorized
Outsourcing game would be given and will guess which game he is playing with advantage δ.
Notice that the distribution of the game generated by ASE is precisely that of Game 0 if b = 0
(i.e. the real KAS key is used), and is precisely that of Game 1 otherwise, if a random key was
chosen. Thus, ASE can simply forward AV C ’s guess to C as its guess in the S-KI game. Thus
we conclude that if AV C guesses correctly with non-negligible advantage δ, then ASE can break
the Strong-Key Indistinguishability of the KAS also with non-negligible advantage δ. Since we
assumed the KAS was S-KI secure, such an adversary may not exist and hence Game 0 is
indistinguishable from Game 1 except with at most a negligible advantage ε 6 1− δ.

Reduction to INT-PTXT We have shown that, from the adversary’s point of view, Game
1 is almost (with negligible distinguishing advantage) identical to Game 0. Thus, we may run
the adversary against Game 1 instead with at most an ε loss in the tightness of the reduction.
In essence, we have now removed any information leakage from the KAS. Suppose AV C is an
adversary with non-negligible advantage δ in Game 1. We now show that we can construct an
adversary ASE that breaks the INT-PTXT security of the authenticated symmetric encryption
scheme SE using AV C as a subroutine. Let C be the INT-PTXT challenger for ASE who in
turn acts as the challenger in Game 1 for AV C .

1. C begins by initializing the list L and running SE.KeyGen(1κ) to generate a key κ?. It
sends the security parameter 1κ to ASE .

2. ASE must now initialize Game 1 for AV C . Informally, it will set the KAS key for the label
λC(o) to be the random key κ? chosen by C. However, the challenge label is unknown
until AV C chooses it, whilst the public parameters and oracle access must be provided
before this choice. Thus, we require ASE to guess the challenge label during Setup so
that the correct key can be implicitly set to be the INT-PTXT challenge key (and all
encryptions under that key can be formed using oracle access to C). If the number of
labels in the poset is N , where N is polynomial in the security parameter (as the scheme
must be efficiently instantiable), then ASE may guess λC(o) with probability at least 1

N .
Assuming that the guess is correct, we proceed as follows.

3. ASE runs PVCAC.Setup as given in Algorithm 1 with the modification that the key for the
guessed label in the computation poset, κλC(o) is implicitly set to be the key generated
by C in the IND-CPA game and the KAS is made to be consistent with this choice. Of
course, ASE does not have this key but will ensure that any operations using it will be per-
formed using its oracles to C. Since the challenge key, and hence any corresponding secret
derivation information, is unknown, it is not trivial to construct a KAS incorporating this
key. However, notice that the Authorized Outsourcing game (and by extension Game 1)
does not permit the adversary to query any label that is an ancestor of the challenge label

23

in the computation poset. Thus, KAS keys for the set of ancestors will not be needed, and
a KAS can simply be instantiated over the remaining nodes (and the public information
for the ancestor set simulated, as the keys cannot be derived, the public information need
not be functionally correct). Remaining keys can simply be generated using the security
parameter. From the adversarial point of view, this will be indistinguishable from the real
games.

4. AV C is given the generated public parameters and oracle access which ASE may respond
to as follows:

• FnInit, Certify, and Revoke queries can be handled by simply calling the relevant
algorithm as these have no dependence on the KAS.

• If a Register query is made for a label λ(ID) > λC(o) as guessed by ASE then
ASE aborts the game since AV C would not then be able to choose λC(o) as its
challenge computation, and hence ASE ’s guess was incorrect. Otherwise, ASE holds
the relevant KAS keys and may respond by running as specified in Oracle Query 7.

• By the oracle restrictions specified for the Authorized Outsourcing game, AV C may
not query the ProbGen oracle on the challenge computation λC(o). Hence, if such
a query is made at this point, then λC(o) would not be chosen as the challenge
computation and ASE ’s guess would be incorrect, and so the game is aborted. For
any other choice of computation queried to the ProbGen oracle, ASE holds the KAS
key (or generated symmetric key) and may run Algorithm 5 as written.

• Observe that if a query is made to the Compute oracle for the challenge computation,
then the adversary has either submitted a malformed encoded input, and ⊥ should
be returned, or the adversary has submitted a correctly formed encoded input, and
hence has already won the game. For all other queries, ASE can use one of the keys
it holds to respond to the challenge by running Algorithm 6.

5. AV C eventually outputs a choice of label which ASE can register him for, as in the oracle
query above, and AV C is again given oracle access which is handled as before. It eventually
outputs a challenge computation, and if this is not the computation chosen by ASE at the
beginning of the game, then the game is aborted. Otherwise, the choice of computation
label is valid since the game has not already been aborted during the oracle queries.

6. ASE should now register two entities: a computational server S and a verifier V . However,
these will not be required in the following, so ASE can simulate registering them with
labels λC(o) and λV (o) respectively and update the public parameters accordingly without
actually requiring the correct keys for these entities (as the adversary will not see any
output from these entities other than their presence in the lists in the public parameters).
ASE can also run the FnInit and Certify algorithms as written.

7. AV C is then provided with all relevant information and is given oracle access again.
Queries can be handled as above, but Register queries now return ⊥ if the queried la-
bel is an ancestor of the computation label in the poset i.e. exactly when ASE does not
hold a KAS key for the queried label.

8. AV C finally outputs a forged encoded input σo.

Now, observe that from the point of view of AV C , the game has been simulated correctly up
to this point and that ASE has not made any queries to its Encrypt oracle in the INT-PTXT
game. Thus, if the ciphertext c within σo decrypts successfully (which it must for AV C to

24

win the Authorized Outsourcing game), then the verification oracle Ver(c) will output 1 and
the decrypted message has certainly not been queried to the Encrypt oracle, and thus ASE can
forward c as its answer in the INT-PTXT game and win with exactly the advantage of AV C in
the Authorized Outsourcing game. This is assuming that ASE correctly guessed the challenge
computation label so that the game did not abort. Thus, for a poset of polynomial size N ,
the advantage of ASE is δ

N which is non-negligible if AV C has non-negligible advantage δ in
the Authorized Outsourcing game. However, since we assumed the authenticated symmetric
encryption scheme to be secure, such an adversary with non-negligible advantage against the
Authorized Outsourcing game cannot exist.

Thus, we conclude, the overall advantage against the Authorized Outsourcing game is the
sum of the distinguishing advantage between Game 0 and Game 1, and the advantage in the
reduction to INT-PTXT, both of which we have shown to be negligible. Therefore, the overall
advantage against the Authorized Outsourcing game is negligible.

We remark that in the above proof we required ASE to correctly guess the label that AV C
would select ahead of time. This is very similar to the notions of security commonly found
in functional encryption primitives, particularly Identity-based Encryption [8] and Attribute-
based Encryption [18, 6]. In these settings, it is common to refer to the method of guessing the
correct label as complexity leveraging which results in a polynomial loss in the tightness of the
reduction. An alternative, which could equally be taken here, is to formulate a weaker selective
notion of security in which the adversary must select the challenge label at the beginning of the
game before seeing the public parameters.

We also note that the restriction on queries to the ProbGen oracle (i.e. that the challenge
computation cannot be queried) is stronger than required for our particular construction due
to the Encrypt oracle available in the INT-PTXT game. An alternative would be to allow
queries to ProbGen for the challenge computation but require that the final adversarial output
is distinct from those given in response to these queries.

Lemma 2. Given a secure RPVC scheme, an authenticated symmetric encryption scheme se-
cure in the sense of IND-CPA∧INT-PTXT and a KAS secure against Strong Key-Indistinguishability,
let PVCAC be the PVC-AC scheme defined in Algorithms 1–9. Then PVCAC is secure in the
sense of Authorized Computation (Game 6).

Proof. LetAV C be an adversary with non-negligible advantage δ in the Authorized Computation
game and let ASE be an adversary playing the IND-CPA game with a challenger C against SE .
We define the following sequence of games and show that we can perform a sequence of game
hops with negligible difference between each successive pairs of games, and thereby construct
an adversary ASE that, using AV C as a subroutine, can break the IND-CPA property with
non-negligible advantage.

• Game 0. This is the Authorized Computation game as defined in Section 5.2.

• Game 1. This is identical to Game 0, except that we replace the key κλC(o) for the
challenge computation o with a random key κ? drawn uniformly from the keyspace.

• Game 2. This is the same as Game 1 with the modification that, in ProbGen, the
encoded input is generated by either encrypting the proper encoded input from the RPVC
functionality σ′o, or a random message of the same length as σ′o.

25

Game 0 to Game 1 This game hop relies on the Strong Key-Indistinguishability of the KAS
and proceeds very similarly to the corresponding hop in the proof of Lemma 1. As such, we do
not state the full proof here but leave it as an easy exercise. We conclude that if A distinguishes
Game 0 from Game 1 with non-negligible advantage δ, then an adversary can use A as a
subroutine to break the Strong Key-Indistinguishability of the KAS also with non-negligible
advantage δ. Since the KAS is assumed S-KI secure, such an adversary may not exist and
hence Game 0 is indistinguishable from Game 1 except with at most a negligible advantage
ε 6 1− δ.

Game 1 to Game 2 We have shown that, from the adversary’s point of view, Game 1 is
almost (with negligible distinguishing advantage) identical to Game 0. Thus, we may run the
adversary against Game 1 instead to remove any information leakage from the KAS. We now
show that an adversary cannot distinguish Game 1 from Game 2 with more than a negligible
probability, which then removes any information leakage from the encrypted, encoded input.
Suppose an adversary AV C exists that can distinguish Game 1 from Game 2 with non-
negligible advantage δ. Then there exists an adversary ASE that breaks the IND-CPA security
of the symmetric encryption scheme SE also with advantage δ. AV C will play either Game
1 or Game 2 with ASE acting as the challenger, and must guess correctly which game he is
playing. ASE in turn will play the IND-CPA game with a challenger C. This reduction removes
any information about the encoded input that may leak through the encryption process.

1. C begins by choosing a random bit b (which ultimately will determine which of Game 1
and Game 2 is being played) and running SE.KeyGen(1κ) to generate a key κ?. It sends
the security parameter 1κ to ASE .

2. ASE must now initialize Game b+1 for AV C . Informally, it will set the KAS key for
the label λC(o) to be the random key κ? chosen by C. However, the challenge label is
unknown until AV C chooses it, whilst the public parameters and oracle access must be
provided before this choice. Thus, we require ASE to guess the challenge label during
Setup so that the correct key can be implicitly set to be the IND-CPA challenge key (and
all encryptions under that key can be formed using C). If the number of labels in the poset
is N , where N is polynomial in the security parameter (as the scheme must be efficiently
instantiable), then ASE may guess λC(o) with probability at least 1

N . Assuming that the
guess is correct, we proceed as follows.

3. ASE runs PVCAC.Setup as given in Algorithm 1 except that the key for the guessed label
in the computation poset, κλC(o) is implicitly set to be κ? and the KAS is made consistent
with this choice. Note that the Authorized Computation game (and by extension Game
b+1) does not permit the adversary to query any label that is an ancestor of the challenge
label in the computation poset. Thus a KAS can be instantiated over the remaining nodes
(and the public information for the ancestor set simulated – as the keys cannot be derived,
the public information need not be functionally correct). Remaining keys can simply be
generated using the security parameter. From the adversarial point of view, this will be
indistinguishable from the real games.

4. AV C is given the generated public parameters and oracle access which ASE responds to
as follows:

• FnInit, Certify, and Revoke queries can be handled by simply calling the relevant
algorithm.

26

• If a Register query is made for a label λ(ID) > λC(o) then ASE aborts the game
since AV C would not then be able to choose λC(o) as its challenge computation, and
hence ASE ’s guess was incorrect. Otherwise, ASE holds the relevant KAS keys and
may respond by running Oracle Query 7.

• ProbGen queries for a computation labelled λ(o) can be handled by running Algo-
rithm 5 with the exception that lines 2 and 5 are simulated as follows. Line 2 is not
run at all as ASE may not hold the challenge key, and line 5 is run using an oracle
query to the IND-CPA LoR oracle for the choice of messages m0 = m1 = σ′o. For
any other queried computation, ASE holds the KAS key (or generated symmetric
key) and may run Algorithm 5 as written.

• Observe that by the INT-PTXT property of the authenticated symmetric encryption
scheme, AV C cannot form a valid ciphertext (one that will decrypt to anything other
than ⊥) without holding the encryption key. The encryption keys that AV C may
hold are precisely those revealed through Register queries, and since queries may not
be made for labels λ(ID) > λC(o), each query to the Compute oracle will be for a
label belonging to the KAS instantiated by ASE . Hence, if λ(ID) > λC(o), ASE
returns ⊥ and otherwise it uses its knowledge of the KAS to respond genuinely by
running Algorithm 6.

5. AV C eventually outputs a choice of label which ASE can register him for in the same
manner as in the oracle query above, and AV C is again given oracle access which is
handled as before. It eventually outputs a challenge computation, and if this is not the
computation chosen by ASE in Step 2, then the game is aborted. Otherwise, the choice of
computation label is valid since the game has not already been aborted during the oracle
queries.

6. ASE should now register two entities: a delegator C and a verifier V . However, these will
not be required in the following, so ASE may simulate registering them with labels λC(o)
and λV (o) respectively and update the public parameters accordingly without actually
requiring the correct keys for these entities (as the adversary will not see any output from
these entities other than their presence in the lists in the public parameters). ASE can
also run the FnInit and Certify algorithms as written.

7. ASE must now run ProbGen for the challenge computation o to generate an encoded input
σo. To do so, it will make use of the LoR oracle provided by C in the IND-CPA game.
ASE will run lines 1, 3 and 4 as written to generate a problem encoding σ′o. It sets
m0 = σ′o and chooses another message m1 of the same length uniformly at random from
the message space. These are queried to the LoR oracle which will return the encryption
of message mb for the challenger’s choice of b from Step 1. ASE can then use this response
to form σo and form RKo using the verification KAS key which it holds.

8. All relevant information is passed to AV C who is also given oracle access. This is again
handled in the same manner as before. Eventually, AV C will output a guess b′ reflecting
that it believes it is playing Game b′ + 1.

Observe that if the challenger’s random bit b = 0, then this is precisely Game 1 (since the
real encoded input was encrypted by C). If, on the other hand, b = 1 then AV C is provided
with the encryption of a random message which does not relate to the computation at all,
which is precisely the setting of Game 2. Now, we assumed that AV C could distinguish
Game 1 from Game 2 with non-negligible probability δ. Since these two games correspond

27

directly to the challenger’s choice of bit b, ASE can simply forward AV C ’s guess b′ to C and
win the IND-CPA game with non-negligible advantage δ. However, as we assumed that SE
was IND-CPA∧ INT-PTXT secure, this is a contradiction and hence an adversary with non-
negligible distinguishing advantage cannot exist.

Reduction to Public Verifiability We have shown negligible distinguishing advantages in
the transitions from the Authorized Computation game to Game 2. Thus we may run an
adversary against Game 2 instead. By moving to this modified game, we have removed any
information leakage from the KAS and from the ciphertext encrypting the encoded input. Thus
the only information that remains that could aid an adversary in the Authorized Computation
game is the verification key and the output retrieval key. Intuitively however, the underlying
RPVC scheme was designed such that these components do not leak information that aids
the adversary in producing a fraudulent result. We now show that, since the adversary is
not authorized for the challenge computation, even if it holds a valid evaluation key it cannot
produce a valid response. If it could do so, then an adversary could be constructed to break
the Public Verifiability of the RPVC scheme.

Let AV C be an adversary with non-negligible advantage δ against Game 2. Then we
construct an adversary APV that breaks the Public Verifiability of the RPVC scheme with
advantage δ

2 . Let C play the Public Verifiability game with APV who in turn acts as the
challenger for AV C in Game 2.

1. C begins by choosing a bit b
$← {0, 1}. If b = 0, it instantiates APV for the function

F ? = F . Otherwise, APV is instantiated for F ? = F .

2. C also runs RPVC.Setup on the security parameter and RPVC.FnInit for the function F ?.
It sends the resulting parameters PP′ and PKF ? to APV .

3. APV initialises the list L and the variable o and must then simulate running the PVCAC.Setup
algorithm. It implicitly sets MK′ to be that generated by C, and sets up the KASs in the
same manner as in the prior transition from Game 1 to Game 2 by guessing the correct
challenge label with probability at least 1

N .

4. APV sends AV C the public parameters PP and provides oracle access as follows:

• Queries to the FnInit, Certify and Revoke oracles can be forwarded to C and the
response returned to AV C .

• Queries to the Register oracle can be run as in Oracle Query 7 with the exception of
line 2 of the Register algorithm for which APV makes a RPVC.Register oracle query
for the queried identity.

• Queries to the ProbGen oracle can be handled simply by running Algorithm 5.
Note that APV owns all information related to SKC for all delegators, and the
RPVC.ProbGen algorithm only requires public information.

• Queries to the Compute oracle can be run as written in Algorithm 6.

Eventually AV C will output its choice of computation label λC(AV C).

5. APV now registers AV C for this label. To do so, it can use its knowledge of the KASs
it instantiated, except for line 2 where it instead makes a RPVC.Register oracle query for
ID = AV C .

28

6. APV updates the list L with the chosen label and gives AV C the secret key. AV C is also
given oracle access which is handled by APV as above.

7. Eventually, AV C outputs a choice of challenge computation o, including the input data
x. If this is not the same as the guess made by APV in Step 3 then the game is aborted.
Otherwise, APV checks that the label of this computation is valid in accordance with the
queries made above. If so, it forwards x to C as the challenge input x? in the Public
Verifiability game.

8. C runs RPVC.ProbGen on x? and gives the resulting parameters to APV and again provides
oracle access.

9. APV must now register a delegator and a verifier to act in the following stages. To do
so, it simply runs Algorithm 3 since it knows all required information from the KASs it
instantiated. It simulates running FnInit either using the PKF ? provided by C in Step 2 (if
F ? = F) or by querying the RPVC.FnInit oracle, and makes a query to the Certify oracle
provided by C for the identity AV C and function F . Finally, APV runs ProbGen as given
in Algorithm 5 with the exception of choosing a random message instead of the encoded
input, as per Game 2. All generated parameters are passed to AV C , and oracle access is
provided as before.

10. Eventually, AV C finishes querying and outputs θo which it believes will appear to be a
valid result despite being unauthorized. APV forwards θo to C as its guess in the Public
Verifiability game.

Now, in order for APV to win the Public Verifiability game, it must produce a valid output
for the unsatisfied function F or F on input x?. Assuming that AV C is a successful adversary
against Game 2, θo is a valid result for F (x) with non-negligible probability δ. If F (x) = b,
where b is the random bit chosen by C, then APV is instantiated on the unsatisfied function.
Thus, if the game is not aborted (i.e. APV guessed the challenge computation label correctly),
APV wins with probability Pr[b = F (x)∧ExpGame 2

AV C [PVCAC, F, 1
κ] = 1] = δ

2 . Thus the overall

probability of APV winning, including guessing the computation correctly is at least δ
2N which

is non-negligible. However, since we assumed the underlying RPVC scheme to be secure in the
sense of Public Verifiability, such an adversary AV C with non-negligible advantage in Game 2
cannot exist.

Finally, we observe that each transition to Game 2 had a negligible distinguishing advantage
and the final reduction showed a negligible advantage against Game 2, and so we conclude
that the scheme is secure in the sense of Authorized Computation.

We note that the final reduction in this proof could achieve a tighter bound if we consider
the actual mechanism used to achieve Public Verifiability in the underlying RPVC scheme (e.g.
the application of a one-way function [20, 2]), but this would not be in a black-box manner.

Lemma 3. Given a secure RPVC scheme, a KAS secure in the sense of Strong-Key In-
distinguishability and an authenticated symmetric encryption scheme secure in the sense of
IND-CPA∧ INT-PTXT, let PVCAC be the PVC-AC scheme defined in Algorithms 1–9. Then
PVCAC is secure in the sense of Authorized Verification (Game 7).

Proof. Suppose AV C is an adversary with non-negligible advantage δ in the Authorized Verifi-
cation game and ASE is an adversary playing the IND-CPA game with a challenger C against
SE . We first define the following modified game and show that an adversary has negligible

29

distinguishing advantage between the two. We can therefore employ an adversary against this
modified game to break the IND-CPA security of the symmetric encryption scheme.

• Game 0. This is the Authorized Verification game as defined in Section 5.3.

• Game 1. This is identical to Game 0, except that we replace the key κλV (o) for the
challenge computation o in the verification poset with a random key κ? drawn uniformly
from the keyspace.

Game 0 to Game 1 This transition relies on the Strong Key-Indistinguishability of the
KAS. The proof is very similar to that in the proof of Lemma 1, and so we leave this as an
easy exercise. If A can distinguish Game 0 from Game 1 with non-negligible advantage δ,
then an adversary using A as a subroutine can break the Strong Key-Indistinguishability of the
KAS with the same non-negligible advantage δ. However, as the KAS is assumed S-KI secure,
such an adversary may not exist and Game 0 is indistinguishable from Game 1 except with
at most a negligible advantage ε 6 1− δ.

Reduction to IND-CPA SupposeAV C is an adversary with non-negligible advantage against
the Authorized Verification game. We now show that we can construct an adversary ASE that
breaks the IND-CPA security of the symmetric encryption scheme SE using AV C as a sub-
routine. From the adversary’s point of view, Game 1 is indistinguishable from Game 0 with
negligible distinguishing advantage. Therefore, ASE may simulate Game 1 instead to remove
any information leakage from the KAS. Let C be the IND-CPA challenger for ASE who in turn
acts as the challenger in Game 1 for AV C who succeeds with non-negligible probability δ.

1. C first chooses a bit β uniformly at random and generates a key κ? ← SE.KeyGen(1κ). It
sends the security parameter 1κ to ASE .

2. ASE must now initialize Game 1 for AV C . It will implicitly set the KAS key for the
label λV (o) to be κ?. However, as AV C has not yet chosen his challenge labels, ASE must
guess one of these labels in order to generate the public parameters and provide oracle
access. ASE may guess λV (o) with probability at least 2

N (as AV C will select two labels,
and ASE must match one of them) for a poset of size N nodes. Assuming that the guess
is correct, we proceed as follows.

3. ASE runs PVCAC.Setup as given in Algorithm 1 except that the key for the guessed label
in the verification poset, κλV (o) is implicitly set to be κ? and the KAS is made consistent
with this choice. Note that in the Authorized Verification game (and by extension Game
1) the adversary may not query any label that is an ancestor of the challenge label λV (ob)
in the verification poset. Thus ASE can instantiate a KAS over the remaining nodes
and simulate the public information for the ancestor set – as keys for this set cannot be
derived, the public information need not be functionally correct. ASE can also use the
security parameter to generate remaining keys in this set. From the adversarial point of
view, this is indistinguishable from the real games.

4. ASE sends the resulting public parameters to AV C and provides oracle access as follows:

• For queries to FnInit, Certify, and Revoke ASE can simply call the relevant algorithm.

• If a Register query is made for a label λ(ID) > λV (o) then ASE aborts the game
as AV C will not be able to choose λV (o) as one of its challenge computations, and
hence ASE ’s guess was incorrect. Otherwise, ASE holds the relevant KAS keys and
may respond by running Oracle Query 8.

30

• A ProbGen query for a computation labelled λV (o) can be handled by running Algo-
rithm 5 with the exception of lines 3 and 6 which are simulated as follows. ASE makes
an oracle query to the IND-CPA LoR oracle for the message pair m0 = m1 = RK ′o.
For all other queries, ASE holds the correct keys and may honestly run Algorithm 5.

• Compute queries can be handled by running Algorithm 6 since it relies only on the
computation poset which is owned by ASE .

5. AV C eventually outputs a choice of label which ASE can register him for as per the
Register oracle query above, and AV C is again given oracle access which is handled as
above. Eventually it chooses two challenge computations o0 and o1 and, if neither is the
same as that chosen earlier by ASE , the game is aborted. Otherwise, the choices are valid
since the game has not already been aborted during the oracle queries. Instead of choosing
the bit b at random, it can be set such that ob corresponds to ASE ’s guess of challenge
computation.

6. ASE now simulates registering two entities: a delegator C and a server S. However, as
these will not be required in the following, ASE may simulate registering the delegator
with label λC(ob) and update the public parameters accordingly without requiring valid
keys for the delegator (as the adversary will not see any output from the delegator other
than being listed in the public parameters). For the server, ASE runs Register and sets
SKS = (SK ′S , κ

?,⊥) ASE can also run the FnInit and Certify algorithms as written.

7. ASE now runs ProbGen for the challenge computation ob to encode σob . It runs lines 1,
2,4 and 5 as written to generate a problem encoding σo and retrieval key RK ′o. It sets
m0 = RK ′o and randomly chooses another message m1 of the same length from the message
space. These are given as input to the LoR oracle which returns the encryption of message
mβ for the challenger’s random choice of β. Using this response, ASE can create RKo.

8. ASE must finally run Compute on the resulting encoded input, which it can do honestly
as the algorithm does not rely on the verification poset. AV C then receives all relevant
information and oracle access, which is again handled as before. Eventually, AV C outputs
a guess b′ of b.

Observe that if ASE guessed correctly and β = 0, then this is precisely Game 1, and
AV C wins with non-negligible probability δ. Thus ASE wins with non-negligible probability
2δ
N . If β = 1, on the other hand, the encoded input provided to AV C is the encryption of a
random message completely unrelated to the retrieval key. In this case, by the Blind Verification
property of the underlying RPVC construction, AV C may only have a negligible advantage ε
(over random guessing) at learning the result of the computation. Thus, if AV C outputs b′ = b,
then ASE should output a guess of β′ = 0, and otherwise should guess β′ = 1. If β = 0 then
ASE wins with probability 2δ

N , and if β = 1 then ASE wins with probability 1− ε. Thus, ASE
wins in both cases with non-negligible probability.

The overall advantage against the Authorized Verification game is the sum of the distin-
guishing advantage between Game 0 and Game 1, and the advantage in the reduction to
IND-CPA, both of which we have shown to be negligible. Therefore, the overall advantage
against the Authorized Verification game is negligible.

Lemma 4. Given a secure RPVC scheme, a KAS secure in the sense of Strong-Key Indistin-
guishability and an IND-CPA secure symmetric encryption scheme, let PVCAC be the PVC-AC
scheme defined in Algorithms 1–9. Then PVCAC is secure in the sense of Weak Input Privacy
(Game 8).

31

Proof. Assume that AV C is an adversary with non-negligible advantage δ in the Weak Input
Privacy game. We show that we can use this to construct an adversary, ASE , with non-negligible
advantage in the IND-CPA game. Let C be the challenger for ASE and let ASE act as the
challenger for AV C . We first transition to a modified version of the Weak Input Privacy game,
and show that AV C has negligible distinguishing advantage between these games. We then
construct ASE which uses AV C against this modified game to break the IND-CPA security of
the symmetric encryption scheme.

• Game 0: This is the Weak Input Privacy game as given in Game 8.

• Game 1: This is identical to Game 0 except that the key κλC(ob) for the challenge
computation ob is replaced by a random key κ? drawn uniformly from the keyspace.

Game 0 to Game 1 This game hop relies on the Strong-Key Indistinguishability of the
KAS. Suppose an adversary AV C exists that can distinguish Game 0 from Game 1 with
non-negligible advantage ε. Then there exists an adversary AKI that breaks the S-KI security
of the KAS also with advantage ε. A challenger C will choose either Game 0 or Game 1 and
interact with AKI in the S-KI game; AKI will act as the challenger in either Game 0 or Game
1 for AV C who must guess which game he is playing.

1. C chooses a bit b
$← {0, 1} which will dictate whether the challenge key is real or random,

and hence ultimately that AV C will be playing Game b. C instantiates the KAS for the
S-KI game by running lines 1 to 5 of Game 1 and gives the public information to AKI .

2. AKI must initialize the wIP game for AV C . To do so, it initializes the variables L and o
and then simulates running Setup as written with the exception of lines 2 to 4. Instead,
it sets PubPC to be the public information generated by the challenger, and will make use
of oracle queries to C for the remaining KAS secrets and keys.

3. AV C is given the public parameters and oracle access. To respond to queries to the FnInit,
Certify and Revoke functions, AV C can simply run the relevant algorithm, as these do not
rely on the KAS. Queries to other functions may require knowledge of KAS derived keys.
Now, AV C owns the verification KAS information but only holds public information for
the computational poset. Thus, it will issue Corrupt queries for relevant labels to C for
the computational poset (which is the challenge poset in the S-KI game). Since neither
AV C or AKI have chosen their respective challenges, the Corrupt oracle will always return
a valid result which AKI can use to form a valid response.

4. Eventually, AV C will choose a security label λC(AV C) which AKI must register him
for. To do so, AKI makes another Corrupt query to C of the form OCorrupt(λC(AV C),⊥
). C adds λC(AV C) to the list Q and returns (κλC(AV C), ωλC(AV C)). AKI may run

RPVC.Register(AV C ,MK′,PP′) himself, as well as update the list L = L ∪ λC(AV C).

5. AV C is again given oracle access which is handled as above. Eventually, it will output
two choices of computations o0 and o1. AKI will choose one of these, o = oj uniformly
at random and forward λC(o) to C as its choice of challenge label, v?. Note that this
choice is, by definition, valid in the S-KI game since AV C was not allowed to choose either
message if λC(oj) 6 λC(vi) for any vi queried to the Register oracle (each of which was
then queried to the Corrupt oracle). If the bit b chosen by C at the start of the game was
0, then C returns the real key κ? = κλC(oj); otherwise, C returns a random key κ? drawn
uniformly from the keyspace.

32

6. AKI must now simulate registering a delegator C. It first chooses λC(C) = λC(oj) such
that κλC(C) = κ?. Note that AKI can provide the relevant key and secret from the
verification poset which it owns, and that ωλC(C) will not be needed, as no further keys
shall need deriving.

7. AKI can run FnInit and Certify as written as these do not rely on the computational KAS.
To run ProbGen on the computation oj , AKI can run lines 1, 5 and 6 of Algorithm 5 using
the keys defined in the previous step. All resulting parameters are given to AV C .

At this point, AV C has been given all information that an adversary against the Weak Input
Privacy game would be given and must attempt to distinguish which of Game 0 and Game
1 he has been playing. By assumption, AV C succeeds at this with non-negligible advantage ε.
Notice that the distribution of the above game generated by AKI is precisely that of Game 0 if
the bit b chosen by C was 0 (i.e. the real KAS key was used), and is precisely Game 1 if b was
1 (i.e. a random key was used). As such, AKI can forward the distinguishing guess of AV C to
C to break the S-KI security of the KAS also with non-negligible advantage ε. However, as we
assumed that the KAS was S-KI secure, such an adversary may not exist and so no adversary
may exist that can distinguish Game 0 from Game 1 with non-negligible advantage.

Reduction to IND-CPA We have shown that no adversary can distinguish between Game
0 and Game 1 with non-negligible advantage. Thus, we may run an adversary against Game 0
against Game 1 instead with at most a negligible loss ε in the tightness of the reduction. That is,
we can use a truly random key to form the challenge ciphertext which removes any information
leakage from the KAS. Let us now suppose AV C is an adversary with non-negligible advantage
δ against Game 1. We construct an adversary ASE that breaks the IND-CPA security of the
symmetric encryption scheme using AV C as a subroutine. Let C be the IND-CPA challenger
for ASE who in turn acts as the challenger for AV C .

1. C chooses a bit β
$← {0, 1} and generates a key κ? by running SE.KeyGen. It sends the

security parameter to ASE and provides oracle access to the LoR function.

2. ASE must now initialize Game 1 for AV C . Informally, it will set the challenge KAS key
κλC(oβ) to be the random κ? chosen by C. However, as this label is currently unknown
and the public parameters and oracle access must be granted before the choice is made,

ASE must make a guess, λ̃C(oβ), for the correct challenge label to assign the random
key to. This choice is correct with probability at least 1

N where the computation poset
comprisesN labels and whereN is polynomial in the security parameter (to enable efficient
instantiation).

3. ASE initalizes the parameters L and o, and also initalizes an empty list Q that will
be used to store messages queried to the LoR oracle in the IND-CPA game. It runs
Setup as written with the following modification. The KAS key for the guessed challenge

label λ̃C(oβ) is implicitly set to be κ? and the rest of the computation KAS is made
consistent with this choice. Since the adversary in Game 1 is not permitted to query the
Register function for any label that is an ancestor of the challenge label. Thus, keys for
ancestors of the challenge label will not need to be derivable and can simply be generated
from SE.KeyGen. Therefore, a KAS can simply be instantiated over the remaining (non-
ancestor) nodes and the public information for ancestor nodes can be simulated (as keys
will not be derived, this need not be functionally correct but must appear to be distributed
correctly).

33

4. AV C is given the resulting public parameters and access to oracle functionality which ASE
responds to as follows:

• Queries to FnInit, Certify and Revoke can be handled by simply running the relevant
algorithms.

• If AV C queries Register for a label λ(ID) > λ̃C(oβ), as guessed by ASE , then ASE
will abort the game (since AV C would no longer be able to choose λ̃C(oβ) as a valid
challenge label and hence ASE ’s guess was incorrect). For any other Register query,
ASE has generated and holds the relevant KAS keys and may respond honestly.

• A query to ProbGen for anything other than a computation labelled with λ̃C(oβ) can
be run honestly using the keys he generated during Setup. A computation labelled

by λ̃C(oβ) will require an encryption of σo under κ
λ̃C(oβ)

which is not known to ASE
as it is the challenge key in the IND-CPA game. Therefore, ASE must make a query
to the LoR oracle provided by C where m0 = m1 = σo to receive a valid ciphertext
CT . ASE also adds the pair (σo, CT) to the list Q.

• By the restriction on Compute oracle queries, AV C may not query the challenge
inputs. Additionally, by the INT-PTXT property of the symmetric encryption
scheme, AV C is unable to form a valid ciphertext for the challenge label without
making use of the Encrypt oracle. Thus, if the input to the Compute oracle is for the
challenge computation label, then the ciphertext is either malformed (and ⊥ should
be returned), or the encoded input was previously queried to the LoR oracle and
ASE may look up the received ciphertext in the list Q to recover the encrypted input
σo. For any other computation label, ASE holds the corresponding KAS keys and
can run the Compute algorithm honestly.

5. Eventually, AV C outputs a choice of label λC(AV C) which ASE can register him for as
per the Register oracle queries above. The label is added to the list L and AV C is given
its secret key and oracle access which is handled as above.

6. AV C eventually outputs a choice of two computations o0 and o1. If neither computation

matches with the label λ̃C(oβ) chosen byASE earlier, then the game is aborted. Otherwise,
ASE checks the labels for validity and aborts if not valid.

7. ASE must now register a delegator C. However, the role of C will be substituted by
oracle queries to C in the following, so ASE may simply simulate registering C with label

λ̃C(oβ) by updating any relevant public information. ASE can also run FnInit and Certify
as written.

8. ASE must now run ProbGen to generate the challenge input. To do so, it runs RPVC.ProbGen
on both inputs x0 and x1 dictated by o0 and o1 respectively, to generate two encoded in-
puts labelled m0 = σo0 and m1 = σo1 . It then submits m0 and m1 to the IND-CPA LoR
oracle provided by C. C will return the encryption of mβ corresponding to σoβ , under
the key κλC(oβ). ASE can also encrypt the verification key V Koβ for the oβ matching its
guess, using the verification KAS keys that it owns.

9. The (encrypted) encoded input and the verification key are given to AV C along with oracle
access. Queries are handled as above by Register now returns ⊥ if the queried label is an
ancestor of either λC(o0) or λC(o1) (i.e. precisely when ASE does not hold the relevant
KAS keys). AV C eventually outputs a guess b′ that ob′ was chosen.

34

Now, ASE can simply forward the guess b′ to C as its guess for β. Observe that if ASE
correctly guessed λ̃C(oβ), then from AV Cs point of view the distribution of the above game
is precisely that of Game 1. Thus, if AV C can successfully distinguish which computation
was chosen (by C), then it implicitly can decide which plaintext (encoded input) was encrypted
during the IND-CPA game. ASE can correctly guess the challenge label that will be chosen by
C with probability at least 1

N2 . Thus, since we assumed that AV C had non-negligible advantage
δ against Game 1, we have shown how to construct an adversary ASE with non-negligible
advantage δN2 against the IND-CPA game. However, as the symmetric encryption scheme
is assumed to be IND-CPA secure, such an adversary against Game 1 may exist, and since
there is a negligible distinguishing advantage between Game 0 and Game 1, no adversary
with non-negligible advantage against the Weak Input Privacy game may exist either.

We conclude that combining the results of the Lemmas 1 to 4 proves Theorem 1.

7 Conclusion

We have motivated the need for the cryptographic enforcement of access control policies in
the setting of outsourced computation, particularly in the multi-user setting. As developments
in VC continue towards such settings, it is vital to enable restrictions to be placed on: the
computations that delegators can outsource (both from the perspective of separation of duties,
and considering a server providing differing levels of service for different users); the computations
a server may perform (such that certain computations, over sensitive data say, may only be
performed by a server satisfying a policy); and the verifiers that may learn the output of the
result (e.g. ensuring that read access to the newly generated data is handled consistently with
the sensitivity of the inputs). We have shown example graph-based access control policies for
these scenarios, as well as providing a formal definitional framework, security models, and a
provably secure construction built from Key Assignment Schemes.

Future work will consider alternate enforcement mechanisms, such as authentication pro-
tocols that enforce graph-based authorisation policies to achieve ticket-based access control to
a computational service, or the use of dual-policy ABE to outsource computations (using the
KP-ABE policy) and enforcing access control (using the CP-ABE policy). Specific VC scenar-
ios may lead to interesting access control models. One particularly applicable setting for the
enforcement of access control policies is verifiable searchable encryption. Consider a remote
database host that returns verifiably correct results to user queries (computations). In practice
it is unlikely that all users should have unrestricted access to the entire database. It is im-
perative that only authorized users may perform specific queries (those relating solely to their
duties and to data for which they have clearance)and that results remain protected to prevent
data leakage.

Acknowledgements

We thank Christopher Dearlove, Rachel Player and Gordon Procter for helpful discussions.
The first author acknowledges support from BAE Systems Advanced Technology Centre under
a CASE Award.
This research was partially sponsored by US Army Research laboratory and the UK Ministry of
Defence under Agreement Number W911NF-06-3-0001. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the official

35

policies, either expressed or implied, of the US Army Research Laboratory, the U.S. Govern-
ment, the UK Ministry of Defense, or the UK Government. The US and UK Governments are
authorized to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

References

[1] S. G. Akl and P. D. Taylor. Cryptographic solution to a problem of access control in a
hierarchy. ACM Trans. Comput. Syst., 1(3):239–248, 1983.

[2] J. Alderman, C. Janson, C. Cid, and J. Crampton. Revocation in publicly verifiable
outsourced computation. In D. Lin, M. Yung, and J. Zhou, editors, Information Security
and Cryptology - 10th International Conference, Inscrypt 2014, Beijing, China, December
13-15, 2014, Revised Selected Papers, volume 8957 of Lecture Notes in Computer Science.
Springer, 2014.

[3] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken. Dynamic and efficient key man-
agement for access hierarchies. ACM Trans. Inf. Syst. Secur., 12(3), 2009.

[4] D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations. Technical
Report MTR-2547, MITRE Corporation, 1973.

[5] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. J. Cryptology, 21(4):469–491, 2008.

[6] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In
IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer Society, 2007.

[7] M. A. Bishop. Computer Security. Art and Science. Addison-Wesley Professional, 2002.

[8] D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In J. Kilian,
editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 213–229.
Springer, 2001.

[9] A. Castiglione, A. D. Santis, and B. Masucci. Key indistinguishability vs. strong key
indistinguishability for hierarchical key assignment schemes. Cryptology ePrint Archive,
Report 2014/752, 2014. http://eprint.iacr.org/.

[10] S. G. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive verifiable
computation. In TCC, pages 499–518, 2013.

[11] M. Clear and C. McGoldrick. Policy-based non-interactive outsourcing of computation
using multikey FHE and CP-ABE. In P. Samarati, editor, SECRYPT, pages 444–452.
SciTePress, 2013.

[12] J. Crampton. Cryptographic enforcement of role-based access control. In P. Degano,
S. Etalle, and J. D. Guttman, editors, Formal Aspects in Security and Trust, volume 6561
of Lecture Notes in Computer Science, pages 191–205. Springer, 2010.

[13] J. Crampton, K. M. Martin, and P. R. Wild. On key assignment for hierarchical access
control. In CSFW, pages 98–111. IEEE Computer Society, 2006.

36

[14] A. L. Ferrara, G. Fuchsbauer, and B. Warinschi. Cryptographically enforced RBAC. In
2013 IEEE 26th Computer Security Foundations Symposium, New Orleans, LA, USA, June
26-28, 2013, pages 115–129. IEEE, 2013.

[15] E. S. V. Freire, K. G. Paterson, and B. Poettering. Simple, efficient and strongly KI-secure
hierarchical key assignment schemes. In E. Dawson, editor, Topics in Cryptology - CT-
RSA 2013 - The Cryptographers’ Track at the RSA Conference 2013, San Francisco,CA,
USA, February 25-March 1, 2013. Proceedings, volume 7779 of Lecture Notes in Computer
Science, pages 101–114. Springer, 2013.

[16] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In T. Rabin, editor, CRYPTO, volume 6223 of Lecture
Notes in Computer Science, pages 465–482. Springer, 2010.

[17] Google. Google Compute Engine – Cloud Computing & IaaS – Google Cloud Platform.
http://cloud.google.com/compute/, 2014. [Online; accessed 23-October-2014].

[18] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In A. Juels, R. N. Wright, and S. D. C. di Vimercati,
editors, ACM Conference on Computer and Communications Security, pages 89–98. ACM,
2006.

[19] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-monotonic
access structures. In P. Ning, S. D. C. di Vimercati, and P. F. Syverson, editors, ACM
Conference on Computer and Communications Security, pages 195–203. ACM, 2007.

[20] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public: Ver-
ifiable computation from attribute-based encryption. In R. Cramer, editor, TCC, volume
7194 of Lecture Notes in Computer Science, pages 422–439. Springer, 2012.

[21] M. A. Rappa. The utility business model and the future of computing services. IBM
Systems Journal, 43(1):32–42, 2004.

[22] R. S. Sandhu and P. Samarati. Access control: principle and practice. Communications
Magazine, IEEE, 32(9):40–48, 1994.

[23] L. Xu and S. Tang. Verifiable computation with access control in cloud computing. The
Journal of Supercomputing, 69(2):528–546, 2014.

37

