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Abstract. We show that for certain class of unconditionally secure protocols and target function-
alities, static security implies adaptive security in the UC model. Similar results were previously
only known for models with weaker security and/or composition guarantees. The result is, for in-
stance, applicable to a wide range of protocols based on secret sharing. It “explains” why an often
used proof technique for such protocols works, namely where the simulator runs in its head a copy
of the honest players using dummy inputs and generates a protocol execution by letting the dummy
players interact with the adversary. When a new player Pi is corrupted, the simulator adjusts the
state of its dummy copy of Pi to be consistent with the real inputs and outputs of Pi and gives the
state to the adversary. Our result gives a characterization of the cases where this idea will work to
prove adaptive security. As a special case, we use our framework to give the first proof of adaptive
security of the seminal BGW protocol in the UC framework.

1 Introduction

When defining and proving security of cryptographic protocols we want to capture properties
that would make our protocols applicable in real applications. Two aspects are particularly
important in this respect. First, a protocol usually is a part of larger system and therefore we
want a protocol to remain secure when composed, not only with itself, but also with an arbitrary
environment. Second, a protocol must remain secure, even if some of the players are corrupted
by an adversary. In a real scenario, one should expect that the choice of which players to attack
is made while the protocol is running, i.e., we would like to have security against adaptive
corruption rather than static, where the choice is made before the protocol starts.

Capturing these goals in a definition is notoriously a difficult task, and this may be the
reason why general protocols for multiparty computation [13, 4, 10] were found a long time
before we had generally accepted definitions of security for which composition results could be
shown.

In 1991, Micali and Rogaway [15] as well as Beaver[3] put forward definitions. Like vir-
tually all subsequent work, these definitions use simulation-based security: given only what
the adversary is supposed to learn, it should be possible to simulate his view of the protocol.
However, it was not until the work around 2000 of Canetti [6] (the universal composition (UC)
framework) and independently Pfitzmann, Schunter and Waidner [17] (reactive simulation) that
security under arbitrary concurrent composition could be expressed. A recent related, but dif-
ferent approach known as “constructive cryptography” was initiated recently by Maurer [14].
This framework is also simulation-based and gives security under composition, but is technically
different from the UC model in several ways.

It turns out that achieving adaptive security under, e.g., the UC definition is highly non-
trivial for protocols that are based on cryptographic assumptions (although the problem can be
solved at some loss of efficiency using so-called non-committing encryption [8]).
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Since these complications are tightly linked to the use of encryption in the protocol, it
was for a while believed in the folklore that for protocols that are information theoretically
secure, static and adaptive security should be equivalent. This is not the case, however, there
are natural examples of information theoretically secure protocols that are statically secure but
not adaptively secure, as shown in [11].

In [7], a systematic study of the relation between static and adaptive security was conducted.
This was limited to definitions allowing only sequential, rather than concurrent composition.
They found that, in most cases, static and adaptive security are not equivalent. However, there
was one important exception, namely that in the definition from [15] (called the MR definition
in the following), static and adaptive security are equivalent.

Our contribution. It is natural to then ask what we can say about definitions that allow for
concurrent composition, such as UC. In view of the example from [11], one should of course not
expect adaptive to be equivalent to static in general; but it may be possible to identify a class
of protocols where equivalence holds, and where therefore we can prove static security and get
adaptive security only by verifying that the protocol is in this class.

One might perhaps hope that the positive result from [7] on the MR definition could help
us, but this is not clear at all: the MR definition allows the simulator to be infinitely powerful,
where a UC simulator must be polynomial time. It considers only secure function evaluation,
where UC considers general reactive functionalities; and finally the MR definition requires a
protocol to have a certain “committal round” where all the inputs become fixed, where the UC
definition makes no such requirement.

In this paper, we borrow a high-level idea from the equivalence proof in [7], which can be
loosely described as follows: to do adaptive simulation, we start by running the static simulator
for the case where no player is corrupted. As soon as a corruption occurs, we try to “rescue the
situation” such that we can continue running the static simulator having corrected for the fact
that a new player has been corrupted. We continue in this way until the protocol halts.

Our technical contribution is to first identify the constraints on the static simulator and the
target functionality that one needs to make this work in the UC model and second to resolve
the difficulties arising from the differences between the MR and UC definitions. As a result,
we show that for a certain class of unconditionally secure protocols and target functionalities,
static security implies adaptive security in the UC model. The constraints we need on the static
simulator and the target functionality are quite natural and allow the result to be applied, for
instance, to a wide range of protocols for honest majority based on secret sharing, including
the BGW protocol from [4]. The result also holds if the protocol uses one or more auxiliary
functionalities, as long as they satisfy the same constraint. The result therefore also covers the
on-line phase of several recent protocols in the pre-processing model [5, 16, 12].

To avoid confusion related to security of the BGW protocol, we want to clarify the rela-
tion between our result and the recent security proof for this protocol, given by Lindell and
Asharov [2]. They prove static security and then notice that BGW satisfies the MR definition,
which by the result from [7] implies adaptive security (in the MR definition). While this is
true, it does not imply security in the UC model: first, as we mentioned, an MR simulator has
unbounded computing time while a UC simulator must be polynomial time. Second, the equiv-
alence result from [7] depends crucially on the simulator being unbounded. Therefore there is
currently no proof that the BGW protocol is adaptively UC secure. However, using our result,
such a proof can be derived from the proof of static security. We make an assumption on the
structure of the circuit to be computed, namely that each output value is produced by a mul-
tiplication gate – this can easily be achieved by adding dummy multiplications by 1 if needed.
This certainly simplifies the proof, but might in fact even be essential to get an efficient adaptive
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simulator. It is so far open whether this is the case. However, we find find it intriguing that
even for a well known protocol like BGW, that is generally believed to be “clearly” adaptively
secure, a proof of this is a non-trivial step beyond static security.

From a more high-level point of view, our result “explains” why an often used proof technique
for such protocols works, namely where the simulator runs in its head a copy of the honest players
using dummy inputs and generates a protocol execution by letting the dummy players interact
with the adversary. When a new player Pi is corrupted, the simulator patches the state of its
dummy copy of Pi to be consistent with the real inputs and outputs of Pi and gives the state
to the adversary. Our result gives a characterisation of the cases where this idea will work.

Since one of the constraints we impose on the static simulators is that one can efficiently
patch from a static simulation of a small set of parties to a static simulation of a larger set
of parties, our framework does not give adaptive security for free compared to current proof
strategies. However, our framework abstracts current proof techniques and once and for all lifts
all the technical details that are common for most proofs. We hope and believe that our result
will make it easier to prove adaptive UC security, as it reduces the task to proving static security
and checking whether the constraints we require are satisfied.

2 The UC Framework

In this section we sketch the UC framework and define some shorthand notation which we
believe will make the upcoming proofs more clear.

In the framework from [6] the security of a protocol is defined by comparing its real-life exe-
cution to an ideal evaluation of its desired behavior. The protocol π is modeled by n interactive
Turing Machines (ITMs), π = {P1, . . . ,Pn}, called the parties. In addition an ideal functionality
is given. An ideal functionality is just an ITM. All parties can send messages to R and receive
messages from R, using perfectly secure channels. The input-output behavior of R models the
communication resource available to the parties in the protocol, and can, e.g., model perfectly
secure, synchronous communication or authenticated asynchronous communication, but can be
arbitrarily complex. In the execution of π using communication resource R also an adversary
A is present and an environment Z modeling the environment in which A is attacking the
protocol. The environment gives inputs to honest parties, receives outputs from honest parties,
and can communication with A at arbitrary points in the execution. The adversary can see and
control the communication by interacting with R.1 The adversary can additionally corrupted
parties adaptively. When a party is corrupted, the adversary learns the entire execution history
of the corrupted party, including the random bits used, and will from the point of corruption
send messages on behalf of the corrupted party. Both A and Z are PPT ITMs.

At the beginning of the protocol all parties, the communication resource, the adversary,
and the environment is given as input the security parameter k and random bits. Furthermore
the environment is given an auxiliary input z. At some point the environment stops activating
with parties and outputs some bit. This bit is taken to be the output of the execution. We use
Execπ,R,A,Z(k, z) to denote the output of Z in the execution. We let Execπ,R,A,Z denote the
distribution ensemble {Execπ,R,A,Z}k∈N,z∈{0,1}∗ .

One particular adversary is the so-called dummy adversary D. It simply works as a channel
between (π,R) and Z. As examples, if R outputs a message m to D, D simply outputs m

1 The leakage seen and influence allowed by A is defined by the input-output behavior of R. If R models
only authenticated communication it would send the transmitted messages also to A. If it models secure
communication it would not. If it models asynchronous communication it could let A specify any delivery
pattern, if it models synchronous communication it would impose restrictions on the delivery patterns A may
specify.
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to Z, specifying that it is from the communication resource, and if Z instructs to corrupt Pi,
D will do so, and return the obtained information to Z. We use Realπ,R,Z(k, z) to denote
Execπ,R,D,Z(k, z).

Second an ideal evaluation is defined, which is just another protocol plus communication
resource being attacked by an adversary in an environment. In the ideal evaluation again an
ideal functionality F is present. However, now the input-output behavior of F is a specification
of the desired input-output behavior of the protocol. Also present is an adversary S (a.k.a. the
simulator), the environment Z, and n so-called dummy parties D1, . . . ,Dn – all PPT ITMs.
The only job of the dummy parties is to take inputs from the environment and send them to
the ideal functionality and vice versa. We call δ = {D1, . . . ,Dn} the dummy protocol. Again the
leakage seen by the adversary and the influence that the adversary can except is defined by the
input-output behavior of F, i.e., by which messages F sends to S and and how F responds to
messages from S. Note that δ executed with F as communication resource is a trivially secure
protocol with the same input-output behavior as the ideal functionality F. For an environment
Z we use Execδ,F,S,Z(k, z) to denote the output of Z after the execution. Since δ is a fixed
protocol we can omit it in the notation. We let IdealF,S,Z(k, z) = Execδ,F,S,Z(k, z).

We recall the definition of UC security. It can be proven that it is sufficient to prove security
against the dummy adversary, so we phrase the version where the adversary is fixed to be D.

Definition 1 ([6]). We say that π securely realizes F in the R-hybrid model if there exists a
PPT simulator S such that for all PPT environments Z we have that IdealF,S,Z and Realπ,A,Z
are computationally indistinguishable. We say that there is statistical security if IdealF,S,Z and
Realπ,A,Z are negligibly close for all environments Z, i.e., Z is not restricted to PPT. We say
there is perfect security if IdealF,S,Z = Realπ,A,Z for all environments Z.

We use A � B to denote a system containing the two ITMs A and B and also use this
notation for larger systems. In the UC framework two ITMs A and B in the same system of
ITMs communicate by writing designated messages on the tapes of each other, specifying the
message and the identity of the sender. We would like a more convenient terminology for this
communication mechanism, so we will talk about A and B being equipped by incoming ports
(inports) and outgoing ports (outports). A port is just a bit string pn, naming the port, plus
a direction. Ports are connected by identity of name and opposition of direction. I.e., if A has
an outport pn and B has an identically named inport pn then we say that A can send messages
to B on pn. I.e., saying that A sends m on pn, in A � B, is equivalent to saying that A writes
(pn,m) on a tape of B. Since ports are connected by names we clearly have that A �B = B �A.

Execution of an interactive system of ITMs works in a “sequentialized concurrent” way,
where only one ITM is active at a time. The activation is passed from one ITM to the next
when a message is sent to that ITM. Initially the environment is activated. Which ITMs can
write and read on which tapes and how activation is passed is specified in great detail in the
UC framework, but we will not need to address the particularities to prove our result.

When a system of ITMs is closed, i.e., there are no outports without an identically named
inport, then it can be executed as described above, and we use the system also to denote
the family of random variables describing its execution, i.e., δ � F � S � Z = Execδ,F,S,Z and
π � R � D � Z = Execπ,R,D,Z .

If an interactive system has no protocol, then this will sometimes tacitly mean that the pro-
tocol is the dummy protocol. Equivalently, a missing adversary sometimes denotes the dummy
adversary, i.e., F � S := F � δ � S and π � R := π � R � D.

If two interactive systems are open, but would become closed by adding an environment
to the system, then we compare them by comparing them in all environments, i.e., a missing
environment designates all environments. Formally, if F�S �Z = π �R�Z for all environments
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Z, we write F �S perf≡ π �R. If F �S �Z and π �R�Z are negligibly close for all environments Z,

we write F�S stat≡ π�R. If F�S �Z and π�R�Z are negligibly close for all PPT environments Z,
we write F � S comp≡ π � R. These notions can be refined by restricting the class of environments.
For instance, we write F � S comp≡ Env π � R to mean that F � S � Z and π � R � Z are negligibly
close for all PPT environments Z ∈ Env.

We can rephrase the definition with the new notation as follows. We say that π securely
realizes F in the R-hybrid model if there exists a PPT simulator S such that F � S comp≡ π � R.

We say that there is statistical security if F � S stat≡ π � R. We say that there is perfect security

if F � S perf≡ π � R.

We will sometimes further overload notation like π � R � D � Z and use it to denote the
random variable describing the trace of the execution, i.e., (k, z) plus the ordered list of the
random tapes of all ITMs plus the ordered list of pairs (name,m) specifying which messages
were sent on which ports and in which order.

3 Adaptive versus Static Security Revisited

In this section, we show a general proof strategy for proving adaptive security. The idea is to
first prove static security and then construct, from the simulator S we built, a new simulator
S ′ for the adaptive case. Roughly speaking, the strategy for S ′ is to follow the algorithm of S,
but every time a new player Pi is corrupted, S ′ cooks up a view for Pi that “looks convincing”,
gives this to the environment, patches the state of S accordingly and continues.

It turns out that there is a class of unconditionally secure protocols and functionalities where
this idea works and our goal will be to characterize this class and point out what the procedure
run by S ′ to handle corruptions must satisfy. We will consider the case of perfect security first
and later show that the results are also true in some cases for statistical security.

So we will assume we are given protocol π, communication resource functionality R, ideal

functionality F, and simulator S such that π �R perf≡ S �F for all static, unbounded environments

that corrupts only subsets from some adversary structure A. We write π � R perf≡ A,static S � F.
We will assume synchronous protocols only.

We will need the following notation.

Definition 2. For an ITM A (ITM) that is part of an interactive system IS, the view of A is a
random variable, written VA(IS), and is defined to be the ordered concatenation of all messages
exchanged on the ports of A and of the random choices of A, i.e., a random trace of IS restricted
to the values seen by A. We use VA(IS|E) to denote the view when conditioned on some event
E occurring, and VA(IS)j to denote the view truncated to contain only the values associated
with the first j rounds – we only consider synchronous protocols, so the notion of round is well
defined.

Definition 3. For a player Pi in a protocol π running with communication resource R, and
environment Z, the conversation of Pi is a random variable, written ConvPi

(Z � π � R), and
is defined to be the ordered concatenation of all messages Pi exchanges with honest players and
R. For a set C of parties we let ConvC(Z � π � R) be the set of ConvPi

(Z � π � R) for Pi ∈ C.
Likewise, the conversation of Z, written ConvZ(Z � π � R), is the ordered concatenation of all
messages Z exchanges with honest players in π and R. For conversations, we denote truncation
and conditioning on events in the same way as for views.

Note that the conversation of a party is a substring of its view. Also note that when a
player Pi is corrupted, its view becomes a substring of the conversation of Z, because Z learns
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from the (up to now) honest Pi the entire view of Pi up to the corruption. We may think of
ConvZ(Z � π �R) as the total information Z gets from attacking the protocol. Recall, however
that Z also chooses the inputs of honest players and learns their outputs.

We will need to assume that the ideal functionality has a certain behavior. First it must
ensure that whenever it receives input or gives output, the time at which this happens is publicly
known, i.e., the functionality leaks the information that a party just received an output as well
as the the name of that party. The second demand is meant to capture the idea that the
functionality should treat players who are corrupt but behave honestly in the same way as if
they were honest. We give an intuitive explanation after the definition.

Definition 4. The ideal functionality F is said to be input-based if the following is satisfied:

Honest behavior equivalence: Consider executions of F where some set A is corrupted from
the start and where a fixed (ordered) set of inputs IF are given to F during the execution2.
In any such execution the outputs produced by F and its state at the end has the same
distribution, in particular the distributions do not depend on the corruptions that occur
during the execution.3

Publicly known input-output provision: Each time F receives an input from Pi, F leaks a
message specifying that some input from Pi has been received.4 Each time F sends a private
output to Pi, it also leaks a message, specifying that an output was given, but not the value.

The “honest behavior equivalence” condition is essentially to the notion of a “well-formed
ideal functionality” [9] and can be intuitively explained as follows: an ideal functionality knows
which players are corrupt and its actions may in general depend arbitrarily on this information.
The condition puts a limitation on this: Consider first an execution where all players outside
A remain honest and F gets IF as input. Compare this to a case where Pi 6∈ A is corrupted,
but F still gets the same inputs. This means in particular that Pi sends the same inputs, so he
“behaves honestly” towards F. Therefore, the demand we make loosely speaking means that as
long as a corrupt player behaves honestly towards the functionality, the actions it takes will be
the same as if that player had been honest.

Our results will also be valid for a slightly more general case where the outputs produced
by F do not have to be the same in all executions, but the outputs in one execution can be
efficiently computed from IF and the outputs in any other execution. For simplicity we do not
treat this general case explicitly in the following.

We also need to make some assumptions on how the simulator S behaves, more precisely
on how it decides on the inputs it sends to F on behalf of corrupted players (recall that once a
player is corrupted, the simulator gets to decide which inputs this player provides to F). We will
assume that S uses a standard technique to decide on these inputs, namely at the time where
the input is given, it looks at the conversation of the corrupt player and decides on its input
based on this. This is formalized as follows:

Definition 5. The simulator S is conversation-based if the following is satisfied:

2 Notice that these inputs will arrive from different parties, depending on whether the player giving input is
honest or is controlled by the adversary/environment in the given execution.

3 Note that technically, in the UC framework F is informed of corruptions, so its state contains information
about who is corrupted and when. So strictly speaking, the state cannot be exactly the same in all cases.
However, we require that up to the fact that different sets of corrupted players are stored, the state is exactly
the same. This can be formalized by saying that F = Fwrap(Fcore) for a core functionality Fcore which has honest
behavior equivalence in the strict sense plus a wrapper Fcore who is informed who is corrupted but does not
forward it to the core, but otherwise acts as a channel between its environment and the core.

4 By leaking a message we mean that the message is sent on the port connected to the adversary/simulator.
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Conversation-based inputs: If S sends an input x to F on behalf of Pi in round j, it computes
x as x = Inpi(c) where Inpi is a PPT function depending only on the protocol and c =
ConvC(Z � S � F)j, where C is the set of corrupted parties.

Honest behavior implies correct inputs: If Pi is corrupt but has followed the protocol hon-
estly then it is always the case that Inpi(c) equals the corresponding input Pi was given from
the environment. By a corrupt Pi following the protocol honestly, we mean that the environ-
ment decides the actions of Pi by running a copy of the code of the honest Pi on the inputs
and messages that Pi receives in the protocol and a uniformly independently chosen random
tape.5

Corruption-consistent input functions: Consider the conversations c = ConvC(Z �S �F)j
of some corrupted parties, and consider the conversations c′ = ConvC′(Z � S � F)j of some
other set of corrupted parties, where both C and C ′ are allowed to be corrupted and C ⊂ C ′.
For all such c, c′ and all input functions Inpi for parties in C, it must be the case that
Inpi(c) = Inpi(c

′).

Note that input functions only have to be defined on conversations that actually occur in π.
Also note that the corruption consistency of the input functions model the following reasonable
intuition: consider a run of π that leads to certain inputs. Now suppose we run π again with the
same random coins, however some players that were honest before are now corrupted, but are
told to play honestly. Since all players make the same moves in the two cases, it is reasonable to
expect that the resulting inputs should be the same, and this is what the corruption-consistency
of the input functions implies. This is in some sense the requirement that the input functions
are “well-formed”.

A typical example of an input function is where Pi provide inputs by secret-sharing them
using polynomials of degree at most t. Here the input function reconstructs the input from the
shares held by honest players using Lagrange interpolation. If the protocol guarantees that the
shares are consistent with some polynomial of degree at most t, even if Pi is actively corrupt,
then the input function only has to be defined on such sets of shares and is indeed corruption
consistent.

Now, suppose we are given an adaptive environment Z and we want to show that the protocol
is secure with respect to this environment. For this, we need to think about how we can use a
static simulator S. Of course, we cannot just run it against Z because S does not know how
to handle corruptions that occur in the middle of the protocol. So instead, we will construct a
family of static environments from Z.

For each set A that Z may corrupt, we construct an environment ZA. Informally, what
ZA does is that it corrupts set A, but initially, it lets all players in A play honestly. It runs
internally a copy of Z and lets it interact with the protocol as usual, where the only difference
is that players in A are run honestly by ZA instead of running by themselves. When Z corrupts
a player in A, ZA gives control of that player to Z and continues, if the corrupted player is not
in A, ZA outputs guess 0 and terminates. If Z outputs a guess c ∈ {0, 1} without corrupting
anyone outside A, then ZA outputs the same guess c. A formal description is found below.

We know that S can do perfect simulation against any of the ZA we just defined and this will
be the basis of the adaptive simulator we construct later. Before we can construct the adaptive
simulator, we need some auxiliary lemmas on how S behaves when interacting with the ZA’s.

Some notation: In the following s will denote an ordered sequence of players, and A(s) will
denote the set of players that occur in s. Es will be the event that the first |s| corruptions done

5 It is slightly tricky to formally and generally define what “following the protocol honestly” means, as an actively
corrupted party takes all its instructions from the environment. However, in our context the definition we give
here will do, where we make a structural requirement on the environment that it contains a copy of the honest
party.
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Agent ZA

Static environment constructed from Z.

1. Initially corrupt set A. Set up internally a (honest) copy P′j of each player Pj ∈ A. Also set up
internally a copy of Z.

2. When the system executes and some Pj ∈ A is activated, then if Pj has not been corrupted by Z
(see next item) ZA does the following: ZA gives a copy of the messages received by Pj to its internal
copy P′j and runs its code to decide (honestly) what to send.

3. If Z decides to corrupt Pj ∈ A, ZA gives the current state of P′j to Z and gives (passive or active)
control of Pj to Z. Note that this means that after this point any messages meant for Pj (from R
or from other players) are forwarded to Z and ZA runs the code of Z to determine what messages
Pj should send.

4. If Z decides to corrupt Pj 6∈ A, ZA halts and outputs the guess 0.
5. If Z halts (having corrupted no player outside A) with guess c ∈ {0, 1}, ZA halts and outputs guess

c.

by the environment are exactly those in s (in the specified order). Below, when we write views
or conversations with subscript s, for instance as in VZ(Z � π � R|Es)s, this means that if a
corruption outside s occurs, we truncate the view at the point where this corruption happens.

Finally, consider the copy of Z that is run internally by ZA(s) where we execute ZA(s) � IS
for some interactive system IS (such as π � R). We then let VZ(ZA(s) � IS|Es) be its view,
conditioned on Es. Since ZA(s) runs Z “in the head” it is clear that VZ(ZA(s) � IS|Es) can be
deterministically and easily extracted from VZA(s)

(ZA(s) � IS|Es), we will write this as

VZ(ZA(s) � IS|Es) = Extr(VZA(s)
(ZA(s) � IS|Es)) .

We can now show that assuming Es occurs, then S can be used to perfectly simulate (a part
of) the view Z sees in the protocol, because it can simulate the view of ZA(s):

Lemma 1. Assuming R is input based, we have

VZ(ZA(s) � S � F|Es)
perf≡ VZ(Z � π � R|Es)s .

Proof. We have VZA(s)
(ZA(s) � S � F)

perf≡ VZA(s)
(ZA(s) � π �R), since S is a good static simulator.

So the two distributions are also the same when conditioning on Es, that is, we have

VZA(s)
(ZA(s) � S � F|Es)

perf≡ VZA(s)
(ZA(s) � π � R|Es) . (1)

The two distributions remain equal if we apply the same deterministic function to both of
them, so if we apply Extr on both sides of (1) we get

VZ(ZA(s) � S � F|Es)
perf≡ VZ(ZA(s) � π � R|Es) . (2)

Moreover, from the point of view of Z (and still conditioning on Es), the only difference
between ZA(s) � π � R and Z � π � R is that in the first case the parties in A are run honestly
by ZA(s) until Z wants to corrupt them while in the second case they run as honest players in
π. This makes no difference to R since it is input based (by the honest behavior equivalence
property) and hence it makes no difference to Z either. So we have

VZ(ZA(s) � π � R|Es)
perf≡ VZ(Z � π � R|Es)s . (3)

The lemma now follows from (2) and (3).
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We also need to consider a connection between simulation against several different ZA(s)’s:
For a sequence of players s, we can append a player Pi (who is not in s) at the end of the
sequence. We write this new sequence as s, i, and define Es,i and A(s, i) as before.

Lemma 2. Assuming R is input based, we have

VZ(ZA(s) � S � F|Es,i)
perf≡ VZ(ZA(s,i) � S � F|Es,i)s .

Proof. Since S is a good static simulator, we have by a similar argument as in the proof of
Lemma 1 that

VZ(ZA(s) � S � F|Es,i) = Extr(VZA(s)
(ZA(s) � S � F|Es,i)) (4)

perf≡ Extr(VZA(s)
(ZA(s) � π � R|Es,i)) (5)

= VZ(ZA(s) � π � R|Es,i) . (6)

Note that, assuming Es,i occurs, the only difference between ZA(s) � π � R and ZA(s,i) � π � R
is that in the latter case Pi is run honestly by ZA(s,i) whereas in the former it plays honestly
as party in the protocol. As R is input based, this makes no difference to R and hence also no
difference to the view of Z as long as we only consider what happens up to the point where Pi
is corrupted. So we have

VZ(ZA(s) � π � R|Es,i)
perf≡ VZ(ZA(s,i) � π � R|Es,i)s . (7)

Using again that S is a good static simulator, it follows in that same way as before that

VZ(ZA(s,i) � π � R|Es,i)s
perf≡ VZ(ZA(s,i) � S � F|Es,i)s . (8)

The lemma now follows from (6), (7) and (8).

We now want to show that if we consider both the view of Z and the inputs and outputs
that F exchanges, we still have a similar result as in the previous lemma. This does not have to
be true in general, but is indeed true if S is conversation-based and if F is input-based:

Lemma 3. Let StF(·) be the state of F after running in some interactive system. Then, if S is
conversation-based and F is input-based, we have

(VZ(ZA(s) � S � F|Es,i), StF(ZA(s) � S � F|Es,i))

perf≡ (VZ(ZA(s,i) � S � F|Es,i)s, StF(ZA(s,i) � S � F|Es,i)s) .

Proof. We already have from Lemma 2 that the view of Z has the same distribution in the two
systems. We then prove the lemma by arguing that because S is conversation-based, all inputs
sent to F follow deterministically from the view of Z and will be the same in both systems, so
since F is input-based, the distribution of its state must be the same as well.

In more detail, consider a view v for Z that occurs with non-zero probability (in both
systems). Note first that by public input-output provision of F, one can infer from v in which
rounds inputs were provided to F or outputs were sent, so these must be the same in the two
systems. Consider a particular input and say it comes from player Pj . We do a case analysis:

Pj 6∈ A(s, i) In this case Pj is honest throughout in both systems. This means Z provides the
input directly to F so the input occurs in v and is the same in both systems.
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Pj = Pi In the system ZA(s) � S � F, Pi is honest and Z provides directly to F the input, say
x, that occurs in v. In ZA(s,i) � S � F, Pi is corrupt but is told to play honestly on input
x as provided by Z. Then S decides on the input to F using the input function on the
conversations of the corrupted parties, and this will result in x by the “honest behavior
implies correct input” property.

Pj ∈ A(s) and has not been corrupted by Z when the input is provided In this case,
in both systems Z provides input x to Pj who plays honestly and S decides the input to
F using the input function on the conversations of the corrupted parties, which will be x,
again by the “honest behavior implies correct input” property.

Pj ∈ A(s) and has been corrupted by Z when the input is provided In this case S will
in both systems decide on the input using the input function on the conversations of the
corrupted parties. Note first that the messages a corrupted party has exchanged with all
players that Z has not corrupted yet is part of v and is therefore the same in both systems
(this includes at least all players outside A(s)). However, from the point of view of S, the
conversation of a corrupted party is not the same in the two systems: in ZA(s) � S � F, it
consists of messages exchanged with players outside A(s), while in ZA(s,i)�S �F it consists of
a subset of these messages, namely those exchanged with players outside A(s, i). However,
since the input functions are corruption-consistent, the input computed by S is nevertheless
the same in the two systems.

In the following, we will consider a situation where we execute the system ZA(s) �S �F until
a point where Es,i has occurred. At this point, ZA(s) would halt. However, by Lemma 3, as
far as Z and the state of F is concerned, we might as well have been running ZA(s,i) � S � F,
and unlike ZA(s), ZA(s,i) would be able to continue even after Pi is corrupted. So if we could
somehow “pretend” that in fact it was the latter system we ran, we would not have to stop
when Pi is corrupted.

To help us do this trick, we consider an execution of ZA(s,i) � S � F where Es,i occurs. Say
that the values of VZ(ZA(s,i) � S � F|Es,i)s and StF(ZA(s,i) � S � F|Es,i)s are v and w. We then
define Dv,w to be the joint distribution of the states of ZA(s,i) and S at the point where Pi is
corrupted, given v and w. Note that since we assume that Es,i occurred, the state of ZA(s,i)
consists of a state of Z that is fixed by v and a view of Pi who has been playing honestly so
far. So we can think of the output of Dv,w as a view of Pi plus a state of S.

Lemma 4. Consider an execution of the system ZA(s,i) � S � F until a point where Es,i has
occurred. Let

VZ(ZA(s,i) � S � F|Es,i)s = v and StF(ZA(s,i) � S � F|Es,i)s = w .

Let ioS be the string of inputs and outputs S has exchanged with F, and let ConvZ be the
conversation of Z in the execution. Then one can sample from the distribution Dv,w if given
ioS and ConvZ . In particular, Dv,w depends only on ioS and ConvZ .

Proof. Recall that ZA(s,i) consists of a copy of Z and copies of players in A(s, i). However, since
Es,i occurs, all players in A(s) have been corrupted earlier by Z, so their entire view until they
were corrupted by Z is part of ConvZ .

The sampling procedure we claim is now very simple: for each possible set of coins for Pi
and for S, we will test if these coins are consistent with the values of ioS and ConvZ we are
given. We do the test by simulating Pi and S running as part of the system ZA(s,i)�S �F. This is
possible because the given values ioS and ConvZ specify the entire communication that Pi and
S should have with F and Z. If the current random coins lead to Pi or S sending a message that
is inconsistent with ioS ,ConvZ , we throw away this set of coins. Finally, we choose randomly a
set of coins among those that survived and output the resulting view of Pi and state of S.
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Note that we only prove that one can sample from Dv,w, we do not claim that one can
sample efficiently from this distribution. In fact, this does not hold in general. In view of the
result of Lemma 4, we will write DioS ,ConvZ instead of Dv,w in the following. We can now specify
the final tool we need to build an adaptive simulator, namely the sampling we have just seen
must be possible to do efficiently:

Definition 6. Consider a probabilistic algorithm Patch that takes as input strings ioS and
ConvZ of the form as specified in Lemma 4. Patch is said to be a good sampling function if it
satisfies the following:

– It is polynomial time computable.

– The output Patch(ioS ,ConvZ) is distributed according to DioS ,ConvZ .

We are now finally ready to specify the main result of this section:

Theorem 1. Assume we are given a simulator S for protocol π and functionality F such that

π � R perf≡ A,static S � F. Assume further that S is conversation-based, F and R are input-based,
and that we are given a good sampling function Patch. Then there exists a simulator S ′ such

π�R perf≡ A,adaptive S�F, i.e., π�R�Z perf≡ A,adaptive S�F�Z for all for all adaptive and synchronous
environment Z corrupting only subsets from A.

Proof. We specify the algorithm of our adaptive simulator S ′. To do this, suppose that if we
are given a string ioS containing inputs and outputs that S has exchanged with F on behalf of
corrupted players in a set A. Suppose we are also given the inputs and outputs ioi that some
honest player Pi has exchanged with F in the same execution. Then we can merge these strings
in a natural way: we define Merge(ioS , ioi) to be the string that contains, for every protocol
round, the inputs to F that occur in either ioS or ioi, and also outputs from F that occur in
either ioS or ioi. Note that Merge(ioS , ioi) is a string of inputs and outputs that S might have
exchanged with F if A ∪ Pi had been the corrupted set (and Pi had behaved honestly).

Agent S ′

Adaptive simulator constructed from S.

1. Set s be the empty sequence. Set ioS ,ConvZ to be the empty strings. Set up a copy of S in its initial
state. Tell S as input (in the preamble) that the empty set is the corrupted set.

2. Whenever S ′ is activated, if the input is a request to corrupt a new player Pi, it goes to the next
step. Otherwise, it runs S on the input received and sends the output S produces on the correspond-
ing output port of its own. Messages exchanged with Z are appended to ConvZ , inputs/outputs
exchanged with F are appended to ioS .

3. Set s = s, i. Send a request to corrupt Pi to F and get s string ioi back. Set ioS = Merge(ioS , ioi).
Compute (vi, St′) = Patch(ioS ,ConvZ). Put S in state St′, send vi to the environment, append vi
to ConvZ and go to Step 2.

To see that this simulation works, note first that it is obvious that ConvZ contains at all
times the conversation of Z so far, and that ioS contains at all times the inputs and outputs we
have exchanged with F so far.

We can now show the following

Claim: whenever S ′ enters step 2 the state of Z,S and F are distributed exactly as in a run of
ZA(s) � S � F where Es occurs.
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We show this by induction: the claim is trivial when we enter step 2 the first time since
here s is empty. So consider a later stage where we enter step 2, and write the current s as
s = s′, i. The previous time we entered step 2, by induction hypothesis, the state of Z,S and
F were distributed exactly as in a run of ZA(s′) � S � F where Es′ occurs. During the following
execution of step 2, S ′ simply ran S, so when the i’th player is corrupted, the state of the state
of Z,S and F were distributed exactly as in a run of ZA(s′) � S � F where Es′,i occurs. Now, by
Lemma 3, the views (and hence state) of Z and the state of F are distributed as in a run of
ZA(s′,i) � S � F where Es,i occurs.

Then Patch was run and the claim now follows by assumption on Patch, if we show that
the inputs ConvZ , ioS we use have the distribution they would have in ZA(s′,i) � S �F, given the
current values of the view of Z and the state of F. This is trivially true for ConvZ as it follows
deterministically from the view of Z. For ioS , note that the inputs to F that occur in this string
also follow deterministically from the view of Z, we argued this in the proof of Lemma 3. But
since F is input-based, the resulting outputs from F will be the same regardless of whether we
run ZA(s) or ZA(s′,i), and so ioS has the desired distribution.

We can now argue that VZ(Z � π � R)
perf≡ VZ(Z � S ′ � F) which clearly implies the theorem.

We will consider the executions of step 2 one by one. In the first execution, by the above
claim, the state of Z,S and F are distributed exactly as in a run of ZA(s) � S � F where Es

occurs. But here s is the empty sequence so Es always occurs. In step 2, we simply run S, so by
Lemma 1, we obtain a perfect simulation of Z’s view until the point where is halts or corrupts
the first player. In particular, in the latter case, that player is chosen with the distribution we
would also see in a real execution of the protocol. When we have executed step 3, again by the
claim, the state of Z,S and F are distributed exactly as in a run of ZA(s)�S �F where Es occurs,
and where s now contains one player. Again by Lemma 1, while executing step 2 we obtain a
perfect simulation of Z’s view from the point where it corrupts the first player until the point
where is halts or corrupts the second player.

Repeating this argument at most n times (since Z can corrupt only so many players), we
see that we get a perfect simulation of the entire view of Z.

Using Theorem 1 In order to use Theorem 1 on a concrete protocol, one has to first construct
a static simulator S, verify that is is conversation-based and that the target functionality F is
input-based. This is usually quite easy. Then one has to construct an efficient procedure Patch.
This may seem harder because the formal definition is quite technical and involves two static
environments constructed from an arbitrary adaptive environment.

We therefore give an explanation in more “human” language of what Patch must be able to
do. Recall that when Patch is called, players in the sequence s were corrupted earlier and a new
player Pi has just been corrupted. We know ioS , i.e., all the inputs and outputs that players in
s, i have exchanged with the functionality F, and we know ConvZ , that is, the protocol execution
as seen by Z until now. Patch now has two tasks that must be solved efficiently:

The first one is to construct a complete view of Pi playing honestly in the protocol until
now, and this must be consistent with ioS and ConvZ . In particular, ioS contains the inputs and
outputs Pi has exchanged with F and ConvZ contains the messages that Pi has sent to players
who were corrupted earlier. The reason why this can be feasible for, e.g., protocols based on
secret sharing is that the corrupted players (actually, Z) have seen less than t shares of the
secrets of Pi. This leaves the secrets undetermined, so when we now learn the actual secret
values of Pi (from ioS), we are able to create a full set of shares that is consistent with the
secrets and the shares of the corrupt players.
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The second task is to create a new state for the simulator S. This must be the state as it
would have looked if we had run S with all players in s, i being corrupt from the start, but
where Pi plays honestly until the current point in time.

We point out that UC proofs in the existing literature often use a strategy for building a
static simulator S that actually makes both tasks easier: Initially, S sets up a internally copies
of the honest players in the protocol, and gives them dummy inputs. It now simulates by letting
these “virtual players” execute the protocol with the corrupt players (controlled by Z). The
state of S is simply the state of the virtual players. Now, when Pi is corrupted, Patch will
compute how the view of the virtual copy of Pi should change, now that we know its actual
inputs, and will then update the state of the other virtual players to make everything consistent,
including ioS and ConvZ . This creates the required view of Pi and the new state of S is the
state of the updated virtual players, except that of Pi. It is not hard to see that if one can show
that Patch generates correctly distributed states for the internal players, given ioS and ConvZ ,
then Theorem 1 applies and we get adaptive security.

Extension to Statistical Security It is not clear that Theorem 1 is true for statistical
security in general. But it not hard to see that it holds in an important special case: suppose
we can define an “error event” E such that E occurs with negligible probability, and we can
make a static simulator S that simulates perfectly if E does not occur. Then we can redo the
proof of Theorem 1 while conditioning throughout on E not occurring. We leave the details to
the reader.

4 Adaptive UC Security of the BGW protocol

The protocol. For simplicity we will only consider security of the passively secure version of
BGW. The analysis extend to the active case using known fairly standard arguments from
secret-sharing. We assume the reader is familiar with the protocol but as a reminder, each
secret value a in the computation is secret shared using a polynomial fa of degree at most t of
finite field F, where the protocol is secure against corruption of t of the n players, and where
t < n/2. Each player Pi then holds fa(i), and fa(0) = a.

To add secret shared values a, b, each player Pi locally computes fa(i)+fb(i) which effectively
means we now have secret shared a+ b using polynomial fa + fb.

To multiply secret shared values a, b, each player Pi locally computes fa(i)fb(i) = (fafb)(i),
and secret shares this value using a random polynomial gi, i.e., he sends gi(j) to each player Pj .
Let r1, ..., rn be the Lagrange coefficients with the property that

∑n
i=1 rih(i) = h(0) for any h of

degree less than n. Then each player Pj computes cj =
∑n

i=1 rigi(j). If we define fc =
∑n

i=1 rigi,
then since the degree of fafb is less than n, it is not hard to see that fc(0) = fa(0)fb(0) = ab
and that fc(j) = cj so that we have effectively secret shared the product c = ab6.

Note that since each honest player contributes a random polynomial gi, this protocol ensures
that the polynomial used to secret share the product is a random polynomial of degree at most
t with the only constraint that it determines ab as the secret.

To compute a function securely, players secret share their inputs, work their way through an
arithmetic circuit computing there desired function and finally open the results, by broadcasting
their shares. For simplicity we will assume that each player Pi has a single input xi and we want
to compute a single public output y.

6 This is actually not quite the original BGW multiplication protocol, but it is simpler to consider this variant
for our purposes. As discussed in the introduction, it is in fact unclear where the protocol can be proven
adaptively secure without this modification.
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The functionality. The natural functionality one would expect this protocol to implement is
one that gets input from all players, computes the desired function and outputs the results to
everyone. Such a functionality is clearly input based: as long as the inputs it gets are the same,
the result will be the same, regardless of who is corrupted.

The simulator. A static simulator for the protocol is very easy to describe: if the player set A
is corrupted from the start, then the simulator sets up internally dummy players P̃i for each
Pi 6∈ A and gives them dummy inputs. The dummy players will execute the code prescribed by
the protocol.

The simulator now lets the dummy players execute the protocol with the players in A, who
are controlled by the environment. When a player in A secret shares his input, the simulator
reconstructs the input from the shares that are sent to the honest (dummy) players, and passes
these inputs to the functionality. This gives a perfect simulation of all steps up to the phase
where outputs are opened: the environment never sees more than t shares of any value held by
honest players, and hence in its view, there is no difference between dummy and real players.

When an output y is about to be opened, the simulator gets the correct output y from the
functionality. The players hold a polynomial fy′ that represents the output, but of course we
cannot expect that y′ = y since y′ was computed from dummy inputs. The simulator therefore
computes a polynomial g of degree at most t with the property that g(0) = y − y′ and g(i) = 0
for all Pi ∈ A. Note that if less than t players are corrupted these constraints do not determine
g, so a random polynomial satisfying the constraints is chosen.

The simulator now pretends that in fact the polynomial fy = fy′ + g is held by the players,
which is possible as only the state of dummy players need to be changed. Now the opening will
indeed determine the correct y.

It is very easy to see that this is a perfect static simulator and that it is conversation based.

An assumption on the circuit. Before we continue we describe an assumption we will make on the
structure of the circuit: we will assume that each output comes directly out of a multiplication
gate. This will make the proof below much easier and is perhaps even essential. This can be
assumed essentially without loss of generality: we can just add multiplication by dummy value
1 if needed. The effect of this assumption is that the polynomial that is opened is random of
degree at most t with the only constraint that it determines the correct output. In particular it
is independent of all random choices made by players earlier.

Patching the views. We now show how to construct the procedure Patch that is required before
we can use our main theorem to conclude adaptive security. So we assume that a player Pk may
be corrupted in any round during the protocol. If this happens, the simulator learns the true
value of the input xk and then it has to show the internal state of Pk to the environment. For
this, we patch the state of P̃k so that it is consistent with xk and the rest of the values shown
to the environment during the execution. Also the state of the remaining dummy players must
be patched to be consistent with the state we created for Pk. We can then continue the static
simulation from this point.

We describe here the case where Pk gets corrupted after the protocol is completed. Then,
handling corruption at an earlier stage will simply consist of only doing a smaller part of the
patching steps (namely up to the point where the player gets corrupted). Basically, the way
to patch the state is to recompute every honest dummy player’s share which is affected by the
input of Pk, while not changing any of the shares that corrupted players have seen. This is done
as follows:
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- Input Sharing. Based on xk we compute a new random secret sharing of xk which is consistent
with the (strictly less than t) shares shown to the environment and fxk(0) = xk and updates
the shares of the dummy players to be consistent with fxk .

- Addition or Multiplication by a constant. Here the players only do local computations so we
can simply recompute all the shares of dummy players which were affected by fxk .

- Multiplication. The first round in the processing of a multiplication gate only has local
computations and hence, we recompute local value as above. Then in the second round, new
shares are distributed of the product of two polynomials fafb. If fxk is involved in one of
these polynomials, we compute a new random secret sharing of fa(0)fb(0) as it did for xk
in input sharing. In the third and last round the simulator is again able to recompute the
shares of the dummy parties by local computations. Recall that the recombination vector
is independent of (fafb)(X); it is the same for all polynomials of degree at most n, so it is
indeed possible to redo this step with the new product.

- Output Reconstruction. We are given the correct output value y. Note that the environment
has already seen (points on) a polynomial fy that was created earlier. Therefore we must
patch the state such that Pk ends up holding fy(k) as his share. Recall that in the real
protocol, fy is produced by the multiplication gate protocol. Our patching procedure applied
to this gate produces a polynomial fi for each player, and then the local recombination step
determines a polynomial f =

∑
i∈S rifi. Since the patching never changes the shares of

players in C, we have fyj (i) = f(i) for each Pi ∈ C. But we also need that fyj (k) = f(k),
and this is not guaranteed.

To correct for this, note that there must exist an honest player Pi0 such that ri0 6= 0,
otherwise the corrupt players could reconstruct the product on their own. We now choose a
random polynomial g of degree at most t, subject to

g(0) = 0, g(i) = 0 for all Pi ∈ C, and g(k) = r−1i0 (fyj (k)− f(k)).

This is possible since at most t− 1 players could be corrupted before Pk, so we fix the value
of g in at most t + 1 points. We now adjust the state of dummy player P̃i0 , such that we
replace its polynomial fi0 by fi0 +g. This keeps the state of Pi0 internally consistent because
fi0(0) = (fi0 + g)(0), and the shares of players in C are unchanged. However, we have now
replaced f by f + ri0g, and clearly (f + ri0g)(k) = fyj (k) as desired.

It is not hard to see that Patch as described above indeed produces polynomials for Pk
and the remaining dummy players that are random, subject to the constraint that they are
consistent with xk, and the adversary’s view so far. We therefore conclude that the protocol is
adaptively secure.

Is the assumption on the circuit necessary? The intuitive reason why the above proof technique
needs the assumption that every output value comes from a multiplication gate is as follows:
When Patch is started, the environment has already been shown Pk’s share of the output y,
and this share is a result of a random choice that was made by the static simulator earlier.
But now Patch produces a view for Pk starting from the input xk and working its way forward
through the protocol, making several random choices underway. This also leads to a share of y,
but there is no reason to expect that it will agree with the one the environment has seen, as
it should. However, because the polynomial used for y is produced from independent random
choices from all honest players, we can adjust the random choice of a dummy player so that
Pk’s view will indeed lead to the right share of y.

One way to see this is on a higher level is as follows: what Patch needs to do is find random
choices for Pk and the dummy players that are solutions to a set of equations that describe
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what the choices must satisfy (namely the resulting views are consistent with xk and the view
of the environment). The multiplication gate assumption implies that the equations are linear
and easy to solve, and so certainly simplifies the proof.

If we do not make this assumption, the resulting equations do still have a solution, because
static security implies adaptive security in the MR definition, and this essentially means that
there is a patching procedure, which however is not guaranteed to be efficient. At the time of
writing, it is open whether an efficient solution exists. Note that since the local computations of
players involve multiplications, it is not clear that the equations one needs to solve are linear.
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10. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure protocols (extended abstract).
In ACM [1], pages 11–19.

11. R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty computations secure
against an adaptive adversary. In J. Stern, editor, Advances in Cryptology - EuroCrypt ’99, pages 311–326,
Berlin, 1999. Springer-Verlag. Lecture Notes in Computer Science Volume 1592.

12. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic
encryption. In Safavi-Naini and Canetti [18], pages 643–662.

13. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for
protocols with honest majority. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, pages 218–229, New York City, 25–27 May 1987.

14. U. Maurer. Constructive cryptography - a new paradigm for security definitions and proofs. In S. Mödersheim
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