
Multi-Vendor PayWord with Payment Approval

Andrea Huszti

Faculty of Informatics
University of Debrecen

Debrecen, Hungary
huszti.andrea@inf.unideb.hu

Abstract. We extended the PayWord scheme, it supports shopping at
multiple vendors without an on-line broker or an on-line secure database.
The credit-based system uses one hash chain, hence besides the secret
key only the seed and a random value should be securely stored. The
proposed scheme is analyzed in applied pi calculus, we prove that it fulfills
payment approval, secure payment authorization, secrecy of payment
information and unreusability.

1 Introduction

In recent years electronic commerce has grown rapidly as Internet and web tech-
nologies have progressed. Usually content and service providers charge very small
amount (e.g. less than a dollar), hence a special payment solution is required,
called micropayment. Compared to macropayment schemes, the computational
time of micropayment schemes are less because it uses the one-way, collision-
resistant hashing extensively but not public key cryptosystems. One can find
more information about micropayments in [11].

One of the most well known micropayment scheme is the PayWord scheme [7].
PayWord is designed to be one-vendor, thus if we apply it for multiple vendors,
it does not protect against double spending. There are three main categories of
multi-vendor solutions with double-spending prevention. Some schemes require
an on-line broker for changing vendors [6], these are called semi-online systems.
Some solutions expect an on-line database [5] that is available for all vendors.
Schemes from the third category use black lists [9], [10], meaning brokers main-
tain a list of users who did not pay for the products or services.

We have introduced definition of payment approval in [3], where we exten-
ded Payword that it avoids misunderstandings between the consumer and the
vendor that would cause penalty for the vendor or ruin its reputation. In case of
micropayment schemes costs should be minimized, involving an on-line broker
or maintaining an on-line database increase expenses and black lists do not pre-
vent the first violations. We modified PayWord in a way that it is applicable for
multiple vendors and also provides payment approval. We did not increase the
number of asymmetric key operations or the number of asymmetric key pairs,
we use only one hash chain that requires two random values stored securely.



Electronic payment systems have critical security requirements, hence the
design of its cryptographic protocol requires special care. Substantial evaluation
should be provided in order to prevent flaws. Although there are several Pay-
Word based scheme ([5],[6],[9],[10]), they do not give formal security evaluation.
PayWord is formalized in spi calculus in [2] and we gave proof for payment app-
roval, payment authorization in applied pi calculus with the help of ProVerif [4]
in [3]. In case of the proposed scheme besides payment approval and payment
authorization, we also provide proof for double spending detection with labeled
semantics.

2 Payment approval for PayWord

Let us review the extended PayWord micropayment scheme according to [3].
We have three participants: a user U , a vendor V and a broker B. The protocol
consists of three phases: user-broker, user-vendor and broker-vendor relationship.
We should emphasize that only the user-vendor relationship is short-term the
others are assumed to be long-term. According to basic PayWord [7] user-broker
and broker-vendor relationship could happen off-line. We consider the case when
U registers on-line.

Let us describe the extended PayWord micropayment scheme in details. We
employ digital signatures, where user’s and broker’s public and secret keys are
denoted byK+

U ,K
+
B andK−U ,K

−
B , respectively. {M}K−i denotes a message signed

by K−i , where i ∈ {U,B}.

User-Broker relationship
User U initiates a relationship with broker B by requesting an authorized

PayWord Certificate. U transports his credit-card number and his public key
K+
U on an authenticated encrypted channel.

1. U → B : U,K+
U

B digitally signs B, U , K+
U and E with key K−B , where E denotes the expira-

tion date of the certificate. This certificate ensures any vendor that the amount
will be paid-off before date E, since U is able to cover it.

2. B → U : {B,U,K+
U , E}K−B

User-Vendor relationship
For achieving payment approval we have extended the basic PayWord scheme

with vendor authentication. Secret MAC key is sent to the vendor encrypted.
This solution does not increase the complexity significantly, since public key
encryption should be run only once, at the beginning of the relationship.

Before shopping U generates a payword chain: w0, w1, . . . wn. First U gene-
rates a random number wn, then calculates

wi = H(wi+1),



where i ∈ {n − 1, n − 2, . . . , 0}. We call w1, . . . wn paywords, w0 is the root of
the chain. U chooses the number n arbitrarily beyond the requested amount and
generates a certificate containing the vendor’s identification information V , his
PayWord Certificate, the commitment w0, the actual date D and the MAC key
encrypted. This certificate is signed by the user’s secret key K−U .

3 U → V : {V, {B,U,K+
U , E}K−B , w0, D, {K}K+

V
}K−U

The vendor verifies U ’s signature by public key K+
U , and B’s signature by

K+
B , checks whether D is before E and stores w0 with the user information.

Following U sends order information and a MAC proof for the vendor con-
taining order information and a payword. Then the vendor sends the requested
product on an encrypted channel without verifying the payword, we should ment-
ion that MAC verification happens after the user receives his product and sends
the payment. In case of micropayments loosing the amount of one payment is not
a large loss, if either the hash or the MAC verification is unsuccessful, then the
vendor might decide to refuse other purchases. A payment is a pair of a payword
and the corresponding index (wi, i), where i ∈ {1, 2, . . . , n}. It is important that
the user sends his paywords starting from w1, the w2 and so on.

4.1 U → V : OrderInf1,Mac((OrderInf1, w1),K)

V → U : Product1

U → V : (w1, 1)

...

4.n U → V : OrderInfl,Mac((OrderInfl, wl),K)

V → U : Productl

U → V : (wl, l)

Vendor V verifies the received payword wi by applying i times the hash
function on it, i.e. checks Hi(wi) = w0, in case of the first shopping, otherwise
verifies wi with the stored payword wj , where j < i, i.e. checks Hi−j(wi) = wj .
V also verifies correctness of the MAC value, with help of order information and
the payword.

Vendor-Broker relationship
V sends all necessary information to B for the pay-off. V transmits the certi-

ficate generated by U , the last payword received from U and the corresponding
index.

5. V → B : {V, {B,U,K+
U , E}K−B , w0, D}K−U , wl, l

B verifies the signature of user’s certificate with K+
U , checks whether identity

information of the vendor received matches with V , the expiring date and validity
of the payword, i. e. H l(wl) = w0. If all verifications hold, then B pays the proper
amount to V .



3 Shopping at Multiple Vendors

Users in advance should decide about the vendors they would like to connect
with and generate their hash chain. The hash chain is generated in a way that
even if a vendor receives a hash value, he is not able to calculate other vendors’
paywords. The user asks the broker to authorize his hash chain commitments to
prove that he can cover his purchases. The system is credit-based, hence users
are allowed to pay for as many as paywords posteriorly as he used up. We do not
need the broker to be on-line, since his authorization is necessary only during
preparation and only once. Users are allowed to spend each payword only at the
vendor that the corresponding commitment assigned to, the vendor can verify
whether a payword is spent before or not, hence we do not need an on-line
database.

We describe the modified scheme in details. Let us denote the vendors by
V1, V2, . . . , Vj , the user and the broker by U and B, respectively. The user pos-
sesses a (K−U ,K

+
U ) signature key pair for authentication, the broker also has a

(K−B ,K
+
B ) signature key pair for generating a certificate verifying that U is able

to afford his shopping and each vendor has a (K−Vi ,K
+
Vi

) public key encryption
key pair for key exchange. We would like to mention, that we did not increase
the number of keys necessary for multiple vendor shopping comparing to the one
vendor one.

We apply one payword hash chain per user, hence each user generates a
random seed wn and calculates hash values. The same hash chain is applied
for all vendors, hence users need to generate another random value denoted by
v. Both random values are kept secret and stored securely. The hash chain is
generated as follows.

Each user should decide about the number of paywords he would like to
spend at each vendor. Let us assume that U would like to spend ki paywords at
Vi, where i = 1, . . . , j, hence wn = wj,kj . In general

wi,l =

{
H(Encv(wi+1,0)), if l = ki,
H(wi,l+1), if 0 ≤ l < ki.

Paywords wi,1, wi,2, . . . , wi,ki can be spent at vendor Vi, the corresponding
commitment is wi,0. Since the last payword U is able to spend depends on v,
hence Vi+1 cannot calculate wi,1, wi,2, . . . , wi,ki .

User-Broker relationship
After generating the payword chain, U transports his credit-card number,

his public key K+
U , the list of vendors V1, V2, . . . , Vj and the list of commitments

w1,0, w2,0, . . . , wj,0 on an authenticated encrypted channel to B.

1. U → B : U,K+
U , (Vj , wj,0), . . . , (V2, w2,0), (V1, w1,0)

B digitally signs all data received, B and E with key K−B , where E denotes
the expiration date of the certificate.

2. B → U : {B,U,K+
U , E, (V1, w1,0), . . . , (Vj , wj,0)}K−B



The certificate received from B is called PayWord certificate, and we denote
it by CU . The main difference between the one-vendor and multi-vendor solutions
is that commitments are signed by the broker. Each vendor is able to verify all
the paywords sent by the user with the help of these commitments. The system
is credit-based, hence the user is able to spend a certain amount of money in
advance and later, e.g. once a month, refunds it to the broker.

User-Vendor relationship
Users can spend his paywords at different vendors. U chooses a vendor Vi and

generates a fresh symmetric encryption key KVi. The user sends his PayWord
certificate, the actual date and the encrypted symmetric key digitally signed.

3. U → Vi : {CU , D, {KVi}K
V

+
i

}KU−

The vendor verifies U ’s signature by public key K+
U , the PayWord certificate

by K+
B . V decrypts the symmetric key KVi and if D is before E, then stores

(wi,0, 0), U and KVi. User sends the corresponding order information and the
proof of what he would like to buy and for what price. The proof is a MAC value
generated with the hash of KVi. Vendor sends the encrypted product, we might
think of a song or an article. After receiving the product the user sends the next
payword.

4.1 U → Vi : OrderInf1,Mac((OrderInf1, w1), H(KVi))

4.2 Vi → U : {Product1}KVi
4.3 U → Vi : (w1, 1)

V verifies whether the MAC value is valid, i.e. the proof received before is
the MAC value of the proper order information and the payword. Paywords as
hash values prove that they are fresh and originate from the user. V also verifies
whether the hash value of the payword received equals to the one stored in his
database. If all verifications are correct, then modifies the payword stored to the
new one and updates the index.

...

4.ki U → Vi : OrderInfki ,Mac((OrderInfki , wki), H(KVi))

Vi → U : {Productki}KVi
U → Vi : (wki , ki)

Vendor-Broker relationship
Vendor Vi sends the PayWord certificate, the payword stored with the cor-

responding index and the actual date to B.

5. Vi → B : {CU , D, {KVi}K
V

+
i

}KU− , (wki , ki), Vi

B verifies the user’s PayWord certificate, checks its validity according to the
date D and calculates Hki(wki), whether it is wi,0. If all values are valid, then
B pays the proper amount to Vi.



4 Applied pi calculus

The applied pi calculus is based on the pi calculus. Detailed description of this
topic can be found in [1]. The calculus assumes an infinite set of names, an infinite
set of variables and a signature. A signature

∑
is a set of function symbols, each

with an arity. A function symbol f with arity 0 is a constant symbol. Let us
denote channel names by a, b, c, and names of any sort by m,n. Also, let x, y, z
range over variables.

L,M,N, T, U, V ::= terms
a, b, c, . . . , k, . . . ,m, n, . . . , s name
x, y, z variable
f(M1, ...,Ml) function application

The grammar for processes is the following:

P,Q,R ::= processes
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (new)
if M = N then P else Q conditional
u(x).P message input
u〈N〉.P message output

Replication of process P means infinite number of copies of P running in
parallel. Name restriction process νn.P creates a new, private name and behaves
as P . Finally, process u(x).P is ready to input from channel u, then to run P
with the message replaced for the formal parameter x, and process u〈N〉.P
is ready to output N on channel u, then to run P . We extend processes with
active substitutions. We denote the substitution that replaces the variable x with
the term M by {M/x}. With active substitutions we capture the knowledge
exposed to the adversarial environment. For modeling multi-vendor PayWord
scheme, we add a restriction to active substitution as follows: νx.({M/x}|P )
that corresponds to let x = M in P .

A frame is an extended process built from 0 and active substitutions, which
are composed by parallel composition and restriction. Every extended process A
can be mapped to its frame ϕ(A) by replacing every plain process with 0. The
frame represents the static knowledge output to the environment.

4.1 Operational semantics

The signature is equipped with an equational theory E, that is a set of equations
of the form M = N , where terms M,N are defined over the signature. Equality
is the smallest equivalence relation on terms, that contains E and is closed under
application of function symbols, substitutions of terms for variables and bijective



renaming of names. We give formalization for cryptographic primitives with the
help of equational theory as follows:

Hash function, message authentication code. We represent a oneway hash
function as a unary function symbol H with no equations. The absence of an
inverse for H models the onewayness of H. Similarly we denote a oneway MAC
function as a binary function symbol Mac, where the second argument corres-
ponds to the secret key of MAC.

fun H/1.
fun Mac/2.

Symmetric encryption. We take binary function symbols senc and sdec for
encryption and decryption, respectively, with the equation: sdec(senc(x, y), y) =
x. Here x represents the plaintext and y the secret key.

fun senc/2.
reduc sdec(senc(x, y), y) = x.

Asymmetric encryption. In case of asymmetric encryption we have to ge-
nerate a keypair, a public and a secret key. We have an unary function sym-
bol pk for generating the public key, where the secret key is the argument.
Similarly to symmetric encryption we represent asymmetric encryption and
decryption with binary function symbols aenc and adec with the equation of
adec(aenc(x, pk(y)), y) = x, where x denotes the plaintext and y is the secret
key.

fun pk/1.
fun aenc/2.
reduc adec(aenc(x, pk(y)), y) = x.

Digital signatures. In order to formalize digital signatures that also employ
secret and public keys we use function symbol pk for generating public keys, and
binary function symbols sign, checksign. We interpret digital signatures with
message recovery, meaning we have equation checksign(sign(m, k), pk(k)) = m,
where m is the message and k is the secret key.

fun pk/1.
fun sign/2.
reduc checksign(sign(m, k), pk(k)) = m.

We define context C[ ] to be an extended process with a hole. An evaluation
context is a context whose hole is not in the scope of a replication, a conditional,
an input, or an output.

Furthermore operational semantics is defined in terms of structural equiva-
lence (≡), internal reduction (→) and labeled reductions. Structural equivalence
captures rearrangements of parallel compositions and restrictions and the equati-
onal rewriting of the terms in a process. Internal reduction defines the semantics
of process synchronization and conditionals. For detailed description we refer to
[7].

While internal reduction rules are applied for executing a process without
contact with its environment, labeled semantics enables us to reason about the



interaction between processes and the environment. We have a ternary relation
A

α−→ B, where α is a label of the form a(M), a〈u〉, νu.a〈u〉 such that u is
either a channel name or a variable. The following rules are given in the labeled
operational semantics:

In a(x).P
a(M)−−−→ P{M/x}

Out-Atom a(u).P
a〈u〉−−−→ P

Open-Atom A
a〈u〉−−−→A′ u 6=a

νu.A
νua〈u〉−−−−→A′

Scope A
α−→A′ u does not occur in α

νu.A
α−→νu.A′

Par A
α−→A′ bv(α)∩fv(B)=bn(α)∩fn(B)=0

A|B
α−→A′|B

Struct A≡B B
α−→B′ B′≡A′

A
α−→A′

We should mention that c〈M〉.P νx.c〈x〉−−−−−→ P | {M/x}. For the full derivation
see [8].

5 Formal security evaluation

5.1 Modeling Multi-Vendor PayWord

The main process.
As a first step secret and public keys are generated and we issue identity

numbers by applying function host for all participants. Identity information and
public keys are made public.

process , νsskU .νsskB .νeskB .νeskV1 . . . . .νeskVj .
let spkU = pk(sskU ) in let spkB = pk(sskB) in let epkB = pk(eskB) in
let epkV1 = pk(eskV1) in . . . let epkVj = pk(eskVj ) in
let hU = host(spkU ) in let hB = host(spkB) in
let hV1 = host(epkV1) in . . . let hVj = host(epkVj ) in
a〈hB, epkB , spkB〉.a〈hU, spkU 〉.a〈hV1, epkV1 , . . . , hVj , epkVj 〉.
((!processU) | (!processB) | (!processV1) | . . . | (!processVj))

The user process.
Our user-broker relationship is managed on-line. We define several events.

UacceptsB event happens after authenticating the broker via asymmetric key
decryption, V alidCertificate proceeds if the certificate received from the broker
is valid. ViReadytoPurchase runs at the beginning of the shopping process with
Vi and UViEndsPaymentki happens after transferring the kith payword.



processU , νwj,kj .νv. let wj,kj−1 = H(wj,kj ) in let wj,0 = H(wj,1) in
let wj−1,kj−1 = H(senc(wj,0, v)) in . . . let w1,0 = H(w1,1) in
νK.a〈aenc(sign((K,hU, hB), sskU ), epkB), hU〉.a(mes).

let (n,= hU) = sdec(mes,K) in UacceptsB〈hU, hB,K, n〉.
a〈senc((CardInf, hU, n,wj,0, hVj , . . . , w2,0, hV2, w1,0, hV1),K)〉.
a(CU). let (= hB,= hU,E,= wj,0,= hVj , . . . ,= w1,0,= hV1) =

= checksign(CU, spkB) in V alidCertificate〈hU, hB,K, n〉.
(Vjshopping|Vj−1shopping| . . . |V2shopping|V1shopping)

Vishopping , a(s,= hVi).νKVi.ViReadytoPurchase〈hU, hVi〉.
a〈sign((CU,D, s, aenc(KVi, epkVi)), sskU )〉.
a〈OrderInf1,MAC((OrderInf1, wi,1), H(KVi))〉.
a(msg1).let page1 = sdec(msg1,KVi) in
a〈wi,1〉.
. . .
a〈OrderInfki ,MAC((OrderInfki , wi,ki), H(KVi))〉.
a(msgki).let pageki = sdec(msgki ,KVi) in

a〈wi,ki〉.UViEndsPaymentki〈hU, hVi〉

The broker process. Event BconnectstoU happens right before the broker
establish communication with the user. BacceptsU comes after authenticating
the user via symmetric key decryption. Finally BpaystoVi proceeds if all data
sent by vendor Vi is valid.

processB , a(s,= hU).let sig = adec(s, eskB) in
let (K,= hU,= hB) = checksign(sig, spkU ) in

νn.BconnectstoU〈hU, hB,K, n〉.
a〈senc((n, hU),K))〉.a(mes).let inf = sdec(mes,K) in
let (CardInf,= hU,= n,wj,0, hVj , . . . , w1,0, hV1) = sdec(mes,K) in

BacceptsU〈hU, hB,K, n〉.
a〈sign((hB, hU,E,wj,0, hVj , . . . , w1,0, hV1), sskB))〉.
(Vjchargeoff |Vj−1chargeoff | . . . |V2chargeoff |V1chargeoff)

Vichargeoff , a(signMU,wki , ki,= hVi).let(CU,D, x, y) = checksign(signMU, spkU ) in
let (= hB,= hU,= E,= wj,0,= hVj , . . . ,= w1,0,= hV1)) =
= checksign(CU, spkB) in

if Hki(wki) = wi,0 then BpaystoVi〈hVi, hB〉

The vendor process.

ViAcceptsMU denotes the event that vendor Vi successfully authenticated
the user via digital signature and the payword certificate is valid.

ViAcceptsPaymentl happens if the proof of payment approval and the lth pay-
word are valid. ViRejectsPaymentl runs if the payword received is not valid.



processVi , νs.a〈s, hVi〉.a(signMU).
let (CU,D,= s, enckey) = checksign(signMU, spkU ) in
let (= hB,= hU,E,wj,0, hVj , . . . , wi,0,= hVi, . . . , w1,0, hV1) =
= checksign(CU, spkB) in let KVi = adec(enckey, eskVi) in

ViAcceptsMU〈hU, hVi〉.a(OrderInf1, proof1).
a〈senc(page1,KVi)〉.a(pw1). if H(pw1) = wi,0 then
if proof1 = MAC((OrderInf1, pw1), H(KVi)) then

ViAcceptsPayment1〈hU, hVi〉.
. . .
a(OrderInfk, proofk).a〈senc(pagek,KVi)〉.a(pwk).
if H(pwk) = pwk−1 then
if proofk = MAC((OrderInfk, pwk), H(KVi)) then

ViAcceptsPaymentk〈hU, hVk〉.
. . .
a(OrderInfki , proofki).a〈senc(pageki ,KVi)〉.a(pwki).
if H(pwki) = pwki−1 then
if proofki = MAC((OrderInfki , pwki), H(KVi)) then

ViAcceptsPaymentki〈hU, hVi〉.a〈signMU, pwki , ki, hVi〉
else 0 else ViRejectsPaymentki〈hU,KVi, pwki〉
. . .

else 0 else ViRejectsPayment1〈hU,KVi, pw1〉

5.2 Security analysis

In this section we prove that our proposed scheme accomplish secure payment
authorization, payment approval, secrecy of payment information and unreusa-
bility. First of all we recall security definitions given in [3], then we give a formal
proof employing applied pi calculus. We also prove unreusability, i.e. double-
spender detection employing labeled semantics.
Payment authorization. Payment authorization guarantees a proof for the
vendor, that there is sufficient fund on the user’s account. This proof or certificate
is created by the broker.

Definition 1. We state that a payment scheme fulfills payment authorization if
the following conditions hold:

1. Broker authentication: The consumer successfully authenticates the broker,
it is indisputable that the certificate is authorized by the broker.

2. Consumer authentication: The broker successfully authenticates the consu-
mer, it is indisputable that the consumer’s account is questioned.

3. Certificate: There is a proof for the vendor, that the sufficient fund is avai-
lable.

Secure payment authorization is achieved, if the certificate is undeniable.

Payment approval. Payment approval process generates a proof for the vendor
that a consumer agrees to pay a certain amount of money for a particular pro-
duct. We would like to emphasize requisiteness of vendor authentication, since
if the consumer sends the proof to an adversary, then the adversary might be
able to masquerade the consumer.



Definition 2. We state that a payment scheme fulfills payment approval if the
following conditions hold:

1. Consumer authentication: The vendor successfully authenticates the consu-
mer, it is indisputable that the proof originates from the consumer.

2. Vendor authentication: The consumer successfully authenticates the vendor,
it is indisputable that the certificate is sent to the vendor.

3. Order information: The proof contains precise description of the product.
4. Price information: The proof contains the amount of money the consumer

tends to pay.

Secure payment approval is achieved, if the proof is undeniable.

Secrecy of payment information. In case of payment schemes it is crucial
that payment information such as credit card information should be kept secret.

Definition 3. We state that a payment scheme possesses secrecy of payment
information, if confidential payment information is not revealed for adversaries.

Unreusability. Multi-vendor schemes should be protected against double spen-
ders.

Definition 4. If the same coin is spent more than once, then the identity of the
second spender should be detected.

Theorem 1. Our proposed multi-vendor PayWord scheme accomplish secure
payment authorization, payment approval, secrecy of payment information and
unreusability.

Proof. We give a proof for secure payment authorization and secrecy of payment
information in the general case with the help of ProVerif. In order to prove pay-
ment approval ProVerif queries for a concrete case, when there are two vendors
with k1 = 4, k2 = 3 are considered. Since the payment phase is the same for
each purchase considering these queries is sufficient for us.

Our scheme fulfills secure payment authorization, since it provides an unde-
niable certificate: sign((hB, hU,E,wj,0, hVj , . . . , w1,0, hV1), sskB)). Broker and
consumer authentication are achieved, since the following queries return logical
value true:
query evinj : ValidCertificate(x, y, z, t) =⇒ evinj : BconnectstoU(x, y, z, t).
query evinj : BacceptsU(x, y, z, t) =⇒ (evinj : UacceptsB(x, y, z, t) =⇒ evinj :
BconnectstoU(x, y, z, t)).

Our scheme possesses secrecy of payment information, since the following
query returns true:

query attacker : CardInf.
Our scheme fulfills payment approval, since it provides a proof of order and

price information for each purchase:MAC((OrderInfl, wi,l), H(KVi)) and fulfills
consumer and vendor authentication, since the following queries return true.
query evinj : V 1AcceptsPayment2(x, y) =⇒ evinj : V 1ReadytoPurchase(x, y).
query evinj : V 2AcceptsPayment2(x, y) =⇒ evinj : V 2ReadytoPurchase(x, y).



query evinj : UV 1EndsPayment2(x, y) =⇒ evinj : V 1AcceptsMU(x, y).
query evinj : UV 2EndsPayment2(x, y) =⇒ evinj : V 2AcceptsMU(x, y).

Unreusability. We consider a dishonest user, an attacker with the largest po-
wer, who intends to deposit the same coin twice either at the same, or at different
vendors. We prove that in this case the identity of the double-spender is reve-
aled. Active attackers with less power are handled similarly. Users’ shopping
processes:
Vishopping ds , a(s,= hVi).νKVi.

a〈sign((sign((hB, hU,E,wj,0, hVj , . . . , H
k+l(wi,k+l),

hVi, . . . , w1,0, hV1), sskB)), D, s, aenc(KVi, epkVi)), sskU )〉.
a〈OrderInf1,MAC((OrderInf1, H

k+l−1(wi,k+l)), H(KVi))〉.
a(msg1).let page1 = sdec(msg1,KVi) in a〈Hk+l−1(wi,k+l)〉.
. . .

a〈OrderInfk,MAC((OrderInfk, H
l(wi,k+l)), H(KVi))〉.

a(msgk).let pagek = sdec(msgk,KVi) in a〈Hl(wi,k+l)〉.
. . .

a〈OrderInfk+l,MAC((OrderInfk+l, H
l(wi,k+l)), H(KVi))〉.

a(msgk+l).let pagek+l = sdec(msgk+l,KVi) in a〈Hl(wi,k+l)〉
Vi,i−1shopping ds , a(s,= hVi).νKVi.

a〈sign((sign((hB, hU,E,wj,0, hVj , . . . , H
k+l(wi,k+l),

hVi, H
ki−1(Enc(Hk+l(wi,k+l), v)), hVi−1, . . . , w1,0, hV1), sskB)),

D, s, aenc(KVi, epkVi)), sskU )〉.
. . .

a〈OrderInfk,MAC((OrderInfk, H
l(wi,k+l)), H(KVi))〉.

a(msgk).let pagek = sdec(msgk,KVi) in a〈Hl(wi,k+l)〉.
a(r,= hVi−1).νKVi−1.

a〈sign((sign((hB, hU,E,wj,0, hVj , . . . , H
k+l(wi,k+l),

hVi, H
ki−1(Enc(Hk+l(wi,k+l), v)), hVi−1, . . . , w1,0, hV1), sskB)),

D, r, aenc(KVi−1, epkVi−1)), sskU )〉.
a〈OrderInf1,MAC((OrderInf1, H

l(wi,k+l)), H(KVi−1))〉.
a(msg1).let page1 = sdec(msg1,KVi−1) in a〈Hl(wi,k+l)〉

First we study the one vendor - double spender case. Let our evaluation con-
text be: C[ ] = νsskU .νsskB .νeskVi( |(!Vishopping ds)|(!processVi)) and our
process is: P ≡ C[a〈hB, pk(sskB)〉.a〈hU, pk(sskU )〉.a〈hVi, pk(eskVi)〉]. We show
that ϕ(P ′) ` (hU,KVi, H

l(wi,k+l)), that gives the identity of the double-spender,
its secret MAC key and the invalid payword. Let us consider the vendor’s pro-
cess only with event ViRejectsPaymentk(hU,KVi, H

l(wi,k+l)) and deal with the
following execution path:

P
νb pk.a〈b pk〉−−−−−−−−→ νu pk.a〈u pk〉−−−−−−−−−→ νv pk.a〈v pk〉−−−−−−−−−→ νx.a〈x〉−−−−−→ a(s,hVi)−−−−−→ νy.a〈y〉−−−−−→ νz.a〈z〉−−−−−→

a(sign((sign((hB,hU,E,wj,0,hVj ,...,H
k+l(wi,k+l),hVi,...,w1,0,hV1),sskB)),−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

D,s,aenc(KVi,pk(eskVi ))),sskU ))
−−−−−−−−−−−−−−−−−−−−−→ a(OrderInf1,MAC((OrderInf1,H

k+l−1(wi,k+l)),H(KVi)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
νv.a〈v〉−−−−−→ a(senc(page1,KVi))−−−−−−−−−−−−→ νw.a〈w〉−−−−−→ a(Hk+l−1(wi,k+l))−−−−−−−−−−−−→ . . .
νf.a〈f〉−−−−−→ a(OrderInfk,MAC((OrderInfk,H

l(wi,k+l)),H(KVi)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ νg.a〈g〉−−−−−→ a(senc(pagek,KVi))−−−−−−−−−−−−→
νh.a〈h〉−−−−−→ a(Hl(wi,k+l))−−−−−−−−−→ . . .

νo.a〈o〉−−−−→ a(OrderInfk+l,MAC((OrderInfk+l,H
l(wi,k+l)),H(KVi)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→



νp.a〈p〉−−−−−→ a(senc(pagek+l,KVi))−−−−−−−−−−−−−−→ νq.a〈q〉−−−−→ a(Hl(wi,k+l))−−−−−−−−−→ νr.a〈r〉−−−−→ P ′

P ′ ≡ νsskU .νsskB .νeskVi .νKVi({(hB, pk(sskB))/b pk} |
{(hU, pk(sskU ))/u pk} | {(hVi, pk(eskVi))/v pk} | {(s, hVi)/x} |
{sign((sign((hB, hU,E,wj,0, hVj , . . . , H

k+l(wi,k+l), hVi, . . . , w1,0, hV1), sskB)),

D, s, aenc(KVi, pk(eskVi))), sskU )/y} |
{(OrderInf1,MAC((OrderInf1, H

k+l−1(wi,k+l)), H(KVi)))/z} | {senc(page1,KVi)/v}
| {Hk+l−1(wi,k+l)/w} | . . . | {(OrderInfk,MAC((OrderInfk, H

l(wi,k+l)), H(KVi)))/f} |
{senc(pagek,KVi)/g} | {Hl(wi,k+l)/h} | . . . |
{(OrderInfk+l,MAC((OrderInfk+l, H

l(wi,k+l)), H(KVi)))/o} | {senc(pagek+l,KVi)/p} |
{Hl(wi,k+l)/q} | {(hU,KVi, H

l(wi,k+l))/r})

If there are two vendors, let our evaluation context be:
C[ ] = νsskU .νsskB .νeskVi .νeskVi−1( |(!Vi,i−1shopping ds)|(!processVi−1)|(!processVi))
and our process is:
P ≡ C[a〈hB, pk(sskB)〉.a〈hU, pk(sskU )〉.a〈hVi, pk(eskVi)〉.a〈hVi−1, pk(eskVi−1

)〉].
We show that ϕ(P ′) ` (hU,KVi−1, H

l(wi,k+l)).

P
νb pk.a〈b pk〉−−−−−−−−→ νu pk.a〈u pk〉−−−−−−−−−→ νvi pk.a〈vi pk〉−−−−−−−−−−→ νvi−1 pk.a〈vi−1 pk〉−−−−−−−−−−−−−→ νx.a〈x〉−−−−−→ a(s,hVi)−−−−−→ νy.a〈y〉−−−−−→

a(sign((sign((hB,hU,E,wj,0,hVj ,...,H
k+l(wi,k+l),hVi,H

ki−1 (Enc(Hk+l(wi,k+l),v)),−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
hVi−1,...,w1,0,hV1),sskB)),D,s,aenc(KVi,pk(eskVi ))),sskU )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ . . .

νz.a〈z〉−−−−−→
a(OrderInfk,MAC((OrderInfk,H

l(wi,k+l)),H(KVi)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ νv.a〈v〉−−−−−→ a(senc(pagek,KVi))−−−−−−−−−−−−→ νw.a〈w〉−−−−−→
a(Hl(wi,k+l))−−−−−−−−−→ νp.a〈p〉−−−−−→ a(r,hVi−1)−−−−−−−→ νq.a〈q〉−−−−→
a(sign((sign((hB,hU,E,wj,0,hVj ,...,H

k+l(wi,k+l),hVi,H
ki−1 (Enc(Hk+l(wi,k+l),v)),hVi−1,...,w1,0,hV1),sskB)),−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

D,r,aenc(KVi−1,pk(eskVi−1
))),sskU ))

−−−−−−−−−−−−−−−−−−−−−−−−→ νt.a〈t〉−−−−→ a(OrderInf1,MAC((OrderInf1,H
l(wi,k+l)),H(KVi−1)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

νu.a〈u〉−−−−−→ a(senc(page1,KVi−1))−−−−−−−−−−−−−−→ νg.a〈g〉−−−−−→ a(Hl(wi,k+l))−−−−−−−−−→ νh.a〈h〉−−−−−→ P ′

P ′ ≡ νsskU .νsskB .νeskVi .νeskVi−1 .νKVi.νKVj({(hB, pk(sskB))/b pk} |
{(hU, pk(sskU ))/u pk} | {(hVi, pk(eskVi))/vi pk} | {(hVi−1, pk(eskVi−1))/vi−1 pk} |
{(s, hVi)/x} | {sign((sign((hB, hU,E,wj,0, hVj , . . . , H

k+l(wi,k+l), hVi,

Hki−1(Enc(Hk+l(wi,k+l), v)), hVi−1, . . . , w1,0, hV1), sskB)), D, s, aenc(KVi, pk(eskVi))), sskU )/y}
| . . . | {(OrderInfk,MAC((OrderInfk, H

l(wi,k+l)), H(KVi)))/z} | {(senc(pagek,KVi))/v}
| {Hl(wi,k+l)/w} | {(r, hVi−1)/p} | {(sign((sign((hB, hU,E,wj,0, hVj , . . . ,

Hk+l(wi,k+l), hVi, H
ki−1(Enc(Hk+l(wi,k+l), v)), hVi−1, . . . , w1,0, hV1), sskB)),

D, r, aenc(KVi−1, pk(eskVi−1))), sskU )/q} | {(OrderInf1,MAC((OrderInf1, H
l(wi,k+l)),

H(KVi−1)))/t} | {senc(page1,KVi−1)/u} | {Hl(wi,k+l)/g} | {(hU,KVi−1, H
l(wi,k+l))/h})

6 Conclusion

We extended PayWord to support payments at multiple vendors. The propo-
sed scheme is a credit-based, off-line solution, with minimal computational and



storage costs. We also provided a detailed formal proof for payment approval,
payment authorization, secrecy of payment information and unreusability in the
applied pi calculus.

Acknowledgment

The publication was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001
project. The project has been supported by the European Union, co-financed
by the European Social Fund. The author is also supported by the Hungarian
National Foundation for Scientific Research Grant No. K75566 and NK 104208.

References

1. M. Abadi, C. Fournet, Mobile Values, New Names, and Secure Communication,
28th ACM Symposium on Principles of Programming Languages, (2001), 104–115.

2. L. Aszalós, A. Huszti, Applying Spi-calculus for Payword, Proceedings of ICAI’10
8th International Conference on Applied Informatics, (2010), 295–302.

3. L. Aszalós, A. Huszti, Payment Approval for PayWord, D. H. Lee, M. Yung (Eds.):
Information Security Applications - 13th International Workshop (WISA) 2012, Lec-
ture Notes in Computer Science 7690, (2012), 161–176, Springer-Verlag.

4. B. Blanchet, B. Smyth, ProVerif 1.85:Automatic Cryptographic Protocol Verifier,
User Manual and Tutorial, http://www.proverif.ens.fr/manual.pdf, (2011).

5. M. Hosseinkhani, E. Tarameshloo, M. Shajari, AMVPayword: Secure and Effici-
ent Anonymous Payword-Based Micropayment Scheme International Conference on
Computational Intelligence and Security (CIS), (2010), 551–555.

6. M. Payeras-Capella, J. L. Ferrer-Gomila, L. Huguet-Rotger, An efficient anonymous
scheme for secure micropayments, Web Engineering, Lecture Notes in Computer Sci-
ence 2722, (2003), 80–83, Springer-Verlag.

7. R. Rivest, A. Shamir, PayWord and MicroMint: Two simple micropayment schemes,
Security Protocols, (1997), 69–87.

8. M. D. Ryan, B. Smyth, Applied pi calculus, Formal Models and Techniques for
Analyzing Security Protocols, (2011), chapter 6.

9. C.T. Wang, C.C. Chang, C.H. Lin, A new micro-payment system using general
payword chain, Electronic Commerce Research, 2, (2002), 159–168.

10. H. Wang, J. Ma, J. Sun, Micro-payment protocol based on multiple hash chains
Second International Symposium on Electronic Commerce and Security, 1, (2009),
71–74.

11. Weidong Kou, Payment Technologies for E-Commerce, Springer, (1998).


