
Torsion Limits and Riemann-Roch Systems for Function
Fields and Applications∗

Ignacio Cascudo† Ronald Cramer‡ Chaoping Xing§

Abstract
The Ihara limit (or constant) A(q) has been a central problem of study in the asymptotic

theory of global function fields (or equivalently, algebraic curves over finite fields). It addresses
global function fields with many rational points and, so far, most applications of this theory do
not require additional properties. Motivated by recent applications, we require global function
fields with the additional property that their zero class divisor groups contain at most a small
number of d-torsion points. We capture this with the notion of torsion limit, a new asymptotic
quantity for global function fields. It seems that it is even harder to determine values of this
new quantity than the Ihara constant. Nevertheless, some non-trivial upper bounds are derived.
Apart from this new asymptotic quantity and bounds on it, we also introduce Riemann-Roch
systems of equations. It turns out that this type of equation system plays an important role in
the study of several other problems in each of these areas: arithmetic secret sharing, symmetric
bilinear complexity of multiplication in finite fields, frameproof codes and the theory of error
correcting codes. Finally, we show how our new asymptotic quantity, our bounds on it and
Riemann-Roch systems can be used to improve results in these areas.

Keywords: Algebraic curves, Jacobian, torsion limit, Ihara limit, secret sharing, complexity
of multiplication, frameproof codes

1 Introduction
Since the discovery of algebraic geometry codes by Goppa [30] and other applications such as low-
discrepancy sequences [44], the study of algebraic curves with many rational points over finite fields
or, equivalently, global function fields with many rational places, has attracted many researchers from
various areas, such as pure mathematicians, coding theorists and algorithmically inclined mathemati-
cians. In the last two decades, there have been tremendous research activities in this topic.

A crucial quantity in the asymptotic theory of global function fields with many rational places,
namely the Ihara limit, plays an important role in coding theory and other topics. Precisely speaking,
for a given prime power q, the Ihara limit is defined by

A(q) := lim sup
g→∞

Nq(g)

g
,

where Nq(g) denotes the maximum number of rational places taken over all global function fields over
Fq of genus g.
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The Drinfeld-Vlǎduţ bound states that A(q) ≤ √q − 1. By Ihara [35], A(q) =
√
q − 1 if q is a

square. By Serre’s Theorem [51], A(q) ≥ c · log q for some absolute real constant c > 0 (for which the
current best lower bound [45] is approximately 1

96 ).
So far, most applications of global function fields do not require additional properties. Motivated

by recent applications (arithmetic secret sharing, see below), we require global function fields with the
additional property that their zero divisor class groups contain at most a small number of d-torsion
points. The exact same requirements are relevant for the study of the symmetric bilinear complexity
of multiplication in finite fields. Although the latter topic started much earlier, the role of 2-torsion
points in the zero class divisor groups was overlooked in [53, 2].

In this paper, we introduce two new primitives for function fields over finite fields, namely the
torsion limit and systems of Riemann-Roch equations. Our torsion limit, which we believe is of
independent interest, can in general be upper bounded using Weil’s classical theorem on torsion in
Abelian varieties (and in many cases using the Weil-pairing). 1 However, the resulting bound is far
too pessimistic, as we present a tower for which our torsion limit is considerably smaller, yet it attains
the Drinfeld-Vlǎduţ bound.

A system of Riemann-Roch equations consists of simultaneous equations whose variables are
divisors. Although Riemann-Roch systems have been implicitly studied in coding theory [59, 62,
65, 64, 68, 40, 42] such a concept has not been formally introduced. Moreover, we are interested in
systems of a more general type than the ones considered in those papers, as we will explain. In several
interesting cases, the existence of solutions will depend very much on the torsion in the class group.
Hence, in the asymptotic case, where we consider Riemann-Roch systems in a tower of function fields,
its solvability will depend on our new torsion limit.

We give three applications in this paper that demonstrate the importance of such systems, in
conjunction with our torsion limit and bounds on it. First, arithmetic secret sharing schemes are
a special kind of codes arising in secure multi-party computation [23, 18]. Using optimal towers
of function fields, Chen and Cramer [18] showed the existence of “asymptotically good” families of
such schemes. Since then, the asymptotical results of [18] have had several important and surprising
applications in two-party cryptography [37, 39, 31, 38, 24, 36]. The results of [18] were improved and
extended in [20, 14]. We show how our torsion limits and Riemann-Roch equations allow to further
improve those results.

In fact, the arguments from [18] also show the existence of linear codes such that both the duals
and “powers” are simultaneously asymptotically good, where we define the d-th power C∗d of a linear
code C to be the linear code spanned by all possible coordinate-wise products of d (not necessarily
distinct) words in C. The results in [18] imply that for any fixed integer d ≥ 2 and for any finite field
Fq such that A(q) > 2d there exist families of codes C such that both C,C⊥ and the powers C∗d

′

with 2 ≤ d′ ≤ d are simultaneously asymptotically good. Interestingly, if we want to extend these
results to other finite fields, the concatenation techniques of [14] come to no avail, as opposed to the
case of secret sharing schemes. Our results in the paper show the existence of such asymptotically
good families of codes for several small finite fields for which it was so far not yet established. For
instance, for d = 2, we show that the result holds for any finite field Fq, q ≥ 8, except perhaps for
q = 11, q = 13; in comparison, [18] only showed this result in the case A(q) > 4, which cannot hold
when q ≤ 25.

Second, we consider bounds in the context of extension field multiplication. Shparlinski, Tsfasman,
and Vlǎduţ [53] initiated study of asymptotics, finding upper bounds for the limits mq, Mq defined
in that paper. We start by noticing a gap in the proof of their main result: there is an implicit but
unjustified assumption on the possibilities of positive Ihara limits in combination with the absence
of non-trivial 2-torsion. The same gap exists in a more recent paper (2008) on the same subject by
Ballet [2]. Therefore the upper bounds stated for mq in those papers are not justified. On the other
hand, Randriambololona recently proved in [47] that the bound for mq in [53] can indeed be attained
in the case A(q) > 5. We examine the connection of this extension field multiplication problem to
the solvability of a system of Riemann-Roch equations, and obtain bounds that significantly improve
the state of the art for some small fields by incorporating our limit and corresponding tower. In
addition, we also show how to improve the state of the art [16] regarding the upper bounds for the
other limit, Mq over small finite fields Fq. Third, frameproof codes were introduced in the context of

1We note that, independently, Randriambololona [46] introduced the same notion of torsion limit (for optimal
families of function fields) in the context of an application to the construction of frameproof codes and proved the
bounds that follow directly from Weil’s classical result.
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digital fingerprinting by Boneh and Shaw in [13] although a slightly different definition, which we will
be using, was proposed afterwards by Fiat and Tassa [25], see also [11]. The asymptotic properties of
such codes have been studied in [46, 48, 63]. We show how to improve those bounds in some cases.

This paper is organized as follows. Our main contributions are captured in Definition 2.2 (the tor-
sion limit), Theorem 2.3 (bounds for this limit), Theorem 3.2 (sufficient conditions for Riemann-Roch
system solvability), Theorems 4.13 and 4.15 (claimed arithmetic secret sharing schemes), Theorems 5.9
and 5.18 (improvements on multiplication complexity of finite field extensions) and Theorem 6.16 (im-
provements on asymptotical constructions for frameproof codes). After giving some preliminaries in
Section 2.1, we introduce our torsion limit in Section 2.2 and show our bounds. In Section 3 we
introduce Riemann-Roch systems of equations and show how these may be solved using the bounds
from Section 2. We also include a short discussion on efficient randomized solving strategies. In
Section 4 we discuss how to obtain the claimed arithmetic secret sharing schemes and linear codes
with good duals and powers. In Section 5 we show how our torsion limit and Riemann-Roch system
can be applied to study the symmetric bilinear complexity of multiplication in finite fields. Finally
in Section 6 we show our application to the asymptotical study of frameproof codes.

2 Torsion Limits

2.1 Preliminaries
For convenience of the reader, we start with some definitions and notations.

For a prime power q, let Fq be a finite field of q elements. An algebraic function field over Fq in
one variable is a field extension F ⊃ Fq such that F is a finite algebraic extension of Fq(x) for some
x ∈ F that is transcendental over Fq. It is assumed that Fq is its full field of constants, i.e., the
algebraic closure of Fq in F is Fq itself.

The following notations will be used throughout the rest of the paper.

• F/Fq–a function field with full constant field Fq;

• g(F )–the genus of F ;

• N(F )–the number of rational places of F ;

• P(F )–the set of places of F (note that P(F ) is an infinite set);

• P(k)(F )–the set of places of degree k of F (note that P(k)(F ) is a finite set);

• Ni(F )–the number of Fqi-rational places, i.e., Ni(F ) =
∑
j|i j|P(j)(F )| (note that N(F ) =

N1(F ));

• Div(F )–the divisor group of F ;

• Div0(F )–the divisor group of degree 0;

• Prin(F )–the principal divisor group of F ;

• Cl(F )–the divisor class group Div(F )/Prin(F ) of F ;

• Cl0(F ) = JF –the degree zero divisor class group Div0(F )/Prin(F ) of F (note that Cl0(F ) is a
finite group);

• JF [r]–the group of r-torsion points in JF .

• h(F ) = |Cl0(F )|–the zero divisor class number;

• Ar(F )–the set of effective divisors of degree r ≥ 0 (note that Ar(F ) is a finite set);

• Ar(F )–the cardinality of Ar(F );

• Clr(F )–the set {[D] : deg(D) = r}, where [D] stands for the divisor class containing D.
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In case there is no confusion, we omit the function field F in some of the above notations. For
instance, Ar(F ) is denoted by Ar if it is clear in the context.

For a divisor G of F , we define the Riemann-Roch space by

L(G) := {f ∈ F ∗ : div(f) +G ≥ 0} ∪ {0}.

Then L(G) is a finite dimensional space over Fq and its dimension `(G) is determined by the Riemann-
Roch theorem which gives

`(G) = deg(G) + 1− g(F ) + `(K −G),

where K is a canonical divisor of degree 2g(F )− 2. Therefore, we always have that `(G) ≥ deg(G) +
1− g(F ) and the equality holds if deg(G) ≥ 2g(G)− 1.

The zeta function of F is defined by the following power series

ZF (t) := Exp

( ∞∑
i=1

Ni(F )

i
ti

)
=

∞∑
i=0

Ai(F )ti.

Then Weil showed that ZF (t) is in fact a rational function of the form

ZF (t) =
LF (t)

(1− t)(1− qt)
,

where LF (t) is a polynomial of degree 2g(F ) in Z[t], called L-polynomial of F . Furthermore, LF (0) =

1. If we factorize LF (t) into a linear product
∏2g(F )
i=1 (wit−1) in C[t], then Weil showed that |wi| =

√
q

for all 1 ≤ i ≤ 2g(F ).
From the definition of zeta function, one obtains

Nm(F ) = qm + 1−
2g(F )∑
i=1

wmi

for all m ≥ 1. This gives the Hasse-Weil bound

N(F ) = N1(F ) ≤ q + 1 + 2g(F )
√
q.

Function fields F with a large number N(F ) of rational points have a bearing on problems in
coding theory [57, 55] as well as, for instance, in low-discrepancy sequences [44] and several problems
in cryptography [18, 43]. In particular, the following quantity is relevant:

Nq(g) = max
F

N(F ),

where F ranges over all function fields of genus g over Fq.
One can imagine that it is not easy at all to determine the exact value Nq(g) for an arbitrary pair

(q, g). The complete solution to this problem has been found only for g = 0, 1, 2 [51]. The reader
may refer to [29] for a table of values of Nq(g) for some small values of q and g.

In order to study the asymptotic behavior of Nq(g) when q is fixed and g tends to ∞, we can
define the following asymptotic quantity

A(q) := lim sup
g→∞

Nq(g)

g
.

An upper bound on A(q) was given by Vlǎduţ and Drinfeld [60]

A(q) ≤ √q − 1.

For applications, we are more interested in finding lower bounds on this asymptotic quantity. Ihara
[35] first showed by using modular curves that A(q) ≥ √q − 1 for any square power q. This result
determines the exact value A(q) for all square powers, i.e.,

A(q) =
√
q − 1. (2.1)
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On the other hand, no single value of A(q) is known if q is a non-square. However, some lower
bounds have been obtained so far. For instance, by using modular curves and explicit function fields,
Zink [69], Bezerra-Garcia-Stichtenoth [10] and Bassa-Garcia-Stichtenoth [8] showed that

A(q3) ≥ 2(q2 − 1)

q + 2
. (2.2)

Recently, Garcia-Stichtenoth-Bassa-Beelen [7] produced an explicit tower of function fields over finite
fields Fp2m+1 for any prime p and integer m ≥ 1 and showed that this tower gives

A(p2m+1) ≥ 2(pm+1 − 1)

p+ 1 + ε
with ε =

p− 1

pm − 1
.

Serre made use of class field theory to show that there is an absolute positive constant c such that

A(q) ≥ c · log(q)

for every prime power q.
On the other direction, lower bounds on A(q) have already been obtained for small prime q such

as q = 2, 3, 5, 7, 11, 13, . . . etc. For instance, in [66], Xing and Yeo showed that

A(2) ≥ 0.258.

For a family F = {F/Fq} of function fields with g(F ) → ∞ such that limg(F )→∞N(F )/g(F )
exists, one can define this limit to be the Ihara limit, denoted by A(F). It is clear that there exists a
family E = {E/Fq} of function fields such that g(E)→∞ and the Ihara limit A(E) is equal to A(q).

Remark 2.1. In general, we can define the Ihara limit for any family F = {F/Fq} of function fields
with g(F )→∞ by lim supg(F )→∞N(F )/g(F ). However, for convenience of this paper, we define the
Ihara limit only for those families {E/Fq} whose limit limg(E)→∞N(E)/g(E) exists.

2.2 Torsion Limits
Due to some recent applications to arithmetic secret sharing and multiplications in finite field exten-
sions, we are interested in considering, in addition to the Ihara limit of a family of function fields, a
limit for the number of torsion points of the zero divisor class groups of these function fields.

Let F/Fq be a function field. For a positive integer r larger than 1, we denote by JF [r] the
r-torsion point group in JF , i.e.,

JF [r] := {[D] ∈ JF : r[D] = 0}.

The cardinality of JF [r] is denoted by JF [r].
For each family F = {F/Fq} of function fields with g(F )→∞, we define the asymptotic limit

Jr(F) := lim inf
F∈F

logq |JF [r]|
g(F )

.

We need to define an asymptotic notion involving both Jr(F) and the Ihara limit A(F).

Definition 2.2. For a prime power q, an integer r > 1 and a real a ≤ A(q), let F be the set of
families {F} of function fields over Fq such that the genus in each family tends to ∞ and the Ihara
limit A(F) ≥ a for every F ∈ F. Then the asymptotic quantity Jr(q, a) is defined by

Jr(q, a) = lim inf
F∈F

Jr(F).

Thus, for a given family, our limit Jr(F) measures the r-torsion against the genus. The corre-
sponding constant Jr(q, a) measures, for a given Ihara limit a and for given r, the “least possible
r-torsion.” Note that A(q), Ihara’s constant, is the supremum of A(F) taken over all asymptotically
good F over Fq. For some applications such as multiplication in extension fields in Subsection 4.2,
one may be interested in function fields with many places of higher degree and small torsion limit.
The above definition could be modified by replacing the Ihara limit by the limit of number of places
of higher degree against genus.

Now we are ready to state the main result of this section.
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Theorem 2.3. Let Fq be a finite field and let r > 1 be a prime.

(i) If r | (q − 1), then Jr(q,A(q)) ≤ 2
logr q

.

(ii) If r - (q − 1), then Jr(q,A(q)) ≤ 1
logr q

.

(iii) If q is square and r | q, then Jr(q,
√
q − 1) ≤ 1

(
√
q+1) logr q

.

The first part of Theorem 2.3, as well as the second part when, additionally, r|q, is proved directly
using a theorem of Weil [61, 41] on torsion in Abelian varieties. For any non-zero integer m, this
theorem, which holds over algebraically closed fields K, says that the m-torsion point group A[m]
of the variety, is isomorphic to (Z/mZ)2g if m is co-prime to the characteristic p of K; and A[p] is
isomorphic to (Z/pZ)a for a non-negative integer a ≤ g, where g is the dimension of A. See also [50].
Clearly, this implies upper bounds when the field is not algebraically closed. The second part, in the
case r - (q − 1), can be proved by using the Weil pairing for abelian varieties (see [15]). The most
interesting part is the bound in the third part, which is substantially smaller (see Subsection 2.3 for
the detailed proof). Note that this last bound applies to families which attain the Drinfeld-Vlǎduţ
bound.

By using a lifting idea, we are able to obtain an upper bound on the size of the rt-torsion point
group of an abelian variety from its r-torsion point group, and hence we can derive the following
result from Theorem 2.3 (see [15] for the detailed proof).

Theorem 2.4. Let Fq be a finite field of characteristic p.

(i) If m ≥ 2 is an integer, then Jm(q, A(q)) ≤ logq(dm), where d = gcd(m, q − 1).

(ii) Write m into p`m′ for some ` ≥ 0 and an positive integer m′ co-prime to p. If q is a square,
then Jm(q,

√
q − 1) ≤ `√

q+1 logq(p) + logq(cm
′), where c = gcd(m′, q − 1).

At the time when an earlier version of this paper was being prepared, Randriambololona indepen-
dently introduced in [46] the limit Jr(q, A(q)), in the context of an application to the construction of
frameproof codes. Moreover he stated the bounds in the first part of Theorem 2.3, the second part
of Theorem 2.3 when r|q and the first part of Theorem 2.4 when m is a power of p.

Like the Ihara-constant A(q), it could be extremely difficult to determine the exact value of Jr(q, a)
for given a and q, and we would like to leave this as an open problem. Also, in the context of solving
general Riemann-Roch systems (see Section 3) it makes sense to extend the definition of the limit
above to the case of r-torsion for a finite set of positive integers r simultaneously.

Another particular interesting case is q = 2. The following result gives a bound on the 2-torsion
limit for the family of function fields given in [66].

Theorem 2.5. The family F of function fields over F2 with the Ihara’s limit 97/376 given in [66]
has 2-torsion limit J2(F) at most 216/376.

The proof of Theorem 2.5 will be given in Subsection 2.3. Note that the bound in Theorem 2.3
gives only J2(F) ≤ 1.

Finally, one can show existence of certain function field families that is essential for our applications
of Sections 4 and 5.

Theorem 2.6. For every prime power q ≥ 8 except perhaps for q = 11 or 13, there exists a family
F of function fields over Fq such that the Ihara limit A(F) exists and it satisfies A(F) > 1 + J2(F).

Again we refer to [15] for the detailed proof of Theorem 2.6.

2.3 Proof of Theorems 2.3(iii) and 2.5
Let Fq be a finite field. Write p for its characteristic. For a function field F over Fq, denote by γ(F )
the Fp-dimension of JF [p], i.e., logp |JF [p]|.2 Now, consider the constant field extension F = F · Fq
where Fq denotes an algebraic closure of Fq. Then the Hasse-Witt invariant iF of F is defined to be
the Fp-dimension of JF [p]. It is clear that JF [p] is an Fp-subspace of JF [p], and hence iF ≥ γ(F ).

2Note that in the definition of γ(F ) the logarithm of JF [p] is taken in base p as opposed to the definition of Jp(F),
where it is taken in base q.
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Note that, for any family F of function fields F over Fq with g(F )→∞,

Jp(F) = lim inf
F∈F

γ(F )

g(F ) logp q
≤ lim inf

F∈F

iF
g(F ) logp q

.

Before proving Theorems 2.3(iii) and 2.5, we need to introduce the Deuring-Shafarevich theorem.

Theorem 2.7 (Deuring-Shafarevich (see e.g. [34])). Let E/F be a Galois extension of function fields
over an algebraically closed field k of characteristic p. Suppose that the Galois group of the extension
is a p-group. Then

γ(E)− 1 = [E : F ](γ(F )− 1) +
∑

P∈P(F )

∑
Q∈P(E)
Q|P

(e(Q|P )− 1).

From this theorem, we can obtain the following corollary for function fields over finite fields.

Corollary 2.8. Let E/F be a Galois extension of function fields over a finite field Fq of characteristic
p. Suppose that the Galois group of the extension is a p-group. Then

iE − 1 = [E : F ](iF − 1) +
∑

P∈P(F )

∑
Q∈P(E)
Q|P

(e(Q|P )− 1) degQ.

Proof. Let E = E ·Fq, F = F ·Fq where Fq denotes an algebraic closure of Fq. By elementary algebra
arguments we can see that since E/F is Galois and both E and F have the same full constant field
Fq, then E/F is also Galois and the Galois groups of both extensions are the same.

We can therefore apply the Deuring-Shafarevich Theorem to E and F , thereby obtaining:

γ(E)− 1 = [E : F ](γ(F )− 1) +
∑

P ′∈P(F )

∑
Q′∈P(E)
Q′|P ′

(e(Q′|P ′)− 1).

Note that γ(E) = iE , γ(F ) = iF and [E : F ] = [E : F ], so all we are left to do is to analyse the
last term.

Given a place P ∈ P(F ) of degree k, and a place Q ∈ P(E) of degree m such that Q|P , there are
exactly k places P ′1, . . . , P ′k ∈ P(F ) lying over P and m places Q′1, . . . , Q′m ∈ P(E) lying over Q. Each
of the places Q′j lies above some P ′i . Moreover, all places of E lying above a place P ′i ∈ P(F ) are
among the Q′j . It is well known that all places in F and E have degree 1. Given P ′ in {P ′1, . . . , P ′k}
and Q′ in {Q′1, . . . , Q′m}, we have e(P ′|P ) = 1 and e(Q′|Q) = 1. Consequently if Q′ lies above P ′, we
deduce e(Q′|P ′) = e(Q|P ) since e(Q′|P ′)e(P ′|P ) = e(Q′|P ) = e(Q′|Q)e(Q|P ).

Thus ∑
P ′∈P(F )

∑
Q′∈P(E)
Q′|P ′

(e(Q′|P ′)− 1) =

∑
P∈P(F )

∑
Q∈P(E)
Q|P

(e(Q|P )− 1) degQ.

Now we are ready to prove Theorem 2.3(iii).

Proof of Theorem 2.3(iii). Assume q is an even power of p. Consider the tower F = (F (0) ⊂ F (1) ⊂
· · · ) over Fq introduced in [28] by Garcia and Stichtenoth, recursively defined by F (0) = Fq(x0) and
F (n+1) = F (n)(xn+1), where x

√
q−1

n x
√
q

n+1 + xn+1 = x
√
q

n .
Assuming for the moment that Theorems 2.9 and 2.10 stated below hold, the rest of the argument

follows immediately: indeed,

lim inf
n→∞

γ(F (n))

g(F (n))
≤ lim
n→∞

iF (n)

g(F (n))
=

1
√
q + 1

.
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where the equality follows from part 3 of Theorem 2.9 and Theorem 2.10.
Therefore

Jp(F) = lim inf
n→∞

γ(F (n))

g(F (n)) logp q
=

1

(
√
q + 1) logp q

.

On the other hand, A(F) =
√
q − 1 by part 1 of Theorem 2.9. Therefore

Jp(q,
√
q − 1) =

1

(
√
q + 1) logp q

.

It only remains to show Theorems 2.9 and 2.10.

Theorem 2.9. 1. The tower F attains the Drinfeld-Vlǎduţ bound, i.e., its limit A(F) is given by

A(F) := lim
n→∞

N(F (n))

g(F (n))
=
√
q − 1.

2. Every place P ∈ P(F (n−1)) is either unramified, i.e. for every place Q ∈ P(F (n)) such that
Q|P we have e(Q|P ) = 1, where e(Q|P ) denotes the ramification index, or totally ramified,
i.e., there exists a unique Q ∈ P(F (n)) such that Q|P , and the ramification index e(Q|P ) equals
[F (n) : F (n−1)] =

√
q. In the latter case, it always holds that degP = degQ. Moreover for

every P ∈ P(F (n−1)), Q ∈ P(F (n)) such that Q|P we have

d(Q|P ) = (
√
q + 2)(e(Q|P )− 1),

where d(Q|P ) denotes the different exponent.

3. The genus g(F (n)) of the function field F (n) is given by

g(F (n)) =

 g1(q, n) if n ≡ 0 (mod 2),

g2(q, n) if n ≡ 1 (mod 2).

where
g1(q, n) := q

n+1
2 + q

n
2 − q

n+2
4 − 2q

n
4 + 1,

g2(q, n) := q
n+1
2 + q

n
2 − 1

2
q

n+3
4 − 3

2
q

n+1
4 − q

n−1
4 + 1.

Proof. See [28].

Theorem 2.10. The Hasse-Witt invariant of the function field F (n) is given by

iF (n) =

 (qn/4 − 1)2 if n ≡ 0 (mod 2),

(q(n−1)/4 − 1)(q(n+1)/4 − 1) if n ≡ 1 (mod 2).

In particular

lim inf
n→∞

γ(F (n))

g(F (n))
≤ lim
n→∞

iF (n)

g(F (n))
=

1
√
q + 1

.

Proof. Fix some n ≥ 1 and for the sake of notation let E := F (n), F := F (n−1). Consider the
extension E/F . This is an Artin-Schreier extension, hence its Galois group is a p-group. By the
theorem of Riemann-Hurwitz (see e.g. [55]) and part 2) of Theorem 2.9 above,

2 · g(E)− 2 =
√
q · (2g(F )− 2) + (

√
q + 2) ·

∑
P∈P(F )

∑
Q∈P(E)
Q|P

(e(Q|P )− 1) degQ. (2.3)

By Corollary 2.8
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iE − 1 =
√
q · (iF − 1) +

∑
P∈P(F )

∑
Q∈P(E)
Q|P

(e(Q|P )− 1) degQ. (2.4)

Combining equations (2.3) and (2.4), we find

iE =
√
q · iF +

2 · g(E)− 2
√
q · g(F )−√q2 +

√
q

√
q + 2

This, of course, holds for any n ≥ 1, E := F (n), F := F (n−1). Using the fact that iF (0) = 0 and
applying induction, the result follows.

This concludes the proof of Theorem 2.3(iii).

We can use the same kind of argument applied to a different tower to prove Theorem 2.5:

Proof of Theorem 2.5: In [66], Xing and Yeo gave an example of a tower F = (F (0) ⊂ F (1) ⊂ · · · )
of function fields over F2 with the Ihara limit 97/376 = 0.257979 . . . . Using cyclotomic function
fields, they constructed a function field F = F (0) over F2 of genus 377, which admits an infinite
(2;S)-Hilbert class field tower for a set S ⊂ PF of places of F , such that S′ = PF \ S consists of 97
rational places of F . At each step F (i+1)/F (i), it is unramified. Hence, to compute the Hasse-Witt
invariant of F (i), it is sufficient to compute the Hasse-Weil invariant of F (0) by using the formula of
Deuring-Shafarevich.

To do so, we briefly recall the construction of the function field F . For more details, the reader may
refer to [66]. Let k = F2(x) be the rational function field over F2. LetM = (x4+x3+x2+x+1)2 ∈ F2[x]
and let N := x4. Denote by kM (resp. kN ) the cyclotomic function field over k with modulus M
(resp. modulus N). Let K be the subfield of kM fixed by the cyclic subgroup < x > of Gal(kM/k) =
(F2[x]/M)∗ and let L be the subfield of kN that is fixed by the cyclic subgroup < (x + 1)2 > of
Gal(kN/k) = (F2[x]/N)∗. We have [K : k] = 24 and [L : k] = 4. Define F := KL, the composite
of the fields K and L. The only ramified place in K/k is the place corresponding to the irreducible
polynomial x4 + x3 + x2 + x + 1. It is totally ramified with different exponent 44. In the extension
L/k the only ramified place is the zero of x. It is totally ramified with different exponent 10.

From the ramification in K/k and L/k, it follows that K and L are linearly disjoint over k. We
have [F : k] = 25 × 3. The fixed field of the 2-Sylow subgroup of Gal(F/k) is generated over k by an
element w, whose irreducible polynomial over k is given by

T 3 + (x4 + x3 + x2 + x+ 1)T 2 + (x5 + 1)T + (x4 + x3 + x2 + x+ 1) ∈ k[T ].

Let F ′ = k(w). We have k ⊂ F ′ ⊂ K. The only ramified place in F ′/k is the place corresponding
to the irreducible polynomial x4 + x3 + x2 + x + 1. It is tamely ramified with ramification index 3.
Hence the genus of F ′ is 2. Next by computing the Hasse-Witt invariant of F we know that in the
degree 32 extension F/F ′ the only ramified places are the places lying over the places of k associated
to the irreducible polynomials x and x4 +x3 +x2 +x+ 1. The corresponding ramification indices are
4 and 8, respectively. So we have

iF − 1 = 32(2− 1) + 4× 4× (8− 1) + 3× 8× (4− 1) = 216.

For the (2;S)-Hilbert class field tower of F = F (0), we hence have

g(F (n))− 1 = [F (n) : F (0)](g(F (0))− 1) = 376[F (n) : F (0)]

and
iF (n) − 1 = [F (n) : F (0)](iF (0) − 1) = 216[F (n) : F (0)].

Therefore,

lim
n→∞

iF (n)

g(F (n))
=

216

376
= 0.574468 . . . .

The Deuring-Shafarevich theorem has been used in [6] to analyze the p-rank of the function fields
for other optimal towers over Fq, for q square. However, the resulting bounds for the torsion limits for
those towers are worse (for our applications) than that of the first Garcia-Stichtenoth tower, obtained
above.
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3 Riemann-Roch Systems of Equations
Let Fq be a finite field and let F be an algebraic function field over Fq.

Definition 3.1. Let u ∈ Z>0 and let Yi ∈ Cl(F ), mi ∈ Z \ {0} for i = 1, . . . , u. The Riemann-Roch
system of equations in the indeterminate X is the system {`(miX + Yi) = 0}ui=1 determined by these
data. A solution is some [G] ∈ Cl(F ) which satisfies all equations when substituted for X.

While Riemann-Roch systems have been (implicitely) used before in the construction of codes
with good asymptotic properties, for instance in [59, 62, 65, 64, 68, 40, 42], they were of a less general
type. Namely, mi = ±1 for all i. As we shall see soon, dealing with the more general case where
mi 6= ±1 leads us to consider mi-torsion in the class group.

One observation about the systems is that X is a solution of the equation `(miX + Yi) = 0 as
long as deg(miX+Yi) < 0 since we have `(miX+Yi) = 0 in this case. This suggests that, if we want
to prove the existence of solutions of certain fixed degree, we should only consider those equations
`(miX + Yi) = 0 in the Riemann-Roch system with deg(miX + Yi) ≥ 0.

The following theorem shows that a solution of degree d exists if a certain numerical condition
is satisfied that involves the class number, the number Ari of effective divisors of degree ri and
the cardinality of the mi-torsion subgroups of the degree-zero divisor class group, where the mi are
determined by the system and the ri are determined by d and the mi.

Theorem 3.2. Consider the Riemann-Roch system of equations

{`(miX + Yi) = 0}ui=1.

Let di = deg Yi for i = 1, . . . , u. Write h := h(F ) the class number. Denote by Ar the number of
effective divisors of degree r in Div(F ) for r ≥ 0, and 0 for r < 0. Let s ∈ Z and define ri = mis+di
for i = 1, . . . , u. If

h >

u∑
i=1

Ari · |JF [mi]|,

then the Riemann-Roch system has a solution [G] ∈ Cls(F).

We refer to [15] for the detailed proof of Theorem 3.2.

Remark 3.3. (“Solving by taking any divisor X of large enough degree”)

(i) If ri < 0 for all i = 1, . . . , u, then the inequality in Theorem 3.2 is automatically satisfied and
hence the Riemann-Roch system always has a solution.

(ii) In many scenarios in algebraic geometry codes, one can simply argue for a solution of the
Riemann-Roch system by assuming that ri < 0 for all i = 1, . . . , u.

(iii) For instance, in [18], it was also simply assumed ri < 0 to obtain strongly multiplicative linear
secret sharing schemes. But this does not always give the best results. In particular, in Section 4,
we will show how we can employ Theorem 3.2 to get improvements, especially for small finite
fields.

It will often be more convenient to write systems as defined over Div(F ) rather than Cl(F ).
The condition in Theorem 3.2 involves the number of positive divisors of certain degrees and the

class number. The following bound will be useful in the applications. The proof is based on careful
manipulations with the zeta function of F.

Proposition 3.4. Let F be an algebraic function field over Fq. Write g for the genus g(F ) and h
for the class number h(F ). For r ∈ Z≥0, write Ar for the number of effective divisors of degree r in
Div(F). Suppose g ≥ 1. Then, for any integer r with 0 ≤ r ≤ g − 1,

Ar
h
≤ g

qg−r−1(
√
q − 1)2

.

A very brief proof of Proposition 3.4 was given in [15]. Here we give a detailed proof.
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Proof. For i ≥ 2g − 1 the value of Ai is known as a function of q, g, h, i (see Lemma 5.1.4 and
Corollary 5.1.11 in [55]). This has been exploited in Lemma 3 (ii) from [44], to show that

g−2∑
i=0

Ait
i +

g−1∑
i=0

qg−1−iAit
2g−2−i =

L(t)− htg

(1− t)(1− qt)

by manipulations of power series, where L(t) is the L-polynomial in the zeta function of F .
The claim will be derived from a relation that is obtained by taking the limit as t tends to 1/q

on both sides of the equation above, where l’Hôpital’s Rule is applied on the RHS, then finding an
expression for L′(1/q) (the “left-over term”), and substituting that back in.

Taking this limit,
g−2∑
i=0

Ai
qi

+

g−1∑
i=0

Ai
qg−1

= lim
t→1/q

L(t)− htg

(1− t)(1− qt)
,

and applying l’Hôpital’s rule ((f(t))′|t=a denotes the derivative of f evaluated at t = a), it follows
that

(L(t)− htg)′|t=1/q

((1− t)(1− qt))′|t=1/q
=
L′(1/q)− gh/qg−1

−q(1− 1/q)
=

=
gh− qg−1L′(1/q)

(q − 1)qg−1
.

The term L′(1/q) can be evaluated as follows. By differentiation,

L′(t) =

2g∑
i=1

L(t) · −ωi
1− ωit

,

and hence,

L′
(

1

qt

)
= L

(
1

qt

)
·

2g∑
i=1

(qt) · −ωi
qt− ωi

.

Evaluation of L(1/q) is straightforward by combining the Functional Equation for L-polynomials and
the fact that L(1) = h (see [55]). Namely,

L

(
1

q

)
= qg

(
1

q

)2g

L(1) =
h

qg
.

Therefore,

L′
(

1

q

)
=

h

qg−1
·

2g∑
i=1

−ωi
q − ωi

.

Substituting the expression for L′(1/q) back in, it follows that

g−2∑
i=0

Ai
qi

+

g−1∑
i=0

Ai
qg−1

=
h

qg−1(q − 1)
·

(
g +

2g∑
i=0

ωi
q − ωi

)
.

Note that, trivially, by writing it appropriately as a fraction of the other expressions in the
equation, the expression between brackets on the right-most side must be a positive number. Using
this and the fact |ωi| =

√
q for i = 1, . . . , 2g, it holds, for 0 ≤ r ≤ g − 1, that

Ar

qr
≤

g−2∑
i=0

Ai

qi
+

g−1∑
i=0

Ai

qg−1
=

h

qg−1(q − 1)
·

∣∣∣∣∣g +

2g∑
i=0

ωi

q − ωi

∣∣∣∣∣
≤ h

qg−1(q − 1)
·

(
g +

2g∑
i=0

|ωi|
q − |ωi|

)
=

gh

qg−1(q − 1)
·
(
1 +

2
√
q − 1

)
=

gh

qg−1(q − 1)
·
(√

q + 1
√
q − 1

)
=

gh

qg−1 · (√q − 1)2
.

and the claimed result follows.
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Remark 3.5 (Efficient randomized solving strategy). Except in the cases where Remark 3.3 applies,
we are not aware of any efficient deterministic strategy to solve efficiently the Riemann Roch systems
of equations appearing in our applications. However, in many circumstances, there is an efficient
randomized strategy that produces a divisor that is a solution with high probability. Namely, if the
number of non-solutions (which is bounded by the right hand side of the inequality in Theorem 3.2)
is negligible as a function of the class number, then a uniformly random element from Cls(F) will
be a solution with overwhelming probability. Assuming both means for efficient sampling in Cls(F)
according to a distribution sufficiently close to uniform and for efficient construction of generator
matrices of the algebraic geometric codes associated to the sampled divisors, there exist efficient prob-
abilistic constructions of the asymptotically good families of codes in our applications. As for the
sampling issue, we note that it can be done under mild conditions (see [12, Section 5.3.2.] or [33,
Theorem 5]). As for the construction of generator matrices, not much is known in full generality but
results for the construction of bases of Riemann-Roch spaces of general divisors can be found in [33].
Generator matrices for algebraic geometric codes on function fields of a tower of Garcia-Stichtenoth
were explicitely constructed in [54] although only one-point divisors are considered.

4 Application 1: Arithmetic Secret Sharing
Our first application concerns the asymptotic study of arithmetic secret sharing schemes, which was
first considered in [23, 18] in the context of secure multi-party computation. Since then, the asymp-
totical results from [18] have had important and surprising applications in two-party cryptography as
well [37, 39, 31, 38, 24, 36]. For a more detailed discussion of the motivation, results and applications,
please refer to [15].

One motivation of this section is to show an important application of our torsion limits and
Riemann-Roch systems introduced in the previous sections. As the proofs of most results in this
section can be found in [15], we state our results without detailed proof.

We first define arithmetic secret sharing schemes and then show how our torsion limits help to
improve prior results significantly.

Let k, n be integers with k, n ≥ 1. Consider the Fq-vector space Fkq ×Fnq , where Fq is an arbitrary
finite field.

Definition 4.1. The Fq-vector space morphism

π0 : Fkq × Fnq → Fkq

is defined by the projection
(s1, . . . , sk, c1, . . . , cn) 7→ (s1, . . . , sk).

For each i ∈ {1, . . . , n}, the Fq-vector space morphism

πi : Fkq × Fnq → Fq

is defined by the projection
(s1, . . . , sk, c1, . . . , cn) 7→ ci.

For ∅ 6= A ⊂ {1, . . . , n}, the Fq-vector space morphism

πA : Fkq × Fnq → F|A|q

is defined by the projection
(s1, . . . , sk, c1, . . . , cn) 7→ (ci)i∈A.

For v ∈ Fkq × Fnq , it is sometimes convenient to denote π0(v) ∈ Fkq by v0 and πA(v) ∈ F|A|q by vA.
We write I∗ = {1, . . . , n}. It is also sometimes convenient to refer to v0 as the secret-component of
v and to vI∗ as its shares-component.

Definition 4.2. An n-code for Fkq (over Fq) is an Fq-vector space C ⊂ Fkq × Fnq such that

(i) π0(C) = Fkq

(ii) (Ker πI∗) ∩ C ⊂ (Ker π0) ∩ C.

12



For c ∈ C, c0 ∈ Fkq is the secret and cI∗ ∈ Fnq the shares.

The first condition means that, in C, the secret can take any value in Fkq . More precisely, for a
uniformly random vector c ∈ C, the secret c0 is uniformly random in Fkq . This follows from the fact
that the projection (π0)|C is regular (since it is a surjective Fq-vector space morphism).
The second condition means that the shares uniquely determine the secret. Indeed, the shares do not
always determine the secret uniquely if and only if there are c, c′ ∈ C such that their shares coincide
but not their secrets. Therefore, by linearity, the shares determine the secret uniquely if and only if
the shares being zero implies the secret being zero. Moreover these two conditions imply that k ≤ n.
Note that an n-code with the stronger condition (Ker πI∗) ∩ C = (Ker π0) ∩ C is a k-dimensional
error correcting code of length n.

Definition 4.3 (r-reconstructing). An n-code C for Fkq is r-reconstructing (1 ≤ r ≤ n) if

(Ker πA) ∩ C ⊂ (Ker π0) ∩ C

for each A ⊂ I∗ with |A| = r.

In other words, r-reconstructing means that any r shares uniquely determine the secret. Note
that an n-code is n-reconstructing by definition.

Definition 4.4 (t-Disconnected). An n-code C for Fkq is t-disconnected if t = 0 or else if 1 ≤ t < n,
the projection

π0,A : C −→ Fkq × πA(C)

c 7→ (π0(c), πA(c))

is surjective for each A ⊂ I∗ with |A| = t.
If, additionally, πA(C) = Ftq, we say C is t-uniform.

If t > 0, then t-disconnectedness means the following. Let A ⊂ I∗ with |A| = t. Then, for
uniformly randomly c ∈ C, the secret c0 is independently distributed from the t shares cA. Indeed,
for the same reason that the secret c0 is uniformly random in Fkq , it holds that (c0, cA) is uniformly
random in Fkq × πA(C). Since the uniform distribution on the Cartesian-product of two finite sets
corresponds to the uniform distribution on one set, and independently, the uniform distribution on
the other, the claim follows. Uniformity means that, in addition, cA is uniformly random in Ftq.

Definition 4.5 (Powers of an n-Code). Let m ∈ Z>0. For x,x′ ∈ Fmq , their product x ∗ x′ ∈ Fmq is
defined as (x1x

′
1, . . . , xmx

′
m).

Let d be a positive integer. If C is an n-code for Fkq , then C∗d ⊂ Fkq × Fnq is the Fq-linear subspace
generated by all terms of the form c(1) ∗ . . . ∗ c(d) with c(1), . . . , c(d) ∈ C. For d = 2, we use the
abbreviation Ĉ := C∗2. Powers of linear codes (instead of n-codes) are defined analogously and will
be useful later.

Remark 4.6 (Powering Need Not Preserve n-Code). Suppose C ⊂ Fkq × Fnq is an n-code for Fkq . It
follows immediately that the secret-component in C∗d takes any value in Fkq . However, the shares-
component in C∗d need not determine the secret-component uniquely. Thus, C∗d need not be an
n-code for Fkq .

Definition 4.7 (Arithmetic secret sharing scheme). An (n, t, d, r)-arithmetic secret sharing scheme
for Fkq (over Fq) is an n-code C for Fkq such that

(i) t ≥ 1, d ≥ 2

(ii) C is t-disconnected,

(iii) C∗d is in fact an n-code for Fkq and

(iv) C∗d is r-reconstructing.

C has uniformity if, in addition, it is t-uniform.
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For example, the case k = 1, d = 2, n = 3t + 1, r = n − t, q > n obtained from Shamir’s secret
sharing scheme [52] (taking into account that degrees sum up when taking products of polynomials)
corresponds to the secret sharing scheme used in [9, 17]. The properties are easily proved using
Lagrange’s Interpolation Theorem. The generalization to k > 1 of this Shamir-based approach is due
to [26]. The abstract notion is due to [23], where also constructions for d = 2 were given based on
general linear secret sharing. See also [18, 19, 20]. On the other hand the following limitations are
easy to establish.

Proposition 4.8. Let C be an (n, t, d, r)-arithmetic secret sharing scheme for Fkq over Fq. As a
linear secret sharing scheme for Fkq over Fq, C has t-privacy and (r− (d−1)t)-reconstruction. Hence,
dt+ k ≤ r. Particularly, if k = 1, d = 2, r = n− t, then 3t+ 1 ≤ n.

We are now ready to state the asymptotical results from [18] in full generality.3 Let F/Fq be an
algebraic function field (in one variable, with Fq as field of constants). Let g denote the genus of F .
Let k, t, n ∈ Z with n > 1, 1 ≤ t ≤ n, 1 ≤ k ≤ n. Suppose Q1, . . . , Qk, P1, . . . , Pn ∈ P(1)(F ) are
pairwise distinct Fq-rational places. Write Q =

∑k
j=1Qj ∈ Div(F ) and D = Q+

∑n
i=1 Pi ∈ Div(F ).

Let G ∈ Div(F ) be such that supp D ∩ supp G = ∅, i.e, they have disjoint support. Consider the
AG-code C(D,G)L ⊂ Fkq × Fnq , given by the image of the map

φ : L(G)→ Fkq × Fnq

f 7→ (f(Q1), . . . , f(Qk), f(P1), . . . , f(Pn)).

Theorem 4.9. (from [18]). Let t ≥ 1, d ≥ 2. Let C = C(D,G)L with deg G ≥ 2g + t + k − 1. If
n > 2dg + (d + 1)t + dk − d, then C is an (n, t, d, n − t)-arithmetic sharing scheme for Fkq over Fq
with uniformity.

Theorem 4.10. (from [18]). Fix d ≥ 2 and a finite field Fq. Suppose A(q) > 2d, where A(q) is
Ihara’s constant. Then there is an infinite family of (n, t, d, n− t)-arithmetic secret sharing schemes
for Fkq over Fq with uniformity such that n is unbounded, k = Ω(n) and t = Ω(n). Moreover, for every
C in the family, a generator for C is poly(n)-time computable and C∗i has poly(n)-time reconstruction
of a secret in the presence of t faulty shares (i = 1, . . . , d− 1).

Since A(q) =
√
q − 1 if q is a square, it holds that A(q) > 2d if q is a square with q > (2d + 1)2.

Also, since by Serre’s Theorem, A(q) > c log q for some absolute constant c > 0, it also holds that
A(q) > 2d if q is (very) large. We will now apply our results on the torsion limit in combination
with appropriate Riemann-Roch systems in order to relax the condition A(q) > 2d considerably. As
a result, we attain the result of [18] but this time over nearly all finite fields.

Theorem 4.11. Let t ≥ 1, d ≥ 2. Define I∗ = {1, . . . , n}. For A ⊂ I∗ with A 6= ∅, define
PA =

∑
j∈A Pj ∈ Div(F ). Let K ∈ Div(F ) be a canonical divisor. If the system

{`(dX −D + PA +Q) = 0, `(K −X + PA +Q) = 0}A⊂I∗,|A|=t

is solvable, then there is a solution G ∈ Div(F ) such that C(D,G)L is an (n, t, d, n − t)-arithmetic
secret sharing scheme for Fkq over Fq (with uniformity).

The reader may refer [15] for a detailed proof of 4.11.
And now as a corollary of Theorems 3.2 and 4.11 we get the following:

Corollary 4.12. Let F/Fq be an algebraic function field. Let d, k, t, n ∈ Z with d ≥ 2, n > 1 and
1 ≤ t < n. Suppose Q1, . . . , Qk, P1, . . . , Pn ∈ P(1)(F ) are pairwise distinct. If there is s ∈ Z such that

h >

(
n

t

)
(Ar1 +Ar2 |JF [d]|)

where r1 := 2g− s+ t+k−2 and r2 := ds−n+ t, then there exists an (n, t, d, n− t)-arithmetic secret
sharing scheme for Fkq over Fq with uniformity.

3In fact, we state a version that is proved by exactly the same arguments as in [18].
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Theorem 4.13. Let Fq be a finite field and d ∈ Z≥2. If there exists 0 < A ≤ A(q) such that
A > d − 1 + Jd(q,A), then there is an infinite family of (n, t, d, n − t)-arithmetic secret sharing
schemes for Fkq over Fq with t-uniformity where n is unbounded, k = Ω(n) and t = Ω(n).

Remark 4.14. Note that in [15, Main Theorem 1] this result was announced but only proved in the
case d = 2. However, the general condition is incorrectly written there as A > 1 + Jd(q,A) instead of
A > d−1+Jd(q, A). Note that in the case d = 2 (which is the main concern of [15]) both expressions
coincide.

Theorem 4.13 will follow from the more precise statement in Theorem 4.16 below. Combining
Theorem 4.13 with Theorem 2.6 we obtain, in the special case d = 2:

Theorem 4.15. For q = 8, 9 and for all prime powers q ≥ 16 there is an infinite family of (n, t, 2, n−
t)-arithmetic secret sharing schemes for Fkq over Fq with t-uniformity where n is unbounded, k = Ω(n)
and t = Ω(n).

More precisely, we have the following result (for d > 2 there is a similar analysis).

Theorem 4.16. Let Fq be a finite field. Suppose κ ∈ [0, 13 ) and τ ∈ (0, 1] and 0 < A ≤ A(q) are real
numbers such that

A >
1 + κ

1− 3κ
(1 + J2(q, A))

and
τ +

H2(τ)

log q
<

1

3

(
1− 3κ− (1 + J2(q, A))(1 + κ)

A

)
.

Then there is an infinite family of (n, t, 2, n − t)-arithmetic secret sharing schemes for Fkq over Fq
with uniformity where n is unbounded, k = bκnc+ 1 and t = bτnc.

The proof of this fact relies on showing that the conditions in Corollary 4.12 are satisfied asymp-
totically for a family of function field with Ihara’s limit A, if the requirements of Theorem 4.16 are
met. It is easy to show why Theorem 4.16 implies Theorem 4.15: if 0 < A ≤ A(q) is such that
A > 1 + J2(q, A) we can always select κ ∈ (0, 13 ) and τ ∈ (0, 1] satisfying the conditions in Theo-
rem 4.16. Note that in order to obtain the result in Theorem 4.15 we require κ > 0. The reader may
refer to [15] for the detailed proof of Theorem 4.16.

Finally, using our paradigm we also improve the explicit lower bounds for the parameter τ̂(q)
from [18] and [14] for all q with q ≤ 81 and q square, as well as for all q with q ≤ 9. Recall τ̂(q) is
defined as the maximum value of 3t/(n− 1) which can be obtained asymptotically (when n tends to
infinity) when t, n are subject to the condition that an (n, t, 2, n− t)-arithmetic secret sharing for Fq
over Fq exists (no uniformity required here). The new bounds are shown in the upper row of Table 1.
All the new bounds marked with a star (*) are obtained by applying Theorem 4.16 in the case κ = 0
and using the upper bounds given in Theorem 2.3 for the torsion limits. To obtain the rest of the
new upper bounds, for each q, we apply the field descent technique in [14] to Fq2(in the special case
of F9, even though Theorem 4.16 can be applied directly, as remarked in Main Theorem 4.15, it is
better to apply Theorem 4.16 to F81 and then use the descent technique). These are compared with
the previous bounds: the ones obtained in [18] (marked also with the symbol *), and the rest, which
were obtained in [14] by means of the aforementioned field descent technique.

q 2 3 4 5 7 8
New bounds 0.034 0.057 0.104 0.107 0.149 0.173∗
Prev. bounds 0.028 0.056 0.086 0.093 0.111 0.143

q 9 16 25 49 64 81
New bounds 0.173 0.298∗ 0.323∗ 0.448∗ 0.520∗ 0.520∗
Prev. bounds 0.167 0.244 0.278 0.333∗ 0.429∗ 0.500∗

Table 1: Lower bounds for τ̂(q)

We end this section with the remark that the results above can be adapted to prove a statement
about linear codes, namely the existence of families of codes C such that both their duals and their
powers are asymptotically good.
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Theorem 4.17. If there exists 0 < A ≤ A(q) such that A > d − 1 + Jd(q, A), then there exists
an asymptotically good family of linear codes C over Fq such that both the duals C⊥ and, for each
1 ≤ d′ ≤ d, the powers C∗d

′
, are simultaneously asymptotically good. In particular, for d = 2, this

holds for q = 8, 9 and for all prime powers q ≥ 16.

In order to show this, we need to adapt the construction of algebraic geometric codes and the
proofs of Theorem 4.11 and the subsequent theorems above. The bottomline is to take the case k = 0
of those results. Then the same arguments as above prove that both C⊥ and C∗d have minimum
distance linear in the length. The remainder of the claim follows easily from the observations below.
First, it is easy to show then that for all 1 ≤ d′ ≤ d, the codes C∗d

′
also have minimum distance

linear in their length, as it must be larger than the minimum distance of C∗d. Second, we have (by
Singleton’s bound) dimC ≥ dmin(C⊥) − 1, which proves that the codes C are asymptotically good,
and analogously we can prove that C⊥ are asymptotically good. Finally, it is obvious that if d′ > d′′

then dimC∗d
′ ≥ dimC∗d

′′
, which proves the rest of the statement.

In comparison, if we adapt the results from [18] similarly, we can only prove the existence of
these families of codes under the stronger condition A(q) > 2d. In the case d = 2, this means
A(q) > 4, which by the Drinfeld-Vlǎduţ bound implies q ≥ 25. The field descent technique based on
concatenation of codes from [14], which establishes the existence of asymptotically good arithmetic
secret sharing over any finite field when no uniformity is required, does not work here: first, it is
not guaranteed that the squares of the resulting codes are asymptotically good and second, the duals
cannot be asymptotically good. To the best of our knowledge our present paper is the first to establish,
for several finite fields Fq, the existence of linear codes C over Fq such that both C, C∗2 and C⊥

are simultaneously asymptotically good. The existence of such families over Fq for 2 ≤ q ≤ 13 is
currently an open question except in the cases q = 8, 9.

Finally, we remark that the case where just C, C∗2 are considered (so the dual C⊥ is left out of
consideration) has been shown to hold for all finite fields [49], using an algebraic geometric argument
in combination with a refined descent method. The construction applies this field descent method
to algebraic geometric codes over a suitable extension field such that not only their square but also
certain higher powers are asymptotically good. The minimum distance of these powers is bounded
in [49] based solely on the degree of the divisors. It seems a plausible avenue to try and improve the
parameters (dimension, minimum distance) of the resulting codes C and C∗2 using the torsion limit
but we do not elaborate further on this here.

5 Application 2: Bilinear Complexity of Multiplication
Since the 1980’s, many interesting applications of algebraic curves (or algebraic function fields of one
variable) over finite fields have been found. One of these applications, which was due to D.V. Chud-
novsky and G.V. Chudnovsky [21], is the study of multiplication bilinear complexity in extension fields
through algebraic curves. Following the brilliant work by D.V. Chudnovsky and G.V. Chudnovsky,
Shparlinski, Tsfasman and Vlǎduţ [53] systematically studied this idea and extended the result in
[21]. After the above pioneer research, Ballet et al. [1, 2, 3, 4] further investigated and developed the
idea and obtained improvements.

Before we formulate the problem, we need to adapt some of the definitions in the previous section.

Definition 5.1. The Fq-vector space morphism

π0 : Fqk × Fnq → Fqk

is defined by the projection
(s, c1, . . . , cn) 7→ s.

For each i ∈ {1, . . . , n}, the Fq-vector space morphism

πi : Fqk × Fnq → Fq

is defined by the projection
(s, c1, . . . , cn) 7→ ci.
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For ∅ 6= A ⊂ {1, . . . , n}, the Fq-vector space morphism

πA : Fqk × Fnq → F|A|q

is defined by the projection
(s, c1, . . . , cn) 7→ (ci)i∈A.

For v ∈ Fqk × Fnq , it is sometimes convenient to denote π0(v) ∈ Fqk by v0 and πA(v) ∈ F|A|q by vA.
We write I∗ = {1, . . . , n}.

Definition 5.2. An n-code for Fqk (over Fq) is an Fq-vector space C ⊂ Fqk × Fnq such that

(i) π0(C) = Fqk

(ii) (Ker πI∗) ∩ C ⊂ (Ker π0) ∩ C.

Definition 5.3. Let Fq be a finite field, k > 0 an integer. For two vectors x = (x0, x1, . . . , xm),x′ =
(x′0, x

′
1, . . . , x

′
m) ∈ Fqk × Fmq their product x ∗ x′ ∈ Fqk × Fmq is defined as (x0x

′
0, x1x

′
1, . . . , xmx

′
m)

where x0x′0 is the product in the extension field Fkq and xix′i is the product in Fq for i = 1, . . . , n.
Let d be a positive integer. If C is a Fq-vector subspace of Fqk × Fnq , then C∗d ⊂ Fqk × Fnq is the

Fq-linear subspace generated by all terms of the form c(1) ∗ . . .∗c(d) with c(1), . . . , c(d) ∈ C. For d = 2,
we use the abbreviation Ĉ := C∗2.

Now we can introduce the notion of multiplication-friendly code.

Definition 5.4. Let n, k ∈ Z. An (n, k)-multiplication-friendly code C over Fq is an n-code for Fqk
(over Fq) such that

(i) n, k ≥ 1.

(ii) Ĉ is also an n-code for Fqk .

Remark 5.5. Since π0(C) = Fqk implies π0(Ĉ) = Fqk we can replace (ii) by

(ii′)(x,0) /∈ Ĉ for all x ∈ Fqk \ {0}

and we get an equivalent definition.

Multiplication-friendly codes are also considered in [53] and are called supercodes there. By [53,
Corollary 1.13], an (n, k)-multiplication-friendly code C over Fq yields a bilinear multiplication algo-
rithm of multiplicative complexity n over Fq. Therefore, we are interested in the smallest n for fixed
q and k.

Definition 5.6. We define the quantity

µq(k) = min
n∈Z>0

{n : there exists an (n, k)-multiplication-friendly code over Fq}

To measure how µq(k) behaves when q is fixed and k tends to ∞, we define two asymptotic
quantities

Mq = lim sup
k→∞

µq(k)

k

and
mq = lim inf

k∈N

µq(k)

k
.

D.V. Chudnovsky and G.V. Chudnovsky [21] first employed algebraic curves over finite fields to
construct bilinear multiplication algorithms implicitly through multiplication-friendly codes in 1986
(please refer to [5] for more background). This idea was further developed in [53] in order to study
the quantities mq and Mq. The main idea in [53] is to solve a special Riemann-Roch system, stated
in Theorem 5.7. However, the role of 2-torsion points in divisor class group was neglected in [53],
and it turns out that there is a gap in the proof of the main result in [53]. Namely, the mistake is
in the proof of their Lemma 3.3, page 161, the paragraph following formulas about the degrees of
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the divisors. It reads: “Thus the number of linear equivalence classes of degree a for which either
Condition α or Condition β fails is at most Db′ + Db”. This is incorrect. Db should be multiplied
by the torsion. Hence the proof of their asymptotic bound is incorrect, as there is an implicit but
(so far) unjustified assumption on J2 = 0 being possible, or rather even the stronger assumption that
J [2] = {0} is possible at all levels in an asymptotically good (optimal) family. Therefore, their claim
that mq ≤ 2(1 + 1

A(q)−1 ) is unjustified. Moreover, some other results [2, 3] use the same approach
and have the same gap (the asymptotical results in their precursor [1] are based on the conjecture
that a tower exists attaining certain properties). In [2] the mistake is at the very beginning of page
1801 (the sentence starts on the previous page):“Hence, the number of linear equivalence classes of
divisors of degree n + g − 1 for which either the condition (5) or the condition (6) fails is at most
2Dg−1 where Dg−1 denotes...”. Hence the proof of the asymptotic bound is incorrect.
We will now give an upper bound for mq which involves the 2-torsion limit introduced in this paper.
We first need to state the problem in a way that we can use the results in Section 3.

Theorem 5.7. Let F/Fq be an algebraic function field and N, k > 1 be integers. Suppose there exist
P1, . . . , PN ∈ P(1)(F ) with Pi 6= Pj (i 6= j) and
Q ∈ P(k)(F ). Let D =

∑N
i=1 Pi + Q ∈ Div(F ) and D− =

∑N
i=1 Pi ∈ Div(F ). Let K ∈ Div(F )

be a canonical divisor.
If the Riemann-Roch system {

`(−X +K +Q) = 0
`(2X −D−) = 0

has some solution, then there exists a solution G ∈ Div(F ) such that
supp G ∩ supp D = ∅, and C = C(D,G)L is an (N, k)-multiplication friendly code over Fq.
Furthermore, write r = `(2G) − `(2G − D−). Then there exist r indices i1, . . . , ir ∈ {1, . . . , N},
such that C̃ = C(D̃,G)L is a (r, k)-multiplication-friendly code, where D̃ =

∑r
j=1 Pij +Q ∈ Div(F ).

Therefore µq(k) ≤ r ≤ `(2G).

Proof. If there exists a solution, any divisor in its class of equivalence is also a solution. By
the Weak Approximation Theorem, we can take an element G of this class in such a way that
supp G ∩ supp D = ∅.

Suppose G is a solution. We prove C = C(D,G)L is a multiplication-friendly code. We need to
verify π0(C) = Fqk and (x,0) 6∈ Ĉ for all 0 6= x ∈ Fqk .

Since degQ = k, it follows by the Riemann-Roch Theorem and `(K − G + Q) = 0 that `(G) =
`(G−Q) + k. This is enough to ensure that π0(C) = Fqk , as follows: Consider the map

ρ : L(G)→ Fqk ,

f 7→ f(Q).

Its kernel is L(G−Q). So its image is isomorphic to L(G)/L(G−Q), and this has dimension (over
Fq) `(G)− `(G−Q) = k. So π0(C) = Fqk .

Second, as Ĉ ⊂ C(D, 2G)L, it suffices to prove that (x,0) 6∈ C(D, 2G)L for any 0 6= x ∈ Fqk . Or
equivalently, that any f ∈ L(2G) with f(Pi) = 0 for i = 1, . . . , N satisfies f(Q) = 0. But this is
trivially true as in these conditions, f ∈ L(2G −D−) = {0}. We have proved C is a multiplication-
friendly code.

Finally, consider the Fq-linear code C(D−, 2G)L. It has dimension r by definition. Let i1, . . . , ir ∈
{1, . . . , N} be such that the code C(D̃−, 2G)L of length r equals Frq, where D̃− =

∑r
j=1 Pij . Note

that C̃ = C(D̃,G)L satisfies π0(C̃) = Fqk trivially, since π0(C) = Fqk as it is obtained from C by
puncturing (“erasing coordinates”) outside the 0-th coordinate.

By construction, r = `(2G) − `(2G − D̃−). Since, by definition, it also holds that r = `(2G) −
`(2G−D−), it follows that L(2G−D−) = L(2G−D̃−). So if f ∈ L(2G−D̃−), then f ∈ L(2G−D−).
This implies f(Q) = 0, as shown before.
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Combining Theorem 5.7 with Theorem 3.2, we get

Theorem 5.8. Let F/Fq be an algebraic function field and N, k > 1 be integers. Suppose |P(1)(F )| ≥
N and P(k)(F ) is not empty. If there is a positive integer d such that

h > A2g−2−d+k +A2d−N |J [2]|

then µq(k) ≤ max{`(2G) : G ∈ Div(F ),degG = d}. In particular, if in addition d ≥ g, then
µq(k) ≤ 2d− g + 1.

Note that the last part is a consequence of the fact that if deg G = d ≥ g, then deg 2G = 2d ≥ 2g
and by Riemann-Roch, `(2G) = 2d− g + 1

Theorem 5.9. Let Fq be a finite field. If there exists a real number a ≤ A(q) with a ≥ 1 + J2(q, a)
then

mq ≤ 2

(
1 +

1

a− J2(q, a)− 1

)
.

In particular, if A(q) ≥ 1 + J2(q, A(q)), then

mq ≤ 2

(
1 +

1

A(q)− J2(q, A(q))− 1

)
.

Proof. Let F = {Fs/Fq}∞s=1 be an infinite family of function fields with limit A(F) = A ≥ a and
such that J2(F) = J2(q, a), which exists by definition. Let κ > 0 be a real number. The precise value
of κ will be determined later. And define, for every s, gs = g(Fs), ns = N1(Fs), ks = bκgsc and
js = logq |JFs

[2]|. Note lims→∞ ns/gs = A and lim inf js/gs = J2(q, a).
We will apply 5.8 to all large enough function fields Fs. It is enough to verify that there exists a

place Q of degree ks in Fs and that

h(Fs) > A2gs−2−ds+ks + |J [2]|A2ds−ns
(5.1)

holds for some ds.
First note that [55, Corollary 5.2.10(c)] states that for any function field F and any positive integer

k with q(k−1)/2(q1/2 − 1) ≥ 2g(F ) + 1, there is at least one place of degree k. In our setting, since
lims→∞ ks/gs = κ > 0, a place of degree ks exists in Fs for large enough s.

Suppose that for any ε > 0, there exists a value of s such that

ks ≤
ns − gs − js

2
− εgs − 1. (5.2)

Then it is easy to see that we can choose an integer ds with

ds ≥ ks + gs +
ε

2
gs (5.3)

and
2ds ≤ ns + gs − js − εgs. (5.4)

Then for this selection of ds we can apply Proposition 3.4 to get

A2gs−2−ds+ks
h

≤ gs
qgs−(2gs−2−ds+ks)−1(

√
q − 1)2

(5.5)

and

|J [2]|A2ds−ns

h
≤ gsq

js

qgs−(2ds−ns)−1(
√
q − 1)2

(5.6)

Now if s is large enough, equations 5.3 and 5.5 imply that

A2gs−2−ds+ks ≤ h/3

and equations 5.4 and 5.6 imply that

|J [2]|A2ds−ns ≤ h/3,
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so equation 5.1 holds, and we can apply Theorem 5.8 and (since in addition ds ≥ gs − 1 by equa-
tion 5.3), this gives µq(ks) ≤ 2ds− gs + 1. In particular, since we can take ε arbitrarily small, we can
choose ds = ks + gs + 1, and this yields the bound µq(ks) ≤ 2ks + gs + 3.

So all is left is to determine when we can fulfill condition 5.2. It is not difficult to see that if
κ < A−1−J2(q,a)

2 , then for an infinite number of values of s, and for small enough (but constant) ε,
the condition holds.

Therefore, for those values of s, we have

µq(ks)

ks
≤ 2ks + gs + 3

ks
≤

(2 + 1
κ )ks + o(1)

ks
→ 2 +

1

κ

for any κ < A−1−J2(q,a)
2 .

Hence
mq = lim inf

k→∞

µq(k)

k
≤ 2 +

2

A− 1− J2(q, a)
≤ 2

(
1 +

1

a− J2(q, a)− 1

)
which finishes the proof.

Remark 5.10. Recently in [47], H. Randriambololona proved that the original result claimed in [53],
i.e. mq ≤ 2(1 + 1

A(q)−1 ), can indeed be attained in the case A(q) > 5. 4

From Theorem 2.6, we can apply Theorem 5.9 to all fields Fq with q ≥ 8, except perhaps q = 11
and 13. These include several fields for which the result in Remark 5.10 cannot be applied directly.
However, we must also take into account the following descent lemma which, combined with any of
these results, allows to obtain upper bounds for mq for all fields Fq.

Lemma 5.11. [53, Corollary 1.3] For every finite field Fq and every positive integer k, we have

mq ≤
µq(k)

k
mqk .

In order to obtain explicit results, we need some values of µq(k) for small values of k. We can use
the following lemma, which for example can be found in [16, Example III.5].

Lemma 5.12. [16, Example III.5] Let q be a prime power and k be an integer with 2 ≤ k ≤ q/2 + 1.
Then µq(k) = 2k − 1. In particular µq(2) = 3 for every q and µq(3) = 5 for every q ≥ 4.

Corollary 5.13. For every prime power q, we have mq ≤ 3
2mq2 and if q ≥ 4, then mq ≤ 5

3mq3 .

These observations allow us to compare the bounds which result from Theorem 5.9 with those
implied by the result in Remark 5.10. We find then that our Theorem 5.9 gives the best bound in
the cases q = 16, 25, 32 while for the rest of cases, applying Remark 5.10 in a suitable extension
and then using the descent results above is preferable, given the current knowledge about A(q) and
the bounds for the torsion limit given in Theorem 2.3. We give some examples in Table 2. For
q = 8, 9, 27, the results are found by applying Theorem 5.9 and Remark 5.10 to Fq2 (followed by
Corollary 5.13). Note in particular that it would be possible to apply Theorem 5.9 directly in these
cases, yet it would give a worse bound. For q = 4, 5, we apply Theorem 5.9 and Remark 5.10 to Fq3 .
For q = 2, 3 we use the bounds for mq2 that we have just computed. Finally, for q = 16, 25, 32
we apply Theorem 5.9 directly on Fq, while we apply Remark 5.10 on Fq2 . For the case q = 16, the
fact that we can prove an improved torsion bound (we are in the case (iii) of Theorem 2.3) using the
theorem of Deuring-Shafarevich is significant, as otherwise we would only be able to prove the bound
m16 ≤ 3.334 this way.

In the rest of this section, we improve the state of the art [16] regarding lower bounds on the limit
Mq, for small values of q such as q = 2, 3, 4, 5. The following result can be found in [16].

Proposition 5.14. Let F/Fq be a function field with r distinct places P1, . . . , Pr. Let Q be a place
of degree k. If there exists a divisor G such that the following two conditions are satisfied

(i) `(G)− `(G−Q) = deg(Q);

(ii) `(2G−
∑r
i=1 Pi) = 0

4Note that in [47], our notion mq is denoted by msym
q .
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q 2 3 4 5 8
Thm. 5.9 5.836 5.174 3.891 3.932 3.501
Rem. 5.10 5.834 5.143 3.889 3.903 3.5

q 9 16 25 27 32
Thm. 5.9 3.449 3.026 2.779 3.121 2.667
Rem. 5.10 3.429 3.215 3.131 3.12 3.1

Table 2: Upper bounds for mq

then

µq(k) ≤
r∑
i=1

µq(si),

where si = deg(Pi) for all 1 ≤ i ≤ r.

The two conditions of Proposition 5.14 can be replaced by the solvability of certain Riemann-Roch
system as shown below.

Corollary 5.15. Let F/Fq be a function field with r distinct places P1, . . . , Pr. Let Q be a place of
degree k. If the Riemann-Roch system{

`(K −X +Q) = 0
`(2X −

∑r
i=1 Pi) = 0

has solutions for a canonical divisor K, then

µq(k) ≤
r∑
i=1

µq(si),

where si = deg(Pi) for all 1 ≤ i ≤ r.

Proof. Suppose that G is a solution. Then we have L(K − G + Q) = 0, and hence L(K − G) = 0.
Thus, we have

`(G)− `(G−Q) = deg(Q) + `(K −G)− `(K −G+Q) = deg(Q).

The desired result follows from Proposition 5.14.

Now combining Corollary 5.15 with Theorem 3.2, we obtain a numerical condition.

Theorem 5.16. Let F/Fq be a function field with r distinct places P1, . . . , Pr. Let Q be a place of
degree k. Denote by Ar the number of effective divisors of degree r in Div(F ). If there is a positive
integer d such that

h > A2g−2−d+k + |J [2]|A2d−
∑r

i=1 si
,

then

µq(k) ≤
r∑
i=1

µq(si),

where si = deg(Pi) for all 1 ≤ i ≤ r.

To derive a lower bound on Mq, we need a family of Shimura curves with genus in this family
growing slowly (see [16, Lemma IV.4]).

Lemma 5.17. For any prime power q and integer t ≥ 1, there exists a family {Xs}∞s=1 of Shimura
curves over Fq such that

(i) The genus g(Fs)→∞ as s tends to ∞, where Fs stands for the function field Fq(Xs).

(ii) lims→∞ g(Fs)/g(Fs−1) = 1.
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(iii) lims→∞B2t(Fs)/g(Fs) = (qt − 1)/(2t), where B2t(Fs) stands for the number of places of degree
2t in Fs.

Now we are ready to derive the following result.

Theorem 5.18. For a prime power q, one has

Mq ≤

 µq(2t)
qt−1

t(qt−2−logq 2) if 2|q
µq(2t)

qt−1
t(qt−2−2 logq 2) otherwise

for any t ≥ 1 as long as qt − 2− logq 2 > 0 for even q; and qt − 2− 2 logq 2 > 0 for odd q.

Proof. We prove the theorem only for the case where q is a power of 2. For the odd characteristic
case, the only difference is the size of J [2].

Let {Fs/Fq}∞s=1 be a family of function fields with the three properties in Lemma 5.17. For every
k ≥ 2, let s(k) be the smallest positive integer such that

B2t(Fs(k)) ≥ r :=

⌈(
1

2
gs(k)(1 + logq 2) + k+

3

2
logq

(
3qgs(k)

(
√
q − 1)2

)
+ 1

)
/t

⌉
, (5.7)

where gs(k) is the genus g(Fs(k)) of Fs(k).
Thus, we can find r places of degree 2t in Fs(k). By the definition of r in Equation (5.7), we have

gs(k) + k + logq

(
3qgs(k)

(
√
q − 1)2

)
≤ 1

2
gs(k)(1− logq 2) + rt− 1

2
logq

(
3qgs(k)

(
√
q − 1)2

)
− 1. (5.8)

Therefore, we can find an integer d between gs(k) + k + logq

(
3qgs(k)

(
√
q−1)2

)
and 1

2gs(k)(1− logq 2) + rt−
1
2 logq

(
3qgs(k)

(
√
q−1)2

)
, i.e., we have

gs(k)

qgs(k)−(2gs(k)−d+k)−1(
√
q − 1)2

≤ 1

3
(5.9)

and
gs(k)2

gs(k)

qgs(k)−(2d−2rt)−1(
√
q − 1)2

≤ 1

3
(5.10)

Using the fact that |J [2]| ≤ qgs(k) and combining Equations (5.9), (5.10) and Proposition 3.4, we get

h >
2h

3
≥ A2gs(k)−d+k + |J [2]|A2d−2rt,

where h is the zero divisor class number of Fs(k). By Theorem 5.16, we have

µq(k) ≤ rµq(2t).

On the other hand, by choice of s(k), we know that

B2t(Fs(k)−1) ≤
⌈(

1

2
gs(k)−1(1 + logq 2) + k+

3

2
logq

(
3qgs(k)−1

(
√
q − 1)2

)
+ 1

)
/t

⌉
− 1, (5.11)

By the property (iii) in Lemma 5.17, the inequality (5.11) gives

k ≥ 1

2
gs(k)−1(qt − 2− logq 2) + o(gs(k)−1). (5.12)

Finally by Theorem 5.16, we have

µq(k)

k
≤ rµq(2t)

k
≤ µq(2t)

(
(1 + logq 2)gs(k) + o(gs(k))

2kt
+

1

t

)
= µq(2t)

(
(1 + logq 2)gs(k) + o(gs(k))

t(gs(k)−1(qt − 2− logq 2) + o(gs(k)−1))
+

1

t

)
→ µq(2t)

qt − 1

t(qt − 2− logq 2)
as k →∞.

This finishes the proof.
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Note that in [16], a trivial solution of the Riemann-Roch system in Corollary 5.15 was used due
to the fact that torsion limit was not considered, and hence a weaker bound on Mq was derived in
[16].

With help of the torsion-limit technique and Riemann-Roch system, we can bring down the upper
bound derived in Theorem [16, Theorem IV.5] and hence we get further improvements onMq for small
values of q. Here we only provide upper bounds for a few small q to demonstrate our improvements.

Corollary 5.19. One has the upper bounds on Mq for q = 2, 3, 4, 5 as shown in the following table

q 2 3 4 5
Mq 7.23 5.45 4.44 4.34

Proof. (i) For q = 2, the desired result follows from Theorem 5.18 by taking t = 6 and applying
µ2(12) ≤ 42.

(ii) For q = 3, the desired result follows from Theorem 5.18 by taking t = 5 and applying µ3(10) ≤
27.

(iii) For q = 4, the desired result follows from Theorem 5.18 by taking t = 2 and applying µ4(4) = 8.

(iv) For q = 5, the desired result follows from Theorem 5.18 by taking t = 2 and applying µ5(4) = 8.

6 Application 3: Asymptotic Bounds for Frameproof Codes

6.1 Definitions and basic results
Let S be a finite set of q elements (we denote by Fq the finite field with q elements if q is a prime
power) and let n be a positive integer. Define the i-th projection:

πi : Sn → S, (a1, . . . , an) 7→ ai.

Definition 6.1. For a subset A ⊂ Sn, we define the descendants of A, desc(A), to be the set of all
words x such that for each 1 ≤ i ≤ n, there exists a ∈ A satisfying πi(x− a) = 0.

Definition 6.2. Let s ≥ 2 be an integer. A q-ary s-frameproof code of length n is a subset C ⊂ Sn

such that for all A ⊂ C with |A| ≤ s, the intersection desc(A) ∩ C is the same as A.

Note that 1-frameproof codes are uninteresting, since any C ⊂ S would satisfy the resulting
condition. From the definition of frameproof codes, it is clear that a q-ary s-frameproof code C is a
q-ary s1-frameproof code for any 2 ≤ s1 ≤ s.

Following the notation from [56], we denote a q-ary s-frameproof code in Sn of size M by s-
FPC(n,M). As usual, we denote a q-ary error-correcting code of length n, size M and minimum
distance d by (n,M, d)-code, or [n, logqM,d]-linear code if the code is linear.

We want to look at the asymptotic behavior of s-frameproof codes in the sense that q and s are
fixed and the length n tends to infinity.

Definition 6.3. For fixed integers q ≥ 2, s ≥ 2 and n ≥ 2, let Mq(n, s) denote the maximal size of
q-ary s-frameproof codes of length n, i.e,

Mq(n, s) := max{M : there exists a q-ary s-FPC(n,M)}.

For fixed q and s, define the asymptotic quantity

Rq(s) = lim sup
n→∞

logqMq(n, s)

n
.

It seems that the exact values of Rq(s) are not easy to be determined for any given q and s.
Instead, we will get some lower bounds on Rq(s). Before looking at lower bounds, we first derive an
upper bound on Rq(s) from [11].
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Theorem 6.4.
Rq(s) ≤

1

s
.

Proof. By Theorem 1 of [11], we have

Mq(n, s) ≤ max{qdns e, r
(
qd

n
s e − 1

)
+ (s− r)

(
qb

n
s c − 1

)
},

where r ∈ {0, 1, . . . , s− 1} and r is the remainder of n divided by s. Thus, we have

Mq(n, s) ≤ sqd
n
s e.

The desired result follows.

From now on we will concentrate on lower bounds on Rq(s). Let us first recall the constructions
from [22].

Proposition 6.5. Let q be a prime power. Then a q-ary [n, k, d]-linear code C is a q-ary s-
FPC(n, qk) with s = b(n− 1)/(n− d)c.

Remark 6.6. This construction shows that the crucial parameter s is determined only by the mini-
mum distance of C if the length is given.

From the above relationship between linear codes and frameproof codes, we immediately obtain
a lower bound on Rq(s) from the Gilbert-Varshamov bound.

Theorem 6.7. Let q be a prime power and 2 ≤ s < q an integer. Then

Rq(s) ≥ 1−Hq

(
1− 1

s

)
,

where
Hq(δ) = δ logq(q − 1)− δ logq δ −

(
1− δ) logq(1− δ

)
is the q-ary entropy function.

Proof. The desired result follows directly from the Gilbert-Varshamov bound and Proposition 6.5.

Remark 6.8. The bound in Theorem 6.7 is only an existence result as the Gilbert-Varshamov bound
is not constructive.

6.2 Lower Bounds from AG Codes
In this section, we introduce two lower bounds on Rq(s) from algebraic geometry codes. One bound
can be obtained by directly applying Proposition 6.5 and the Tsfasman-Vlăduţ-Zink bound [58].
However, the second bound employs our torsion limits.

Theorem 6.9. For a prime power q and an integer s ≥ 2, we have

Rq(s) ≥
1

s
− 1

A(q)
.

Proof. Let δ = 1 − 1/s. Combining Proposition 6.5 with the TVZ bound, we obtain the desired
result.

Remark 6.10. (i) The bound in Theorem 6.9 is constructive as long as sequences of curves at-
taining A(q) are explicit.

(ii) It is easy to check that for every s ≥ 2, the bound in Theorem 6.9 is better than the one in
Theorem 6.7 for sufficiently large square q. For instance, for s = 2, and a square q ≥ 49, the
bound in Theorem 6.9 is always better than the one in Theorem 6.7.
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(iii) Comparing with the upper bound in Theorem 6.4, we find that

1

s
− 1

A(q)
≤ Rq(s) ≤

1

s
.

Since 1/A(q) → 0 as q → ∞ (see [45]), Rq(s) is getting closer to 1/s as q → ∞. The result
Rq(s) ≈ 1/s is also implicitly stated in [22] by combining Propositions 2 and 3 there.

The bound in Theorem 6.9 has been further improved in [63, 46, 48].

Theorem 6.11. (i) [63] For every 2 ≤ s ≤ A(q), one has

Rq(s) ≥
1

s
− 1

A(q)
+

1− 2 logq s

sA(q)
.

(ii) [46] Let s be the characteristic of Fq, then one has

Rq(s) ≥
1

s
− 1

A(q)
+

1− logq s

sA(q)
.

(iii) [48] For A(q) > 5, one has

Rq(2) ≥ 1

2
− 1

2A(q)
.

For the rest of this section, we derive a lower bound on Rq(s) by making use of the idea from [63]
and our torsion limit. In particular, the bounds (i) and (ii) of Theorem 6.11 can be deduced from
our lower bound in Theorem 6.16. Furthermore, we improve the above bounds in the following two
cases: (i) when q is a square and s is the characteristic of Fq, the bound in Theorem 6.11(ii) can be
improved significantly (see Corollary 6.17(i)); (ii) when s does not divide q−1, the bound in Theorem
6.11(i) can be improved (see Corollary 6.17(ii)).

Let P1, P2, . . . , Pn be n distinct rational points of a function field F over the finite field Fq. Choose
a positive divisor G such that L(G−

∑n
i=1 Pi) = {0}. Let νPi

(G) = vi ≥ 0 and ti be a local parameter
at Pi for each i.

Consider the map
φ : L(G) −→ Fnq

f 7→ ((tv11 f)(P1), (tv22 f)(P2), . . . , (tvnn f)(Pn)).

Then the image of φ forms a subspace of Fnq that is defined as an algebraic geometry code. The image
of φ is denoted by C(

∑n
i=1 Pi, G)L. The map φ is an embedding since L(G−

∑n
i=1 Pi) = {0} and the

dimension of C(
∑n
i=1 Pi, G)L is equal to `(G).

Remark 6.12. Notice that the above construction is a modified version of algebraic geometry codes
defined by Goppa. The advantage of the above construction is to make it possible to get rid of the
condition Supp(G) ∩ {P1, P2, . . . , Pn} = ∅. This is crucial for our construction of frameproof codes
in this section.

When the condition Supp(G) ∩ {P1, P2, . . . , Pn} = ∅ is satisfied, i.e., vi = 0 for all i = 1, · · · , n,
then the above construction of algebraic geometry codes is consistent with Goppa’s construction.

Theorem 6.13. Let F/Fq be an algebraic function field of genus g and let P1, P2, . . . , Pn be n distinct
rational points of F . Let G be a positive divisor such that deg(G) < n. Let s ≥ 2 satisfy L(sG −∑n
i=1 Pi) = {0}. Then C(

∑n
i=1 Pi, G)L is an s-FPC(n, q`(G)).

Proof. For all f ∈ L(G), denote by cf the codeword

φ(f) = ((tv11 f)(P1), (tv22 f)(P2), . . . , (tvnn f)(Pn)).

Let A = {cf1 , . . . , cfr} be a subset of C := C(
∑n
i=1 Pi, G)L with |A| = r ≤ s. Let cg ∈ desc(A) ∩ C

for some g ∈ L(G). Then by the definition of descendant, for each 1 ≤ i ≤ n we have

r∏
j=1

πi(cfj − cg) = 0,

25



where πi(cfj − cg) stands for ith coordinate of cfj − cg. This implies that

r∏
j=1

(tvii fj − t
vi
i g)(Pi) = 0,

i.e.,

νPi
(

r∏
j=1

(tvii fj − t
vi
i g)) ≥ 1.

This is equivalent to

νPi(

r∏
j=1

(fj − g)) ≥ −rvi + 1.

Hence,
r∏
j=1

(fj − g) ∈ L(rG−
n∑
i=1

Pi) ⊂ L(sG−
n∑
i=1

Pi) = {0}.

Thus, the function
∏r
j=1(fj − g) is the zero function. So, fl − g = 0 for some 1 ≤ l ≤ r. Hence

cg = cfl ∈ A.

From Theorem 6.13, we know that it is crucial to find a divisor G such that L(sG−
∑n
i=1 Pi) = {0}.

Again we can apply our Theorem 3.2 to show

Lemma 6.14. Let F/Fq be an algebraic function field of genus g with at least one rational point P0.
Let s,m, n be three integers satisfying s ≥ 2 and g ≤ m ≤ n < sm and H a fixed positive divisor

of degree n. Then there exists a positive divisor G of degree m such that L(sG−H) = {0} provided
that Asm−n|J [s]| < h.

Lemma 6.15. Let F/Fq be an algebraic function field of genus g with at least one rational point.
Let s,m, n be three integers satisfying s ≥ 2 and g ≤ m ≤ n < sm and sm− n < g − logq |J [s]| −

logq
qg

(
√
q−1)2 . Let D be a fixed positive divisor of degree n. Then there exists a positive divisor G of

degree m such that L(sG−D) = {0}.

Proof. By Proposition 3.4 we have (note 1 ≤ sm− n ≤ g − 1)

Asm−n
h

≤ g

qg−(sm−n)−1(
√
q − 1)2

.

The condition in Lemma 6.14 is satisfied and the desired result follows.

Theorem 6.16. Suppose that q is a prime power and s is an integer such that A(q) ≥ s ≥ 2 and
Js(q, A(q)) < 1. Then we have

Rq(s) ≥
1

s
− 1

A(q)
+

1− Js(q, A(q))

sA(q)
.

Proof. Choose a family of function fields F/Fq with growing genus such that limg(F )→∞N(F )/g(F ) =
A(q) and limg(F )→∞ logq |J [s]|/g(F ) = Js(q, A(q)). Put n = N(F ), g = g(F ). LetD =

∑
P∈P(1)(F ) P.

Now for any fixed 0 < ε < 1− Js(q, A(q)), put

m = bn+ (1− Js(q, A(q))− ε)g
s

c.

Then we obtain
lim
g→∞

m

g
=
A(q) + 1− Js(q, A(q))− ε

s
>
A(q)

s
≥ 1,

and
lim
n→∞

m

n
=
A(q) + 1− Js(q, A(q))− ε

sA(q)
<
A(q) + 1

sA(q)
<

2A(q)

sA(q)
≤ 1,
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and
lim
n→∞

sm

n
= 1 +

1− Js(q,A(q))− ε
A(q)

> 1,

and
lim
n→∞

sm− n− (1− Js(q, A(q)))g

g
= −ε < 0.

Therefore, for all sufficiently large g we have g ≤ m < n < sm by (2), (3) and (4). It follows from
(5) that for all sufficiently large g we have

sm− n < g − logq |J [s]| − logq
qg

(
√
q − 1)2

.

By Lemma 6.15, there exists a divisor G of degree m of F such that L(sG − D) = {0} for each
sufficiently large g. Thus, by Theorem 6.13 the code C(D,G)L is an s-FPC(n, q`(G)). Hence,

Rq(s) ≥ lim
g→∞

logq q
`(G)

n

≥ lim
g→∞

m− g + 1

n

=
1

s
− 1

A(q)
+

1− Js(q, A(q))

sA(q)
− ε

sA(q)
.

Since the above inequality holds for any 0 < ε < 1− Js(q, A(q)), we get

Rq(s) ≥
1

s
− 1

A(q)
+

1− Js(q, A(q))

sA(q)

by letting ε tend to 0. This completes the proof.

Corollary 6.17. Suppose that q is a prime power and s is an integer such that A(q) ≥ s ≥ 2. Then
we have

Rq(s) ≥
1

s
− 1

A(q)
+

1− 2 logq s

sA(q)
. (6.1)

Moreover, we obtain an improvement to the bounds in Theorem 6.11 for the following two cases.

(i) If q is a square and s is the characteristic of Fq with √q − 1 ≥ s ≥ 2, then

Rq(s) ≥
1

s
− 1
√
q − 1

+
(1− (logq s)/(

√
q + 1))

s(
√
q − 1)

. (6.2)

(ii) If s does not divide q − 1, then

Rq(s) ≥
1

s
− 1

A(q)
+

1− logq s

sA(q)
. (6.3)

Proof. The bounds (6.1), (6.2) and (6.3) follow from Theorems 6.16 and Theorem 2.3(i), 2.3(iii) and
2.3(ii), respectively.
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[53] I. Shparlinski, M. Tsfasman, S. Vlǎduţ. Curves with many points and multiplication in finite
fields. Lecture Notes in Math., vol. 1518, Springer-Verlag, Berlin, 1992, pp. 145-169.

[54] K.W. Shum, I. Aleshnikov, P.V. Kumar, H. Stichtenoth, V. Deolalikar. A low-complexity al-
gorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov
bound. IEEE Trans. Inform. Theory 47(6): 2225–2241 (2001).

[55] H. Stichtenoth. Algebraic function fields and codes. Springer Verlag, 1993. (New edition: 2009).

[56] D. R. Stinson and R. Wei, Combinatorial properties and constructions of traceability schemes
and frameproof codes, SIAM J. Discrete Math., Vol. 11 (1998), 41-53.
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