
Toward Practical Homomorphic Evaluation
of Block Ciphers Using Prince

Yarkın Doröz, Aria Shahverdi, Thomas Eisenbarth, and Berk Sunar

Worcester Polytechnic Institute
{ydoroz,ashahverdi,teisenbarth,sunar}@wpi.edu

Abstract. We present the homomorphic evaluation of the Prince block
cipher. Our leveled implementation is based on a generalization of NTRU.
We are motivated by the drastic bandwidth savings that may be achieved
by scheme conversion. To unlock this advantage we turn to lightweight ci-
phers such as Prince. These ciphers were designed from scratch to yield
fast and compact implementations on resource-constrained embedded
platforms. We show that some of these ciphers have the potential to en-
able near practical homomorphic evaluation of block ciphers. Indeed, our
analysis shows that Prince can be implemented using only a 24 level deep
circuit. Using an NTRU based implementation we achieve an evaluation
time of 3.3 seconds per Prince block – one and two orders of magnitude
improvement over homomorphic AES implementations achieved using
NTRU, and BGV-style homomorphic encryption libraries, respectively.

Keywords: Homomorphic encryption, NTRU, Prince, lightweight block ciphers.

1 Introduction

An encryption scheme is fully homomorphic (FHE scheme) if it permits the effi-
cient evaluation of any boolean circuit or arithmetic function on ciphertexts [1].
Gentry proposed the first FHE scheme [2,3] based on lattices that supports ad-
dition and multiplication circuits for arbitrary depth. Since addition and multi-
plication on any non-trivial ring give us a universal set of logic gates, this scheme
– if made efficient – allows one to employ any untrusted computing resources
without risk of revealing sensitive data. In [4], van Dijk, et al., proposed a FHE
scheme based on integers. In 2010, Gentry and Halevi [5] presented a variant
of Gentry’s FHE; this publication introduced a number of optimizations as well
as the first actual FHE implementation. For other optimizations see also [6–8].
Although these earlier schemes have achieved full homomorphism, there is a
serious bottleneck that prevents deployment.

To address this problem, some newer FHE schemes were proposed in recent
years. In [9], Brakerski, Gentry and Vaikuntanathan proposed a new FHE scheme
(BGV) based on LWE problems. Instead of re-encryption, this new scheme uses
other lightweight methods to refresh ciphertexts. These methods cannot thor-
oughly refresh ciphertexts (as re-encryption does), but they limit noise growth so

that the scheme can evaluate much deeper circuits. The re-encryption process is
then reserved as an optimization only for extremely complicated circuits instead
of a necessity for the majority of practical circuits. Gentry, Halevi and Smart [8]
proposed a customized LWE-based FHE scheme tailored to achieve efficient eval-
uation of the AES cipher without bootstrapping. Their implementation is highly
customized to evaluate AES efficiently and makes use of batching [7], key and
modulus switching techniques [9]. Their byte-sliced and SIMD implementations
take about 5 minutes and 40 minutes, respectively, to evaluate an AES block.

In [10], Alt-López, Tromer and Vaikuntanathan adopted this idea to Stehlé
and Steinfeld’s generalized NTRU scheme [11] and developed an FHE scheme
(ATV) that supports inputs from multiple public keys. Bos et al. [12] presented a
leveled FHE scheme and its implementation derived from ATV. The ATV scheme
is modified by adopting a tensor product technique introduced by Brakerski [14]
such that the security depends only on standard lattice assumptions (and no
longer on the decisional small polynomial ratio assumption). Furthermore, mod-
ulus switching is no longer needed due to the reduced noise growth. Lastly, the
authors advocate use of the Chinese Remainder Theorem on the message space
to improve the flexibility of the scheme. In [15] Doröz, Hu and Sunar propose
another implementation based on the ATV scheme [10]. Similar to earlier pro-
posals the implementation is batched, bit-sliced and features modulus switching
techniques. The authors also introduce a specialization of the modulus to reduce
the public key size and thereby memory required during evaluation. The scheme
is generic, i.e. not customized to efficiently evaluate any specific class of circuits
such as AES. When used to evaluate an AES block the implementation performs
one order of magnitude faster than the implementation of [8].

More recent FHE schemes displayed significant improvements over earlier
constructions in both time complexity and in ciphertext size. Nevertheless, both
latency and message expansion rates remain roughly two orders of magnitude
higher than those of traditional public-key schemes. This rapid emergence of a
diverse set of homomorphic encryption schemes has brought with it the need
to transform one ciphertext into another. Bootstrapping [2], relinearization [16],
and modulus reduction [9, 16] are tools of this form, allowing someone other
than the holder of the original private key to transform one encryption into
one or more encryptions using the same scheme and (typically) a different key
and/or different parameters. One important type of ciphertext transformation
was introduced by Brakerski and Vaikuntanathan. In [16, Sec. 1.1], the technique
of relinearization is introduced as a way to re-encrypt quadratic polynomials as
linear polynomials under a new key, thereby making their security argument
independent of lattice assumptions and dependent only on a standard LWE
hardness assumption.

Lauter, Naehrig and Vaikuntanathan [17] discuss tools for making somewhat
homomorphic encryption schemes more practical including scheme conversion.
First, they present two natural options for encryption of integers and demon-
strate the versatility afforded by efficient transforms between bitwise represen-
tation and integer representation with a larger modulus. The authors of [17] also

use this conversion idea to facilitate efficient communication with a cloud server.
If cloud computations are to be performed with a FHE scheme, data can be up-
loaded to the server under a more compact scheme such as AES provided it has
a relatively simple decryption circuit. If computations on ciphertexts are to be
carried out, the decryption circuit of the target scheme is evaluated homomor-
phically to re-encrypt this data under the FHE. The result of these computations
is a collection of very large ciphertexts and, at present, no method is known to
transform these back to AES encryptions. But Lauter et al. observe that the
dimension reduction technique of Brakerski and Vaikuntanathan [16] is useful
here to reduce the ciphertext size (i.e., the overall FHE is the same, but the pa-
rameters are smaller, prohibiting further computation) before transmitting the
results back to the client. In [17], efficient implementation is left as an important
open problem.

Motivated by this need, we propose the use of lightweight block ciphers to
facilitate efficient conversion. As a research area lightweight block ciphers [18]
emerged from the proliferation of severely constrained embedded and mobile
computing applications such as RFIDs, sensor network nodes etc. Such appli-
cations demand cryptographic primitives that can be computed with very little
power in compact chips. Driven by this strong need, a new class of lightweight
block ciphers were designed from scratch with security and implementation effi-
ciency in mind. Here we exploit the synergy between block ciphers designed for
constrained environments and the efficiency bottleneck of homomorphic encryp-
tion schemes to achieve efficient homomorphic evaluation of a block cipher.

Our Contribution. In this work,

– we present a survey of lightweight block ciphers. We show that some lightweight
block ciphers are more suitable than others. In contrast some lightweight
ciphers have worse homomorphic evaluation performance than traditional
block ciphers, e.g. AES since our metric (circuit depth) is related to but
different than the metrics used in the construction of lightweight ciphers.

– we present a leveled homomorphic implementation of the Prince cipher. Our
implementation makes use of the NTRU based library developed by Doröz,
Hu and Sunar [15]. Specifically, we optimize the Prince cipher for shallow
circuit implementation, and based on the depth characteristics, chose optimal
but secure parameters for the library to evaluate Prince efficiently. With the
chosen parameters, the batched implementation evaluates 1024 blocks in 57
minutes, with 3.3 seconds per block amortization.

– more broadly, we motivate the study of lightweight block cipher design for
homomorphic evaluation bringing a new metric, i.e. circuit depth, to the
attention of block cipher designers.

2 Background

2.1 The ATV-FHE Scheme

NTRU based FHE schemes present a viable alternative to the currently dominant
BGV style constructions. We follow the methodology proposed in [15] by Doröz

et al. which builds on the NTRU based homomorphic encryption scheme (ATV)
by Alt-López, Tromer and Vaikuntanathan [10]. The ATV scheme uses a variant
of NTRU proposed by Stehlé and Steinfeld [11] to develop a leveled multi-key
FHE that features a new operation named relinearization. The authors note that
although the transformation to a fully homomorphic system deteriorates the
efficiency, their construction is a leading candidate for a practical FHE scheme.

We next briefly outline the single key version of the ATV scheme. All op-
erations are performed in Rq = Zq[x]/〈xn + 1〉 where n represents the lattice
dimension and q is the prime modulus. A polynomial is B-bounded if all of its
coefficients lie in [−B,B]. In the primitives we often sample “small” polynomials
f ∈ R such that f is B-bounded. The error distribution χ is the truncated dis-
crete Gaussian distribution DZn,r for standard deviation r > 0. A sample from
this distribution is a r

√
n-bounded polynomial e ∈ R. For a detailed treatment

of the discrete Gaussian distribution see [19]. With these definitions we are now
ready to outline the primitives of the public key encryption scheme:

KeyGen We choose a decreasing sequence of primes q0 > q1 > · · · > qd and
a polynomial φ(x) = xn + 1. For each i, we sample u(i) and g(i) from dis-

tribution χ, set f (i) = 2u(i) + 1 and h(i) = 2g(i)
(
f (i)
)−1

in ring Rqi =

Zqi [x]/〈φ(x)〉 (If f (i) is not invertible, re-sample). We then sample, for i =

0, . . . , d and for τ = 0, . . . , blog qic, s(i)τ and e
(i)
τ from χ and publish evaluation

key
{
ζ
(i)
τ (x)

}i
τ

where ζ
(i)
τ (x) = h(i)s

(i)
τ + 2e

(i)
τ + 2τ

(
f (i−1)

)2
in Rqi−1 .

Encrypt To encrypt a bit b ∈ {0, 1} with a public key (h(0), q0), Encrypt first
generates random samples s and e from χ and sets c(0) = h(0)s + 2e + b, a
polynomial in Rq0 .

Decrypt To decrypt the ciphertext c with the corresponding private key f (i),
Decrypt multiplies the ciphertext and the private key in Rqi then compute
the message by modulo two: m = c(i)f (i) (mod 2)

Eval We assume we are computing a leveled circuit with gates alternating be-
tween XOR and AND. Arithmetic operations are performed directly on ci-

phertexts as follows: Suppose c
(0)
1 = Encrypt(b1) and c

(0)
2 = Encrypt(b2). Then

XOR is effected by simply adding ciphertexts: Encrypt(b1 + b2) = c
(0)
1 + c

(0)
2 .

Polynomial multiplication incurs a much greater growth in the noise, so each
multiplication step is followed by a modulus switching. First, we compute

c̃(0)(x) = c
(0)
1 ·c

(0)
2 (mod φ(x)) and then perform Relinearization, as described

below, to obtain c̃(1)(x) followed by modulus switching Encrypt(b1 · b2) =
b q1q0 c̃

(1)(x)e2 where the subscript 2 on the rounding operator indicates that
we round up or down in order to make all coefficients equal modulo 2. The
same process holds for evaluating with ith level ciphertexts, e.g. computing

c̃(i)(x) from c
(i−1)
1 and c

(i−1)
2 .

In addition to the primitives [10] defines another operation named Relineariza-
tion that computes c̃(i)(x) from c̃(i−1)(x) extending c̃(i−1)(x) as a linear com-

bination of 1-bounded polynomials c̃(i−1)(x) =
∑
τ 2τ c̃

(i−1)
τ (x) where c̃

(i−1)
τ (x)

takes its coefficients from {0, 1}. Also define c̃(i)(x) =
∑
τ ζ

(i)
τ (x)c̃

(i−1)
τ (x) in Rqi .

Note that by augmenting the public key with the evaluation keys ζ
(i)
τ (x),

i.e. encrypted shifted versions of f2, it becomes possible to homomorphically
evaluate the product of c with the encrypted f2 using a shallow circuit of only
additions. The authors propose the use of relinearization (with modulus switch-
ing) after both addition and multiplication operations and define evaluation key
parameters accordingly. To relinearize after additions, we need shifted versions
of the secret key f encrypted with respect to the new modulus, whereas for after
multiplications, we need the same but of f2 instead.

2.2 The DHS FHE Library

Doröz, Hu and Sunar (DHS) [15] proposed a customized leveled implementation
of the ATV FHE scheme. The code is written in C++ and relies on the library
functions provided by NTL software package linked with GMP. The implemen-
tation introduces a number of optimizations, including a modulus specialization
technique to reduce the public key size. The main features of the DHS imple-
mentation are as follows:

– The arithmetic is performed over Rq = Zq[x]/〈Ψm(x)〉 where the modulus
q takes the special form q = pk and p > 2 is a prime, and Ψm(x) denotes
the mth cyclotomic polynomial and n = ϕ(m) = deg(Ψ). Noise vectors are
chosen from the discrete Gaussian noise distribution χ [19].

– Circuit evaluation is divided into levels by the multiplication (AND) opera-
tions. Modulus switching is implemented at the end of each level. Since the
moduli are special: q = pk, after every multiplication first relinearization is
performed which is then followed by modulus switching. Due to the special
structure, the public key in one level can also be promoted to the next level
via modular reduction. For instance, to evaluate a depth d circuit, the scheme
uses the public key in the first level defined over q0 = pd which is then pro-
moted to the following levels that use q1 = pd−1, q2 = pd−2, . . . , qd−1 = p by
on-the-fly modular reduction with the new modulus, significantly reducing
the memory requirement.

– The authors analyze the noise growth during circuit evaluation and deter-
mined that to keep the noise stable over the levels of the evaluation one
needs to cut after each relinearization by

log(p) ≈ log
(
ε[an(6B2 + 2B) log(aq0) + n3/2(2B + 1)2B2]

)
bits where ε is small constant chosen to minimize the error probability, B = 2
from the χ distribution, and a represents the maximum number of cipher-
texts summed before multiplication in each level. Also note that in instanti-
ation we fix χ to choose from {−1, 0, 1} with probabilities {0.25, 0.5, 0.25},
respectively.

– The implementation is bit-sliced and uses the batching technique proposed
by Smart and Vercauteren [6,7] (see also [8]). For this the modulus polyno-
mial Ψm(x) is factorized over F2 into equal degree polynomials Fi(x) which

define the message slots in which message bits are embedded using the Chi-
nese Remainder Theorem. Therefore, the number of message slots is found as
` = ϕ(m)/t where deg(Fi(x)) = t may be determined by finding the smallest
integer d such that m|(2t − 1).

The ATV library contains 5 main operations; KeyGen, Encryption, Decryp-
tion, Modulus Switch and Relinearization. The most critical operation
for circuit evaluation is Relinearization. The other operations have negligible
effect on the run time.

The authors also implement the 128-bit AES circuit to compare the perfor-
mance of their scheme to the earlier AES implementation by Gentry, Halevi and
Smart [8]. The implementation manages to evaluate the 10 round AES circuit
in 31 hours with 2048 message slots with a 55 sec per AES block evaluation
time making it 48 times faster than the generic SIMD implementation, 6 times
faster than the AES customized byte-sliced implementation by Gentry, Halevi
and Smart.

2.3 A Lightweight Block Cipher: Prince

Several lightweight block ciphers have been proposed with the goal of permit-
ting a compact hardware implementation or good performance at small memory
footprint in software. Examples include ciphers like Present, KATAN, TEA,
HIGHT, etc. An overview of implementation properties can be found in [20].
Among these, Prince is a lightweight block cipher that has been optimized for
low latency and a small hardware footprint [21]. It features a 64-bit block size,
128-bit key size. Prince implements a substitution-permutation network which
iterates for 12 rounds. The round function is AES-like and operates on a 4 by 4
array of nibbles, with 4-bit S–boxes, shift rows and mix columns operations. The
round key remains constant, but is augmented with a 64-bit round constant to
ensure variation between rounds. An interesting feature of Prince is the inflective
property: encryption and decryption only differ in the round key, i.e. decryption
can use the same implementation as encryption, only the round key needs to
be modified. Figure 1 shows the structure of the Prince cipher. To implement

1R 2R 3R
4R 5R 1

6

R 1

7

R 1

8

R 1

9

R 1

10

R'M

M 1
M

S

S

1
S

1
S

0k
1k

'

0k
1k 1k 1k 1k 1k 1k 1k 1k 1k 1k 1k

1k 1k

1RC 2RC
3RC

4RC 5RC 6RC 7RC 8RC 9RC 10RC

11RC0RC

iRC
iRC

Fig. 1. The Prince cipher

Prince, the following operations have to be realized:

Key Schedule The 128-bit key is split into two parts k0 and k1. k0 is used to
generate another key k′0 = (k0 >>> 1) ⊕ (k0 >> 63). The keys k0 and k′0
are used as pre- and post-whitening keys, i.e. are XOR-added to the state
before and after all round functions are performed. The round key k1 is the
same for all rounds and is also XOR-added during the key addition phase.

Round Constant Addition Prince defines different round constants RCi for
each round. A noteworthy property of the round constants is that RCi ⊕
RC11−i = α for 0 ≤ i ≤ 11, with α = c0ac29b7c97c50dd. The round
constant addition is a binary addition, just as the round key addition. Both
operations can be merged.

S–box The S–box layer uses a mapping of 4-bit to 4-bit, as defined in the
following table. The S–box is the only operation of Prince that is not linear

i 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[i] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

in the bits, and hence needs costly AND operations (or binary multiplication)
for its implementation. While other S–boxes are possible for Prince, we chose
to use the original S–box, since the maximum depth of multiplication is
already optimal for the standard S–box. More details on how we implemented
the S–box is given in Section 3.2.

Linear Layer The linear layer consists of two parts: a shift rows which is sim-
ilar to the shift rows used in AES and simply changes the order of the
nibbles. Hence, it is a free operation in a bit-oriented implementation. The
mix columns equivalent XOR-adds three input bits to compute one output
bit in such a way that the operation is invertible. Again, this operation is
linear and easily implementable.

All operations also need an implementation of their inverse, as the last six rounds
use the inverse operations.

3 NTRU based Homomorphic Evaluation

In this section we describe our implementation in detail. Specifically, we first
present a study of the depth characteristics of popular lightweight block ciphers
among which we identify the Prince cipher as the most promising for homomor-
phic evaluation. Later we present in detail a shallow circuit implementation of
Prince. In what follows, we select optimal parameters for the Doröz et al. [15]
leveled ATV FHE implementation to support evaluation of the Prince circuit.

3.1 Picking a Lightweight Block Cipher

We are looking for any cipher that provides efficient encryption while permitting
a shallow circuit implementation, i.e. the number of consecutive multiplication

levels should be minimized. Therefore we turn our attention to lightweight block
ciphers [22]. There are two main factors that increase the number of consecutive
multiplications: The size and complexity of the S–boxes, as higher non-linearity
usually results in higher-degree terms, i.e. an increased number of consecutive
binary multiplications. PRESENT [18], for example, has very simple S–boxes,
resulting in a shallow circuit for each individual S–box. Another important factor
is the number of rounds, where PRESENT is less optimal due to the rather high
number of rounds. Prince, a recently proposed block cipher [21], has roughly the
same complexity for the S–boxes, but has only 12 rounds which make it a much
more efficient choice for our purposes. The more complex linear layer is not a
problem, since it does not introduce new binary multiplications. We present an
overview of the complexity of different lightweight ciphers in Table 1.

Table 1. Comparison of the complexity of common lightweight block ciphers in number
of rounds, algebraic degree of the S–box function, algebraic degree of a round excluding
the S–box, per round and total number of multiplicative levels.

Algebraic Degree Total Depth
Cipher # Rounds S–box Rem. Round Per Round Full Cipher

AES-128 [23] 10 8 0 3 30
Present [18] 31 4 0 2 62
Prince [21] 12 4 0 2 24
HIGHT [24] 32 N/A 8 3 96
SEA96,8 [25] 93 3 8 4 372
KATAN-64 [26] 254 N/A 1 1 254
Simon-64/96 (64/128) [27] 42 (44) N/A 1 1 42 (44)

Note that the cipher depth is almost fully determined by the consecutive lev-
els of binary AND-statements. The two software-oriented ciphers, namely SEA
and HIGHT, feature Feistel-structure and a high number of rounds. The num-
ber of rounds, together with the Feistel structure, results in a high depth circuit,
making them a bad choice for our purposes. Furthermore, additions mod 2n add
significant depth due to high nonlinearity for the most significant output bits.
While there are [12, 13] FHE implementations capable of evaluating integer op-
erations they do not support mixing of integer and bit-oriented operations as
required by most block ciphers. Hence, the hardware-oriented ciphers such as
Present and Prince seem more appropriate. Certain possible cipher-specific opti-
mizations are likely missed in the table. Katan, for example, allows the evaluation
of a few rounds in parallel, since independent bits are processed in consecutive
rounds. We did not explore this further due to the big starting disadvantage in
the number of rounds. It can be seen that AES already offers quite a low depth,
due to the low number of rounds. In practice, the depth 30 implementation of
AES is not attainable since the number of multiplications grows significantly.

Instead at best a depth 40 implementation is used in practice [15]. Either way,
the Prince cipher offers a significant improvement over AES.

3.2 Prince as a Shallow Circuit

As described in Section 2.3, Prince can be implemented in a way that every
operation is done on a single bit. Consecutive AND operations are costly in
the ATV FHE scheme so it is a necessity to prevent them as much as possible.
The only part of Prince that is nonlinear is the S–box layer. To determine an
optimal representation of the S–box, we use Mathematica to obtain the Algebraic
Normal Form (ANF), which represents all equations only in terms of XOR or
AND statements. The following table gives the resulting ANF representation
of the Prince S–box S(A,B,C,D) = (S0, S1, S2, S3). According to the table

S0 A⊕ C ⊕AB ⊕BC ⊕ABD ⊕ACD ⊕BCD ⊕ 1
S1 A⊕D ⊕AC ⊕AD ⊕ CD ⊕ABC ⊕ACD
S2 AC ⊕BC ⊕BD ⊕ABC ⊕BCD ⊕ 1
S3 A⊕B ⊕AB ⊕AD ⊕BC ⊕ CD ⊕BCD ⊕ 1

the S–box requires 28 AND-operations. Further optimization, making use of
efficient reuse of intermediate terms, enables a significant reduction of two-input
AND operations. The values for AB,AC,AD,BC,BD,CD can simply be stored
and used whenever it is necessary instead of recalculating them every time.
There exist four more terms in the formula that can be saved and used again;
these values are ABD,ABC,ACD,BCD. To be more efficient, for calculating
the first two terms and the next two terms we will use the saved value AB
and CD, respectively. The resulting depth of the multiplication is 2 i.e. one
for calculating terms such as AB and one for calculating terms such as ABD.
Hence the total number of ANDs for S–box would be 10—much less than by
straight implementation of the ANF. The same procedure is applied to optimize
the implementation of the inverse S–box.

3.3 Parameter Selection for the ATV FHE

We follow the parameter selection process of [15] for our ATV Prince implemen-
tation. In Table 2 we summarize the chosen parameters for Prince and AES.
Clearly, the 24 levels of Prince give us an advantage over the 40 level AES in
selecting smaller parameters: The polynomial degree of Prince is half the size
of AES with n = 16384. The per level cutting rate is log (p) = 20 bits, better
than expected than the noise analysis in [15] predicts. The reason is simple; the
Prince S–box has AND operations with three gates, e.g. A ·B ·C, and therefore
in the second level two polynomials with different noise levels are multiplied,
whereas [15] assumes the product inputs bear the same level of noise. With
log (p) = 20, the modulus may be chosen as log(q0) = 500 which is less than half

Table 2. Parameters for the AES [15] and our Prince implementations.

n log(q0) δ Levels log(p) Message Slots

AES [15] 32768 1271 1.0067 40 31 2048
Prince 16384 500 1.0052 24 20 1024

as long as the AES modulus, i.e. 1271-bits used in [15]. With n = 16384 and
log (q0), our Hermite factor is δ = 1.0052. This gives us a 130-bit security level,
which actually exceeds the security claims of Prince. The only disadvantage of
our Prince evaluation is that we have fewer message slots, exactly half of those
of the AES evaluation.

4 Implementation Results

We ran our implementation on a single thread on Intel Core i7 3770K running
3.5 Ghz with 32 GBytes of memory. The most expensive Prince operation is the
evaluation of the S–box circuit, since it is the only operation that contains multi-
plications and therefore requires Relinearization. The S–box is evaluated using 6
Relinearizations, resulting in 1,152 Relinearizations for the entire evaluation. The
execution completes in 57 minutes compared to 31 hours [15] and 36 hours [8]
for AES. This shows about ×30 speedup. A block of Prince encryption takes 3.3
seconds compared to 55 seconds for AES blocks. Another significant advantage
of Prince is that at 1 Gbytes the public key is much smaller. Therefore we can
run our implementations on standard machines.

Table 3. Performance comparison of Prince against AES implementations.

Total Time #Blocks Per Block PK Size
seconds GBytes

AES [15] 31 hours 2048 55 13.1
AES-Byte Sliced [8] 65 hours 720 300 n/a
AES-SIMD Sliced [8] 36 hours 54 2400 n/a

Prince (Ours) 57 minutes 1024 3.3 1.0

5 Conclusion

We presented a customized implementation of the lightweight block cipher Prince
using a leveled fully homomorphic encryption scheme based on NTRU. For this
we surveyed lightweight block ciphers and analyzed them with respect to a new
metric: circuit depth. Our analysis determined that the Prince block cipher is the

most suitable for homomorphic evaluation as it can be implemented using only a
depth 24 circuit. Using the recently proposed ATV library [15] we developed an
optimized shallow circuit implementation of Prince, which yielded an amortized
3.3 seconds per block evaluation running time, one to two orders of magnitude
faster than previous homomorphic AES evaluation proposals [8, 15].

With this work, we presented a near practical block cipher implementation
that could be used for scheme conversion [17]. We also aim to further motivate
research in the field of lightweight cryptography under the new shallow circuit
or circuit depth metric.

Acknowledgments

Funding for this research was in part provided by the US National Science Foun-
dation CNS Awards #1117590, #1319130, and #1261399.

References

1. Rivest, R.L., Adleman, L., Dertouzos, M.L.: “On data banks and privacy homo-
morphisms.” In: Foundations of Secure Computation, 1978.

2. Gentry, C.: “Fully homomorphic encryption using ideal lattices.” Symposium on
the Theory of Computing (STOC), 2009, pp. 169-178.

3. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Department
of Computer Science, Stanford University, 2009.

4. Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: “Fully homomorphic en-
cryption over the integers.” Advances in Cryptology–EUROCRYPT 2010 (2010):
24-4

5. Gentry, C., Halevi, S.: “Implementing Gentry’s fully-homomorphic encryption
scheme,” Advances in Cryptology–EUROCRYPT 2011, pp. 129–148, 2011.

6. Gentry, C., Halevi, S., Smart, N.P.: “Fully homomorphic encryption with polylog
overhead.” Manuscript, 2011.

7. Smart, N.P., Vercauteren, F.: “Fully homomorphic SIMD operations.” Manuscript
at http://eprint.iacr.org/2011/133, 2011.

8. Gentry, C., Halevi, S., Smart, N.P.: “Homomorphic evaluation of the AES circuit.”
Advances in Cryptology - CRYPTO 2012, 850-8, 2012.

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: “Fully homomorphic encryption
without bootstrapping.” Innovations in Theoretical Computer Science, ITCS 309–
325, 2012.

10. Alt-López, A., Tromer E., Vaikuntanathan, V.: “On-the-fly multiparty computa-
tion on the cloud via multikey fully homomorphic encryption.” In: Proc. of the
44th STOC, pp. 1219-1234. ACM, 2012.

11. Stehlé, D., Steinfeld, R.: “Making NTRU as secure as worst-case problems over
ideal lattices.” Advances in Cryptology – EUROCRYPT ’11 27–4, 2011.

12. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: “Improved Security for a Ring-
Based Fully Homomorphic Encryption Scheme”. In LNCS PQCrypto 2013. pp.
45–64. Springer, 2013.

13. Coron, J.S., Naccache, D., Tibouchi, M.: ”Public key compression and modu-
lus switching for fully homomorphic encryption over the integers.” Advances in
Cryptology-EUROCRYPT 2012. Springer Berlin Heidelberg, 2012. 446-464.

14. Brakerski, Z.: “Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP”. In Advances in Cryptology – CRYPTO 2012, Springer LNCS
Volume 7417, 2012, pp 868-886.

15. Doröz, Y., Hu, Y., Sunar, B.: “Homomorphic AES Evaluation using NTRU”,
IACR ePrint Archive. Technical Report 2014/039 January 2014. URL:
http://eprint.iacr.org/2014/039.pdf

16. Brakerski, Z., Vaikuntanathan, V.: “Efficient fully homomorphic encryption from
(standard) LWE.” Foundations of Computer Science (FOCS), 2011 IEEE 52nd
Annual Symposium on. IEEE, 2011.

17. Lauter, K., Naehrig, M., Vaikuntanathan, V.: “Can homomorphic encryption be
practical?” In: Proceedings of the 3rd ACM CCSW (Cloud Computing Security
Workshop) ACM, 2011.

18. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: “PRESENT: An Ultra-Lightweight Block Ci-
pher”. Cryptographic Hardware and Embedded Systems - CHES 2007, LNCS vol
4727, 2007, pp 450–466.

19. Micciancio, D., Regev, O.: “Worst-case to average-case reductions based on gaus-
sian measures”. SIAM J. Comput., 37(1):267?302, 2007.

20. Eisenbarth, T., Gong, Z., Güneysu, T., Heyse, S., Indesteege, S., Kerckhof, S.,
Koeune, F., Nad, T., Plos, T., Regazzoni, F., Standaert, F.X., Oldeneel tot Olden-
zeel, L.: “Compact implementation and performance evaluation of block ciphers
in tiny devices”. Progress in Cryptology - AFRICACRYPT 2012, vol 7374 of
LNCS, pages 172–187, 2012.

21. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalcin, T.: “Prince – a low-latency block cipher for pervasive computing
applications”. In Progress in Cryptology - ASIACRYPT 2012, pages 208–225.

22. Eisenbarth, T., Paar, C., Poschmann, A., Kumar, S., Uhsadel, L.: “A Survey
of Lightweight-Cryptography Implementations”. In Design & Test of Computers,
IEEE , vol.24, no.6, pp.522,533, 2007.

23. Daemen, J., Rijmen, V.: The design of Rijndael: AES-the advanced encryption
standard. Springer, 2002.

24. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J.,
Jeong, K., Kim, H., Kim, J., Chee, S.: “HIGHT: A New Block Cipher Suitable for
Low-Resource Device”. Cryptographic Hardware and Embedded Systems - CHES
2006, vol 4249 of LNCS, pages 46-59. Springer, 2006.

25. Standaert, F.X., Piret, G., Gershenfeld, N., Quisquater, J.J.: “SEA: A Scalable
Encryption Algorithm for Small Embedded Applications”. CARDIS 2006, vol
3928 of LNCS, pages 222-236. Springer, 2006.

26. Canniere, C.D., Dunkelman, O., Knezevic, M.: “KATAN and KTANTAN - A
Family of Small and Efficient Hardware-Oriented Block Ciphers”. Cryptographic
Hardware and Embedded Systems - CHES 2009, vol 5747 of LNCS, pages 272-288.
Springer, 2009.

27. Canniere, C.D., Dunkelman, O., Knezevic, M.: “The SIMON and SPECK Families
of Lightweight Block Ciphers”. Cryptology ePrint Archive, Report 2013/404, 2013.
http://eprint.iacr.org/.

http://eprint.iacr.org/

	Toward Practical Homomorphic Evaluation of Block Ciphers Using Prince

